Fix formattting of gdb/ChangeLog and gdb/testsuite/ChangeLog enties
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988-2016 Free Software Foundation, Inc.
4
5 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
6 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "value.h"
28 #include "gdbcmd.h"
29 #include "language.h"
30 #include "gdbcore.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdbtypes.h"
34 #include "target.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "osabi.h"
38 #include "mips-tdep.h"
39 #include "block.h"
40 #include "reggroups.h"
41 #include "opcode/mips.h"
42 #include "elf/mips.h"
43 #include "elf-bfd.h"
44 #include "symcat.h"
45 #include "sim-regno.h"
46 #include "dis-asm.h"
47 #include "frame-unwind.h"
48 #include "frame-base.h"
49 #include "trad-frame.h"
50 #include "infcall.h"
51 #include "floatformat.h"
52 #include "remote.h"
53 #include "target-descriptions.h"
54 #include "dwarf2-frame.h"
55 #include "user-regs.h"
56 #include "valprint.h"
57 #include "ax.h"
58 #include <algorithm>
59
60 static const struct objfile_data *mips_pdr_data;
61
62 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
63
64 static int mips32_instruction_has_delay_slot (struct gdbarch *gdbarch,
65 ULONGEST inst);
66 static int micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32);
67 static int mips16_instruction_has_delay_slot (unsigned short inst,
68 int mustbe32);
69
70 static int mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
71 CORE_ADDR addr);
72 static int micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
73 CORE_ADDR addr, int mustbe32);
74 static int mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
75 CORE_ADDR addr, int mustbe32);
76
77 static void mips_print_float_info (struct gdbarch *, struct ui_file *,
78 struct frame_info *, const char *);
79
80 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
81 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
82 #define ST0_FR (1 << 26)
83
84 /* The sizes of floating point registers. */
85
86 enum
87 {
88 MIPS_FPU_SINGLE_REGSIZE = 4,
89 MIPS_FPU_DOUBLE_REGSIZE = 8
90 };
91
92 enum
93 {
94 MIPS32_REGSIZE = 4,
95 MIPS64_REGSIZE = 8
96 };
97
98 static const char *mips_abi_string;
99
100 static const char *const mips_abi_strings[] = {
101 "auto",
102 "n32",
103 "o32",
104 "n64",
105 "o64",
106 "eabi32",
107 "eabi64",
108 NULL
109 };
110
111 /* Enum describing the different kinds of breakpoints. */
112
113 enum mips_breakpoint_kind
114 {
115 /* 16-bit MIPS16 mode breakpoint. */
116 MIPS_BP_KIND_MIPS16 = 2,
117
118 /* 16-bit microMIPS mode breakpoint. */
119 MIPS_BP_KIND_MICROMIPS16 = 3,
120
121 /* 32-bit standard MIPS mode breakpoint. */
122 MIPS_BP_KIND_MIPS32 = 4,
123
124 /* 32-bit microMIPS mode breakpoint. */
125 MIPS_BP_KIND_MICROMIPS32 = 5,
126 };
127
128 /* For backwards compatibility we default to MIPS16. This flag is
129 overridden as soon as unambiguous ELF file flags tell us the
130 compressed ISA encoding used. */
131 static const char mips_compression_mips16[] = "mips16";
132 static const char mips_compression_micromips[] = "micromips";
133 static const char *const mips_compression_strings[] =
134 {
135 mips_compression_mips16,
136 mips_compression_micromips,
137 NULL
138 };
139
140 static const char *mips_compression_string = mips_compression_mips16;
141
142 /* The standard register names, and all the valid aliases for them. */
143 struct register_alias
144 {
145 const char *name;
146 int regnum;
147 };
148
149 /* Aliases for o32 and most other ABIs. */
150 const struct register_alias mips_o32_aliases[] = {
151 { "ta0", 12 },
152 { "ta1", 13 },
153 { "ta2", 14 },
154 { "ta3", 15 }
155 };
156
157 /* Aliases for n32 and n64. */
158 const struct register_alias mips_n32_n64_aliases[] = {
159 { "ta0", 8 },
160 { "ta1", 9 },
161 { "ta2", 10 },
162 { "ta3", 11 }
163 };
164
165 /* Aliases for ABI-independent registers. */
166 const struct register_alias mips_register_aliases[] = {
167 /* The architecture manuals specify these ABI-independent names for
168 the GPRs. */
169 #define R(n) { "r" #n, n }
170 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
171 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
172 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
173 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
174 #undef R
175
176 /* k0 and k1 are sometimes called these instead (for "kernel
177 temp"). */
178 { "kt0", 26 },
179 { "kt1", 27 },
180
181 /* This is the traditional GDB name for the CP0 status register. */
182 { "sr", MIPS_PS_REGNUM },
183
184 /* This is the traditional GDB name for the CP0 BadVAddr register. */
185 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
186
187 /* This is the traditional GDB name for the FCSR. */
188 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
189 };
190
191 const struct register_alias mips_numeric_register_aliases[] = {
192 #define R(n) { #n, n }
193 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
194 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
195 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
196 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
197 #undef R
198 };
199
200 #ifndef MIPS_DEFAULT_FPU_TYPE
201 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
202 #endif
203 static int mips_fpu_type_auto = 1;
204 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
205
206 static unsigned int mips_debug = 0;
207
208 /* Properties (for struct target_desc) describing the g/G packet
209 layout. */
210 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
211 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
212
213 struct target_desc *mips_tdesc_gp32;
214 struct target_desc *mips_tdesc_gp64;
215
216 const struct mips_regnum *
217 mips_regnum (struct gdbarch *gdbarch)
218 {
219 return gdbarch_tdep (gdbarch)->regnum;
220 }
221
222 static int
223 mips_fpa0_regnum (struct gdbarch *gdbarch)
224 {
225 return mips_regnum (gdbarch)->fp0 + 12;
226 }
227
228 /* Return 1 if REGNUM refers to a floating-point general register, raw
229 or cooked. Otherwise return 0. */
230
231 static int
232 mips_float_register_p (struct gdbarch *gdbarch, int regnum)
233 {
234 int rawnum = regnum % gdbarch_num_regs (gdbarch);
235
236 return (rawnum >= mips_regnum (gdbarch)->fp0
237 && rawnum < mips_regnum (gdbarch)->fp0 + 32);
238 }
239
240 #define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
241 == MIPS_ABI_EABI32 \
242 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
243
244 #define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
245 (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
246
247 #define MIPS_LAST_ARG_REGNUM(gdbarch) \
248 (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
249
250 #define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
251
252 /* Return the MIPS ABI associated with GDBARCH. */
253 enum mips_abi
254 mips_abi (struct gdbarch *gdbarch)
255 {
256 return gdbarch_tdep (gdbarch)->mips_abi;
257 }
258
259 int
260 mips_isa_regsize (struct gdbarch *gdbarch)
261 {
262 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
263
264 /* If we know how big the registers are, use that size. */
265 if (tdep->register_size_valid_p)
266 return tdep->register_size;
267
268 /* Fall back to the previous behavior. */
269 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
270 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
271 }
272
273 /* Return the currently configured (or set) saved register size. */
274
275 unsigned int
276 mips_abi_regsize (struct gdbarch *gdbarch)
277 {
278 switch (mips_abi (gdbarch))
279 {
280 case MIPS_ABI_EABI32:
281 case MIPS_ABI_O32:
282 return 4;
283 case MIPS_ABI_N32:
284 case MIPS_ABI_N64:
285 case MIPS_ABI_O64:
286 case MIPS_ABI_EABI64:
287 return 8;
288 case MIPS_ABI_UNKNOWN:
289 case MIPS_ABI_LAST:
290 default:
291 internal_error (__FILE__, __LINE__, _("bad switch"));
292 }
293 }
294
295 /* MIPS16/microMIPS function addresses are odd (bit 0 is set). Here
296 are some functions to handle addresses associated with compressed
297 code including but not limited to testing, setting, or clearing
298 bit 0 of such addresses. */
299
300 /* Return one iff compressed code is the MIPS16 instruction set. */
301
302 static int
303 is_mips16_isa (struct gdbarch *gdbarch)
304 {
305 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MIPS16;
306 }
307
308 /* Return one iff compressed code is the microMIPS instruction set. */
309
310 static int
311 is_micromips_isa (struct gdbarch *gdbarch)
312 {
313 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MICROMIPS;
314 }
315
316 /* Return one iff ADDR denotes compressed code. */
317
318 static int
319 is_compact_addr (CORE_ADDR addr)
320 {
321 return ((addr) & 1);
322 }
323
324 /* Return one iff ADDR denotes standard ISA code. */
325
326 static int
327 is_mips_addr (CORE_ADDR addr)
328 {
329 return !is_compact_addr (addr);
330 }
331
332 /* Return one iff ADDR denotes MIPS16 code. */
333
334 static int
335 is_mips16_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
336 {
337 return is_compact_addr (addr) && is_mips16_isa (gdbarch);
338 }
339
340 /* Return one iff ADDR denotes microMIPS code. */
341
342 static int
343 is_micromips_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
344 {
345 return is_compact_addr (addr) && is_micromips_isa (gdbarch);
346 }
347
348 /* Strip the ISA (compression) bit off from ADDR. */
349
350 static CORE_ADDR
351 unmake_compact_addr (CORE_ADDR addr)
352 {
353 return ((addr) & ~(CORE_ADDR) 1);
354 }
355
356 /* Add the ISA (compression) bit to ADDR. */
357
358 static CORE_ADDR
359 make_compact_addr (CORE_ADDR addr)
360 {
361 return ((addr) | (CORE_ADDR) 1);
362 }
363
364 /* Extern version of unmake_compact_addr; we use a separate function
365 so that unmake_compact_addr can be inlined throughout this file. */
366
367 CORE_ADDR
368 mips_unmake_compact_addr (CORE_ADDR addr)
369 {
370 return unmake_compact_addr (addr);
371 }
372
373 /* Functions for setting and testing a bit in a minimal symbol that
374 marks it as MIPS16 or microMIPS function. The MSB of the minimal
375 symbol's "info" field is used for this purpose.
376
377 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
378 "special", i.e. refers to a MIPS16 or microMIPS function, and sets
379 one of the "special" bits in a minimal symbol to mark it accordingly.
380 The test checks an ELF-private flag that is valid for true function
381 symbols only; for synthetic symbols such as for PLT stubs that have
382 no ELF-private part at all the MIPS BFD backend arranges for this
383 information to be carried in the asymbol's udata field instead.
384
385 msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
386 in a minimal symbol. */
387
388 static void
389 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
390 {
391 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
392 unsigned char st_other;
393
394 if ((sym->flags & BSF_SYNTHETIC) == 0)
395 st_other = elfsym->internal_elf_sym.st_other;
396 else if ((sym->flags & BSF_FUNCTION) != 0)
397 st_other = sym->udata.i;
398 else
399 return;
400
401 if (ELF_ST_IS_MICROMIPS (st_other))
402 {
403 MSYMBOL_TARGET_FLAG_MICROMIPS (msym) = 1;
404 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
405 }
406 else if (ELF_ST_IS_MIPS16 (st_other))
407 {
408 MSYMBOL_TARGET_FLAG_MIPS16 (msym) = 1;
409 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
410 }
411 }
412
413 /* Return one iff MSYM refers to standard ISA code. */
414
415 static int
416 msymbol_is_mips (struct minimal_symbol *msym)
417 {
418 return !(MSYMBOL_TARGET_FLAG_MIPS16 (msym)
419 | MSYMBOL_TARGET_FLAG_MICROMIPS (msym));
420 }
421
422 /* Return one iff MSYM refers to MIPS16 code. */
423
424 static int
425 msymbol_is_mips16 (struct minimal_symbol *msym)
426 {
427 return MSYMBOL_TARGET_FLAG_MIPS16 (msym);
428 }
429
430 /* Return one iff MSYM refers to microMIPS code. */
431
432 static int
433 msymbol_is_micromips (struct minimal_symbol *msym)
434 {
435 return MSYMBOL_TARGET_FLAG_MICROMIPS (msym);
436 }
437
438 /* Set the ISA bit in the main symbol too, complementing the corresponding
439 minimal symbol setting and reflecting the run-time value of the symbol.
440 The need for comes from the ISA bit having been cleared as code in
441 `_bfd_mips_elf_symbol_processing' separated it into the ELF symbol's
442 `st_other' STO_MIPS16 or STO_MICROMIPS annotation, making the values
443 of symbols referring to compressed code different in GDB to the values
444 used by actual code. That in turn makes them evaluate incorrectly in
445 expressions, producing results different to what the same expressions
446 yield when compiled into the program being debugged. */
447
448 static void
449 mips_make_symbol_special (struct symbol *sym, struct objfile *objfile)
450 {
451 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
452 {
453 /* We are in symbol reading so it is OK to cast away constness. */
454 struct block *block = (struct block *) SYMBOL_BLOCK_VALUE (sym);
455 CORE_ADDR compact_block_start;
456 struct bound_minimal_symbol msym;
457
458 compact_block_start = BLOCK_START (block) | 1;
459 msym = lookup_minimal_symbol_by_pc (compact_block_start);
460 if (msym.minsym && !msymbol_is_mips (msym.minsym))
461 {
462 BLOCK_START (block) = compact_block_start;
463 }
464 }
465 }
466
467 /* XFER a value from the big/little/left end of the register.
468 Depending on the size of the value it might occupy the entire
469 register or just part of it. Make an allowance for this, aligning
470 things accordingly. */
471
472 static void
473 mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
474 int reg_num, int length,
475 enum bfd_endian endian, gdb_byte *in,
476 const gdb_byte *out, int buf_offset)
477 {
478 int reg_offset = 0;
479
480 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
481 /* Need to transfer the left or right part of the register, based on
482 the targets byte order. */
483 switch (endian)
484 {
485 case BFD_ENDIAN_BIG:
486 reg_offset = register_size (gdbarch, reg_num) - length;
487 break;
488 case BFD_ENDIAN_LITTLE:
489 reg_offset = 0;
490 break;
491 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
492 reg_offset = 0;
493 break;
494 default:
495 internal_error (__FILE__, __LINE__, _("bad switch"));
496 }
497 if (mips_debug)
498 fprintf_unfiltered (gdb_stderr,
499 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
500 reg_num, reg_offset, buf_offset, length);
501 if (mips_debug && out != NULL)
502 {
503 int i;
504 fprintf_unfiltered (gdb_stdlog, "out ");
505 for (i = 0; i < length; i++)
506 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
507 }
508 if (in != NULL)
509 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
510 in + buf_offset);
511 if (out != NULL)
512 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
513 out + buf_offset);
514 if (mips_debug && in != NULL)
515 {
516 int i;
517 fprintf_unfiltered (gdb_stdlog, "in ");
518 for (i = 0; i < length; i++)
519 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
520 }
521 if (mips_debug)
522 fprintf_unfiltered (gdb_stdlog, "\n");
523 }
524
525 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
526 compatiblity mode. A return value of 1 means that we have
527 physical 64-bit registers, but should treat them as 32-bit registers. */
528
529 static int
530 mips2_fp_compat (struct frame_info *frame)
531 {
532 struct gdbarch *gdbarch = get_frame_arch (frame);
533 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
534 meaningful. */
535 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
536 return 0;
537
538 #if 0
539 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
540 in all the places we deal with FP registers. PR gdb/413. */
541 /* Otherwise check the FR bit in the status register - it controls
542 the FP compatiblity mode. If it is clear we are in compatibility
543 mode. */
544 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
545 return 1;
546 #endif
547
548 return 0;
549 }
550
551 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
552
553 static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
554
555 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
556
557 /* The list of available "set mips " and "show mips " commands. */
558
559 static struct cmd_list_element *setmipscmdlist = NULL;
560 static struct cmd_list_element *showmipscmdlist = NULL;
561
562 /* Integer registers 0 thru 31 are handled explicitly by
563 mips_register_name(). Processor specific registers 32 and above
564 are listed in the following tables. */
565
566 enum
567 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
568
569 /* Generic MIPS. */
570
571 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
572 "sr", "lo", "hi", "bad", "cause", "pc",
573 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
574 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
575 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
576 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
577 "fsr", "fir",
578 };
579
580 /* Names of tx39 registers. */
581
582 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
583 "sr", "lo", "hi", "bad", "cause", "pc",
584 "", "", "", "", "", "", "", "",
585 "", "", "", "", "", "", "", "",
586 "", "", "", "", "", "", "", "",
587 "", "", "", "", "", "", "", "",
588 "", "", "", "",
589 "", "", "", "", "", "", "", "",
590 "", "", "config", "cache", "debug", "depc", "epc",
591 };
592
593 /* Names of registers with Linux kernels. */
594 static const char *mips_linux_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
595 "sr", "lo", "hi", "bad", "cause", "pc",
596 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
597 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
598 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
599 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
600 "fsr", "fir"
601 };
602
603
604 /* Return the name of the register corresponding to REGNO. */
605 static const char *
606 mips_register_name (struct gdbarch *gdbarch, int regno)
607 {
608 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
609 /* GPR names for all ABIs other than n32/n64. */
610 static char *mips_gpr_names[] = {
611 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
612 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
613 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
614 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
615 };
616
617 /* GPR names for n32 and n64 ABIs. */
618 static char *mips_n32_n64_gpr_names[] = {
619 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
620 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
621 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
622 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
623 };
624
625 enum mips_abi abi = mips_abi (gdbarch);
626
627 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
628 but then don't make the raw register names visible. This (upper)
629 range of user visible register numbers are the pseudo-registers.
630
631 This approach was adopted accommodate the following scenario:
632 It is possible to debug a 64-bit device using a 32-bit
633 programming model. In such instances, the raw registers are
634 configured to be 64-bits wide, while the pseudo registers are
635 configured to be 32-bits wide. The registers that the user
636 sees - the pseudo registers - match the users expectations
637 given the programming model being used. */
638 int rawnum = regno % gdbarch_num_regs (gdbarch);
639 if (regno < gdbarch_num_regs (gdbarch))
640 return "";
641
642 /* The MIPS integer registers are always mapped from 0 to 31. The
643 names of the registers (which reflects the conventions regarding
644 register use) vary depending on the ABI. */
645 if (0 <= rawnum && rawnum < 32)
646 {
647 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
648 return mips_n32_n64_gpr_names[rawnum];
649 else
650 return mips_gpr_names[rawnum];
651 }
652 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
653 return tdesc_register_name (gdbarch, rawnum);
654 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
655 {
656 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
657 if (tdep->mips_processor_reg_names[rawnum - 32])
658 return tdep->mips_processor_reg_names[rawnum - 32];
659 return "";
660 }
661 else
662 internal_error (__FILE__, __LINE__,
663 _("mips_register_name: bad register number %d"), rawnum);
664 }
665
666 /* Return the groups that a MIPS register can be categorised into. */
667
668 static int
669 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
670 struct reggroup *reggroup)
671 {
672 int vector_p;
673 int float_p;
674 int raw_p;
675 int rawnum = regnum % gdbarch_num_regs (gdbarch);
676 int pseudo = regnum / gdbarch_num_regs (gdbarch);
677 if (reggroup == all_reggroup)
678 return pseudo;
679 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
680 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
681 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
682 (gdbarch), as not all architectures are multi-arch. */
683 raw_p = rawnum < gdbarch_num_regs (gdbarch);
684 if (gdbarch_register_name (gdbarch, regnum) == NULL
685 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
686 return 0;
687 if (reggroup == float_reggroup)
688 return float_p && pseudo;
689 if (reggroup == vector_reggroup)
690 return vector_p && pseudo;
691 if (reggroup == general_reggroup)
692 return (!vector_p && !float_p) && pseudo;
693 /* Save the pseudo registers. Need to make certain that any code
694 extracting register values from a saved register cache also uses
695 pseudo registers. */
696 if (reggroup == save_reggroup)
697 return raw_p && pseudo;
698 /* Restore the same pseudo register. */
699 if (reggroup == restore_reggroup)
700 return raw_p && pseudo;
701 return 0;
702 }
703
704 /* Return the groups that a MIPS register can be categorised into.
705 This version is only used if we have a target description which
706 describes real registers (and their groups). */
707
708 static int
709 mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
710 struct reggroup *reggroup)
711 {
712 int rawnum = regnum % gdbarch_num_regs (gdbarch);
713 int pseudo = regnum / gdbarch_num_regs (gdbarch);
714 int ret;
715
716 /* Only save, restore, and display the pseudo registers. Need to
717 make certain that any code extracting register values from a
718 saved register cache also uses pseudo registers.
719
720 Note: saving and restoring the pseudo registers is slightly
721 strange; if we have 64 bits, we should save and restore all
722 64 bits. But this is hard and has little benefit. */
723 if (!pseudo)
724 return 0;
725
726 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
727 if (ret != -1)
728 return ret;
729
730 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
731 }
732
733 /* Map the symbol table registers which live in the range [1 *
734 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
735 registers. Take care of alignment and size problems. */
736
737 static enum register_status
738 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
739 int cookednum, gdb_byte *buf)
740 {
741 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
742 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
743 && cookednum < 2 * gdbarch_num_regs (gdbarch));
744 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
745 return regcache_raw_read (regcache, rawnum, buf);
746 else if (register_size (gdbarch, rawnum) >
747 register_size (gdbarch, cookednum))
748 {
749 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
750 return regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
751 else
752 {
753 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
754 LONGEST regval;
755 enum register_status status;
756
757 status = regcache_raw_read_signed (regcache, rawnum, &regval);
758 if (status == REG_VALID)
759 store_signed_integer (buf, 4, byte_order, regval);
760 return status;
761 }
762 }
763 else
764 internal_error (__FILE__, __LINE__, _("bad register size"));
765 }
766
767 static void
768 mips_pseudo_register_write (struct gdbarch *gdbarch,
769 struct regcache *regcache, int cookednum,
770 const gdb_byte *buf)
771 {
772 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
773 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
774 && cookednum < 2 * gdbarch_num_regs (gdbarch));
775 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
776 regcache_raw_write (regcache, rawnum, buf);
777 else if (register_size (gdbarch, rawnum) >
778 register_size (gdbarch, cookednum))
779 {
780 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
781 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
782 else
783 {
784 /* Sign extend the shortened version of the register prior
785 to placing it in the raw register. This is required for
786 some mips64 parts in order to avoid unpredictable behavior. */
787 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
788 LONGEST regval = extract_signed_integer (buf, 4, byte_order);
789 regcache_raw_write_signed (regcache, rawnum, regval);
790 }
791 }
792 else
793 internal_error (__FILE__, __LINE__, _("bad register size"));
794 }
795
796 static int
797 mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
798 struct agent_expr *ax, int reg)
799 {
800 int rawnum = reg % gdbarch_num_regs (gdbarch);
801 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
802 && reg < 2 * gdbarch_num_regs (gdbarch));
803
804 ax_reg_mask (ax, rawnum);
805
806 return 0;
807 }
808
809 static int
810 mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
811 struct agent_expr *ax, int reg)
812 {
813 int rawnum = reg % gdbarch_num_regs (gdbarch);
814 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
815 && reg < 2 * gdbarch_num_regs (gdbarch));
816 if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
817 {
818 ax_reg (ax, rawnum);
819
820 if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
821 {
822 if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
823 || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
824 {
825 ax_const_l (ax, 32);
826 ax_simple (ax, aop_lsh);
827 }
828 ax_const_l (ax, 32);
829 ax_simple (ax, aop_rsh_signed);
830 }
831 }
832 else
833 internal_error (__FILE__, __LINE__, _("bad register size"));
834
835 return 0;
836 }
837
838 /* Table to translate 3-bit register field to actual register number. */
839 static const signed char mips_reg3_to_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
840
841 /* Heuristic_proc_start may hunt through the text section for a long
842 time across a 2400 baud serial line. Allows the user to limit this
843 search. */
844
845 static int heuristic_fence_post = 0;
846
847 /* Number of bytes of storage in the actual machine representation for
848 register N. NOTE: This defines the pseudo register type so need to
849 rebuild the architecture vector. */
850
851 static int mips64_transfers_32bit_regs_p = 0;
852
853 static void
854 set_mips64_transfers_32bit_regs (char *args, int from_tty,
855 struct cmd_list_element *c)
856 {
857 struct gdbarch_info info;
858 gdbarch_info_init (&info);
859 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
860 instead of relying on globals. Doing that would let generic code
861 handle the search for this specific architecture. */
862 if (!gdbarch_update_p (info))
863 {
864 mips64_transfers_32bit_regs_p = 0;
865 error (_("32-bit compatibility mode not supported"));
866 }
867 }
868
869 /* Convert to/from a register and the corresponding memory value. */
870
871 /* This predicate tests for the case of an 8 byte floating point
872 value that is being transferred to or from a pair of floating point
873 registers each of which are (or are considered to be) only 4 bytes
874 wide. */
875 static int
876 mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
877 struct type *type)
878 {
879 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
880 && register_size (gdbarch, regnum) == 4
881 && mips_float_register_p (gdbarch, regnum)
882 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
883 }
884
885 /* This predicate tests for the case of a value of less than 8
886 bytes in width that is being transfered to or from an 8 byte
887 general purpose register. */
888 static int
889 mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
890 struct type *type)
891 {
892 int num_regs = gdbarch_num_regs (gdbarch);
893
894 return (register_size (gdbarch, regnum) == 8
895 && regnum % num_regs > 0 && regnum % num_regs < 32
896 && TYPE_LENGTH (type) < 8);
897 }
898
899 static int
900 mips_convert_register_p (struct gdbarch *gdbarch,
901 int regnum, struct type *type)
902 {
903 return (mips_convert_register_float_case_p (gdbarch, regnum, type)
904 || mips_convert_register_gpreg_case_p (gdbarch, regnum, type));
905 }
906
907 static int
908 mips_register_to_value (struct frame_info *frame, int regnum,
909 struct type *type, gdb_byte *to,
910 int *optimizedp, int *unavailablep)
911 {
912 struct gdbarch *gdbarch = get_frame_arch (frame);
913
914 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
915 {
916 get_frame_register (frame, regnum + 0, to + 4);
917 get_frame_register (frame, regnum + 1, to + 0);
918
919 if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
920 optimizedp, unavailablep))
921 return 0;
922
923 if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
924 optimizedp, unavailablep))
925 return 0;
926 *optimizedp = *unavailablep = 0;
927 return 1;
928 }
929 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
930 {
931 int len = TYPE_LENGTH (type);
932 CORE_ADDR offset;
933
934 offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
935 if (!get_frame_register_bytes (frame, regnum, offset, len, to,
936 optimizedp, unavailablep))
937 return 0;
938
939 *optimizedp = *unavailablep = 0;
940 return 1;
941 }
942 else
943 {
944 internal_error (__FILE__, __LINE__,
945 _("mips_register_to_value: unrecognized case"));
946 }
947 }
948
949 static void
950 mips_value_to_register (struct frame_info *frame, int regnum,
951 struct type *type, const gdb_byte *from)
952 {
953 struct gdbarch *gdbarch = get_frame_arch (frame);
954
955 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
956 {
957 put_frame_register (frame, regnum + 0, from + 4);
958 put_frame_register (frame, regnum + 1, from + 0);
959 }
960 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
961 {
962 gdb_byte fill[8];
963 int len = TYPE_LENGTH (type);
964
965 /* Sign extend values, irrespective of type, that are stored to
966 a 64-bit general purpose register. (32-bit unsigned values
967 are stored as signed quantities within a 64-bit register.
968 When performing an operation, in compiled code, that combines
969 a 32-bit unsigned value with a signed 64-bit value, a type
970 conversion is first performed that zeroes out the high 32 bits.) */
971 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
972 {
973 if (from[0] & 0x80)
974 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
975 else
976 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
977 put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
978 put_frame_register_bytes (frame, regnum, 8 - len, len, from);
979 }
980 else
981 {
982 if (from[len-1] & 0x80)
983 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
984 else
985 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
986 put_frame_register_bytes (frame, regnum, 0, len, from);
987 put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
988 }
989 }
990 else
991 {
992 internal_error (__FILE__, __LINE__,
993 _("mips_value_to_register: unrecognized case"));
994 }
995 }
996
997 /* Return the GDB type object for the "standard" data type of data in
998 register REG. */
999
1000 static struct type *
1001 mips_register_type (struct gdbarch *gdbarch, int regnum)
1002 {
1003 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
1004 if (mips_float_register_p (gdbarch, regnum))
1005 {
1006 /* The floating-point registers raw, or cooked, always match
1007 mips_isa_regsize(), and also map 1:1, byte for byte. */
1008 if (mips_isa_regsize (gdbarch) == 4)
1009 return builtin_type (gdbarch)->builtin_float;
1010 else
1011 return builtin_type (gdbarch)->builtin_double;
1012 }
1013 else if (regnum < gdbarch_num_regs (gdbarch))
1014 {
1015 /* The raw or ISA registers. These are all sized according to
1016 the ISA regsize. */
1017 if (mips_isa_regsize (gdbarch) == 4)
1018 return builtin_type (gdbarch)->builtin_int32;
1019 else
1020 return builtin_type (gdbarch)->builtin_int64;
1021 }
1022 else
1023 {
1024 int rawnum = regnum - gdbarch_num_regs (gdbarch);
1025
1026 /* The cooked or ABI registers. These are sized according to
1027 the ABI (with a few complications). */
1028 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1029 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1030 return builtin_type (gdbarch)->builtin_int32;
1031 else if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1032 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1033 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1034 /* The pseudo/cooked view of the embedded registers is always
1035 32-bit. The raw view is handled below. */
1036 return builtin_type (gdbarch)->builtin_int32;
1037 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
1038 /* The target, while possibly using a 64-bit register buffer,
1039 is only transfering 32-bits of each integer register.
1040 Reflect this in the cooked/pseudo (ABI) register value. */
1041 return builtin_type (gdbarch)->builtin_int32;
1042 else if (mips_abi_regsize (gdbarch) == 4)
1043 /* The ABI is restricted to 32-bit registers (the ISA could be
1044 32- or 64-bit). */
1045 return builtin_type (gdbarch)->builtin_int32;
1046 else
1047 /* 64-bit ABI. */
1048 return builtin_type (gdbarch)->builtin_int64;
1049 }
1050 }
1051
1052 /* Return the GDB type for the pseudo register REGNUM, which is the
1053 ABI-level view. This function is only called if there is a target
1054 description which includes registers, so we know precisely the
1055 types of hardware registers. */
1056
1057 static struct type *
1058 mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
1059 {
1060 const int num_regs = gdbarch_num_regs (gdbarch);
1061 int rawnum = regnum % num_regs;
1062 struct type *rawtype;
1063
1064 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
1065
1066 /* Absent registers are still absent. */
1067 rawtype = gdbarch_register_type (gdbarch, rawnum);
1068 if (TYPE_LENGTH (rawtype) == 0)
1069 return rawtype;
1070
1071 /* Present the floating point registers however the hardware did;
1072 do not try to convert between FPU layouts. */
1073 if (mips_float_register_p (gdbarch, rawnum))
1074 return rawtype;
1075
1076 /* Floating-point control registers are always 32-bit even though for
1077 backwards compatibility reasons 64-bit targets will transfer them
1078 as 64-bit quantities even if using XML descriptions. */
1079 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1080 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1081 return builtin_type (gdbarch)->builtin_int32;
1082
1083 /* Use pointer types for registers if we can. For n32 we can not,
1084 since we do not have a 64-bit pointer type. */
1085 if (mips_abi_regsize (gdbarch)
1086 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
1087 {
1088 if (rawnum == MIPS_SP_REGNUM
1089 || rawnum == mips_regnum (gdbarch)->badvaddr)
1090 return builtin_type (gdbarch)->builtin_data_ptr;
1091 else if (rawnum == mips_regnum (gdbarch)->pc)
1092 return builtin_type (gdbarch)->builtin_func_ptr;
1093 }
1094
1095 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
1096 && ((rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_PS_REGNUM)
1097 || rawnum == mips_regnum (gdbarch)->lo
1098 || rawnum == mips_regnum (gdbarch)->hi
1099 || rawnum == mips_regnum (gdbarch)->badvaddr
1100 || rawnum == mips_regnum (gdbarch)->cause
1101 || rawnum == mips_regnum (gdbarch)->pc
1102 || (mips_regnum (gdbarch)->dspacc != -1
1103 && rawnum >= mips_regnum (gdbarch)->dspacc
1104 && rawnum < mips_regnum (gdbarch)->dspacc + 6)))
1105 return builtin_type (gdbarch)->builtin_int32;
1106
1107 /* The pseudo/cooked view of embedded registers is always
1108 32-bit, even if the target transfers 64-bit values for them.
1109 New targets relying on XML descriptions should only transfer
1110 the necessary 32 bits, but older versions of GDB expected 64,
1111 so allow the target to provide 64 bits without interfering
1112 with the displayed type. */
1113 if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1114 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1115 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1116 return builtin_type (gdbarch)->builtin_int32;
1117
1118 /* For all other registers, pass through the hardware type. */
1119 return rawtype;
1120 }
1121
1122 /* Should the upper word of 64-bit addresses be zeroed? */
1123 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
1124
1125 static int
1126 mips_mask_address_p (struct gdbarch_tdep *tdep)
1127 {
1128 switch (mask_address_var)
1129 {
1130 case AUTO_BOOLEAN_TRUE:
1131 return 1;
1132 case AUTO_BOOLEAN_FALSE:
1133 return 0;
1134 break;
1135 case AUTO_BOOLEAN_AUTO:
1136 return tdep->default_mask_address_p;
1137 default:
1138 internal_error (__FILE__, __LINE__,
1139 _("mips_mask_address_p: bad switch"));
1140 return -1;
1141 }
1142 }
1143
1144 static void
1145 show_mask_address (struct ui_file *file, int from_tty,
1146 struct cmd_list_element *c, const char *value)
1147 {
1148 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
1149
1150 deprecated_show_value_hack (file, from_tty, c, value);
1151 switch (mask_address_var)
1152 {
1153 case AUTO_BOOLEAN_TRUE:
1154 printf_filtered ("The 32 bit mips address mask is enabled\n");
1155 break;
1156 case AUTO_BOOLEAN_FALSE:
1157 printf_filtered ("The 32 bit mips address mask is disabled\n");
1158 break;
1159 case AUTO_BOOLEAN_AUTO:
1160 printf_filtered
1161 ("The 32 bit address mask is set automatically. Currently %s\n",
1162 mips_mask_address_p (tdep) ? "enabled" : "disabled");
1163 break;
1164 default:
1165 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
1166 break;
1167 }
1168 }
1169
1170 /* Tell if the program counter value in MEMADDR is in a standard ISA
1171 function. */
1172
1173 int
1174 mips_pc_is_mips (CORE_ADDR memaddr)
1175 {
1176 struct bound_minimal_symbol sym;
1177
1178 /* Flags indicating that this is a MIPS16 or microMIPS function is
1179 stored by elfread.c in the high bit of the info field. Use this
1180 to decide if the function is standard MIPS. Otherwise if bit 0
1181 of the address is clear, then this is a standard MIPS function. */
1182 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1183 if (sym.minsym)
1184 return msymbol_is_mips (sym.minsym);
1185 else
1186 return is_mips_addr (memaddr);
1187 }
1188
1189 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
1190
1191 int
1192 mips_pc_is_mips16 (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1193 {
1194 struct bound_minimal_symbol sym;
1195
1196 /* A flag indicating that this is a MIPS16 function is stored by
1197 elfread.c in the high bit of the info field. Use this to decide
1198 if the function is MIPS16. Otherwise if bit 0 of the address is
1199 set, then ELF file flags will tell if this is a MIPS16 function. */
1200 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1201 if (sym.minsym)
1202 return msymbol_is_mips16 (sym.minsym);
1203 else
1204 return is_mips16_addr (gdbarch, memaddr);
1205 }
1206
1207 /* Tell if the program counter value in MEMADDR is in a microMIPS function. */
1208
1209 int
1210 mips_pc_is_micromips (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1211 {
1212 struct bound_minimal_symbol sym;
1213
1214 /* A flag indicating that this is a microMIPS function is stored by
1215 elfread.c in the high bit of the info field. Use this to decide
1216 if the function is microMIPS. Otherwise if bit 0 of the address
1217 is set, then ELF file flags will tell if this is a microMIPS
1218 function. */
1219 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1220 if (sym.minsym)
1221 return msymbol_is_micromips (sym.minsym);
1222 else
1223 return is_micromips_addr (gdbarch, memaddr);
1224 }
1225
1226 /* Tell the ISA type of the function the program counter value in MEMADDR
1227 is in. */
1228
1229 static enum mips_isa
1230 mips_pc_isa (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1231 {
1232 struct bound_minimal_symbol sym;
1233
1234 /* A flag indicating that this is a MIPS16 or a microMIPS function
1235 is stored by elfread.c in the high bit of the info field. Use
1236 this to decide if the function is MIPS16 or microMIPS or normal
1237 MIPS. Otherwise if bit 0 of the address is set, then ELF file
1238 flags will tell if this is a MIPS16 or a microMIPS function. */
1239 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1240 if (sym.minsym)
1241 {
1242 if (msymbol_is_micromips (sym.minsym))
1243 return ISA_MICROMIPS;
1244 else if (msymbol_is_mips16 (sym.minsym))
1245 return ISA_MIPS16;
1246 else
1247 return ISA_MIPS;
1248 }
1249 else
1250 {
1251 if (is_mips_addr (memaddr))
1252 return ISA_MIPS;
1253 else if (is_micromips_addr (gdbarch, memaddr))
1254 return ISA_MICROMIPS;
1255 else
1256 return ISA_MIPS16;
1257 }
1258 }
1259
1260 /* Set the ISA bit correctly in the PC, used by DWARF-2 machinery.
1261 The need for comes from the ISA bit having been cleared, making
1262 addresses in FDE, range records, etc. referring to compressed code
1263 different to those in line information, the symbol table and finally
1264 the PC register. That in turn confuses many operations. */
1265
1266 static CORE_ADDR
1267 mips_adjust_dwarf2_addr (CORE_ADDR pc)
1268 {
1269 pc = unmake_compact_addr (pc);
1270 return mips_pc_is_mips (pc) ? pc : make_compact_addr (pc);
1271 }
1272
1273 /* Recalculate the line record requested so that the resulting PC has
1274 the ISA bit set correctly, used by DWARF-2 machinery. The need for
1275 this adjustment comes from some records associated with compressed
1276 code having the ISA bit cleared, most notably at function prologue
1277 ends. The ISA bit is in this context retrieved from the minimal
1278 symbol covering the address requested, which in turn has been
1279 constructed from the binary's symbol table rather than DWARF-2
1280 information. The correct setting of the ISA bit is required for
1281 breakpoint addresses to correctly match against the stop PC.
1282
1283 As line entries can specify relative address adjustments we need to
1284 keep track of the absolute value of the last line address recorded
1285 in line information, so that we can calculate the actual address to
1286 apply the ISA bit adjustment to. We use PC for this tracking and
1287 keep the original address there.
1288
1289 As such relative address adjustments can be odd within compressed
1290 code we need to keep track of the last line address with the ISA
1291 bit adjustment applied too, as the original address may or may not
1292 have had the ISA bit set. We use ADJ_PC for this tracking and keep
1293 the adjusted address there.
1294
1295 For relative address adjustments we then use these variables to
1296 calculate the address intended by line information, which will be
1297 PC-relative, and return an updated adjustment carrying ISA bit
1298 information, which will be ADJ_PC-relative. For absolute address
1299 adjustments we just return the same address that we store in ADJ_PC
1300 too.
1301
1302 As the first line entry can be relative to an implied address value
1303 of 0 we need to have the initial address set up that we store in PC
1304 and ADJ_PC. This is arranged with a call from `dwarf_decode_lines_1'
1305 that sets PC to 0 and ADJ_PC accordingly, usually 0 as well. */
1306
1307 static CORE_ADDR
1308 mips_adjust_dwarf2_line (CORE_ADDR addr, int rel)
1309 {
1310 static CORE_ADDR adj_pc;
1311 static CORE_ADDR pc;
1312 CORE_ADDR isa_pc;
1313
1314 pc = rel ? pc + addr : addr;
1315 isa_pc = mips_adjust_dwarf2_addr (pc);
1316 addr = rel ? isa_pc - adj_pc : isa_pc;
1317 adj_pc = isa_pc;
1318 return addr;
1319 }
1320
1321 /* Various MIPS16 thunk (aka stub or trampoline) names. */
1322
1323 static const char mips_str_mips16_call_stub[] = "__mips16_call_stub_";
1324 static const char mips_str_mips16_ret_stub[] = "__mips16_ret_";
1325 static const char mips_str_call_fp_stub[] = "__call_stub_fp_";
1326 static const char mips_str_call_stub[] = "__call_stub_";
1327 static const char mips_str_fn_stub[] = "__fn_stub_";
1328
1329 /* This is used as a PIC thunk prefix. */
1330
1331 static const char mips_str_pic[] = ".pic.";
1332
1333 /* Return non-zero if the PC is inside a call thunk (aka stub or
1334 trampoline) that should be treated as a temporary frame. */
1335
1336 static int
1337 mips_in_frame_stub (CORE_ADDR pc)
1338 {
1339 CORE_ADDR start_addr;
1340 const char *name;
1341
1342 /* Find the starting address of the function containing the PC. */
1343 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
1344 return 0;
1345
1346 /* If the PC is in __mips16_call_stub_*, this is a call/return stub. */
1347 if (startswith (name, mips_str_mips16_call_stub))
1348 return 1;
1349 /* If the PC is in __call_stub_*, this is a call/return or a call stub. */
1350 if (startswith (name, mips_str_call_stub))
1351 return 1;
1352 /* If the PC is in __fn_stub_*, this is a call stub. */
1353 if (startswith (name, mips_str_fn_stub))
1354 return 1;
1355
1356 return 0; /* Not a stub. */
1357 }
1358
1359 /* MIPS believes that the PC has a sign extended value. Perhaps the
1360 all registers should be sign extended for simplicity? */
1361
1362 static CORE_ADDR
1363 mips_read_pc (struct regcache *regcache)
1364 {
1365 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
1366 LONGEST pc;
1367
1368 regcache_cooked_read_signed (regcache, regnum, &pc);
1369 return pc;
1370 }
1371
1372 static CORE_ADDR
1373 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1374 {
1375 CORE_ADDR pc;
1376
1377 pc = frame_unwind_register_signed (next_frame, gdbarch_pc_regnum (gdbarch));
1378 /* macro/2012-04-20: This hack skips over MIPS16 call thunks as
1379 intermediate frames. In this case we can get the caller's address
1380 from $ra, or if $ra contains an address within a thunk as well, then
1381 it must be in the return path of __mips16_call_stub_{s,d}{f,c}_{0..10}
1382 and thus the caller's address is in $s2. */
1383 if (frame_relative_level (next_frame) >= 0 && mips_in_frame_stub (pc))
1384 {
1385 pc = frame_unwind_register_signed
1386 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
1387 if (mips_in_frame_stub (pc))
1388 pc = frame_unwind_register_signed
1389 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
1390 }
1391 return pc;
1392 }
1393
1394 static CORE_ADDR
1395 mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1396 {
1397 return frame_unwind_register_signed
1398 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
1399 }
1400
1401 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
1402 dummy frame. The frame ID's base needs to match the TOS value
1403 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1404 breakpoint. */
1405
1406 static struct frame_id
1407 mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1408 {
1409 return frame_id_build
1410 (get_frame_register_signed (this_frame,
1411 gdbarch_num_regs (gdbarch)
1412 + MIPS_SP_REGNUM),
1413 get_frame_pc (this_frame));
1414 }
1415
1416 /* Implement the "write_pc" gdbarch method. */
1417
1418 void
1419 mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
1420 {
1421 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
1422
1423 regcache_cooked_write_unsigned (regcache, regnum, pc);
1424 }
1425
1426 /* Fetch and return instruction from the specified location. Handle
1427 MIPS16/microMIPS as appropriate. */
1428
1429 static ULONGEST
1430 mips_fetch_instruction (struct gdbarch *gdbarch,
1431 enum mips_isa isa, CORE_ADDR addr, int *errp)
1432 {
1433 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1434 gdb_byte buf[MIPS_INSN32_SIZE];
1435 int instlen;
1436 int err;
1437
1438 switch (isa)
1439 {
1440 case ISA_MICROMIPS:
1441 case ISA_MIPS16:
1442 instlen = MIPS_INSN16_SIZE;
1443 addr = unmake_compact_addr (addr);
1444 break;
1445 case ISA_MIPS:
1446 instlen = MIPS_INSN32_SIZE;
1447 break;
1448 default:
1449 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1450 break;
1451 }
1452 err = target_read_memory (addr, buf, instlen);
1453 if (errp != NULL)
1454 *errp = err;
1455 if (err != 0)
1456 {
1457 if (errp == NULL)
1458 memory_error (TARGET_XFER_E_IO, addr);
1459 return 0;
1460 }
1461 return extract_unsigned_integer (buf, instlen, byte_order);
1462 }
1463
1464 /* These are the fields of 32 bit mips instructions. */
1465 #define mips32_op(x) (x >> 26)
1466 #define itype_op(x) (x >> 26)
1467 #define itype_rs(x) ((x >> 21) & 0x1f)
1468 #define itype_rt(x) ((x >> 16) & 0x1f)
1469 #define itype_immediate(x) (x & 0xffff)
1470
1471 #define jtype_op(x) (x >> 26)
1472 #define jtype_target(x) (x & 0x03ffffff)
1473
1474 #define rtype_op(x) (x >> 26)
1475 #define rtype_rs(x) ((x >> 21) & 0x1f)
1476 #define rtype_rt(x) ((x >> 16) & 0x1f)
1477 #define rtype_rd(x) ((x >> 11) & 0x1f)
1478 #define rtype_shamt(x) ((x >> 6) & 0x1f)
1479 #define rtype_funct(x) (x & 0x3f)
1480
1481 /* MicroMIPS instruction fields. */
1482 #define micromips_op(x) ((x) >> 10)
1483
1484 /* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
1485 bit and the size respectively of the field extracted. */
1486 #define b0s4_imm(x) ((x) & 0xf)
1487 #define b0s5_imm(x) ((x) & 0x1f)
1488 #define b0s5_reg(x) ((x) & 0x1f)
1489 #define b0s7_imm(x) ((x) & 0x7f)
1490 #define b0s10_imm(x) ((x) & 0x3ff)
1491 #define b1s4_imm(x) (((x) >> 1) & 0xf)
1492 #define b1s9_imm(x) (((x) >> 1) & 0x1ff)
1493 #define b2s3_cc(x) (((x) >> 2) & 0x7)
1494 #define b4s2_regl(x) (((x) >> 4) & 0x3)
1495 #define b5s5_op(x) (((x) >> 5) & 0x1f)
1496 #define b5s5_reg(x) (((x) >> 5) & 0x1f)
1497 #define b6s4_op(x) (((x) >> 6) & 0xf)
1498 #define b7s3_reg(x) (((x) >> 7) & 0x7)
1499
1500 /* 32-bit instruction formats, B and S refer to the lowest bit and the size
1501 respectively of the field extracted. */
1502 #define b0s6_op(x) ((x) & 0x3f)
1503 #define b0s11_op(x) ((x) & 0x7ff)
1504 #define b0s12_imm(x) ((x) & 0xfff)
1505 #define b0s16_imm(x) ((x) & 0xffff)
1506 #define b0s26_imm(x) ((x) & 0x3ffffff)
1507 #define b6s10_ext(x) (((x) >> 6) & 0x3ff)
1508 #define b11s5_reg(x) (((x) >> 11) & 0x1f)
1509 #define b12s4_op(x) (((x) >> 12) & 0xf)
1510
1511 /* Return the size in bytes of the instruction INSN encoded in the ISA
1512 instruction set. */
1513
1514 static int
1515 mips_insn_size (enum mips_isa isa, ULONGEST insn)
1516 {
1517 switch (isa)
1518 {
1519 case ISA_MICROMIPS:
1520 if ((micromips_op (insn) & 0x4) == 0x4
1521 || (micromips_op (insn) & 0x7) == 0x0)
1522 return 2 * MIPS_INSN16_SIZE;
1523 else
1524 return MIPS_INSN16_SIZE;
1525 case ISA_MIPS16:
1526 if ((insn & 0xf800) == 0xf000)
1527 return 2 * MIPS_INSN16_SIZE;
1528 else
1529 return MIPS_INSN16_SIZE;
1530 case ISA_MIPS:
1531 return MIPS_INSN32_SIZE;
1532 }
1533 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1534 }
1535
1536 static LONGEST
1537 mips32_relative_offset (ULONGEST inst)
1538 {
1539 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
1540 }
1541
1542 /* Determine the address of the next instruction executed after the INST
1543 floating condition branch instruction at PC. COUNT specifies the
1544 number of the floating condition bits tested by the branch. */
1545
1546 static CORE_ADDR
1547 mips32_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
1548 ULONGEST inst, CORE_ADDR pc, int count)
1549 {
1550 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1551 int cnum = (itype_rt (inst) >> 2) & (count - 1);
1552 int tf = itype_rt (inst) & 1;
1553 int mask = (1 << count) - 1;
1554 ULONGEST fcs;
1555 int cond;
1556
1557 if (fcsr == -1)
1558 /* No way to handle; it'll most likely trap anyway. */
1559 return pc;
1560
1561 fcs = get_frame_register_unsigned (frame, fcsr);
1562 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1563
1564 if (((cond >> cnum) & mask) != mask * !tf)
1565 pc += mips32_relative_offset (inst);
1566 else
1567 pc += 4;
1568
1569 return pc;
1570 }
1571
1572 /* Return nonzero if the gdbarch is an Octeon series. */
1573
1574 static int
1575 is_octeon (struct gdbarch *gdbarch)
1576 {
1577 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
1578
1579 return (info->mach == bfd_mach_mips_octeon
1580 || info->mach == bfd_mach_mips_octeonp
1581 || info->mach == bfd_mach_mips_octeon2);
1582 }
1583
1584 /* Return true if the OP represents the Octeon's BBIT instruction. */
1585
1586 static int
1587 is_octeon_bbit_op (int op, struct gdbarch *gdbarch)
1588 {
1589 if (!is_octeon (gdbarch))
1590 return 0;
1591 /* BBIT0 is encoded as LWC2: 110 010. */
1592 /* BBIT032 is encoded as LDC2: 110 110. */
1593 /* BBIT1 is encoded as SWC2: 111 010. */
1594 /* BBIT132 is encoded as SDC2: 111 110. */
1595 if (op == 50 || op == 54 || op == 58 || op == 62)
1596 return 1;
1597 return 0;
1598 }
1599
1600
1601 /* Determine where to set a single step breakpoint while considering
1602 branch prediction. */
1603
1604 static CORE_ADDR
1605 mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
1606 {
1607 struct gdbarch *gdbarch = get_frame_arch (frame);
1608 unsigned long inst;
1609 int op;
1610 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
1611 op = itype_op (inst);
1612 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch
1613 instruction. */
1614 {
1615 if (op >> 2 == 5)
1616 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1617 {
1618 switch (op & 0x03)
1619 {
1620 case 0: /* BEQL */
1621 goto equal_branch;
1622 case 1: /* BNEL */
1623 goto neq_branch;
1624 case 2: /* BLEZL */
1625 goto less_branch;
1626 case 3: /* BGTZL */
1627 goto greater_branch;
1628 default:
1629 pc += 4;
1630 }
1631 }
1632 else if (op == 17 && itype_rs (inst) == 8)
1633 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1634 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 1);
1635 else if (op == 17 && itype_rs (inst) == 9
1636 && (itype_rt (inst) & 2) == 0)
1637 /* BC1ANY2F, BC1ANY2T: 010001 01001 xxx0x */
1638 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 2);
1639 else if (op == 17 && itype_rs (inst) == 10
1640 && (itype_rt (inst) & 2) == 0)
1641 /* BC1ANY4F, BC1ANY4T: 010001 01010 xxx0x */
1642 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 4);
1643 else if (op == 29)
1644 /* JALX: 011101 */
1645 /* The new PC will be alternate mode. */
1646 {
1647 unsigned long reg;
1648
1649 reg = jtype_target (inst) << 2;
1650 /* Add 1 to indicate 16-bit mode -- invert ISA mode. */
1651 pc = ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + reg + 1;
1652 }
1653 else if (is_octeon_bbit_op (op, gdbarch))
1654 {
1655 int bit, branch_if;
1656
1657 branch_if = op == 58 || op == 62;
1658 bit = itype_rt (inst);
1659
1660 /* Take into account the *32 instructions. */
1661 if (op == 54 || op == 62)
1662 bit += 32;
1663
1664 if (((get_frame_register_signed (frame,
1665 itype_rs (inst)) >> bit) & 1)
1666 == branch_if)
1667 pc += mips32_relative_offset (inst) + 4;
1668 else
1669 pc += 8; /* After the delay slot. */
1670 }
1671
1672 else
1673 pc += 4; /* Not a branch, next instruction is easy. */
1674 }
1675 else
1676 { /* This gets way messy. */
1677
1678 /* Further subdivide into SPECIAL, REGIMM and other. */
1679 switch (op & 0x07) /* Extract bits 28,27,26. */
1680 {
1681 case 0: /* SPECIAL */
1682 op = rtype_funct (inst);
1683 switch (op)
1684 {
1685 case 8: /* JR */
1686 case 9: /* JALR */
1687 /* Set PC to that address. */
1688 pc = get_frame_register_signed (frame, rtype_rs (inst));
1689 break;
1690 case 12: /* SYSCALL */
1691 {
1692 struct gdbarch_tdep *tdep;
1693
1694 tdep = gdbarch_tdep (get_frame_arch (frame));
1695 if (tdep->syscall_next_pc != NULL)
1696 pc = tdep->syscall_next_pc (frame);
1697 else
1698 pc += 4;
1699 }
1700 break;
1701 default:
1702 pc += 4;
1703 }
1704
1705 break; /* end SPECIAL */
1706 case 1: /* REGIMM */
1707 {
1708 op = itype_rt (inst); /* branch condition */
1709 switch (op)
1710 {
1711 case 0: /* BLTZ */
1712 case 2: /* BLTZL */
1713 case 16: /* BLTZAL */
1714 case 18: /* BLTZALL */
1715 less_branch:
1716 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
1717 pc += mips32_relative_offset (inst) + 4;
1718 else
1719 pc += 8; /* after the delay slot */
1720 break;
1721 case 1: /* BGEZ */
1722 case 3: /* BGEZL */
1723 case 17: /* BGEZAL */
1724 case 19: /* BGEZALL */
1725 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
1726 pc += mips32_relative_offset (inst) + 4;
1727 else
1728 pc += 8; /* after the delay slot */
1729 break;
1730 case 0x1c: /* BPOSGE32 */
1731 case 0x1e: /* BPOSGE64 */
1732 pc += 4;
1733 if (itype_rs (inst) == 0)
1734 {
1735 unsigned int pos = (op & 2) ? 64 : 32;
1736 int dspctl = mips_regnum (gdbarch)->dspctl;
1737
1738 if (dspctl == -1)
1739 /* No way to handle; it'll most likely trap anyway. */
1740 break;
1741
1742 if ((get_frame_register_unsigned (frame,
1743 dspctl) & 0x7f) >= pos)
1744 pc += mips32_relative_offset (inst);
1745 else
1746 pc += 4;
1747 }
1748 break;
1749 /* All of the other instructions in the REGIMM category */
1750 default:
1751 pc += 4;
1752 }
1753 }
1754 break; /* end REGIMM */
1755 case 2: /* J */
1756 case 3: /* JAL */
1757 {
1758 unsigned long reg;
1759 reg = jtype_target (inst) << 2;
1760 /* Upper four bits get never changed... */
1761 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1762 }
1763 break;
1764 case 4: /* BEQ, BEQL */
1765 equal_branch:
1766 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1767 get_frame_register_signed (frame, itype_rt (inst)))
1768 pc += mips32_relative_offset (inst) + 4;
1769 else
1770 pc += 8;
1771 break;
1772 case 5: /* BNE, BNEL */
1773 neq_branch:
1774 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1775 get_frame_register_signed (frame, itype_rt (inst)))
1776 pc += mips32_relative_offset (inst) + 4;
1777 else
1778 pc += 8;
1779 break;
1780 case 6: /* BLEZ, BLEZL */
1781 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
1782 pc += mips32_relative_offset (inst) + 4;
1783 else
1784 pc += 8;
1785 break;
1786 case 7:
1787 default:
1788 greater_branch: /* BGTZ, BGTZL */
1789 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
1790 pc += mips32_relative_offset (inst) + 4;
1791 else
1792 pc += 8;
1793 break;
1794 } /* switch */
1795 } /* else */
1796 return pc;
1797 } /* mips32_next_pc */
1798
1799 /* Extract the 7-bit signed immediate offset from the microMIPS instruction
1800 INSN. */
1801
1802 static LONGEST
1803 micromips_relative_offset7 (ULONGEST insn)
1804 {
1805 return ((b0s7_imm (insn) ^ 0x40) - 0x40) << 1;
1806 }
1807
1808 /* Extract the 10-bit signed immediate offset from the microMIPS instruction
1809 INSN. */
1810
1811 static LONGEST
1812 micromips_relative_offset10 (ULONGEST insn)
1813 {
1814 return ((b0s10_imm (insn) ^ 0x200) - 0x200) << 1;
1815 }
1816
1817 /* Extract the 16-bit signed immediate offset from the microMIPS instruction
1818 INSN. */
1819
1820 static LONGEST
1821 micromips_relative_offset16 (ULONGEST insn)
1822 {
1823 return ((b0s16_imm (insn) ^ 0x8000) - 0x8000) << 1;
1824 }
1825
1826 /* Return the size in bytes of the microMIPS instruction at the address PC. */
1827
1828 static int
1829 micromips_pc_insn_size (struct gdbarch *gdbarch, CORE_ADDR pc)
1830 {
1831 ULONGEST insn;
1832
1833 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1834 return mips_insn_size (ISA_MICROMIPS, insn);
1835 }
1836
1837 /* Calculate the address of the next microMIPS instruction to execute
1838 after the INSN coprocessor 1 conditional branch instruction at the
1839 address PC. COUNT denotes the number of coprocessor condition bits
1840 examined by the branch. */
1841
1842 static CORE_ADDR
1843 micromips_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
1844 ULONGEST insn, CORE_ADDR pc, int count)
1845 {
1846 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1847 int cnum = b2s3_cc (insn >> 16) & (count - 1);
1848 int tf = b5s5_op (insn >> 16) & 1;
1849 int mask = (1 << count) - 1;
1850 ULONGEST fcs;
1851 int cond;
1852
1853 if (fcsr == -1)
1854 /* No way to handle; it'll most likely trap anyway. */
1855 return pc;
1856
1857 fcs = get_frame_register_unsigned (frame, fcsr);
1858 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1859
1860 if (((cond >> cnum) & mask) != mask * !tf)
1861 pc += micromips_relative_offset16 (insn);
1862 else
1863 pc += micromips_pc_insn_size (gdbarch, pc);
1864
1865 return pc;
1866 }
1867
1868 /* Calculate the address of the next microMIPS instruction to execute
1869 after the instruction at the address PC. */
1870
1871 static CORE_ADDR
1872 micromips_next_pc (struct frame_info *frame, CORE_ADDR pc)
1873 {
1874 struct gdbarch *gdbarch = get_frame_arch (frame);
1875 ULONGEST insn;
1876
1877 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1878 pc += MIPS_INSN16_SIZE;
1879 switch (mips_insn_size (ISA_MICROMIPS, insn))
1880 {
1881 /* 32-bit instructions. */
1882 case 2 * MIPS_INSN16_SIZE:
1883 insn <<= 16;
1884 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1885 pc += MIPS_INSN16_SIZE;
1886 switch (micromips_op (insn >> 16))
1887 {
1888 case 0x00: /* POOL32A: bits 000000 */
1889 if (b0s6_op (insn) == 0x3c
1890 /* POOL32Axf: bits 000000 ... 111100 */
1891 && (b6s10_ext (insn) & 0x2bf) == 0x3c)
1892 /* JALR, JALR.HB: 000000 000x111100 111100 */
1893 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
1894 pc = get_frame_register_signed (frame, b0s5_reg (insn >> 16));
1895 break;
1896
1897 case 0x10: /* POOL32I: bits 010000 */
1898 switch (b5s5_op (insn >> 16))
1899 {
1900 case 0x00: /* BLTZ: bits 010000 00000 */
1901 case 0x01: /* BLTZAL: bits 010000 00001 */
1902 case 0x11: /* BLTZALS: bits 010000 10001 */
1903 if (get_frame_register_signed (frame,
1904 b0s5_reg (insn >> 16)) < 0)
1905 pc += micromips_relative_offset16 (insn);
1906 else
1907 pc += micromips_pc_insn_size (gdbarch, pc);
1908 break;
1909
1910 case 0x02: /* BGEZ: bits 010000 00010 */
1911 case 0x03: /* BGEZAL: bits 010000 00011 */
1912 case 0x13: /* BGEZALS: bits 010000 10011 */
1913 if (get_frame_register_signed (frame,
1914 b0s5_reg (insn >> 16)) >= 0)
1915 pc += micromips_relative_offset16 (insn);
1916 else
1917 pc += micromips_pc_insn_size (gdbarch, pc);
1918 break;
1919
1920 case 0x04: /* BLEZ: bits 010000 00100 */
1921 if (get_frame_register_signed (frame,
1922 b0s5_reg (insn >> 16)) <= 0)
1923 pc += micromips_relative_offset16 (insn);
1924 else
1925 pc += micromips_pc_insn_size (gdbarch, pc);
1926 break;
1927
1928 case 0x05: /* BNEZC: bits 010000 00101 */
1929 if (get_frame_register_signed (frame,
1930 b0s5_reg (insn >> 16)) != 0)
1931 pc += micromips_relative_offset16 (insn);
1932 break;
1933
1934 case 0x06: /* BGTZ: bits 010000 00110 */
1935 if (get_frame_register_signed (frame,
1936 b0s5_reg (insn >> 16)) > 0)
1937 pc += micromips_relative_offset16 (insn);
1938 else
1939 pc += micromips_pc_insn_size (gdbarch, pc);
1940 break;
1941
1942 case 0x07: /* BEQZC: bits 010000 00111 */
1943 if (get_frame_register_signed (frame,
1944 b0s5_reg (insn >> 16)) == 0)
1945 pc += micromips_relative_offset16 (insn);
1946 break;
1947
1948 case 0x14: /* BC2F: bits 010000 10100 xxx00 */
1949 case 0x15: /* BC2T: bits 010000 10101 xxx00 */
1950 if (((insn >> 16) & 0x3) == 0x0)
1951 /* BC2F, BC2T: don't know how to handle these. */
1952 break;
1953 break;
1954
1955 case 0x1a: /* BPOSGE64: bits 010000 11010 */
1956 case 0x1b: /* BPOSGE32: bits 010000 11011 */
1957 {
1958 unsigned int pos = (b5s5_op (insn >> 16) & 1) ? 32 : 64;
1959 int dspctl = mips_regnum (gdbarch)->dspctl;
1960
1961 if (dspctl == -1)
1962 /* No way to handle; it'll most likely trap anyway. */
1963 break;
1964
1965 if ((get_frame_register_unsigned (frame,
1966 dspctl) & 0x7f) >= pos)
1967 pc += micromips_relative_offset16 (insn);
1968 else
1969 pc += micromips_pc_insn_size (gdbarch, pc);
1970 }
1971 break;
1972
1973 case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
1974 /* BC1ANY2F: bits 010000 11100 xxx01 */
1975 case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
1976 /* BC1ANY2T: bits 010000 11101 xxx01 */
1977 if (((insn >> 16) & 0x2) == 0x0)
1978 pc = micromips_bc1_pc (gdbarch, frame, insn, pc,
1979 ((insn >> 16) & 0x1) + 1);
1980 break;
1981
1982 case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
1983 case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
1984 if (((insn >> 16) & 0x3) == 0x1)
1985 pc = micromips_bc1_pc (gdbarch, frame, insn, pc, 4);
1986 break;
1987 }
1988 break;
1989
1990 case 0x1d: /* JALS: bits 011101 */
1991 case 0x35: /* J: bits 110101 */
1992 case 0x3d: /* JAL: bits 111101 */
1993 pc = ((pc | 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn) << 1);
1994 break;
1995
1996 case 0x25: /* BEQ: bits 100101 */
1997 if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
1998 == get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
1999 pc += micromips_relative_offset16 (insn);
2000 else
2001 pc += micromips_pc_insn_size (gdbarch, pc);
2002 break;
2003
2004 case 0x2d: /* BNE: bits 101101 */
2005 if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
2006 != get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
2007 pc += micromips_relative_offset16 (insn);
2008 else
2009 pc += micromips_pc_insn_size (gdbarch, pc);
2010 break;
2011
2012 case 0x3c: /* JALX: bits 111100 */
2013 pc = ((pc | 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn) << 2);
2014 break;
2015 }
2016 break;
2017
2018 /* 16-bit instructions. */
2019 case MIPS_INSN16_SIZE:
2020 switch (micromips_op (insn))
2021 {
2022 case 0x11: /* POOL16C: bits 010001 */
2023 if ((b5s5_op (insn) & 0x1c) == 0xc)
2024 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
2025 pc = get_frame_register_signed (frame, b0s5_reg (insn));
2026 else if (b5s5_op (insn) == 0x18)
2027 /* JRADDIUSP: bits 010001 11000 */
2028 pc = get_frame_register_signed (frame, MIPS_RA_REGNUM);
2029 break;
2030
2031 case 0x23: /* BEQZ16: bits 100011 */
2032 {
2033 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2034
2035 if (get_frame_register_signed (frame, rs) == 0)
2036 pc += micromips_relative_offset7 (insn);
2037 else
2038 pc += micromips_pc_insn_size (gdbarch, pc);
2039 }
2040 break;
2041
2042 case 0x2b: /* BNEZ16: bits 101011 */
2043 {
2044 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2045
2046 if (get_frame_register_signed (frame, rs) != 0)
2047 pc += micromips_relative_offset7 (insn);
2048 else
2049 pc += micromips_pc_insn_size (gdbarch, pc);
2050 }
2051 break;
2052
2053 case 0x33: /* B16: bits 110011 */
2054 pc += micromips_relative_offset10 (insn);
2055 break;
2056 }
2057 break;
2058 }
2059
2060 return pc;
2061 }
2062
2063 /* Decoding the next place to set a breakpoint is irregular for the
2064 mips 16 variant, but fortunately, there fewer instructions. We have
2065 to cope ith extensions for 16 bit instructions and a pair of actual
2066 32 bit instructions. We dont want to set a single step instruction
2067 on the extend instruction either. */
2068
2069 /* Lots of mips16 instruction formats */
2070 /* Predicting jumps requires itype,ritype,i8type
2071 and their extensions extItype,extritype,extI8type. */
2072 enum mips16_inst_fmts
2073 {
2074 itype, /* 0 immediate 5,10 */
2075 ritype, /* 1 5,3,8 */
2076 rrtype, /* 2 5,3,3,5 */
2077 rritype, /* 3 5,3,3,5 */
2078 rrrtype, /* 4 5,3,3,3,2 */
2079 rriatype, /* 5 5,3,3,1,4 */
2080 shifttype, /* 6 5,3,3,3,2 */
2081 i8type, /* 7 5,3,8 */
2082 i8movtype, /* 8 5,3,3,5 */
2083 i8mov32rtype, /* 9 5,3,5,3 */
2084 i64type, /* 10 5,3,8 */
2085 ri64type, /* 11 5,3,3,5 */
2086 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
2087 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
2088 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
2089 extRRItype, /* 15 5,5,5,5,3,3,5 */
2090 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
2091 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
2092 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
2093 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
2094 extRi64type, /* 20 5,6,5,5,3,3,5 */
2095 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
2096 };
2097 /* I am heaping all the fields of the formats into one structure and
2098 then, only the fields which are involved in instruction extension. */
2099 struct upk_mips16
2100 {
2101 CORE_ADDR offset;
2102 unsigned int regx; /* Function in i8 type. */
2103 unsigned int regy;
2104 };
2105
2106
2107 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
2108 for the bits which make up the immediate extension. */
2109
2110 static CORE_ADDR
2111 extended_offset (unsigned int extension)
2112 {
2113 CORE_ADDR value;
2114
2115 value = (extension >> 16) & 0x1f; /* Extract 15:11. */
2116 value = value << 6;
2117 value |= (extension >> 21) & 0x3f; /* Extract 10:5. */
2118 value = value << 5;
2119 value |= extension & 0x1f; /* Extract 4:0. */
2120
2121 return value;
2122 }
2123
2124 /* Only call this function if you know that this is an extendable
2125 instruction. It won't malfunction, but why make excess remote memory
2126 references? If the immediate operands get sign extended or something,
2127 do it after the extension is performed. */
2128 /* FIXME: Every one of these cases needs to worry about sign extension
2129 when the offset is to be used in relative addressing. */
2130
2131 static unsigned int
2132 fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
2133 {
2134 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2135 gdb_byte buf[8];
2136
2137 pc = unmake_compact_addr (pc); /* Clear the low order bit. */
2138 target_read_memory (pc, buf, 2);
2139 return extract_unsigned_integer (buf, 2, byte_order);
2140 }
2141
2142 static void
2143 unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
2144 unsigned int extension,
2145 unsigned int inst,
2146 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
2147 {
2148 CORE_ADDR offset;
2149 int regx;
2150 int regy;
2151 switch (insn_format)
2152 {
2153 case itype:
2154 {
2155 CORE_ADDR value;
2156 if (extension)
2157 {
2158 value = extended_offset ((extension << 16) | inst);
2159 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2160 }
2161 else
2162 {
2163 value = inst & 0x7ff;
2164 value = (value ^ 0x400) - 0x400; /* Sign-extend. */
2165 }
2166 offset = value;
2167 regx = -1;
2168 regy = -1;
2169 }
2170 break;
2171 case ritype:
2172 case i8type:
2173 { /* A register identifier and an offset. */
2174 /* Most of the fields are the same as I type but the
2175 immediate value is of a different length. */
2176 CORE_ADDR value;
2177 if (extension)
2178 {
2179 value = extended_offset ((extension << 16) | inst);
2180 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2181 }
2182 else
2183 {
2184 value = inst & 0xff; /* 8 bits */
2185 value = (value ^ 0x80) - 0x80; /* Sign-extend. */
2186 }
2187 offset = value;
2188 regx = (inst >> 8) & 0x07; /* i8 funct */
2189 regy = -1;
2190 break;
2191 }
2192 case jalxtype:
2193 {
2194 unsigned long value;
2195 unsigned int nexthalf;
2196 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
2197 value = value << 16;
2198 nexthalf = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc + 2, NULL);
2199 /* Low bit still set. */
2200 value |= nexthalf;
2201 offset = value;
2202 regx = -1;
2203 regy = -1;
2204 break;
2205 }
2206 default:
2207 internal_error (__FILE__, __LINE__, _("bad switch"));
2208 }
2209 upk->offset = offset;
2210 upk->regx = regx;
2211 upk->regy = regy;
2212 }
2213
2214
2215 /* Calculate the destination of a branch whose 16-bit opcode word is at PC,
2216 and having a signed 16-bit OFFSET. */
2217
2218 static CORE_ADDR
2219 add_offset_16 (CORE_ADDR pc, int offset)
2220 {
2221 return pc + (offset << 1) + 2;
2222 }
2223
2224 static CORE_ADDR
2225 extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
2226 unsigned int extension, unsigned int insn)
2227 {
2228 struct gdbarch *gdbarch = get_frame_arch (frame);
2229 int op = (insn >> 11);
2230 switch (op)
2231 {
2232 case 2: /* Branch */
2233 {
2234 struct upk_mips16 upk;
2235 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
2236 pc = add_offset_16 (pc, upk.offset);
2237 break;
2238 }
2239 case 3: /* JAL , JALX - Watch out, these are 32 bit
2240 instructions. */
2241 {
2242 struct upk_mips16 upk;
2243 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
2244 pc = ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)) | (upk.offset << 2);
2245 if ((insn >> 10) & 0x01) /* Exchange mode */
2246 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode. */
2247 else
2248 pc |= 0x01;
2249 break;
2250 }
2251 case 4: /* beqz */
2252 {
2253 struct upk_mips16 upk;
2254 int reg;
2255 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2256 reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
2257 if (reg == 0)
2258 pc = add_offset_16 (pc, upk.offset);
2259 else
2260 pc += 2;
2261 break;
2262 }
2263 case 5: /* bnez */
2264 {
2265 struct upk_mips16 upk;
2266 int reg;
2267 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2268 reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
2269 if (reg != 0)
2270 pc = add_offset_16 (pc, upk.offset);
2271 else
2272 pc += 2;
2273 break;
2274 }
2275 case 12: /* I8 Formats btez btnez */
2276 {
2277 struct upk_mips16 upk;
2278 int reg;
2279 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
2280 /* upk.regx contains the opcode */
2281 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
2282 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
2283 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
2284 pc = add_offset_16 (pc, upk.offset);
2285 else
2286 pc += 2;
2287 break;
2288 }
2289 case 29: /* RR Formats JR, JALR, JALR-RA */
2290 {
2291 struct upk_mips16 upk;
2292 /* upk.fmt = rrtype; */
2293 op = insn & 0x1f;
2294 if (op == 0)
2295 {
2296 int reg;
2297 upk.regx = (insn >> 8) & 0x07;
2298 upk.regy = (insn >> 5) & 0x07;
2299 if ((upk.regy & 1) == 0)
2300 reg = mips_reg3_to_reg[upk.regx];
2301 else
2302 reg = 31; /* Function return instruction. */
2303 pc = get_frame_register_signed (frame, reg);
2304 }
2305 else
2306 pc += 2;
2307 break;
2308 }
2309 case 30:
2310 /* This is an instruction extension. Fetch the real instruction
2311 (which follows the extension) and decode things based on
2312 that. */
2313 {
2314 pc += 2;
2315 pc = extended_mips16_next_pc (frame, pc, insn,
2316 fetch_mips_16 (gdbarch, pc));
2317 break;
2318 }
2319 default:
2320 {
2321 pc += 2;
2322 break;
2323 }
2324 }
2325 return pc;
2326 }
2327
2328 static CORE_ADDR
2329 mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
2330 {
2331 struct gdbarch *gdbarch = get_frame_arch (frame);
2332 unsigned int insn = fetch_mips_16 (gdbarch, pc);
2333 return extended_mips16_next_pc (frame, pc, 0, insn);
2334 }
2335
2336 /* The mips_next_pc function supports single_step when the remote
2337 target monitor or stub is not developed enough to do a single_step.
2338 It works by decoding the current instruction and predicting where a
2339 branch will go. This isn't hard because all the data is available.
2340 The MIPS32, MIPS16 and microMIPS variants are quite different. */
2341 static CORE_ADDR
2342 mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
2343 {
2344 struct gdbarch *gdbarch = get_frame_arch (frame);
2345
2346 if (mips_pc_is_mips16 (gdbarch, pc))
2347 return mips16_next_pc (frame, pc);
2348 else if (mips_pc_is_micromips (gdbarch, pc))
2349 return micromips_next_pc (frame, pc);
2350 else
2351 return mips32_next_pc (frame, pc);
2352 }
2353
2354 /* Return non-zero if the MIPS16 instruction INSN is a compact branch
2355 or jump. */
2356
2357 static int
2358 mips16_instruction_is_compact_branch (unsigned short insn)
2359 {
2360 switch (insn & 0xf800)
2361 {
2362 case 0xe800:
2363 return (insn & 0x009f) == 0x80; /* JALRC/JRC */
2364 case 0x6000:
2365 return (insn & 0x0600) == 0; /* BTNEZ/BTEQZ */
2366 case 0x2800: /* BNEZ */
2367 case 0x2000: /* BEQZ */
2368 case 0x1000: /* B */
2369 return 1;
2370 default:
2371 return 0;
2372 }
2373 }
2374
2375 /* Return non-zero if the microMIPS instruction INSN is a compact branch
2376 or jump. */
2377
2378 static int
2379 micromips_instruction_is_compact_branch (unsigned short insn)
2380 {
2381 switch (micromips_op (insn))
2382 {
2383 case 0x11: /* POOL16C: bits 010001 */
2384 return (b5s5_op (insn) == 0x18
2385 /* JRADDIUSP: bits 010001 11000 */
2386 || b5s5_op (insn) == 0xd);
2387 /* JRC: bits 010011 01101 */
2388 case 0x10: /* POOL32I: bits 010000 */
2389 return (b5s5_op (insn) & 0x1d) == 0x5;
2390 /* BEQZC/BNEZC: bits 010000 001x1 */
2391 default:
2392 return 0;
2393 }
2394 }
2395
2396 struct mips_frame_cache
2397 {
2398 CORE_ADDR base;
2399 struct trad_frame_saved_reg *saved_regs;
2400 };
2401
2402 /* Set a register's saved stack address in temp_saved_regs. If an
2403 address has already been set for this register, do nothing; this
2404 way we will only recognize the first save of a given register in a
2405 function prologue.
2406
2407 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
2408 [gdbarch_num_regs .. 2*gdbarch_num_regs).
2409 Strictly speaking, only the second range is used as it is only second
2410 range (the ABI instead of ISA registers) that comes into play when finding
2411 saved registers in a frame. */
2412
2413 static void
2414 set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
2415 int regnum, CORE_ADDR offset)
2416 {
2417 if (this_cache != NULL
2418 && this_cache->saved_regs[regnum].addr == -1)
2419 {
2420 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
2421 = offset;
2422 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
2423 = offset;
2424 }
2425 }
2426
2427
2428 /* Fetch the immediate value from a MIPS16 instruction.
2429 If the previous instruction was an EXTEND, use it to extend
2430 the upper bits of the immediate value. This is a helper function
2431 for mips16_scan_prologue. */
2432
2433 static int
2434 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2435 unsigned short inst, /* current instruction */
2436 int nbits, /* number of bits in imm field */
2437 int scale, /* scale factor to be applied to imm */
2438 int is_signed) /* is the imm field signed? */
2439 {
2440 int offset;
2441
2442 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2443 {
2444 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2445 if (offset & 0x8000) /* check for negative extend */
2446 offset = 0 - (0x10000 - (offset & 0xffff));
2447 return offset | (inst & 0x1f);
2448 }
2449 else
2450 {
2451 int max_imm = 1 << nbits;
2452 int mask = max_imm - 1;
2453 int sign_bit = max_imm >> 1;
2454
2455 offset = inst & mask;
2456 if (is_signed && (offset & sign_bit))
2457 offset = 0 - (max_imm - offset);
2458 return offset * scale;
2459 }
2460 }
2461
2462
2463 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
2464 the associated FRAME_CACHE if not null.
2465 Return the address of the first instruction past the prologue. */
2466
2467 static CORE_ADDR
2468 mips16_scan_prologue (struct gdbarch *gdbarch,
2469 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2470 struct frame_info *this_frame,
2471 struct mips_frame_cache *this_cache)
2472 {
2473 int prev_non_prologue_insn = 0;
2474 int this_non_prologue_insn;
2475 int non_prologue_insns = 0;
2476 CORE_ADDR prev_pc;
2477 CORE_ADDR cur_pc;
2478 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer. */
2479 CORE_ADDR sp;
2480 long frame_offset = 0; /* Size of stack frame. */
2481 long frame_adjust = 0; /* Offset of FP from SP. */
2482 int frame_reg = MIPS_SP_REGNUM;
2483 unsigned short prev_inst = 0; /* saved copy of previous instruction. */
2484 unsigned inst = 0; /* current instruction */
2485 unsigned entry_inst = 0; /* the entry instruction */
2486 unsigned save_inst = 0; /* the save instruction */
2487 int prev_delay_slot = 0;
2488 int in_delay_slot;
2489 int reg, offset;
2490
2491 int extend_bytes = 0;
2492 int prev_extend_bytes = 0;
2493 CORE_ADDR end_prologue_addr;
2494
2495 /* Can be called when there's no process, and hence when there's no
2496 THIS_FRAME. */
2497 if (this_frame != NULL)
2498 sp = get_frame_register_signed (this_frame,
2499 gdbarch_num_regs (gdbarch)
2500 + MIPS_SP_REGNUM);
2501 else
2502 sp = 0;
2503
2504 if (limit_pc > start_pc + 200)
2505 limit_pc = start_pc + 200;
2506 prev_pc = start_pc;
2507
2508 /* Permit at most one non-prologue non-control-transfer instruction
2509 in the middle which may have been reordered by the compiler for
2510 optimisation. */
2511 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
2512 {
2513 this_non_prologue_insn = 0;
2514 in_delay_slot = 0;
2515
2516 /* Save the previous instruction. If it's an EXTEND, we'll extract
2517 the immediate offset extension from it in mips16_get_imm. */
2518 prev_inst = inst;
2519
2520 /* Fetch and decode the instruction. */
2521 inst = (unsigned short) mips_fetch_instruction (gdbarch, ISA_MIPS16,
2522 cur_pc, NULL);
2523
2524 /* Normally we ignore extend instructions. However, if it is
2525 not followed by a valid prologue instruction, then this
2526 instruction is not part of the prologue either. We must
2527 remember in this case to adjust the end_prologue_addr back
2528 over the extend. */
2529 if ((inst & 0xf800) == 0xf000) /* extend */
2530 {
2531 extend_bytes = MIPS_INSN16_SIZE;
2532 continue;
2533 }
2534
2535 prev_extend_bytes = extend_bytes;
2536 extend_bytes = 0;
2537
2538 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2539 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2540 {
2541 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
2542 if (offset < 0) /* Negative stack adjustment? */
2543 frame_offset -= offset;
2544 else
2545 /* Exit loop if a positive stack adjustment is found, which
2546 usually means that the stack cleanup code in the function
2547 epilogue is reached. */
2548 break;
2549 }
2550 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2551 {
2552 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2553 reg = mips_reg3_to_reg[(inst & 0x700) >> 8];
2554 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2555 }
2556 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2557 {
2558 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2559 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2560 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2561 }
2562 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2563 {
2564 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2565 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2566 }
2567 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2568 {
2569 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2570 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2571 }
2572 else if (inst == 0x673d) /* move $s1, $sp */
2573 {
2574 frame_addr = sp;
2575 frame_reg = 17;
2576 }
2577 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2578 {
2579 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2580 frame_addr = sp + offset;
2581 frame_reg = 17;
2582 frame_adjust = offset;
2583 }
2584 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2585 {
2586 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2587 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2588 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2589 }
2590 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2591 {
2592 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2593 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2594 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2595 }
2596 else if ((inst & 0xf81f) == 0xe809
2597 && (inst & 0x700) != 0x700) /* entry */
2598 entry_inst = inst; /* Save for later processing. */
2599 else if ((inst & 0xff80) == 0x6480) /* save */
2600 {
2601 save_inst = inst; /* Save for later processing. */
2602 if (prev_extend_bytes) /* extend */
2603 save_inst |= prev_inst << 16;
2604 }
2605 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
2606 {
2607 /* This instruction is part of the prologue, but we don't
2608 need to do anything special to handle it. */
2609 }
2610 else if (mips16_instruction_has_delay_slot (inst, 0))
2611 /* JAL/JALR/JALX/JR */
2612 {
2613 /* The instruction in the delay slot can be a part
2614 of the prologue, so move forward once more. */
2615 in_delay_slot = 1;
2616 if (mips16_instruction_has_delay_slot (inst, 1))
2617 /* JAL/JALX */
2618 {
2619 prev_extend_bytes = MIPS_INSN16_SIZE;
2620 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
2621 }
2622 }
2623 else
2624 {
2625 this_non_prologue_insn = 1;
2626 }
2627
2628 non_prologue_insns += this_non_prologue_insn;
2629
2630 /* A jump or branch, or enough non-prologue insns seen? If so,
2631 then we must have reached the end of the prologue by now. */
2632 if (prev_delay_slot || non_prologue_insns > 1
2633 || mips16_instruction_is_compact_branch (inst))
2634 break;
2635
2636 prev_non_prologue_insn = this_non_prologue_insn;
2637 prev_delay_slot = in_delay_slot;
2638 prev_pc = cur_pc - prev_extend_bytes;
2639 }
2640
2641 /* The entry instruction is typically the first instruction in a function,
2642 and it stores registers at offsets relative to the value of the old SP
2643 (before the prologue). But the value of the sp parameter to this
2644 function is the new SP (after the prologue has been executed). So we
2645 can't calculate those offsets until we've seen the entire prologue,
2646 and can calculate what the old SP must have been. */
2647 if (entry_inst != 0)
2648 {
2649 int areg_count = (entry_inst >> 8) & 7;
2650 int sreg_count = (entry_inst >> 6) & 3;
2651
2652 /* The entry instruction always subtracts 32 from the SP. */
2653 frame_offset += 32;
2654
2655 /* Now we can calculate what the SP must have been at the
2656 start of the function prologue. */
2657 sp += frame_offset;
2658
2659 /* Check if a0-a3 were saved in the caller's argument save area. */
2660 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2661 {
2662 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2663 offset += mips_abi_regsize (gdbarch);
2664 }
2665
2666 /* Check if the ra register was pushed on the stack. */
2667 offset = -4;
2668 if (entry_inst & 0x20)
2669 {
2670 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2671 offset -= mips_abi_regsize (gdbarch);
2672 }
2673
2674 /* Check if the s0 and s1 registers were pushed on the stack. */
2675 for (reg = 16; reg < sreg_count + 16; reg++)
2676 {
2677 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2678 offset -= mips_abi_regsize (gdbarch);
2679 }
2680 }
2681
2682 /* The SAVE instruction is similar to ENTRY, except that defined by the
2683 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
2684 size of the frame is specified as an immediate field of instruction
2685 and an extended variation exists which lets additional registers and
2686 frame space to be specified. The instruction always treats registers
2687 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
2688 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
2689 {
2690 static int args_table[16] = {
2691 0, 0, 0, 0, 1, 1, 1, 1,
2692 2, 2, 2, 0, 3, 3, 4, -1,
2693 };
2694 static int astatic_table[16] = {
2695 0, 1, 2, 3, 0, 1, 2, 3,
2696 0, 1, 2, 4, 0, 1, 0, -1,
2697 };
2698 int aregs = (save_inst >> 16) & 0xf;
2699 int xsregs = (save_inst >> 24) & 0x7;
2700 int args = args_table[aregs];
2701 int astatic = astatic_table[aregs];
2702 long frame_size;
2703
2704 if (args < 0)
2705 {
2706 warning (_("Invalid number of argument registers encoded in SAVE."));
2707 args = 0;
2708 }
2709 if (astatic < 0)
2710 {
2711 warning (_("Invalid number of static registers encoded in SAVE."));
2712 astatic = 0;
2713 }
2714
2715 /* For standard SAVE the frame size of 0 means 128. */
2716 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
2717 if (frame_size == 0 && (save_inst >> 16) == 0)
2718 frame_size = 16;
2719 frame_size *= 8;
2720 frame_offset += frame_size;
2721
2722 /* Now we can calculate what the SP must have been at the
2723 start of the function prologue. */
2724 sp += frame_offset;
2725
2726 /* Check if A0-A3 were saved in the caller's argument save area. */
2727 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
2728 {
2729 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2730 offset += mips_abi_regsize (gdbarch);
2731 }
2732
2733 offset = -4;
2734
2735 /* Check if the RA register was pushed on the stack. */
2736 if (save_inst & 0x40)
2737 {
2738 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2739 offset -= mips_abi_regsize (gdbarch);
2740 }
2741
2742 /* Check if the S8 register was pushed on the stack. */
2743 if (xsregs > 6)
2744 {
2745 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
2746 offset -= mips_abi_regsize (gdbarch);
2747 xsregs--;
2748 }
2749 /* Check if S2-S7 were pushed on the stack. */
2750 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
2751 {
2752 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2753 offset -= mips_abi_regsize (gdbarch);
2754 }
2755
2756 /* Check if the S1 register was pushed on the stack. */
2757 if (save_inst & 0x10)
2758 {
2759 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
2760 offset -= mips_abi_regsize (gdbarch);
2761 }
2762 /* Check if the S0 register was pushed on the stack. */
2763 if (save_inst & 0x20)
2764 {
2765 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
2766 offset -= mips_abi_regsize (gdbarch);
2767 }
2768
2769 /* Check if A0-A3 were pushed on the stack. */
2770 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
2771 {
2772 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2773 offset -= mips_abi_regsize (gdbarch);
2774 }
2775 }
2776
2777 if (this_cache != NULL)
2778 {
2779 this_cache->base =
2780 (get_frame_register_signed (this_frame,
2781 gdbarch_num_regs (gdbarch) + frame_reg)
2782 + frame_offset - frame_adjust);
2783 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
2784 be able to get rid of the assignment below, evetually. But it's
2785 still needed for now. */
2786 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2787 + mips_regnum (gdbarch)->pc]
2788 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
2789 }
2790
2791 /* Set end_prologue_addr to the address of the instruction immediately
2792 after the last one we scanned. Unless the last one looked like a
2793 non-prologue instruction (and we looked ahead), in which case use
2794 its address instead. */
2795 end_prologue_addr = (prev_non_prologue_insn || prev_delay_slot
2796 ? prev_pc : cur_pc - prev_extend_bytes);
2797
2798 return end_prologue_addr;
2799 }
2800
2801 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
2802 Procedures that use the 32-bit instruction set are handled by the
2803 mips_insn32 unwinder. */
2804
2805 static struct mips_frame_cache *
2806 mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
2807 {
2808 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2809 struct mips_frame_cache *cache;
2810
2811 if ((*this_cache) != NULL)
2812 return (struct mips_frame_cache *) (*this_cache);
2813 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2814 (*this_cache) = cache;
2815 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2816
2817 /* Analyze the function prologue. */
2818 {
2819 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2820 CORE_ADDR start_addr;
2821
2822 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2823 if (start_addr == 0)
2824 start_addr = heuristic_proc_start (gdbarch, pc);
2825 /* We can't analyze the prologue if we couldn't find the begining
2826 of the function. */
2827 if (start_addr == 0)
2828 return cache;
2829
2830 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame,
2831 (struct mips_frame_cache *) *this_cache);
2832 }
2833
2834 /* gdbarch_sp_regnum contains the value and not the address. */
2835 trad_frame_set_value (cache->saved_regs,
2836 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2837 cache->base);
2838
2839 return (struct mips_frame_cache *) (*this_cache);
2840 }
2841
2842 static void
2843 mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
2844 struct frame_id *this_id)
2845 {
2846 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2847 this_cache);
2848 /* This marks the outermost frame. */
2849 if (info->base == 0)
2850 return;
2851 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2852 }
2853
2854 static struct value *
2855 mips_insn16_frame_prev_register (struct frame_info *this_frame,
2856 void **this_cache, int regnum)
2857 {
2858 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2859 this_cache);
2860 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2861 }
2862
2863 static int
2864 mips_insn16_frame_sniffer (const struct frame_unwind *self,
2865 struct frame_info *this_frame, void **this_cache)
2866 {
2867 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2868 CORE_ADDR pc = get_frame_pc (this_frame);
2869 if (mips_pc_is_mips16 (gdbarch, pc))
2870 return 1;
2871 return 0;
2872 }
2873
2874 static const struct frame_unwind mips_insn16_frame_unwind =
2875 {
2876 NORMAL_FRAME,
2877 default_frame_unwind_stop_reason,
2878 mips_insn16_frame_this_id,
2879 mips_insn16_frame_prev_register,
2880 NULL,
2881 mips_insn16_frame_sniffer
2882 };
2883
2884 static CORE_ADDR
2885 mips_insn16_frame_base_address (struct frame_info *this_frame,
2886 void **this_cache)
2887 {
2888 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2889 this_cache);
2890 return info->base;
2891 }
2892
2893 static const struct frame_base mips_insn16_frame_base =
2894 {
2895 &mips_insn16_frame_unwind,
2896 mips_insn16_frame_base_address,
2897 mips_insn16_frame_base_address,
2898 mips_insn16_frame_base_address
2899 };
2900
2901 static const struct frame_base *
2902 mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
2903 {
2904 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2905 CORE_ADDR pc = get_frame_pc (this_frame);
2906 if (mips_pc_is_mips16 (gdbarch, pc))
2907 return &mips_insn16_frame_base;
2908 else
2909 return NULL;
2910 }
2911
2912 /* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
2913 to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
2914 interpreted directly, and then multiplied by 4. */
2915
2916 static int
2917 micromips_decode_imm9 (int imm)
2918 {
2919 imm = (imm ^ 0x100) - 0x100;
2920 if (imm > -3 && imm < 2)
2921 imm ^= 0x100;
2922 return imm << 2;
2923 }
2924
2925 /* Analyze the function prologue from START_PC to LIMIT_PC. Return
2926 the address of the first instruction past the prologue. */
2927
2928 static CORE_ADDR
2929 micromips_scan_prologue (struct gdbarch *gdbarch,
2930 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2931 struct frame_info *this_frame,
2932 struct mips_frame_cache *this_cache)
2933 {
2934 CORE_ADDR end_prologue_addr;
2935 int prev_non_prologue_insn = 0;
2936 int frame_reg = MIPS_SP_REGNUM;
2937 int this_non_prologue_insn;
2938 int non_prologue_insns = 0;
2939 long frame_offset = 0; /* Size of stack frame. */
2940 long frame_adjust = 0; /* Offset of FP from SP. */
2941 int prev_delay_slot = 0;
2942 int in_delay_slot;
2943 CORE_ADDR prev_pc;
2944 CORE_ADDR cur_pc;
2945 ULONGEST insn; /* current instruction */
2946 CORE_ADDR sp;
2947 long offset;
2948 long sp_adj;
2949 long v1_off = 0; /* The assumption is LUI will replace it. */
2950 int reglist;
2951 int breg;
2952 int dreg;
2953 int sreg;
2954 int treg;
2955 int loc;
2956 int op;
2957 int s;
2958 int i;
2959
2960 /* Can be called when there's no process, and hence when there's no
2961 THIS_FRAME. */
2962 if (this_frame != NULL)
2963 sp = get_frame_register_signed (this_frame,
2964 gdbarch_num_regs (gdbarch)
2965 + MIPS_SP_REGNUM);
2966 else
2967 sp = 0;
2968
2969 if (limit_pc > start_pc + 200)
2970 limit_pc = start_pc + 200;
2971 prev_pc = start_pc;
2972
2973 /* Permit at most one non-prologue non-control-transfer instruction
2974 in the middle which may have been reordered by the compiler for
2975 optimisation. */
2976 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += loc)
2977 {
2978 this_non_prologue_insn = 0;
2979 in_delay_slot = 0;
2980 sp_adj = 0;
2981 loc = 0;
2982 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, cur_pc, NULL);
2983 loc += MIPS_INSN16_SIZE;
2984 switch (mips_insn_size (ISA_MICROMIPS, insn))
2985 {
2986 /* 32-bit instructions. */
2987 case 2 * MIPS_INSN16_SIZE:
2988 insn <<= 16;
2989 insn |= mips_fetch_instruction (gdbarch,
2990 ISA_MICROMIPS, cur_pc + loc, NULL);
2991 loc += MIPS_INSN16_SIZE;
2992 switch (micromips_op (insn >> 16))
2993 {
2994 /* Record $sp/$fp adjustment. */
2995 /* Discard (D)ADDU $gp,$jp used for PIC code. */
2996 case 0x0: /* POOL32A: bits 000000 */
2997 case 0x16: /* POOL32S: bits 010110 */
2998 op = b0s11_op (insn);
2999 sreg = b0s5_reg (insn >> 16);
3000 treg = b5s5_reg (insn >> 16);
3001 dreg = b11s5_reg (insn);
3002 if (op == 0x1d0
3003 /* SUBU: bits 000000 00111010000 */
3004 /* DSUBU: bits 010110 00111010000 */
3005 && dreg == MIPS_SP_REGNUM && sreg == MIPS_SP_REGNUM
3006 && treg == 3)
3007 /* (D)SUBU $sp, $v1 */
3008 sp_adj = v1_off;
3009 else if (op != 0x150
3010 /* ADDU: bits 000000 00101010000 */
3011 /* DADDU: bits 010110 00101010000 */
3012 || dreg != 28 || sreg != 28 || treg != MIPS_T9_REGNUM)
3013 this_non_prologue_insn = 1;
3014 break;
3015
3016 case 0x8: /* POOL32B: bits 001000 */
3017 op = b12s4_op (insn);
3018 breg = b0s5_reg (insn >> 16);
3019 reglist = sreg = b5s5_reg (insn >> 16);
3020 offset = (b0s12_imm (insn) ^ 0x800) - 0x800;
3021 if ((op == 0x9 || op == 0xc)
3022 /* SWP: bits 001000 1001 */
3023 /* SDP: bits 001000 1100 */
3024 && breg == MIPS_SP_REGNUM && sreg < MIPS_RA_REGNUM)
3025 /* S[DW]P reg,offset($sp) */
3026 {
3027 s = 4 << ((b12s4_op (insn) & 0x4) == 0x4);
3028 set_reg_offset (gdbarch, this_cache,
3029 sreg, sp + offset);
3030 set_reg_offset (gdbarch, this_cache,
3031 sreg + 1, sp + offset + s);
3032 }
3033 else if ((op == 0xd || op == 0xf)
3034 /* SWM: bits 001000 1101 */
3035 /* SDM: bits 001000 1111 */
3036 && breg == MIPS_SP_REGNUM
3037 /* SWM reglist,offset($sp) */
3038 && ((reglist >= 1 && reglist <= 9)
3039 || (reglist >= 16 && reglist <= 25)))
3040 {
3041 int sreglist = std::min(reglist & 0xf, 8);
3042
3043 s = 4 << ((b12s4_op (insn) & 0x2) == 0x2);
3044 for (i = 0; i < sreglist; i++)
3045 set_reg_offset (gdbarch, this_cache, 16 + i, sp + s * i);
3046 if ((reglist & 0xf) > 8)
3047 set_reg_offset (gdbarch, this_cache, 30, sp + s * i++);
3048 if ((reglist & 0x10) == 0x10)
3049 set_reg_offset (gdbarch, this_cache,
3050 MIPS_RA_REGNUM, sp + s * i++);
3051 }
3052 else
3053 this_non_prologue_insn = 1;
3054 break;
3055
3056 /* Record $sp/$fp adjustment. */
3057 /* Discard (D)ADDIU $gp used for PIC code. */
3058 case 0xc: /* ADDIU: bits 001100 */
3059 case 0x17: /* DADDIU: bits 010111 */
3060 sreg = b0s5_reg (insn >> 16);
3061 dreg = b5s5_reg (insn >> 16);
3062 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3063 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM)
3064 /* (D)ADDIU $sp, imm */
3065 sp_adj = offset;
3066 else if (sreg == MIPS_SP_REGNUM && dreg == 30)
3067 /* (D)ADDIU $fp, $sp, imm */
3068 {
3069 frame_adjust = offset;
3070 frame_reg = 30;
3071 }
3072 else if (sreg != 28 || dreg != 28)
3073 /* (D)ADDIU $gp, imm */
3074 this_non_prologue_insn = 1;
3075 break;
3076
3077 /* LUI $v1 is used for larger $sp adjustments. */
3078 /* Discard LUI $gp used for PIC code. */
3079 case 0x10: /* POOL32I: bits 010000 */
3080 if (b5s5_op (insn >> 16) == 0xd
3081 /* LUI: bits 010000 001101 */
3082 && b0s5_reg (insn >> 16) == 3)
3083 /* LUI $v1, imm */
3084 v1_off = ((b0s16_imm (insn) << 16) ^ 0x80000000) - 0x80000000;
3085 else if (b5s5_op (insn >> 16) != 0xd
3086 /* LUI: bits 010000 001101 */
3087 || b0s5_reg (insn >> 16) != 28)
3088 /* LUI $gp, imm */
3089 this_non_prologue_insn = 1;
3090 break;
3091
3092 /* ORI $v1 is used for larger $sp adjustments. */
3093 case 0x14: /* ORI: bits 010100 */
3094 sreg = b0s5_reg (insn >> 16);
3095 dreg = b5s5_reg (insn >> 16);
3096 if (sreg == 3 && dreg == 3)
3097 /* ORI $v1, imm */
3098 v1_off |= b0s16_imm (insn);
3099 else
3100 this_non_prologue_insn = 1;
3101 break;
3102
3103 case 0x26: /* SWC1: bits 100110 */
3104 case 0x2e: /* SDC1: bits 101110 */
3105 breg = b0s5_reg (insn >> 16);
3106 if (breg != MIPS_SP_REGNUM)
3107 /* S[DW]C1 reg,offset($sp) */
3108 this_non_prologue_insn = 1;
3109 break;
3110
3111 case 0x36: /* SD: bits 110110 */
3112 case 0x3e: /* SW: bits 111110 */
3113 breg = b0s5_reg (insn >> 16);
3114 sreg = b5s5_reg (insn >> 16);
3115 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3116 if (breg == MIPS_SP_REGNUM)
3117 /* S[DW] reg,offset($sp) */
3118 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3119 else
3120 this_non_prologue_insn = 1;
3121 break;
3122
3123 default:
3124 /* The instruction in the delay slot can be a part
3125 of the prologue, so move forward once more. */
3126 if (micromips_instruction_has_delay_slot (insn, 0))
3127 in_delay_slot = 1;
3128 else
3129 this_non_prologue_insn = 1;
3130 break;
3131 }
3132 insn >>= 16;
3133 break;
3134
3135 /* 16-bit instructions. */
3136 case MIPS_INSN16_SIZE:
3137 switch (micromips_op (insn))
3138 {
3139 case 0x3: /* MOVE: bits 000011 */
3140 sreg = b0s5_reg (insn);
3141 dreg = b5s5_reg (insn);
3142 if (sreg == MIPS_SP_REGNUM && dreg == 30)
3143 /* MOVE $fp, $sp */
3144 frame_reg = 30;
3145 else if ((sreg & 0x1c) != 0x4)
3146 /* MOVE reg, $a0-$a3 */
3147 this_non_prologue_insn = 1;
3148 break;
3149
3150 case 0x11: /* POOL16C: bits 010001 */
3151 if (b6s4_op (insn) == 0x5)
3152 /* SWM: bits 010001 0101 */
3153 {
3154 offset = ((b0s4_imm (insn) << 2) ^ 0x20) - 0x20;
3155 reglist = b4s2_regl (insn);
3156 for (i = 0; i <= reglist; i++)
3157 set_reg_offset (gdbarch, this_cache, 16 + i, sp + 4 * i);
3158 set_reg_offset (gdbarch, this_cache,
3159 MIPS_RA_REGNUM, sp + 4 * i++);
3160 }
3161 else
3162 this_non_prologue_insn = 1;
3163 break;
3164
3165 case 0x13: /* POOL16D: bits 010011 */
3166 if ((insn & 0x1) == 0x1)
3167 /* ADDIUSP: bits 010011 1 */
3168 sp_adj = micromips_decode_imm9 (b1s9_imm (insn));
3169 else if (b5s5_reg (insn) == MIPS_SP_REGNUM)
3170 /* ADDIUS5: bits 010011 0 */
3171 /* ADDIUS5 $sp, imm */
3172 sp_adj = (b1s4_imm (insn) ^ 8) - 8;
3173 else
3174 this_non_prologue_insn = 1;
3175 break;
3176
3177 case 0x32: /* SWSP: bits 110010 */
3178 offset = b0s5_imm (insn) << 2;
3179 sreg = b5s5_reg (insn);
3180 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3181 break;
3182
3183 default:
3184 /* The instruction in the delay slot can be a part
3185 of the prologue, so move forward once more. */
3186 if (micromips_instruction_has_delay_slot (insn << 16, 0))
3187 in_delay_slot = 1;
3188 else
3189 this_non_prologue_insn = 1;
3190 break;
3191 }
3192 break;
3193 }
3194 if (sp_adj < 0)
3195 frame_offset -= sp_adj;
3196
3197 non_prologue_insns += this_non_prologue_insn;
3198
3199 /* A jump or branch, enough non-prologue insns seen or positive
3200 stack adjustment? If so, then we must have reached the end
3201 of the prologue by now. */
3202 if (prev_delay_slot || non_prologue_insns > 1 || sp_adj > 0
3203 || micromips_instruction_is_compact_branch (insn))
3204 break;
3205
3206 prev_non_prologue_insn = this_non_prologue_insn;
3207 prev_delay_slot = in_delay_slot;
3208 prev_pc = cur_pc;
3209 }
3210
3211 if (this_cache != NULL)
3212 {
3213 this_cache->base =
3214 (get_frame_register_signed (this_frame,
3215 gdbarch_num_regs (gdbarch) + frame_reg)
3216 + frame_offset - frame_adjust);
3217 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
3218 be able to get rid of the assignment below, evetually. But it's
3219 still needed for now. */
3220 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3221 + mips_regnum (gdbarch)->pc]
3222 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
3223 }
3224
3225 /* Set end_prologue_addr to the address of the instruction immediately
3226 after the last one we scanned. Unless the last one looked like a
3227 non-prologue instruction (and we looked ahead), in which case use
3228 its address instead. */
3229 end_prologue_addr
3230 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
3231
3232 return end_prologue_addr;
3233 }
3234
3235 /* Heuristic unwinder for procedures using microMIPS instructions.
3236 Procedures that use the 32-bit instruction set are handled by the
3237 mips_insn32 unwinder. Likewise MIPS16 and the mips_insn16 unwinder. */
3238
3239 static struct mips_frame_cache *
3240 mips_micro_frame_cache (struct frame_info *this_frame, void **this_cache)
3241 {
3242 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3243 struct mips_frame_cache *cache;
3244
3245 if ((*this_cache) != NULL)
3246 return (struct mips_frame_cache *) (*this_cache);
3247
3248 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3249 (*this_cache) = cache;
3250 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3251
3252 /* Analyze the function prologue. */
3253 {
3254 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3255 CORE_ADDR start_addr;
3256
3257 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3258 if (start_addr == 0)
3259 start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
3260 /* We can't analyze the prologue if we couldn't find the begining
3261 of the function. */
3262 if (start_addr == 0)
3263 return cache;
3264
3265 micromips_scan_prologue (gdbarch, start_addr, pc, this_frame,
3266 (struct mips_frame_cache *) *this_cache);
3267 }
3268
3269 /* gdbarch_sp_regnum contains the value and not the address. */
3270 trad_frame_set_value (cache->saved_regs,
3271 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3272 cache->base);
3273
3274 return (struct mips_frame_cache *) (*this_cache);
3275 }
3276
3277 static void
3278 mips_micro_frame_this_id (struct frame_info *this_frame, void **this_cache,
3279 struct frame_id *this_id)
3280 {
3281 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3282 this_cache);
3283 /* This marks the outermost frame. */
3284 if (info->base == 0)
3285 return;
3286 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3287 }
3288
3289 static struct value *
3290 mips_micro_frame_prev_register (struct frame_info *this_frame,
3291 void **this_cache, int regnum)
3292 {
3293 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3294 this_cache);
3295 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3296 }
3297
3298 static int
3299 mips_micro_frame_sniffer (const struct frame_unwind *self,
3300 struct frame_info *this_frame, void **this_cache)
3301 {
3302 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3303 CORE_ADDR pc = get_frame_pc (this_frame);
3304
3305 if (mips_pc_is_micromips (gdbarch, pc))
3306 return 1;
3307 return 0;
3308 }
3309
3310 static const struct frame_unwind mips_micro_frame_unwind =
3311 {
3312 NORMAL_FRAME,
3313 default_frame_unwind_stop_reason,
3314 mips_micro_frame_this_id,
3315 mips_micro_frame_prev_register,
3316 NULL,
3317 mips_micro_frame_sniffer
3318 };
3319
3320 static CORE_ADDR
3321 mips_micro_frame_base_address (struct frame_info *this_frame,
3322 void **this_cache)
3323 {
3324 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3325 this_cache);
3326 return info->base;
3327 }
3328
3329 static const struct frame_base mips_micro_frame_base =
3330 {
3331 &mips_micro_frame_unwind,
3332 mips_micro_frame_base_address,
3333 mips_micro_frame_base_address,
3334 mips_micro_frame_base_address
3335 };
3336
3337 static const struct frame_base *
3338 mips_micro_frame_base_sniffer (struct frame_info *this_frame)
3339 {
3340 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3341 CORE_ADDR pc = get_frame_pc (this_frame);
3342
3343 if (mips_pc_is_micromips (gdbarch, pc))
3344 return &mips_micro_frame_base;
3345 else
3346 return NULL;
3347 }
3348
3349 /* Mark all the registers as unset in the saved_regs array
3350 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
3351
3352 static void
3353 reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
3354 {
3355 if (this_cache == NULL || this_cache->saved_regs == NULL)
3356 return;
3357
3358 {
3359 const int num_regs = gdbarch_num_regs (gdbarch);
3360 int i;
3361
3362 for (i = 0; i < num_regs; i++)
3363 {
3364 this_cache->saved_regs[i].addr = -1;
3365 }
3366 }
3367 }
3368
3369 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
3370 the associated FRAME_CACHE if not null.
3371 Return the address of the first instruction past the prologue. */
3372
3373 static CORE_ADDR
3374 mips32_scan_prologue (struct gdbarch *gdbarch,
3375 CORE_ADDR start_pc, CORE_ADDR limit_pc,
3376 struct frame_info *this_frame,
3377 struct mips_frame_cache *this_cache)
3378 {
3379 int prev_non_prologue_insn;
3380 int this_non_prologue_insn;
3381 int non_prologue_insns;
3382 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
3383 frame-pointer. */
3384 int prev_delay_slot;
3385 CORE_ADDR prev_pc;
3386 CORE_ADDR cur_pc;
3387 CORE_ADDR sp;
3388 long frame_offset;
3389 int frame_reg = MIPS_SP_REGNUM;
3390
3391 CORE_ADDR end_prologue_addr;
3392 int seen_sp_adjust = 0;
3393 int load_immediate_bytes = 0;
3394 int in_delay_slot;
3395 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
3396
3397 /* Can be called when there's no process, and hence when there's no
3398 THIS_FRAME. */
3399 if (this_frame != NULL)
3400 sp = get_frame_register_signed (this_frame,
3401 gdbarch_num_regs (gdbarch)
3402 + MIPS_SP_REGNUM);
3403 else
3404 sp = 0;
3405
3406 if (limit_pc > start_pc + 200)
3407 limit_pc = start_pc + 200;
3408
3409 restart:
3410 prev_non_prologue_insn = 0;
3411 non_prologue_insns = 0;
3412 prev_delay_slot = 0;
3413 prev_pc = start_pc;
3414
3415 /* Permit at most one non-prologue non-control-transfer instruction
3416 in the middle which may have been reordered by the compiler for
3417 optimisation. */
3418 frame_offset = 0;
3419 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
3420 {
3421 unsigned long inst, high_word;
3422 long offset;
3423 int reg;
3424
3425 this_non_prologue_insn = 0;
3426 in_delay_slot = 0;
3427
3428 /* Fetch the instruction. */
3429 inst = (unsigned long) mips_fetch_instruction (gdbarch, ISA_MIPS,
3430 cur_pc, NULL);
3431
3432 /* Save some code by pre-extracting some useful fields. */
3433 high_word = (inst >> 16) & 0xffff;
3434 offset = ((inst & 0xffff) ^ 0x8000) - 0x8000;
3435 reg = high_word & 0x1f;
3436
3437 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
3438 || high_word == 0x23bd /* addi $sp,$sp,-i */
3439 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
3440 {
3441 if (offset < 0) /* Negative stack adjustment? */
3442 frame_offset -= offset;
3443 else
3444 /* Exit loop if a positive stack adjustment is found, which
3445 usually means that the stack cleanup code in the function
3446 epilogue is reached. */
3447 break;
3448 seen_sp_adjust = 1;
3449 }
3450 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
3451 && !regsize_is_64_bits)
3452 {
3453 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
3454 }
3455 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
3456 && regsize_is_64_bits)
3457 {
3458 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
3459 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
3460 }
3461 else if (high_word == 0x27be) /* addiu $30,$sp,size */
3462 {
3463 /* Old gcc frame, r30 is virtual frame pointer. */
3464 if (offset != frame_offset)
3465 frame_addr = sp + offset;
3466 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
3467 {
3468 unsigned alloca_adjust;
3469
3470 frame_reg = 30;
3471 frame_addr = get_frame_register_signed
3472 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3473 frame_offset = 0;
3474
3475 alloca_adjust = (unsigned) (frame_addr - (sp + offset));
3476 if (alloca_adjust > 0)
3477 {
3478 /* FP > SP + frame_size. This may be because of
3479 an alloca or somethings similar. Fix sp to
3480 "pre-alloca" value, and try again. */
3481 sp += alloca_adjust;
3482 /* Need to reset the status of all registers. Otherwise,
3483 we will hit a guard that prevents the new address
3484 for each register to be recomputed during the second
3485 pass. */
3486 reset_saved_regs (gdbarch, this_cache);
3487 goto restart;
3488 }
3489 }
3490 }
3491 /* move $30,$sp. With different versions of gas this will be either
3492 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
3493 Accept any one of these. */
3494 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3495 {
3496 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
3497 if (this_frame && frame_reg == MIPS_SP_REGNUM)
3498 {
3499 unsigned alloca_adjust;
3500
3501 frame_reg = 30;
3502 frame_addr = get_frame_register_signed
3503 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3504
3505 alloca_adjust = (unsigned) (frame_addr - sp);
3506 if (alloca_adjust > 0)
3507 {
3508 /* FP > SP + frame_size. This may be because of
3509 an alloca or somethings similar. Fix sp to
3510 "pre-alloca" value, and try again. */
3511 sp = frame_addr;
3512 /* Need to reset the status of all registers. Otherwise,
3513 we will hit a guard that prevents the new address
3514 for each register to be recomputed during the second
3515 pass. */
3516 reset_saved_regs (gdbarch, this_cache);
3517 goto restart;
3518 }
3519 }
3520 }
3521 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
3522 && !regsize_is_64_bits)
3523 {
3524 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
3525 }
3526 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
3527 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
3528 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
3529 || high_word == 0x3c1c /* lui $gp,n */
3530 || high_word == 0x279c /* addiu $gp,$gp,n */
3531 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3532 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
3533 )
3534 {
3535 /* These instructions are part of the prologue, but we don't
3536 need to do anything special to handle them. */
3537 }
3538 /* The instructions below load $at or $t0 with an immediate
3539 value in preparation for a stack adjustment via
3540 subu $sp,$sp,[$at,$t0]. These instructions could also
3541 initialize a local variable, so we accept them only before
3542 a stack adjustment instruction was seen. */
3543 else if (!seen_sp_adjust
3544 && !prev_delay_slot
3545 && (high_word == 0x3c01 /* lui $at,n */
3546 || high_word == 0x3c08 /* lui $t0,n */
3547 || high_word == 0x3421 /* ori $at,$at,n */
3548 || high_word == 0x3508 /* ori $t0,$t0,n */
3549 || high_word == 0x3401 /* ori $at,$zero,n */
3550 || high_word == 0x3408 /* ori $t0,$zero,n */
3551 ))
3552 {
3553 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
3554 }
3555 /* Check for branches and jumps. The instruction in the delay
3556 slot can be a part of the prologue, so move forward once more. */
3557 else if (mips32_instruction_has_delay_slot (gdbarch, inst))
3558 {
3559 in_delay_slot = 1;
3560 }
3561 /* This instruction is not an instruction typically found
3562 in a prologue, so we must have reached the end of the
3563 prologue. */
3564 else
3565 {
3566 this_non_prologue_insn = 1;
3567 }
3568
3569 non_prologue_insns += this_non_prologue_insn;
3570
3571 /* A jump or branch, or enough non-prologue insns seen? If so,
3572 then we must have reached the end of the prologue by now. */
3573 if (prev_delay_slot || non_prologue_insns > 1)
3574 break;
3575
3576 prev_non_prologue_insn = this_non_prologue_insn;
3577 prev_delay_slot = in_delay_slot;
3578 prev_pc = cur_pc;
3579 }
3580
3581 if (this_cache != NULL)
3582 {
3583 this_cache->base =
3584 (get_frame_register_signed (this_frame,
3585 gdbarch_num_regs (gdbarch) + frame_reg)
3586 + frame_offset);
3587 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
3588 this assignment below, eventually. But it's still needed
3589 for now. */
3590 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3591 + mips_regnum (gdbarch)->pc]
3592 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3593 + MIPS_RA_REGNUM];
3594 }
3595
3596 /* Set end_prologue_addr to the address of the instruction immediately
3597 after the last one we scanned. Unless the last one looked like a
3598 non-prologue instruction (and we looked ahead), in which case use
3599 its address instead. */
3600 end_prologue_addr
3601 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
3602
3603 /* In a frameless function, we might have incorrectly
3604 skipped some load immediate instructions. Undo the skipping
3605 if the load immediate was not followed by a stack adjustment. */
3606 if (load_immediate_bytes && !seen_sp_adjust)
3607 end_prologue_addr -= load_immediate_bytes;
3608
3609 return end_prologue_addr;
3610 }
3611
3612 /* Heuristic unwinder for procedures using 32-bit instructions (covers
3613 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
3614 instructions (a.k.a. MIPS16) are handled by the mips_insn16
3615 unwinder. Likewise microMIPS and the mips_micro unwinder. */
3616
3617 static struct mips_frame_cache *
3618 mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
3619 {
3620 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3621 struct mips_frame_cache *cache;
3622
3623 if ((*this_cache) != NULL)
3624 return (struct mips_frame_cache *) (*this_cache);
3625
3626 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3627 (*this_cache) = cache;
3628 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3629
3630 /* Analyze the function prologue. */
3631 {
3632 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3633 CORE_ADDR start_addr;
3634
3635 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3636 if (start_addr == 0)
3637 start_addr = heuristic_proc_start (gdbarch, pc);
3638 /* We can't analyze the prologue if we couldn't find the begining
3639 of the function. */
3640 if (start_addr == 0)
3641 return cache;
3642
3643 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame,
3644 (struct mips_frame_cache *) *this_cache);
3645 }
3646
3647 /* gdbarch_sp_regnum contains the value and not the address. */
3648 trad_frame_set_value (cache->saved_regs,
3649 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3650 cache->base);
3651
3652 return (struct mips_frame_cache *) (*this_cache);
3653 }
3654
3655 static void
3656 mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
3657 struct frame_id *this_id)
3658 {
3659 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3660 this_cache);
3661 /* This marks the outermost frame. */
3662 if (info->base == 0)
3663 return;
3664 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3665 }
3666
3667 static struct value *
3668 mips_insn32_frame_prev_register (struct frame_info *this_frame,
3669 void **this_cache, int regnum)
3670 {
3671 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3672 this_cache);
3673 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3674 }
3675
3676 static int
3677 mips_insn32_frame_sniffer (const struct frame_unwind *self,
3678 struct frame_info *this_frame, void **this_cache)
3679 {
3680 CORE_ADDR pc = get_frame_pc (this_frame);
3681 if (mips_pc_is_mips (pc))
3682 return 1;
3683 return 0;
3684 }
3685
3686 static const struct frame_unwind mips_insn32_frame_unwind =
3687 {
3688 NORMAL_FRAME,
3689 default_frame_unwind_stop_reason,
3690 mips_insn32_frame_this_id,
3691 mips_insn32_frame_prev_register,
3692 NULL,
3693 mips_insn32_frame_sniffer
3694 };
3695
3696 static CORE_ADDR
3697 mips_insn32_frame_base_address (struct frame_info *this_frame,
3698 void **this_cache)
3699 {
3700 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3701 this_cache);
3702 return info->base;
3703 }
3704
3705 static const struct frame_base mips_insn32_frame_base =
3706 {
3707 &mips_insn32_frame_unwind,
3708 mips_insn32_frame_base_address,
3709 mips_insn32_frame_base_address,
3710 mips_insn32_frame_base_address
3711 };
3712
3713 static const struct frame_base *
3714 mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
3715 {
3716 CORE_ADDR pc = get_frame_pc (this_frame);
3717 if (mips_pc_is_mips (pc))
3718 return &mips_insn32_frame_base;
3719 else
3720 return NULL;
3721 }
3722
3723 static struct trad_frame_cache *
3724 mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
3725 {
3726 CORE_ADDR pc;
3727 CORE_ADDR start_addr;
3728 CORE_ADDR stack_addr;
3729 struct trad_frame_cache *this_trad_cache;
3730 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3731 int num_regs = gdbarch_num_regs (gdbarch);
3732
3733 if ((*this_cache) != NULL)
3734 return (struct trad_frame_cache *) (*this_cache);
3735 this_trad_cache = trad_frame_cache_zalloc (this_frame);
3736 (*this_cache) = this_trad_cache;
3737
3738 /* The return address is in the link register. */
3739 trad_frame_set_reg_realreg (this_trad_cache,
3740 gdbarch_pc_regnum (gdbarch),
3741 num_regs + MIPS_RA_REGNUM);
3742
3743 /* Frame ID, since it's a frameless / stackless function, no stack
3744 space is allocated and SP on entry is the current SP. */
3745 pc = get_frame_pc (this_frame);
3746 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3747 stack_addr = get_frame_register_signed (this_frame,
3748 num_regs + MIPS_SP_REGNUM);
3749 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
3750
3751 /* Assume that the frame's base is the same as the
3752 stack-pointer. */
3753 trad_frame_set_this_base (this_trad_cache, stack_addr);
3754
3755 return this_trad_cache;
3756 }
3757
3758 static void
3759 mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
3760 struct frame_id *this_id)
3761 {
3762 struct trad_frame_cache *this_trad_cache
3763 = mips_stub_frame_cache (this_frame, this_cache);
3764 trad_frame_get_id (this_trad_cache, this_id);
3765 }
3766
3767 static struct value *
3768 mips_stub_frame_prev_register (struct frame_info *this_frame,
3769 void **this_cache, int regnum)
3770 {
3771 struct trad_frame_cache *this_trad_cache
3772 = mips_stub_frame_cache (this_frame, this_cache);
3773 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
3774 }
3775
3776 static int
3777 mips_stub_frame_sniffer (const struct frame_unwind *self,
3778 struct frame_info *this_frame, void **this_cache)
3779 {
3780 gdb_byte dummy[4];
3781 struct obj_section *s;
3782 CORE_ADDR pc = get_frame_address_in_block (this_frame);
3783 struct bound_minimal_symbol msym;
3784
3785 /* Use the stub unwinder for unreadable code. */
3786 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
3787 return 1;
3788
3789 if (in_plt_section (pc) || in_mips_stubs_section (pc))
3790 return 1;
3791
3792 /* Calling a PIC function from a non-PIC function passes through a
3793 stub. The stub for foo is named ".pic.foo". */
3794 msym = lookup_minimal_symbol_by_pc (pc);
3795 if (msym.minsym != NULL
3796 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL
3797 && startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
3798 return 1;
3799
3800 return 0;
3801 }
3802
3803 static const struct frame_unwind mips_stub_frame_unwind =
3804 {
3805 NORMAL_FRAME,
3806 default_frame_unwind_stop_reason,
3807 mips_stub_frame_this_id,
3808 mips_stub_frame_prev_register,
3809 NULL,
3810 mips_stub_frame_sniffer
3811 };
3812
3813 static CORE_ADDR
3814 mips_stub_frame_base_address (struct frame_info *this_frame,
3815 void **this_cache)
3816 {
3817 struct trad_frame_cache *this_trad_cache
3818 = mips_stub_frame_cache (this_frame, this_cache);
3819 return trad_frame_get_this_base (this_trad_cache);
3820 }
3821
3822 static const struct frame_base mips_stub_frame_base =
3823 {
3824 &mips_stub_frame_unwind,
3825 mips_stub_frame_base_address,
3826 mips_stub_frame_base_address,
3827 mips_stub_frame_base_address
3828 };
3829
3830 static const struct frame_base *
3831 mips_stub_frame_base_sniffer (struct frame_info *this_frame)
3832 {
3833 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
3834 return &mips_stub_frame_base;
3835 else
3836 return NULL;
3837 }
3838
3839 /* mips_addr_bits_remove - remove useless address bits */
3840
3841 static CORE_ADDR
3842 mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
3843 {
3844 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3845
3846 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
3847 /* This hack is a work-around for existing boards using PMON, the
3848 simulator, and any other 64-bit targets that doesn't have true
3849 64-bit addressing. On these targets, the upper 32 bits of
3850 addresses are ignored by the hardware. Thus, the PC or SP are
3851 likely to have been sign extended to all 1s by instruction
3852 sequences that load 32-bit addresses. For example, a typical
3853 piece of code that loads an address is this:
3854
3855 lui $r2, <upper 16 bits>
3856 ori $r2, <lower 16 bits>
3857
3858 But the lui sign-extends the value such that the upper 32 bits
3859 may be all 1s. The workaround is simply to mask off these
3860 bits. In the future, gcc may be changed to support true 64-bit
3861 addressing, and this masking will have to be disabled. */
3862 return addr &= 0xffffffffUL;
3863 else
3864 return addr;
3865 }
3866
3867
3868 /* Checks for an atomic sequence of instructions beginning with a LL/LLD
3869 instruction and ending with a SC/SCD instruction. If such a sequence
3870 is found, attempt to step through it. A breakpoint is placed at the end of
3871 the sequence. */
3872
3873 /* Instructions used during single-stepping of atomic sequences, standard
3874 ISA version. */
3875 #define LL_OPCODE 0x30
3876 #define LLD_OPCODE 0x34
3877 #define SC_OPCODE 0x38
3878 #define SCD_OPCODE 0x3c
3879
3880 static VEC (CORE_ADDR) *
3881 mips_deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
3882 {
3883 CORE_ADDR breaks[2] = {-1, -1};
3884 CORE_ADDR loc = pc;
3885 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
3886 ULONGEST insn;
3887 int insn_count;
3888 int index;
3889 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3890 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3891 VEC (CORE_ADDR) *next_pcs = NULL;
3892
3893 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3894 /* Assume all atomic sequences start with a ll/lld instruction. */
3895 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
3896 return NULL;
3897
3898 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
3899 instructions. */
3900 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
3901 {
3902 int is_branch = 0;
3903 loc += MIPS_INSN32_SIZE;
3904 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3905
3906 /* Assume that there is at most one branch in the atomic
3907 sequence. If a branch is found, put a breakpoint in its
3908 destination address. */
3909 switch (itype_op (insn))
3910 {
3911 case 0: /* SPECIAL */
3912 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
3913 return 0; /* fallback to the standard single-step code. */
3914 break;
3915 case 1: /* REGIMM */
3916 is_branch = ((itype_rt (insn) & 0xc) == 0 /* B{LT,GE}Z* */
3917 || ((itype_rt (insn) & 0x1e) == 0
3918 && itype_rs (insn) == 0)); /* BPOSGE* */
3919 break;
3920 case 2: /* J */
3921 case 3: /* JAL */
3922 return 0; /* fallback to the standard single-step code. */
3923 case 4: /* BEQ */
3924 case 5: /* BNE */
3925 case 6: /* BLEZ */
3926 case 7: /* BGTZ */
3927 case 20: /* BEQL */
3928 case 21: /* BNEL */
3929 case 22: /* BLEZL */
3930 case 23: /* BGTTL */
3931 is_branch = 1;
3932 break;
3933 case 17: /* COP1 */
3934 is_branch = ((itype_rs (insn) == 9 || itype_rs (insn) == 10)
3935 && (itype_rt (insn) & 0x2) == 0);
3936 if (is_branch) /* BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T */
3937 break;
3938 /* Fall through. */
3939 case 18: /* COP2 */
3940 case 19: /* COP3 */
3941 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
3942 break;
3943 }
3944 if (is_branch)
3945 {
3946 branch_bp = loc + mips32_relative_offset (insn) + 4;
3947 if (last_breakpoint >= 1)
3948 return 0; /* More than one branch found, fallback to the
3949 standard single-step code. */
3950 breaks[1] = branch_bp;
3951 last_breakpoint++;
3952 }
3953
3954 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
3955 break;
3956 }
3957
3958 /* Assume that the atomic sequence ends with a sc/scd instruction. */
3959 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
3960 return NULL;
3961
3962 loc += MIPS_INSN32_SIZE;
3963
3964 /* Insert a breakpoint right after the end of the atomic sequence. */
3965 breaks[0] = loc;
3966
3967 /* Check for duplicated breakpoints. Check also for a breakpoint
3968 placed (branch instruction's destination) in the atomic sequence. */
3969 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3970 last_breakpoint = 0;
3971
3972 /* Effectively inserts the breakpoints. */
3973 for (index = 0; index <= last_breakpoint; index++)
3974 VEC_safe_push (CORE_ADDR, next_pcs, breaks[index]);
3975
3976 return next_pcs;
3977 }
3978
3979 static VEC (CORE_ADDR) *
3980 micromips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
3981 CORE_ADDR pc)
3982 {
3983 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3984 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3985 CORE_ADDR breaks[2] = {-1, -1};
3986 CORE_ADDR branch_bp = 0; /* Breakpoint at branch instruction's
3987 destination. */
3988 CORE_ADDR loc = pc;
3989 int sc_found = 0;
3990 ULONGEST insn;
3991 int insn_count;
3992 int index;
3993 VEC (CORE_ADDR) *next_pcs = NULL;
3994
3995 /* Assume all atomic sequences start with a ll/lld instruction. */
3996 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
3997 if (micromips_op (insn) != 0x18) /* POOL32C: bits 011000 */
3998 return NULL;
3999 loc += MIPS_INSN16_SIZE;
4000 insn <<= 16;
4001 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4002 if ((b12s4_op (insn) & 0xb) != 0x3) /* LL, LLD: bits 011000 0x11 */
4003 return NULL;
4004 loc += MIPS_INSN16_SIZE;
4005
4006 /* Assume all atomic sequences end with an sc/scd instruction. Assume
4007 that no atomic sequence is longer than "atomic_sequence_length"
4008 instructions. */
4009 for (insn_count = 0;
4010 !sc_found && insn_count < atomic_sequence_length;
4011 ++insn_count)
4012 {
4013 int is_branch = 0;
4014
4015 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4016 loc += MIPS_INSN16_SIZE;
4017
4018 /* Assume that there is at most one conditional branch in the
4019 atomic sequence. If a branch is found, put a breakpoint in
4020 its destination address. */
4021 switch (mips_insn_size (ISA_MICROMIPS, insn))
4022 {
4023 /* 32-bit instructions. */
4024 case 2 * MIPS_INSN16_SIZE:
4025 switch (micromips_op (insn))
4026 {
4027 case 0x10: /* POOL32I: bits 010000 */
4028 if ((b5s5_op (insn) & 0x18) != 0x0
4029 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
4030 /* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
4031 && (b5s5_op (insn) & 0x1d) != 0x11
4032 /* BLTZALS, BGEZALS: bits 010000 100x1 */
4033 && ((b5s5_op (insn) & 0x1e) != 0x14
4034 || (insn & 0x3) != 0x0)
4035 /* BC2F, BC2T: bits 010000 1010x xxx00 */
4036 && (b5s5_op (insn) & 0x1e) != 0x1a
4037 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
4038 && ((b5s5_op (insn) & 0x1e) != 0x1c
4039 || (insn & 0x3) != 0x0)
4040 /* BC1F, BC1T: bits 010000 1110x xxx00 */
4041 && ((b5s5_op (insn) & 0x1c) != 0x1c
4042 || (insn & 0x3) != 0x1))
4043 /* BC1ANY*: bits 010000 111xx xxx01 */
4044 break;
4045 /* Fall through. */
4046
4047 case 0x25: /* BEQ: bits 100101 */
4048 case 0x2d: /* BNE: bits 101101 */
4049 insn <<= 16;
4050 insn |= mips_fetch_instruction (gdbarch,
4051 ISA_MICROMIPS, loc, NULL);
4052 branch_bp = (loc + MIPS_INSN16_SIZE
4053 + micromips_relative_offset16 (insn));
4054 is_branch = 1;
4055 break;
4056
4057 case 0x00: /* POOL32A: bits 000000 */
4058 insn <<= 16;
4059 insn |= mips_fetch_instruction (gdbarch,
4060 ISA_MICROMIPS, loc, NULL);
4061 if (b0s6_op (insn) != 0x3c
4062 /* POOL32Axf: bits 000000 ... 111100 */
4063 || (b6s10_ext (insn) & 0x2bf) != 0x3c)
4064 /* JALR, JALR.HB: 000000 000x111100 111100 */
4065 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
4066 break;
4067 /* Fall through. */
4068
4069 case 0x1d: /* JALS: bits 011101 */
4070 case 0x35: /* J: bits 110101 */
4071 case 0x3d: /* JAL: bits 111101 */
4072 case 0x3c: /* JALX: bits 111100 */
4073 return 0; /* Fall back to the standard single-step code. */
4074
4075 case 0x18: /* POOL32C: bits 011000 */
4076 if ((b12s4_op (insn) & 0xb) == 0xb)
4077 /* SC, SCD: bits 011000 1x11 */
4078 sc_found = 1;
4079 break;
4080 }
4081 loc += MIPS_INSN16_SIZE;
4082 break;
4083
4084 /* 16-bit instructions. */
4085 case MIPS_INSN16_SIZE:
4086 switch (micromips_op (insn))
4087 {
4088 case 0x23: /* BEQZ16: bits 100011 */
4089 case 0x2b: /* BNEZ16: bits 101011 */
4090 branch_bp = loc + micromips_relative_offset7 (insn);
4091 is_branch = 1;
4092 break;
4093
4094 case 0x11: /* POOL16C: bits 010001 */
4095 if ((b5s5_op (insn) & 0x1c) != 0xc
4096 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
4097 && b5s5_op (insn) != 0x18)
4098 /* JRADDIUSP: bits 010001 11000 */
4099 break;
4100 return NULL; /* Fall back to the standard single-step code. */
4101
4102 case 0x33: /* B16: bits 110011 */
4103 return NULL; /* Fall back to the standard single-step code. */
4104 }
4105 break;
4106 }
4107 if (is_branch)
4108 {
4109 if (last_breakpoint >= 1)
4110 return NULL; /* More than one branch found, fallback to the
4111 standard single-step code. */
4112 breaks[1] = branch_bp;
4113 last_breakpoint++;
4114 }
4115 }
4116 if (!sc_found)
4117 return NULL;
4118
4119 /* Insert a breakpoint right after the end of the atomic sequence. */
4120 breaks[0] = loc;
4121
4122 /* Check for duplicated breakpoints. Check also for a breakpoint
4123 placed (branch instruction's destination) in the atomic sequence */
4124 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
4125 last_breakpoint = 0;
4126
4127 /* Effectively inserts the breakpoints. */
4128 for (index = 0; index <= last_breakpoint; index++)
4129 VEC_safe_push (CORE_ADDR, next_pcs, breaks[index]);
4130
4131 return next_pcs;
4132 }
4133
4134 static VEC (CORE_ADDR) *
4135 deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
4136 {
4137 if (mips_pc_is_mips (pc))
4138 return mips_deal_with_atomic_sequence (gdbarch, pc);
4139 else if (mips_pc_is_micromips (gdbarch, pc))
4140 return micromips_deal_with_atomic_sequence (gdbarch, pc);
4141 else
4142 return NULL;
4143 }
4144
4145 /* mips_software_single_step() is called just before we want to resume
4146 the inferior, if we want to single-step it but there is no hardware
4147 or kernel single-step support (MIPS on GNU/Linux for example). We find
4148 the target of the coming instruction and breakpoint it. */
4149
4150 VEC (CORE_ADDR) *
4151 mips_software_single_step (struct frame_info *frame)
4152 {
4153 struct gdbarch *gdbarch = get_frame_arch (frame);
4154 CORE_ADDR pc, next_pc;
4155 VEC (CORE_ADDR) *next_pcs;
4156
4157 pc = get_frame_pc (frame);
4158 next_pcs = deal_with_atomic_sequence (gdbarch, pc);
4159 if (next_pcs != NULL)
4160 return next_pcs;
4161
4162 next_pc = mips_next_pc (frame, pc);
4163
4164 VEC_safe_push (CORE_ADDR, next_pcs, next_pc);
4165 return next_pcs;
4166 }
4167
4168 /* Test whether the PC points to the return instruction at the
4169 end of a function. */
4170
4171 static int
4172 mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
4173 {
4174 ULONGEST insn;
4175 ULONGEST hint;
4176
4177 /* This used to check for MIPS16, but this piece of code is never
4178 called for MIPS16 functions. And likewise microMIPS ones. */
4179 gdb_assert (mips_pc_is_mips (pc));
4180
4181 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
4182 hint = 0x7c0;
4183 return (insn & ~hint) == 0x3e00008; /* jr(.hb) $ra */
4184 }
4185
4186
4187 /* This fencepost looks highly suspicious to me. Removing it also
4188 seems suspicious as it could affect remote debugging across serial
4189 lines. */
4190
4191 static CORE_ADDR
4192 heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
4193 {
4194 CORE_ADDR start_pc;
4195 CORE_ADDR fence;
4196 int instlen;
4197 int seen_adjsp = 0;
4198 struct inferior *inf;
4199
4200 pc = gdbarch_addr_bits_remove (gdbarch, pc);
4201 start_pc = pc;
4202 fence = start_pc - heuristic_fence_post;
4203 if (start_pc == 0)
4204 return 0;
4205
4206 if (heuristic_fence_post == -1 || fence < VM_MIN_ADDRESS)
4207 fence = VM_MIN_ADDRESS;
4208
4209 instlen = mips_pc_is_mips (pc) ? MIPS_INSN32_SIZE : MIPS_INSN16_SIZE;
4210
4211 inf = current_inferior ();
4212
4213 /* Search back for previous return. */
4214 for (start_pc -= instlen;; start_pc -= instlen)
4215 if (start_pc < fence)
4216 {
4217 /* It's not clear to me why we reach this point when
4218 stop_soon, but with this test, at least we
4219 don't print out warnings for every child forked (eg, on
4220 decstation). 22apr93 rich@cygnus.com. */
4221 if (inf->control.stop_soon == NO_STOP_QUIETLY)
4222 {
4223 static int blurb_printed = 0;
4224
4225 warning (_("GDB can't find the start of the function at %s."),
4226 paddress (gdbarch, pc));
4227
4228 if (!blurb_printed)
4229 {
4230 /* This actually happens frequently in embedded
4231 development, when you first connect to a board
4232 and your stack pointer and pc are nowhere in
4233 particular. This message needs to give people
4234 in that situation enough information to
4235 determine that it's no big deal. */
4236 printf_filtered ("\n\
4237 GDB is unable to find the start of the function at %s\n\
4238 and thus can't determine the size of that function's stack frame.\n\
4239 This means that GDB may be unable to access that stack frame, or\n\
4240 the frames below it.\n\
4241 This problem is most likely caused by an invalid program counter or\n\
4242 stack pointer.\n\
4243 However, if you think GDB should simply search farther back\n\
4244 from %s for code which looks like the beginning of a\n\
4245 function, you can increase the range of the search using the `set\n\
4246 heuristic-fence-post' command.\n",
4247 paddress (gdbarch, pc), paddress (gdbarch, pc));
4248 blurb_printed = 1;
4249 }
4250 }
4251
4252 return 0;
4253 }
4254 else if (mips_pc_is_mips16 (gdbarch, start_pc))
4255 {
4256 unsigned short inst;
4257
4258 /* On MIPS16, any one of the following is likely to be the
4259 start of a function:
4260 extend save
4261 save
4262 entry
4263 addiu sp,-n
4264 daddiu sp,-n
4265 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
4266 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, start_pc, NULL);
4267 if ((inst & 0xff80) == 0x6480) /* save */
4268 {
4269 if (start_pc - instlen >= fence)
4270 {
4271 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16,
4272 start_pc - instlen, NULL);
4273 if ((inst & 0xf800) == 0xf000) /* extend */
4274 start_pc -= instlen;
4275 }
4276 break;
4277 }
4278 else if (((inst & 0xf81f) == 0xe809
4279 && (inst & 0x700) != 0x700) /* entry */
4280 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
4281 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
4282 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
4283 break;
4284 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
4285 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
4286 seen_adjsp = 1;
4287 else
4288 seen_adjsp = 0;
4289 }
4290 else if (mips_pc_is_micromips (gdbarch, start_pc))
4291 {
4292 ULONGEST insn;
4293 int stop = 0;
4294 long offset;
4295 int dreg;
4296 int sreg;
4297
4298 /* On microMIPS, any one of the following is likely to be the
4299 start of a function:
4300 ADDIUSP -imm
4301 (D)ADDIU $sp, -imm
4302 LUI $gp, imm */
4303 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
4304 switch (micromips_op (insn))
4305 {
4306 case 0xc: /* ADDIU: bits 001100 */
4307 case 0x17: /* DADDIU: bits 010111 */
4308 sreg = b0s5_reg (insn);
4309 dreg = b5s5_reg (insn);
4310 insn <<= 16;
4311 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS,
4312 pc + MIPS_INSN16_SIZE, NULL);
4313 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
4314 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
4315 /* (D)ADDIU $sp, imm */
4316 && offset < 0)
4317 stop = 1;
4318 break;
4319
4320 case 0x10: /* POOL32I: bits 010000 */
4321 if (b5s5_op (insn) == 0xd
4322 /* LUI: bits 010000 001101 */
4323 && b0s5_reg (insn >> 16) == 28)
4324 /* LUI $gp, imm */
4325 stop = 1;
4326 break;
4327
4328 case 0x13: /* POOL16D: bits 010011 */
4329 if ((insn & 0x1) == 0x1)
4330 /* ADDIUSP: bits 010011 1 */
4331 {
4332 offset = micromips_decode_imm9 (b1s9_imm (insn));
4333 if (offset < 0)
4334 /* ADDIUSP -imm */
4335 stop = 1;
4336 }
4337 else
4338 /* ADDIUS5: bits 010011 0 */
4339 {
4340 dreg = b5s5_reg (insn);
4341 offset = (b1s4_imm (insn) ^ 8) - 8;
4342 if (dreg == MIPS_SP_REGNUM && offset < 0)
4343 /* ADDIUS5 $sp, -imm */
4344 stop = 1;
4345 }
4346 break;
4347 }
4348 if (stop)
4349 break;
4350 }
4351 else if (mips_about_to_return (gdbarch, start_pc))
4352 {
4353 /* Skip return and its delay slot. */
4354 start_pc += 2 * MIPS_INSN32_SIZE;
4355 break;
4356 }
4357
4358 return start_pc;
4359 }
4360
4361 struct mips_objfile_private
4362 {
4363 bfd_size_type size;
4364 char *contents;
4365 };
4366
4367 /* According to the current ABI, should the type be passed in a
4368 floating-point register (assuming that there is space)? When there
4369 is no FPU, FP are not even considered as possible candidates for
4370 FP registers and, consequently this returns false - forces FP
4371 arguments into integer registers. */
4372
4373 static int
4374 fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
4375 struct type *arg_type)
4376 {
4377 return ((typecode == TYPE_CODE_FLT
4378 || (MIPS_EABI (gdbarch)
4379 && (typecode == TYPE_CODE_STRUCT
4380 || typecode == TYPE_CODE_UNION)
4381 && TYPE_NFIELDS (arg_type) == 1
4382 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
4383 == TYPE_CODE_FLT))
4384 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
4385 }
4386
4387 /* On o32, argument passing in GPRs depends on the alignment of the type being
4388 passed. Return 1 if this type must be aligned to a doubleword boundary. */
4389
4390 static int
4391 mips_type_needs_double_align (struct type *type)
4392 {
4393 enum type_code typecode = TYPE_CODE (type);
4394
4395 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
4396 return 1;
4397 else if (typecode == TYPE_CODE_STRUCT)
4398 {
4399 if (TYPE_NFIELDS (type) < 1)
4400 return 0;
4401 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
4402 }
4403 else if (typecode == TYPE_CODE_UNION)
4404 {
4405 int i, n;
4406
4407 n = TYPE_NFIELDS (type);
4408 for (i = 0; i < n; i++)
4409 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
4410 return 1;
4411 return 0;
4412 }
4413 return 0;
4414 }
4415
4416 /* Adjust the address downward (direction of stack growth) so that it
4417 is correctly aligned for a new stack frame. */
4418 static CORE_ADDR
4419 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
4420 {
4421 return align_down (addr, 16);
4422 }
4423
4424 /* Implement the "push_dummy_code" gdbarch method. */
4425
4426 static CORE_ADDR
4427 mips_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
4428 CORE_ADDR funaddr, struct value **args,
4429 int nargs, struct type *value_type,
4430 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
4431 struct regcache *regcache)
4432 {
4433 static gdb_byte nop_insn[] = { 0, 0, 0, 0 };
4434 CORE_ADDR nop_addr;
4435 CORE_ADDR bp_slot;
4436
4437 /* Reserve enough room on the stack for our breakpoint instruction. */
4438 bp_slot = sp - sizeof (nop_insn);
4439
4440 /* Return to microMIPS mode if calling microMIPS code to avoid
4441 triggering an address error exception on processors that only
4442 support microMIPS execution. */
4443 *bp_addr = (mips_pc_is_micromips (gdbarch, funaddr)
4444 ? make_compact_addr (bp_slot) : bp_slot);
4445
4446 /* The breakpoint layer automatically adjusts the address of
4447 breakpoints inserted in a branch delay slot. With enough
4448 bad luck, the 4 bytes located just before our breakpoint
4449 instruction could look like a branch instruction, and thus
4450 trigger the adjustement, and break the function call entirely.
4451 So, we reserve those 4 bytes and write a nop instruction
4452 to prevent that from happening. */
4453 nop_addr = bp_slot - sizeof (nop_insn);
4454 write_memory (nop_addr, nop_insn, sizeof (nop_insn));
4455 sp = mips_frame_align (gdbarch, nop_addr);
4456
4457 /* Inferior resumes at the function entry point. */
4458 *real_pc = funaddr;
4459
4460 return sp;
4461 }
4462
4463 static CORE_ADDR
4464 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4465 struct regcache *regcache, CORE_ADDR bp_addr,
4466 int nargs, struct value **args, CORE_ADDR sp,
4467 int struct_return, CORE_ADDR struct_addr)
4468 {
4469 int argreg;
4470 int float_argreg;
4471 int argnum;
4472 int len = 0;
4473 int stack_offset = 0;
4474 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4475 CORE_ADDR func_addr = find_function_addr (function, NULL);
4476 int regsize = mips_abi_regsize (gdbarch);
4477
4478 /* For shared libraries, "t9" needs to point at the function
4479 address. */
4480 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4481
4482 /* Set the return address register to point to the entry point of
4483 the program, where a breakpoint lies in wait. */
4484 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4485
4486 /* First ensure that the stack and structure return address (if any)
4487 are properly aligned. The stack has to be at least 64-bit
4488 aligned even on 32-bit machines, because doubles must be 64-bit
4489 aligned. For n32 and n64, stack frames need to be 128-bit
4490 aligned, so we round to this widest known alignment. */
4491
4492 sp = align_down (sp, 16);
4493 struct_addr = align_down (struct_addr, 16);
4494
4495 /* Now make space on the stack for the args. We allocate more
4496 than necessary for EABI, because the first few arguments are
4497 passed in registers, but that's OK. */
4498 for (argnum = 0; argnum < nargs; argnum++)
4499 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
4500 sp -= align_up (len, 16);
4501
4502 if (mips_debug)
4503 fprintf_unfiltered (gdb_stdlog,
4504 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
4505 paddress (gdbarch, sp), (long) align_up (len, 16));
4506
4507 /* Initialize the integer and float register pointers. */
4508 argreg = MIPS_A0_REGNUM;
4509 float_argreg = mips_fpa0_regnum (gdbarch);
4510
4511 /* The struct_return pointer occupies the first parameter-passing reg. */
4512 if (struct_return)
4513 {
4514 if (mips_debug)
4515 fprintf_unfiltered (gdb_stdlog,
4516 "mips_eabi_push_dummy_call: "
4517 "struct_return reg=%d %s\n",
4518 argreg, paddress (gdbarch, struct_addr));
4519 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4520 }
4521
4522 /* Now load as many as possible of the first arguments into
4523 registers, and push the rest onto the stack. Loop thru args
4524 from first to last. */
4525 for (argnum = 0; argnum < nargs; argnum++)
4526 {
4527 const gdb_byte *val;
4528 gdb_byte valbuf[MAX_REGISTER_SIZE];
4529 struct value *arg = args[argnum];
4530 struct type *arg_type = check_typedef (value_type (arg));
4531 int len = TYPE_LENGTH (arg_type);
4532 enum type_code typecode = TYPE_CODE (arg_type);
4533
4534 if (mips_debug)
4535 fprintf_unfiltered (gdb_stdlog,
4536 "mips_eabi_push_dummy_call: %d len=%d type=%d",
4537 argnum + 1, len, (int) typecode);
4538
4539 /* The EABI passes structures that do not fit in a register by
4540 reference. */
4541 if (len > regsize
4542 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
4543 {
4544 store_unsigned_integer (valbuf, regsize, byte_order,
4545 value_address (arg));
4546 typecode = TYPE_CODE_PTR;
4547 len = regsize;
4548 val = valbuf;
4549 if (mips_debug)
4550 fprintf_unfiltered (gdb_stdlog, " push");
4551 }
4552 else
4553 val = value_contents (arg);
4554
4555 /* 32-bit ABIs always start floating point arguments in an
4556 even-numbered floating point register. Round the FP register
4557 up before the check to see if there are any FP registers
4558 left. Non MIPS_EABI targets also pass the FP in the integer
4559 registers so also round up normal registers. */
4560 if (regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
4561 {
4562 if ((float_argreg & 1))
4563 float_argreg++;
4564 }
4565
4566 /* Floating point arguments passed in registers have to be
4567 treated specially. On 32-bit architectures, doubles
4568 are passed in register pairs; the even register gets
4569 the low word, and the odd register gets the high word.
4570 On non-EABI processors, the first two floating point arguments are
4571 also copied to general registers, because MIPS16 functions
4572 don't use float registers for arguments. This duplication of
4573 arguments in general registers can't hurt non-MIPS16 functions
4574 because those registers are normally skipped. */
4575 /* MIPS_EABI squeezes a struct that contains a single floating
4576 point value into an FP register instead of pushing it onto the
4577 stack. */
4578 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4579 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
4580 {
4581 /* EABI32 will pass doubles in consecutive registers, even on
4582 64-bit cores. At one time, we used to check the size of
4583 `float_argreg' to determine whether or not to pass doubles
4584 in consecutive registers, but this is not sufficient for
4585 making the ABI determination. */
4586 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
4587 {
4588 int low_offset = gdbarch_byte_order (gdbarch)
4589 == BFD_ENDIAN_BIG ? 4 : 0;
4590 long regval;
4591
4592 /* Write the low word of the double to the even register(s). */
4593 regval = extract_signed_integer (val + low_offset,
4594 4, byte_order);
4595 if (mips_debug)
4596 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4597 float_argreg, phex (regval, 4));
4598 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4599
4600 /* Write the high word of the double to the odd register(s). */
4601 regval = extract_signed_integer (val + 4 - low_offset,
4602 4, byte_order);
4603 if (mips_debug)
4604 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4605 float_argreg, phex (regval, 4));
4606 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4607 }
4608 else
4609 {
4610 /* This is a floating point value that fits entirely
4611 in a single register. */
4612 /* On 32 bit ABI's the float_argreg is further adjusted
4613 above to ensure that it is even register aligned. */
4614 LONGEST regval = extract_signed_integer (val, len, byte_order);
4615 if (mips_debug)
4616 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4617 float_argreg, phex (regval, len));
4618 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4619 }
4620 }
4621 else
4622 {
4623 /* Copy the argument to general registers or the stack in
4624 register-sized pieces. Large arguments are split between
4625 registers and stack. */
4626 /* Note: structs whose size is not a multiple of regsize
4627 are treated specially: Irix cc passes
4628 them in registers where gcc sometimes puts them on the
4629 stack. For maximum compatibility, we will put them in
4630 both places. */
4631 int odd_sized_struct = (len > regsize && len % regsize != 0);
4632
4633 /* Note: Floating-point values that didn't fit into an FP
4634 register are only written to memory. */
4635 while (len > 0)
4636 {
4637 /* Remember if the argument was written to the stack. */
4638 int stack_used_p = 0;
4639 int partial_len = (len < regsize ? len : regsize);
4640
4641 if (mips_debug)
4642 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4643 partial_len);
4644
4645 /* Write this portion of the argument to the stack. */
4646 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
4647 || odd_sized_struct
4648 || fp_register_arg_p (gdbarch, typecode, arg_type))
4649 {
4650 /* Should shorter than int integer values be
4651 promoted to int before being stored? */
4652 int longword_offset = 0;
4653 CORE_ADDR addr;
4654 stack_used_p = 1;
4655 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4656 {
4657 if (regsize == 8
4658 && (typecode == TYPE_CODE_INT
4659 || typecode == TYPE_CODE_PTR
4660 || typecode == TYPE_CODE_FLT) && len <= 4)
4661 longword_offset = regsize - len;
4662 else if ((typecode == TYPE_CODE_STRUCT
4663 || typecode == TYPE_CODE_UNION)
4664 && TYPE_LENGTH (arg_type) < regsize)
4665 longword_offset = regsize - len;
4666 }
4667
4668 if (mips_debug)
4669 {
4670 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4671 paddress (gdbarch, stack_offset));
4672 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4673 paddress (gdbarch, longword_offset));
4674 }
4675
4676 addr = sp + stack_offset + longword_offset;
4677
4678 if (mips_debug)
4679 {
4680 int i;
4681 fprintf_unfiltered (gdb_stdlog, " @%s ",
4682 paddress (gdbarch, addr));
4683 for (i = 0; i < partial_len; i++)
4684 {
4685 fprintf_unfiltered (gdb_stdlog, "%02x",
4686 val[i] & 0xff);
4687 }
4688 }
4689 write_memory (addr, val, partial_len);
4690 }
4691
4692 /* Note!!! This is NOT an else clause. Odd sized
4693 structs may go thru BOTH paths. Floating point
4694 arguments will not. */
4695 /* Write this portion of the argument to a general
4696 purpose register. */
4697 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
4698 && !fp_register_arg_p (gdbarch, typecode, arg_type))
4699 {
4700 LONGEST regval =
4701 extract_signed_integer (val, partial_len, byte_order);
4702
4703 if (mips_debug)
4704 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
4705 argreg,
4706 phex (regval, regsize));
4707 regcache_cooked_write_signed (regcache, argreg, regval);
4708 argreg++;
4709 }
4710
4711 len -= partial_len;
4712 val += partial_len;
4713
4714 /* Compute the offset into the stack at which we will
4715 copy the next parameter.
4716
4717 In the new EABI (and the NABI32), the stack_offset
4718 only needs to be adjusted when it has been used. */
4719
4720 if (stack_used_p)
4721 stack_offset += align_up (partial_len, regsize);
4722 }
4723 }
4724 if (mips_debug)
4725 fprintf_unfiltered (gdb_stdlog, "\n");
4726 }
4727
4728 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
4729
4730 /* Return adjusted stack pointer. */
4731 return sp;
4732 }
4733
4734 /* Determine the return value convention being used. */
4735
4736 static enum return_value_convention
4737 mips_eabi_return_value (struct gdbarch *gdbarch, struct value *function,
4738 struct type *type, struct regcache *regcache,
4739 gdb_byte *readbuf, const gdb_byte *writebuf)
4740 {
4741 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4742 int fp_return_type = 0;
4743 int offset, regnum, xfer;
4744
4745 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
4746 return RETURN_VALUE_STRUCT_CONVENTION;
4747
4748 /* Floating point type? */
4749 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
4750 {
4751 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4752 fp_return_type = 1;
4753 /* Structs with a single field of float type
4754 are returned in a floating point register. */
4755 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
4756 || TYPE_CODE (type) == TYPE_CODE_UNION)
4757 && TYPE_NFIELDS (type) == 1)
4758 {
4759 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
4760
4761 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
4762 fp_return_type = 1;
4763 }
4764 }
4765
4766 if (fp_return_type)
4767 {
4768 /* A floating-point value belongs in the least significant part
4769 of FP0/FP1. */
4770 if (mips_debug)
4771 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4772 regnum = mips_regnum (gdbarch)->fp0;
4773 }
4774 else
4775 {
4776 /* An integer value goes in V0/V1. */
4777 if (mips_debug)
4778 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
4779 regnum = MIPS_V0_REGNUM;
4780 }
4781 for (offset = 0;
4782 offset < TYPE_LENGTH (type);
4783 offset += mips_abi_regsize (gdbarch), regnum++)
4784 {
4785 xfer = mips_abi_regsize (gdbarch);
4786 if (offset + xfer > TYPE_LENGTH (type))
4787 xfer = TYPE_LENGTH (type) - offset;
4788 mips_xfer_register (gdbarch, regcache,
4789 gdbarch_num_regs (gdbarch) + regnum, xfer,
4790 gdbarch_byte_order (gdbarch), readbuf, writebuf,
4791 offset);
4792 }
4793
4794 return RETURN_VALUE_REGISTER_CONVENTION;
4795 }
4796
4797
4798 /* N32/N64 ABI stuff. */
4799
4800 /* Search for a naturally aligned double at OFFSET inside a struct
4801 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
4802 registers. */
4803
4804 static int
4805 mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
4806 int offset)
4807 {
4808 int i;
4809
4810 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
4811 return 0;
4812
4813 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
4814 return 0;
4815
4816 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
4817 return 0;
4818
4819 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
4820 {
4821 int pos;
4822 struct type *field_type;
4823
4824 /* We're only looking at normal fields. */
4825 if (field_is_static (&TYPE_FIELD (arg_type, i))
4826 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
4827 continue;
4828
4829 /* If we have gone past the offset, there is no double to pass. */
4830 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
4831 if (pos > offset)
4832 return 0;
4833
4834 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
4835
4836 /* If this field is entirely before the requested offset, go
4837 on to the next one. */
4838 if (pos + TYPE_LENGTH (field_type) <= offset)
4839 continue;
4840
4841 /* If this is our special aligned double, we can stop. */
4842 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
4843 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
4844 return 1;
4845
4846 /* This field starts at or before the requested offset, and
4847 overlaps it. If it is a structure, recurse inwards. */
4848 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
4849 }
4850
4851 return 0;
4852 }
4853
4854 static CORE_ADDR
4855 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4856 struct regcache *regcache, CORE_ADDR bp_addr,
4857 int nargs, struct value **args, CORE_ADDR sp,
4858 int struct_return, CORE_ADDR struct_addr)
4859 {
4860 int argreg;
4861 int float_argreg;
4862 int argnum;
4863 int len = 0;
4864 int stack_offset = 0;
4865 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4866 CORE_ADDR func_addr = find_function_addr (function, NULL);
4867
4868 /* For shared libraries, "t9" needs to point at the function
4869 address. */
4870 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4871
4872 /* Set the return address register to point to the entry point of
4873 the program, where a breakpoint lies in wait. */
4874 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4875
4876 /* First ensure that the stack and structure return address (if any)
4877 are properly aligned. The stack has to be at least 64-bit
4878 aligned even on 32-bit machines, because doubles must be 64-bit
4879 aligned. For n32 and n64, stack frames need to be 128-bit
4880 aligned, so we round to this widest known alignment. */
4881
4882 sp = align_down (sp, 16);
4883 struct_addr = align_down (struct_addr, 16);
4884
4885 /* Now make space on the stack for the args. */
4886 for (argnum = 0; argnum < nargs; argnum++)
4887 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
4888 sp -= align_up (len, 16);
4889
4890 if (mips_debug)
4891 fprintf_unfiltered (gdb_stdlog,
4892 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
4893 paddress (gdbarch, sp), (long) align_up (len, 16));
4894
4895 /* Initialize the integer and float register pointers. */
4896 argreg = MIPS_A0_REGNUM;
4897 float_argreg = mips_fpa0_regnum (gdbarch);
4898
4899 /* The struct_return pointer occupies the first parameter-passing reg. */
4900 if (struct_return)
4901 {
4902 if (mips_debug)
4903 fprintf_unfiltered (gdb_stdlog,
4904 "mips_n32n64_push_dummy_call: "
4905 "struct_return reg=%d %s\n",
4906 argreg, paddress (gdbarch, struct_addr));
4907 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4908 }
4909
4910 /* Now load as many as possible of the first arguments into
4911 registers, and push the rest onto the stack. Loop thru args
4912 from first to last. */
4913 for (argnum = 0; argnum < nargs; argnum++)
4914 {
4915 const gdb_byte *val;
4916 struct value *arg = args[argnum];
4917 struct type *arg_type = check_typedef (value_type (arg));
4918 int len = TYPE_LENGTH (arg_type);
4919 enum type_code typecode = TYPE_CODE (arg_type);
4920
4921 if (mips_debug)
4922 fprintf_unfiltered (gdb_stdlog,
4923 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
4924 argnum + 1, len, (int) typecode);
4925
4926 val = value_contents (arg);
4927
4928 /* A 128-bit long double value requires an even-odd pair of
4929 floating-point registers. */
4930 if (len == 16
4931 && fp_register_arg_p (gdbarch, typecode, arg_type)
4932 && (float_argreg & 1))
4933 {
4934 float_argreg++;
4935 argreg++;
4936 }
4937
4938 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4939 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
4940 {
4941 /* This is a floating point value that fits entirely
4942 in a single register or a pair of registers. */
4943 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4944 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
4945 if (mips_debug)
4946 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4947 float_argreg, phex (regval, reglen));
4948 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4949
4950 if (mips_debug)
4951 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4952 argreg, phex (regval, reglen));
4953 regcache_cooked_write_unsigned (regcache, argreg, regval);
4954 float_argreg++;
4955 argreg++;
4956 if (len == 16)
4957 {
4958 regval = extract_unsigned_integer (val + reglen,
4959 reglen, byte_order);
4960 if (mips_debug)
4961 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4962 float_argreg, phex (regval, reglen));
4963 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4964
4965 if (mips_debug)
4966 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4967 argreg, phex (regval, reglen));
4968 regcache_cooked_write_unsigned (regcache, argreg, regval);
4969 float_argreg++;
4970 argreg++;
4971 }
4972 }
4973 else
4974 {
4975 /* Copy the argument to general registers or the stack in
4976 register-sized pieces. Large arguments are split between
4977 registers and stack. */
4978 /* For N32/N64, structs, unions, or other composite types are
4979 treated as a sequence of doublewords, and are passed in integer
4980 or floating point registers as though they were simple scalar
4981 parameters to the extent that they fit, with any excess on the
4982 stack packed according to the normal memory layout of the
4983 object.
4984 The caller does not reserve space for the register arguments;
4985 the callee is responsible for reserving it if required. */
4986 /* Note: Floating-point values that didn't fit into an FP
4987 register are only written to memory. */
4988 while (len > 0)
4989 {
4990 /* Remember if the argument was written to the stack. */
4991 int stack_used_p = 0;
4992 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4993
4994 if (mips_debug)
4995 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4996 partial_len);
4997
4998 if (fp_register_arg_p (gdbarch, typecode, arg_type))
4999 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
5000
5001 /* Write this portion of the argument to the stack. */
5002 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
5003 {
5004 /* Should shorter than int integer values be
5005 promoted to int before being stored? */
5006 int longword_offset = 0;
5007 CORE_ADDR addr;
5008 stack_used_p = 1;
5009 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5010 {
5011 if ((typecode == TYPE_CODE_INT
5012 || typecode == TYPE_CODE_PTR)
5013 && len <= 4)
5014 longword_offset = MIPS64_REGSIZE - len;
5015 }
5016
5017 if (mips_debug)
5018 {
5019 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5020 paddress (gdbarch, stack_offset));
5021 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5022 paddress (gdbarch, longword_offset));
5023 }
5024
5025 addr = sp + stack_offset + longword_offset;
5026
5027 if (mips_debug)
5028 {
5029 int i;
5030 fprintf_unfiltered (gdb_stdlog, " @%s ",
5031 paddress (gdbarch, addr));
5032 for (i = 0; i < partial_len; i++)
5033 {
5034 fprintf_unfiltered (gdb_stdlog, "%02x",
5035 val[i] & 0xff);
5036 }
5037 }
5038 write_memory (addr, val, partial_len);
5039 }
5040
5041 /* Note!!! This is NOT an else clause. Odd sized
5042 structs may go thru BOTH paths. */
5043 /* Write this portion of the argument to a general
5044 purpose register. */
5045 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5046 {
5047 LONGEST regval;
5048
5049 /* Sign extend pointers, 32-bit integers and signed
5050 16-bit and 8-bit integers; everything else is taken
5051 as is. */
5052
5053 if ((partial_len == 4
5054 && (typecode == TYPE_CODE_PTR
5055 || typecode == TYPE_CODE_INT))
5056 || (partial_len < 4
5057 && typecode == TYPE_CODE_INT
5058 && !TYPE_UNSIGNED (arg_type)))
5059 regval = extract_signed_integer (val, partial_len,
5060 byte_order);
5061 else
5062 regval = extract_unsigned_integer (val, partial_len,
5063 byte_order);
5064
5065 /* A non-floating-point argument being passed in a
5066 general register. If a struct or union, and if
5067 the remaining length is smaller than the register
5068 size, we have to adjust the register value on
5069 big endian targets.
5070
5071 It does not seem to be necessary to do the
5072 same for integral types. */
5073
5074 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5075 && partial_len < MIPS64_REGSIZE
5076 && (typecode == TYPE_CODE_STRUCT
5077 || typecode == TYPE_CODE_UNION))
5078 regval <<= ((MIPS64_REGSIZE - partial_len)
5079 * TARGET_CHAR_BIT);
5080
5081 if (mips_debug)
5082 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5083 argreg,
5084 phex (regval, MIPS64_REGSIZE));
5085 regcache_cooked_write_unsigned (regcache, argreg, regval);
5086
5087 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
5088 TYPE_LENGTH (arg_type) - len))
5089 {
5090 if (mips_debug)
5091 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
5092 float_argreg,
5093 phex (regval, MIPS64_REGSIZE));
5094 regcache_cooked_write_unsigned (regcache, float_argreg,
5095 regval);
5096 }
5097
5098 float_argreg++;
5099 argreg++;
5100 }
5101
5102 len -= partial_len;
5103 val += partial_len;
5104
5105 /* Compute the offset into the stack at which we will
5106 copy the next parameter.
5107
5108 In N32 (N64?), the stack_offset only needs to be
5109 adjusted when it has been used. */
5110
5111 if (stack_used_p)
5112 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
5113 }
5114 }
5115 if (mips_debug)
5116 fprintf_unfiltered (gdb_stdlog, "\n");
5117 }
5118
5119 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5120
5121 /* Return adjusted stack pointer. */
5122 return sp;
5123 }
5124
5125 static enum return_value_convention
5126 mips_n32n64_return_value (struct gdbarch *gdbarch, struct value *function,
5127 struct type *type, struct regcache *regcache,
5128 gdb_byte *readbuf, const gdb_byte *writebuf)
5129 {
5130 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5131
5132 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
5133
5134 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
5135 if needed), as appropriate for the type. Composite results (struct,
5136 union, or array) are returned in $2/$f0 and $3/$f2 according to the
5137 following rules:
5138
5139 * A struct with only one or two floating point fields is returned in $f0
5140 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
5141 case.
5142
5143 * Any other composite results of at most 128 bits are returned in
5144 $2 (first 64 bits) and $3 (remainder, if necessary).
5145
5146 * Larger composite results are handled by converting the function to a
5147 procedure with an implicit first parameter, which is a pointer to an area
5148 reserved by the caller to receive the result. [The o32-bit ABI requires
5149 that all composite results be handled by conversion to implicit first
5150 parameters. The MIPS/SGI Fortran implementation has always made a
5151 specific exception to return COMPLEX results in the floating point
5152 registers.] */
5153
5154 if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
5155 return RETURN_VALUE_STRUCT_CONVENTION;
5156 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5157 && TYPE_LENGTH (type) == 16
5158 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5159 {
5160 /* A 128-bit floating-point value fills both $f0 and $f2. The
5161 two registers are used in the same as memory order, so the
5162 eight bytes with the lower memory address are in $f0. */
5163 if (mips_debug)
5164 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
5165 mips_xfer_register (gdbarch, regcache,
5166 (gdbarch_num_regs (gdbarch)
5167 + mips_regnum (gdbarch)->fp0),
5168 8, gdbarch_byte_order (gdbarch),
5169 readbuf, writebuf, 0);
5170 mips_xfer_register (gdbarch, regcache,
5171 (gdbarch_num_regs (gdbarch)
5172 + mips_regnum (gdbarch)->fp0 + 2),
5173 8, gdbarch_byte_order (gdbarch),
5174 readbuf ? readbuf + 8 : readbuf,
5175 writebuf ? writebuf + 8 : writebuf, 0);
5176 return RETURN_VALUE_REGISTER_CONVENTION;
5177 }
5178 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5179 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5180 {
5181 /* A single or double floating-point value that fits in FP0. */
5182 if (mips_debug)
5183 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5184 mips_xfer_register (gdbarch, regcache,
5185 (gdbarch_num_regs (gdbarch)
5186 + mips_regnum (gdbarch)->fp0),
5187 TYPE_LENGTH (type),
5188 gdbarch_byte_order (gdbarch),
5189 readbuf, writebuf, 0);
5190 return RETURN_VALUE_REGISTER_CONVENTION;
5191 }
5192 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5193 && TYPE_NFIELDS (type) <= 2
5194 && TYPE_NFIELDS (type) >= 1
5195 && ((TYPE_NFIELDS (type) == 1
5196 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5197 == TYPE_CODE_FLT))
5198 || (TYPE_NFIELDS (type) == 2
5199 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5200 == TYPE_CODE_FLT)
5201 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
5202 == TYPE_CODE_FLT))))
5203 {
5204 /* A struct that contains one or two floats. Each value is part
5205 in the least significant part of their floating point
5206 register (or GPR, for soft float). */
5207 int regnum;
5208 int field;
5209 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
5210 ? mips_regnum (gdbarch)->fp0
5211 : MIPS_V0_REGNUM);
5212 field < TYPE_NFIELDS (type); field++, regnum += 2)
5213 {
5214 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5215 / TARGET_CHAR_BIT);
5216 if (mips_debug)
5217 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5218 offset);
5219 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
5220 {
5221 /* A 16-byte long double field goes in two consecutive
5222 registers. */
5223 mips_xfer_register (gdbarch, regcache,
5224 gdbarch_num_regs (gdbarch) + regnum,
5225 8,
5226 gdbarch_byte_order (gdbarch),
5227 readbuf, writebuf, offset);
5228 mips_xfer_register (gdbarch, regcache,
5229 gdbarch_num_regs (gdbarch) + regnum + 1,
5230 8,
5231 gdbarch_byte_order (gdbarch),
5232 readbuf, writebuf, offset + 8);
5233 }
5234 else
5235 mips_xfer_register (gdbarch, regcache,
5236 gdbarch_num_regs (gdbarch) + regnum,
5237 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5238 gdbarch_byte_order (gdbarch),
5239 readbuf, writebuf, offset);
5240 }
5241 return RETURN_VALUE_REGISTER_CONVENTION;
5242 }
5243 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5244 || TYPE_CODE (type) == TYPE_CODE_UNION
5245 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5246 {
5247 /* A composite type. Extract the left justified value,
5248 regardless of the byte order. I.e. DO NOT USE
5249 mips_xfer_lower. */
5250 int offset;
5251 int regnum;
5252 for (offset = 0, regnum = MIPS_V0_REGNUM;
5253 offset < TYPE_LENGTH (type);
5254 offset += register_size (gdbarch, regnum), regnum++)
5255 {
5256 int xfer = register_size (gdbarch, regnum);
5257 if (offset + xfer > TYPE_LENGTH (type))
5258 xfer = TYPE_LENGTH (type) - offset;
5259 if (mips_debug)
5260 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5261 offset, xfer, regnum);
5262 mips_xfer_register (gdbarch, regcache,
5263 gdbarch_num_regs (gdbarch) + regnum,
5264 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
5265 offset);
5266 }
5267 return RETURN_VALUE_REGISTER_CONVENTION;
5268 }
5269 else
5270 {
5271 /* A scalar extract each part but least-significant-byte
5272 justified. */
5273 int offset;
5274 int regnum;
5275 for (offset = 0, regnum = MIPS_V0_REGNUM;
5276 offset < TYPE_LENGTH (type);
5277 offset += register_size (gdbarch, regnum), regnum++)
5278 {
5279 int xfer = register_size (gdbarch, regnum);
5280 if (offset + xfer > TYPE_LENGTH (type))
5281 xfer = TYPE_LENGTH (type) - offset;
5282 if (mips_debug)
5283 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5284 offset, xfer, regnum);
5285 mips_xfer_register (gdbarch, regcache,
5286 gdbarch_num_regs (gdbarch) + regnum,
5287 xfer, gdbarch_byte_order (gdbarch),
5288 readbuf, writebuf, offset);
5289 }
5290 return RETURN_VALUE_REGISTER_CONVENTION;
5291 }
5292 }
5293
5294 /* Which registers to use for passing floating-point values between
5295 function calls, one of floating-point, general and both kinds of
5296 registers. O32 and O64 use different register kinds for standard
5297 MIPS and MIPS16 code; to make the handling of cases where we may
5298 not know what kind of code is being used (e.g. no debug information)
5299 easier we sometimes use both kinds. */
5300
5301 enum mips_fval_reg
5302 {
5303 mips_fval_fpr,
5304 mips_fval_gpr,
5305 mips_fval_both
5306 };
5307
5308 /* O32 ABI stuff. */
5309
5310 static CORE_ADDR
5311 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5312 struct regcache *regcache, CORE_ADDR bp_addr,
5313 int nargs, struct value **args, CORE_ADDR sp,
5314 int struct_return, CORE_ADDR struct_addr)
5315 {
5316 int argreg;
5317 int float_argreg;
5318 int argnum;
5319 int len = 0;
5320 int stack_offset = 0;
5321 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5322 CORE_ADDR func_addr = find_function_addr (function, NULL);
5323
5324 /* For shared libraries, "t9" needs to point at the function
5325 address. */
5326 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5327
5328 /* Set the return address register to point to the entry point of
5329 the program, where a breakpoint lies in wait. */
5330 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5331
5332 /* First ensure that the stack and structure return address (if any)
5333 are properly aligned. The stack has to be at least 64-bit
5334 aligned even on 32-bit machines, because doubles must be 64-bit
5335 aligned. For n32 and n64, stack frames need to be 128-bit
5336 aligned, so we round to this widest known alignment. */
5337
5338 sp = align_down (sp, 16);
5339 struct_addr = align_down (struct_addr, 16);
5340
5341 /* Now make space on the stack for the args. */
5342 for (argnum = 0; argnum < nargs; argnum++)
5343 {
5344 struct type *arg_type = check_typedef (value_type (args[argnum]));
5345
5346 /* Align to double-word if necessary. */
5347 if (mips_type_needs_double_align (arg_type))
5348 len = align_up (len, MIPS32_REGSIZE * 2);
5349 /* Allocate space on the stack. */
5350 len += align_up (TYPE_LENGTH (arg_type), MIPS32_REGSIZE);
5351 }
5352 sp -= align_up (len, 16);
5353
5354 if (mips_debug)
5355 fprintf_unfiltered (gdb_stdlog,
5356 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
5357 paddress (gdbarch, sp), (long) align_up (len, 16));
5358
5359 /* Initialize the integer and float register pointers. */
5360 argreg = MIPS_A0_REGNUM;
5361 float_argreg = mips_fpa0_regnum (gdbarch);
5362
5363 /* The struct_return pointer occupies the first parameter-passing reg. */
5364 if (struct_return)
5365 {
5366 if (mips_debug)
5367 fprintf_unfiltered (gdb_stdlog,
5368 "mips_o32_push_dummy_call: "
5369 "struct_return reg=%d %s\n",
5370 argreg, paddress (gdbarch, struct_addr));
5371 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5372 stack_offset += MIPS32_REGSIZE;
5373 }
5374
5375 /* Now load as many as possible of the first arguments into
5376 registers, and push the rest onto the stack. Loop thru args
5377 from first to last. */
5378 for (argnum = 0; argnum < nargs; argnum++)
5379 {
5380 const gdb_byte *val;
5381 struct value *arg = args[argnum];
5382 struct type *arg_type = check_typedef (value_type (arg));
5383 int len = TYPE_LENGTH (arg_type);
5384 enum type_code typecode = TYPE_CODE (arg_type);
5385
5386 if (mips_debug)
5387 fprintf_unfiltered (gdb_stdlog,
5388 "mips_o32_push_dummy_call: %d len=%d type=%d",
5389 argnum + 1, len, (int) typecode);
5390
5391 val = value_contents (arg);
5392
5393 /* 32-bit ABIs always start floating point arguments in an
5394 even-numbered floating point register. Round the FP register
5395 up before the check to see if there are any FP registers
5396 left. O32 targets also pass the FP in the integer registers
5397 so also round up normal registers. */
5398 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5399 {
5400 if ((float_argreg & 1))
5401 float_argreg++;
5402 }
5403
5404 /* Floating point arguments passed in registers have to be
5405 treated specially. On 32-bit architectures, doubles are
5406 passed in register pairs; the even FP register gets the
5407 low word, and the odd FP register gets the high word.
5408 On O32, the first two floating point arguments are also
5409 copied to general registers, following their memory order,
5410 because MIPS16 functions don't use float registers for
5411 arguments. This duplication of arguments in general
5412 registers can't hurt non-MIPS16 functions, because those
5413 registers are normally skipped. */
5414
5415 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5416 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5417 {
5418 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
5419 {
5420 int freg_offset = gdbarch_byte_order (gdbarch)
5421 == BFD_ENDIAN_BIG ? 1 : 0;
5422 unsigned long regval;
5423
5424 /* First word. */
5425 regval = extract_unsigned_integer (val, 4, byte_order);
5426 if (mips_debug)
5427 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5428 float_argreg + freg_offset,
5429 phex (regval, 4));
5430 regcache_cooked_write_unsigned (regcache,
5431 float_argreg++ + freg_offset,
5432 regval);
5433 if (mips_debug)
5434 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5435 argreg, phex (regval, 4));
5436 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5437
5438 /* Second word. */
5439 regval = extract_unsigned_integer (val + 4, 4, byte_order);
5440 if (mips_debug)
5441 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5442 float_argreg - freg_offset,
5443 phex (regval, 4));
5444 regcache_cooked_write_unsigned (regcache,
5445 float_argreg++ - freg_offset,
5446 regval);
5447 if (mips_debug)
5448 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5449 argreg, phex (regval, 4));
5450 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5451 }
5452 else
5453 {
5454 /* This is a floating point value that fits entirely
5455 in a single register. */
5456 /* On 32 bit ABI's the float_argreg is further adjusted
5457 above to ensure that it is even register aligned. */
5458 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5459 if (mips_debug)
5460 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5461 float_argreg, phex (regval, len));
5462 regcache_cooked_write_unsigned (regcache,
5463 float_argreg++, regval);
5464 /* Although two FP registers are reserved for each
5465 argument, only one corresponding integer register is
5466 reserved. */
5467 if (mips_debug)
5468 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5469 argreg, phex (regval, len));
5470 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5471 }
5472 /* Reserve space for the FP register. */
5473 stack_offset += align_up (len, MIPS32_REGSIZE);
5474 }
5475 else
5476 {
5477 /* Copy the argument to general registers or the stack in
5478 register-sized pieces. Large arguments are split between
5479 registers and stack. */
5480 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
5481 are treated specially: Irix cc passes
5482 them in registers where gcc sometimes puts them on the
5483 stack. For maximum compatibility, we will put them in
5484 both places. */
5485 int odd_sized_struct = (len > MIPS32_REGSIZE
5486 && len % MIPS32_REGSIZE != 0);
5487 /* Structures should be aligned to eight bytes (even arg registers)
5488 on MIPS_ABI_O32, if their first member has double precision. */
5489 if (mips_type_needs_double_align (arg_type))
5490 {
5491 if ((argreg & 1))
5492 {
5493 argreg++;
5494 stack_offset += MIPS32_REGSIZE;
5495 }
5496 }
5497 while (len > 0)
5498 {
5499 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
5500
5501 if (mips_debug)
5502 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5503 partial_len);
5504
5505 /* Write this portion of the argument to the stack. */
5506 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5507 || odd_sized_struct)
5508 {
5509 /* Should shorter than int integer values be
5510 promoted to int before being stored? */
5511 int longword_offset = 0;
5512 CORE_ADDR addr;
5513
5514 if (mips_debug)
5515 {
5516 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5517 paddress (gdbarch, stack_offset));
5518 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5519 paddress (gdbarch, longword_offset));
5520 }
5521
5522 addr = sp + stack_offset + longword_offset;
5523
5524 if (mips_debug)
5525 {
5526 int i;
5527 fprintf_unfiltered (gdb_stdlog, " @%s ",
5528 paddress (gdbarch, addr));
5529 for (i = 0; i < partial_len; i++)
5530 {
5531 fprintf_unfiltered (gdb_stdlog, "%02x",
5532 val[i] & 0xff);
5533 }
5534 }
5535 write_memory (addr, val, partial_len);
5536 }
5537
5538 /* Note!!! This is NOT an else clause. Odd sized
5539 structs may go thru BOTH paths. */
5540 /* Write this portion of the argument to a general
5541 purpose register. */
5542 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5543 {
5544 LONGEST regval = extract_signed_integer (val, partial_len,
5545 byte_order);
5546 /* Value may need to be sign extended, because
5547 mips_isa_regsize() != mips_abi_regsize(). */
5548
5549 /* A non-floating-point argument being passed in a
5550 general register. If a struct or union, and if
5551 the remaining length is smaller than the register
5552 size, we have to adjust the register value on
5553 big endian targets.
5554
5555 It does not seem to be necessary to do the
5556 same for integral types.
5557
5558 Also don't do this adjustment on O64 binaries.
5559
5560 cagney/2001-07-23: gdb/179: Also, GCC, when
5561 outputting LE O32 with sizeof (struct) <
5562 mips_abi_regsize(), generates a left shift
5563 as part of storing the argument in a register
5564 (the left shift isn't generated when
5565 sizeof (struct) >= mips_abi_regsize()). Since
5566 it is quite possible that this is GCC
5567 contradicting the LE/O32 ABI, GDB has not been
5568 adjusted to accommodate this. Either someone
5569 needs to demonstrate that the LE/O32 ABI
5570 specifies such a left shift OR this new ABI gets
5571 identified as such and GDB gets tweaked
5572 accordingly. */
5573
5574 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5575 && partial_len < MIPS32_REGSIZE
5576 && (typecode == TYPE_CODE_STRUCT
5577 || typecode == TYPE_CODE_UNION))
5578 regval <<= ((MIPS32_REGSIZE - partial_len)
5579 * TARGET_CHAR_BIT);
5580
5581 if (mips_debug)
5582 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5583 argreg,
5584 phex (regval, MIPS32_REGSIZE));
5585 regcache_cooked_write_unsigned (regcache, argreg, regval);
5586 argreg++;
5587
5588 /* Prevent subsequent floating point arguments from
5589 being passed in floating point registers. */
5590 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
5591 }
5592
5593 len -= partial_len;
5594 val += partial_len;
5595
5596 /* Compute the offset into the stack at which we will
5597 copy the next parameter.
5598
5599 In older ABIs, the caller reserved space for
5600 registers that contained arguments. This was loosely
5601 refered to as their "home". Consequently, space is
5602 always allocated. */
5603
5604 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
5605 }
5606 }
5607 if (mips_debug)
5608 fprintf_unfiltered (gdb_stdlog, "\n");
5609 }
5610
5611 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5612
5613 /* Return adjusted stack pointer. */
5614 return sp;
5615 }
5616
5617 static enum return_value_convention
5618 mips_o32_return_value (struct gdbarch *gdbarch, struct value *function,
5619 struct type *type, struct regcache *regcache,
5620 gdb_byte *readbuf, const gdb_byte *writebuf)
5621 {
5622 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
5623 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
5624 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5625 enum mips_fval_reg fval_reg;
5626
5627 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
5628 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5629 || TYPE_CODE (type) == TYPE_CODE_UNION
5630 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5631 return RETURN_VALUE_STRUCT_CONVENTION;
5632 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5633 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5634 {
5635 /* A single-precision floating-point value. If reading in or copying,
5636 then we get it from/put it to FP0 for standard MIPS code or GPR2
5637 for MIPS16 code. If writing out only, then we put it to both FP0
5638 and GPR2. We do not support reading in with no function known, if
5639 this safety check ever triggers, then we'll have to try harder. */
5640 gdb_assert (function || !readbuf);
5641 if (mips_debug)
5642 switch (fval_reg)
5643 {
5644 case mips_fval_fpr:
5645 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5646 break;
5647 case mips_fval_gpr:
5648 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5649 break;
5650 case mips_fval_both:
5651 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5652 break;
5653 }
5654 if (fval_reg != mips_fval_gpr)
5655 mips_xfer_register (gdbarch, regcache,
5656 (gdbarch_num_regs (gdbarch)
5657 + mips_regnum (gdbarch)->fp0),
5658 TYPE_LENGTH (type),
5659 gdbarch_byte_order (gdbarch),
5660 readbuf, writebuf, 0);
5661 if (fval_reg != mips_fval_fpr)
5662 mips_xfer_register (gdbarch, regcache,
5663 gdbarch_num_regs (gdbarch) + 2,
5664 TYPE_LENGTH (type),
5665 gdbarch_byte_order (gdbarch),
5666 readbuf, writebuf, 0);
5667 return RETURN_VALUE_REGISTER_CONVENTION;
5668 }
5669 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5670 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5671 {
5672 /* A double-precision floating-point value. If reading in or copying,
5673 then we get it from/put it to FP1 and FP0 for standard MIPS code or
5674 GPR2 and GPR3 for MIPS16 code. If writing out only, then we put it
5675 to both FP1/FP0 and GPR2/GPR3. We do not support reading in with
5676 no function known, if this safety check ever triggers, then we'll
5677 have to try harder. */
5678 gdb_assert (function || !readbuf);
5679 if (mips_debug)
5680 switch (fval_reg)
5681 {
5682 case mips_fval_fpr:
5683 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
5684 break;
5685 case mips_fval_gpr:
5686 fprintf_unfiltered (gdb_stderr, "Return float in $2/$3\n");
5687 break;
5688 case mips_fval_both:
5689 fprintf_unfiltered (gdb_stderr,
5690 "Return float in $fp1/$fp0 and $2/$3\n");
5691 break;
5692 }
5693 if (fval_reg != mips_fval_gpr)
5694 {
5695 /* The most significant part goes in FP1, and the least significant
5696 in FP0. */
5697 switch (gdbarch_byte_order (gdbarch))
5698 {
5699 case BFD_ENDIAN_LITTLE:
5700 mips_xfer_register (gdbarch, regcache,
5701 (gdbarch_num_regs (gdbarch)
5702 + mips_regnum (gdbarch)->fp0 + 0),
5703 4, gdbarch_byte_order (gdbarch),
5704 readbuf, writebuf, 0);
5705 mips_xfer_register (gdbarch, regcache,
5706 (gdbarch_num_regs (gdbarch)
5707 + mips_regnum (gdbarch)->fp0 + 1),
5708 4, gdbarch_byte_order (gdbarch),
5709 readbuf, writebuf, 4);
5710 break;
5711 case BFD_ENDIAN_BIG:
5712 mips_xfer_register (gdbarch, regcache,
5713 (gdbarch_num_regs (gdbarch)
5714 + mips_regnum (gdbarch)->fp0 + 1),
5715 4, gdbarch_byte_order (gdbarch),
5716 readbuf, writebuf, 0);
5717 mips_xfer_register (gdbarch, regcache,
5718 (gdbarch_num_regs (gdbarch)
5719 + mips_regnum (gdbarch)->fp0 + 0),
5720 4, gdbarch_byte_order (gdbarch),
5721 readbuf, writebuf, 4);
5722 break;
5723 default:
5724 internal_error (__FILE__, __LINE__, _("bad switch"));
5725 }
5726 }
5727 if (fval_reg != mips_fval_fpr)
5728 {
5729 /* The two 32-bit parts are always placed in GPR2 and GPR3
5730 following these registers' memory order. */
5731 mips_xfer_register (gdbarch, regcache,
5732 gdbarch_num_regs (gdbarch) + 2,
5733 4, gdbarch_byte_order (gdbarch),
5734 readbuf, writebuf, 0);
5735 mips_xfer_register (gdbarch, regcache,
5736 gdbarch_num_regs (gdbarch) + 3,
5737 4, gdbarch_byte_order (gdbarch),
5738 readbuf, writebuf, 4);
5739 }
5740 return RETURN_VALUE_REGISTER_CONVENTION;
5741 }
5742 #if 0
5743 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5744 && TYPE_NFIELDS (type) <= 2
5745 && TYPE_NFIELDS (type) >= 1
5746 && ((TYPE_NFIELDS (type) == 1
5747 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5748 == TYPE_CODE_FLT))
5749 || (TYPE_NFIELDS (type) == 2
5750 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5751 == TYPE_CODE_FLT)
5752 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
5753 == TYPE_CODE_FLT)))
5754 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5755 {
5756 /* A struct that contains one or two floats. Each value is part
5757 in the least significant part of their floating point
5758 register.. */
5759 gdb_byte reg[MAX_REGISTER_SIZE];
5760 int regnum;
5761 int field;
5762 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
5763 field < TYPE_NFIELDS (type); field++, regnum += 2)
5764 {
5765 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5766 / TARGET_CHAR_BIT);
5767 if (mips_debug)
5768 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5769 offset);
5770 mips_xfer_register (gdbarch, regcache,
5771 gdbarch_num_regs (gdbarch) + regnum,
5772 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5773 gdbarch_byte_order (gdbarch),
5774 readbuf, writebuf, offset);
5775 }
5776 return RETURN_VALUE_REGISTER_CONVENTION;
5777 }
5778 #endif
5779 #if 0
5780 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5781 || TYPE_CODE (type) == TYPE_CODE_UNION)
5782 {
5783 /* A structure or union. Extract the left justified value,
5784 regardless of the byte order. I.e. DO NOT USE
5785 mips_xfer_lower. */
5786 int offset;
5787 int regnum;
5788 for (offset = 0, regnum = MIPS_V0_REGNUM;
5789 offset < TYPE_LENGTH (type);
5790 offset += register_size (gdbarch, regnum), regnum++)
5791 {
5792 int xfer = register_size (gdbarch, regnum);
5793 if (offset + xfer > TYPE_LENGTH (type))
5794 xfer = TYPE_LENGTH (type) - offset;
5795 if (mips_debug)
5796 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5797 offset, xfer, regnum);
5798 mips_xfer_register (gdbarch, regcache,
5799 gdbarch_num_regs (gdbarch) + regnum, xfer,
5800 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
5801 }
5802 return RETURN_VALUE_REGISTER_CONVENTION;
5803 }
5804 #endif
5805 else
5806 {
5807 /* A scalar extract each part but least-significant-byte
5808 justified. o32 thinks registers are 4 byte, regardless of
5809 the ISA. */
5810 int offset;
5811 int regnum;
5812 for (offset = 0, regnum = MIPS_V0_REGNUM;
5813 offset < TYPE_LENGTH (type);
5814 offset += MIPS32_REGSIZE, regnum++)
5815 {
5816 int xfer = MIPS32_REGSIZE;
5817 if (offset + xfer > TYPE_LENGTH (type))
5818 xfer = TYPE_LENGTH (type) - offset;
5819 if (mips_debug)
5820 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5821 offset, xfer, regnum);
5822 mips_xfer_register (gdbarch, regcache,
5823 gdbarch_num_regs (gdbarch) + regnum, xfer,
5824 gdbarch_byte_order (gdbarch),
5825 readbuf, writebuf, offset);
5826 }
5827 return RETURN_VALUE_REGISTER_CONVENTION;
5828 }
5829 }
5830
5831 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
5832 ABI. */
5833
5834 static CORE_ADDR
5835 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5836 struct regcache *regcache, CORE_ADDR bp_addr,
5837 int nargs,
5838 struct value **args, CORE_ADDR sp,
5839 int struct_return, CORE_ADDR struct_addr)
5840 {
5841 int argreg;
5842 int float_argreg;
5843 int argnum;
5844 int len = 0;
5845 int stack_offset = 0;
5846 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5847 CORE_ADDR func_addr = find_function_addr (function, NULL);
5848
5849 /* For shared libraries, "t9" needs to point at the function
5850 address. */
5851 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5852
5853 /* Set the return address register to point to the entry point of
5854 the program, where a breakpoint lies in wait. */
5855 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5856
5857 /* First ensure that the stack and structure return address (if any)
5858 are properly aligned. The stack has to be at least 64-bit
5859 aligned even on 32-bit machines, because doubles must be 64-bit
5860 aligned. For n32 and n64, stack frames need to be 128-bit
5861 aligned, so we round to this widest known alignment. */
5862
5863 sp = align_down (sp, 16);
5864 struct_addr = align_down (struct_addr, 16);
5865
5866 /* Now make space on the stack for the args. */
5867 for (argnum = 0; argnum < nargs; argnum++)
5868 {
5869 struct type *arg_type = check_typedef (value_type (args[argnum]));
5870
5871 /* Allocate space on the stack. */
5872 len += align_up (TYPE_LENGTH (arg_type), MIPS64_REGSIZE);
5873 }
5874 sp -= align_up (len, 16);
5875
5876 if (mips_debug)
5877 fprintf_unfiltered (gdb_stdlog,
5878 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
5879 paddress (gdbarch, sp), (long) align_up (len, 16));
5880
5881 /* Initialize the integer and float register pointers. */
5882 argreg = MIPS_A0_REGNUM;
5883 float_argreg = mips_fpa0_regnum (gdbarch);
5884
5885 /* The struct_return pointer occupies the first parameter-passing reg. */
5886 if (struct_return)
5887 {
5888 if (mips_debug)
5889 fprintf_unfiltered (gdb_stdlog,
5890 "mips_o64_push_dummy_call: "
5891 "struct_return reg=%d %s\n",
5892 argreg, paddress (gdbarch, struct_addr));
5893 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5894 stack_offset += MIPS64_REGSIZE;
5895 }
5896
5897 /* Now load as many as possible of the first arguments into
5898 registers, and push the rest onto the stack. Loop thru args
5899 from first to last. */
5900 for (argnum = 0; argnum < nargs; argnum++)
5901 {
5902 const gdb_byte *val;
5903 struct value *arg = args[argnum];
5904 struct type *arg_type = check_typedef (value_type (arg));
5905 int len = TYPE_LENGTH (arg_type);
5906 enum type_code typecode = TYPE_CODE (arg_type);
5907
5908 if (mips_debug)
5909 fprintf_unfiltered (gdb_stdlog,
5910 "mips_o64_push_dummy_call: %d len=%d type=%d",
5911 argnum + 1, len, (int) typecode);
5912
5913 val = value_contents (arg);
5914
5915 /* Floating point arguments passed in registers have to be
5916 treated specially. On 32-bit architectures, doubles are
5917 passed in register pairs; the even FP register gets the
5918 low word, and the odd FP register gets the high word.
5919 On O64, the first two floating point arguments are also
5920 copied to general registers, because MIPS16 functions
5921 don't use float registers for arguments. This duplication
5922 of arguments in general registers can't hurt non-MIPS16
5923 functions because those registers are normally skipped. */
5924
5925 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5926 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5927 {
5928 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5929 if (mips_debug)
5930 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5931 float_argreg, phex (regval, len));
5932 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
5933 if (mips_debug)
5934 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5935 argreg, phex (regval, len));
5936 regcache_cooked_write_unsigned (regcache, argreg, regval);
5937 argreg++;
5938 /* Reserve space for the FP register. */
5939 stack_offset += align_up (len, MIPS64_REGSIZE);
5940 }
5941 else
5942 {
5943 /* Copy the argument to general registers or the stack in
5944 register-sized pieces. Large arguments are split between
5945 registers and stack. */
5946 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
5947 are treated specially: Irix cc passes them in registers
5948 where gcc sometimes puts them on the stack. For maximum
5949 compatibility, we will put them in both places. */
5950 int odd_sized_struct = (len > MIPS64_REGSIZE
5951 && len % MIPS64_REGSIZE != 0);
5952 while (len > 0)
5953 {
5954 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
5955
5956 if (mips_debug)
5957 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5958 partial_len);
5959
5960 /* Write this portion of the argument to the stack. */
5961 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5962 || odd_sized_struct)
5963 {
5964 /* Should shorter than int integer values be
5965 promoted to int before being stored? */
5966 int longword_offset = 0;
5967 CORE_ADDR addr;
5968 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5969 {
5970 if ((typecode == TYPE_CODE_INT
5971 || typecode == TYPE_CODE_PTR
5972 || typecode == TYPE_CODE_FLT)
5973 && len <= 4)
5974 longword_offset = MIPS64_REGSIZE - len;
5975 }
5976
5977 if (mips_debug)
5978 {
5979 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5980 paddress (gdbarch, stack_offset));
5981 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5982 paddress (gdbarch, longword_offset));
5983 }
5984
5985 addr = sp + stack_offset + longword_offset;
5986
5987 if (mips_debug)
5988 {
5989 int i;
5990 fprintf_unfiltered (gdb_stdlog, " @%s ",
5991 paddress (gdbarch, addr));
5992 for (i = 0; i < partial_len; i++)
5993 {
5994 fprintf_unfiltered (gdb_stdlog, "%02x",
5995 val[i] & 0xff);
5996 }
5997 }
5998 write_memory (addr, val, partial_len);
5999 }
6000
6001 /* Note!!! This is NOT an else clause. Odd sized
6002 structs may go thru BOTH paths. */
6003 /* Write this portion of the argument to a general
6004 purpose register. */
6005 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
6006 {
6007 LONGEST regval = extract_signed_integer (val, partial_len,
6008 byte_order);
6009 /* Value may need to be sign extended, because
6010 mips_isa_regsize() != mips_abi_regsize(). */
6011
6012 /* A non-floating-point argument being passed in a
6013 general register. If a struct or union, and if
6014 the remaining length is smaller than the register
6015 size, we have to adjust the register value on
6016 big endian targets.
6017
6018 It does not seem to be necessary to do the
6019 same for integral types. */
6020
6021 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
6022 && partial_len < MIPS64_REGSIZE
6023 && (typecode == TYPE_CODE_STRUCT
6024 || typecode == TYPE_CODE_UNION))
6025 regval <<= ((MIPS64_REGSIZE - partial_len)
6026 * TARGET_CHAR_BIT);
6027
6028 if (mips_debug)
6029 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
6030 argreg,
6031 phex (regval, MIPS64_REGSIZE));
6032 regcache_cooked_write_unsigned (regcache, argreg, regval);
6033 argreg++;
6034
6035 /* Prevent subsequent floating point arguments from
6036 being passed in floating point registers. */
6037 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
6038 }
6039
6040 len -= partial_len;
6041 val += partial_len;
6042
6043 /* Compute the offset into the stack at which we will
6044 copy the next parameter.
6045
6046 In older ABIs, the caller reserved space for
6047 registers that contained arguments. This was loosely
6048 refered to as their "home". Consequently, space is
6049 always allocated. */
6050
6051 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
6052 }
6053 }
6054 if (mips_debug)
6055 fprintf_unfiltered (gdb_stdlog, "\n");
6056 }
6057
6058 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
6059
6060 /* Return adjusted stack pointer. */
6061 return sp;
6062 }
6063
6064 static enum return_value_convention
6065 mips_o64_return_value (struct gdbarch *gdbarch, struct value *function,
6066 struct type *type, struct regcache *regcache,
6067 gdb_byte *readbuf, const gdb_byte *writebuf)
6068 {
6069 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
6070 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
6071 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6072 enum mips_fval_reg fval_reg;
6073
6074 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
6075 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
6076 || TYPE_CODE (type) == TYPE_CODE_UNION
6077 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6078 return RETURN_VALUE_STRUCT_CONVENTION;
6079 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
6080 {
6081 /* A floating-point value. If reading in or copying, then we get it
6082 from/put it to FP0 for standard MIPS code or GPR2 for MIPS16 code.
6083 If writing out only, then we put it to both FP0 and GPR2. We do
6084 not support reading in with no function known, if this safety
6085 check ever triggers, then we'll have to try harder. */
6086 gdb_assert (function || !readbuf);
6087 if (mips_debug)
6088 switch (fval_reg)
6089 {
6090 case mips_fval_fpr:
6091 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
6092 break;
6093 case mips_fval_gpr:
6094 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
6095 break;
6096 case mips_fval_both:
6097 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
6098 break;
6099 }
6100 if (fval_reg != mips_fval_gpr)
6101 mips_xfer_register (gdbarch, regcache,
6102 (gdbarch_num_regs (gdbarch)
6103 + mips_regnum (gdbarch)->fp0),
6104 TYPE_LENGTH (type),
6105 gdbarch_byte_order (gdbarch),
6106 readbuf, writebuf, 0);
6107 if (fval_reg != mips_fval_fpr)
6108 mips_xfer_register (gdbarch, regcache,
6109 gdbarch_num_regs (gdbarch) + 2,
6110 TYPE_LENGTH (type),
6111 gdbarch_byte_order (gdbarch),
6112 readbuf, writebuf, 0);
6113 return RETURN_VALUE_REGISTER_CONVENTION;
6114 }
6115 else
6116 {
6117 /* A scalar extract each part but least-significant-byte
6118 justified. */
6119 int offset;
6120 int regnum;
6121 for (offset = 0, regnum = MIPS_V0_REGNUM;
6122 offset < TYPE_LENGTH (type);
6123 offset += MIPS64_REGSIZE, regnum++)
6124 {
6125 int xfer = MIPS64_REGSIZE;
6126 if (offset + xfer > TYPE_LENGTH (type))
6127 xfer = TYPE_LENGTH (type) - offset;
6128 if (mips_debug)
6129 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
6130 offset, xfer, regnum);
6131 mips_xfer_register (gdbarch, regcache,
6132 gdbarch_num_regs (gdbarch) + regnum,
6133 xfer, gdbarch_byte_order (gdbarch),
6134 readbuf, writebuf, offset);
6135 }
6136 return RETURN_VALUE_REGISTER_CONVENTION;
6137 }
6138 }
6139
6140 /* Floating point register management.
6141
6142 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
6143 64bit operations, these early MIPS cpus treat fp register pairs
6144 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
6145 registers and offer a compatibility mode that emulates the MIPS2 fp
6146 model. When operating in MIPS2 fp compat mode, later cpu's split
6147 double precision floats into two 32-bit chunks and store them in
6148 consecutive fp regs. To display 64-bit floats stored in this
6149 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
6150 Throw in user-configurable endianness and you have a real mess.
6151
6152 The way this works is:
6153 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
6154 double-precision value will be split across two logical registers.
6155 The lower-numbered logical register will hold the low-order bits,
6156 regardless of the processor's endianness.
6157 - If we are on a 64-bit processor, and we are looking for a
6158 single-precision value, it will be in the low ordered bits
6159 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
6160 save slot in memory.
6161 - If we are in 64-bit mode, everything is straightforward.
6162
6163 Note that this code only deals with "live" registers at the top of the
6164 stack. We will attempt to deal with saved registers later, when
6165 the raw/cooked register interface is in place. (We need a general
6166 interface that can deal with dynamic saved register sizes -- fp
6167 regs could be 32 bits wide in one frame and 64 on the frame above
6168 and below). */
6169
6170 /* Copy a 32-bit single-precision value from the current frame
6171 into rare_buffer. */
6172
6173 static void
6174 mips_read_fp_register_single (struct frame_info *frame, int regno,
6175 gdb_byte *rare_buffer)
6176 {
6177 struct gdbarch *gdbarch = get_frame_arch (frame);
6178 int raw_size = register_size (gdbarch, regno);
6179 gdb_byte *raw_buffer = (gdb_byte *) alloca (raw_size);
6180
6181 if (!deprecated_frame_register_read (frame, regno, raw_buffer))
6182 error (_("can't read register %d (%s)"),
6183 regno, gdbarch_register_name (gdbarch, regno));
6184 if (raw_size == 8)
6185 {
6186 /* We have a 64-bit value for this register. Find the low-order
6187 32 bits. */
6188 int offset;
6189
6190 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6191 offset = 4;
6192 else
6193 offset = 0;
6194
6195 memcpy (rare_buffer, raw_buffer + offset, 4);
6196 }
6197 else
6198 {
6199 memcpy (rare_buffer, raw_buffer, 4);
6200 }
6201 }
6202
6203 /* Copy a 64-bit double-precision value from the current frame into
6204 rare_buffer. This may include getting half of it from the next
6205 register. */
6206
6207 static void
6208 mips_read_fp_register_double (struct frame_info *frame, int regno,
6209 gdb_byte *rare_buffer)
6210 {
6211 struct gdbarch *gdbarch = get_frame_arch (frame);
6212 int raw_size = register_size (gdbarch, regno);
6213
6214 if (raw_size == 8 && !mips2_fp_compat (frame))
6215 {
6216 /* We have a 64-bit value for this register, and we should use
6217 all 64 bits. */
6218 if (!deprecated_frame_register_read (frame, regno, rare_buffer))
6219 error (_("can't read register %d (%s)"),
6220 regno, gdbarch_register_name (gdbarch, regno));
6221 }
6222 else
6223 {
6224 int rawnum = regno % gdbarch_num_regs (gdbarch);
6225
6226 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
6227 internal_error (__FILE__, __LINE__,
6228 _("mips_read_fp_register_double: bad access to "
6229 "odd-numbered FP register"));
6230
6231 /* mips_read_fp_register_single will find the correct 32 bits from
6232 each register. */
6233 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6234 {
6235 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
6236 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
6237 }
6238 else
6239 {
6240 mips_read_fp_register_single (frame, regno, rare_buffer);
6241 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
6242 }
6243 }
6244 }
6245
6246 static void
6247 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
6248 int regnum)
6249 { /* Do values for FP (float) regs. */
6250 struct gdbarch *gdbarch = get_frame_arch (frame);
6251 gdb_byte *raw_buffer;
6252 double doub, flt1; /* Doubles extracted from raw hex data. */
6253 int inv1, inv2;
6254
6255 raw_buffer
6256 = ((gdb_byte *)
6257 alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0)));
6258
6259 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
6260 fprintf_filtered (file, "%*s",
6261 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
6262 "");
6263
6264 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
6265 {
6266 struct value_print_options opts;
6267
6268 /* 4-byte registers: Print hex and floating. Also print even
6269 numbered registers as doubles. */
6270 mips_read_fp_register_single (frame, regnum, raw_buffer);
6271 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6272 raw_buffer, &inv1);
6273
6274 get_formatted_print_options (&opts, 'x');
6275 print_scalar_formatted (raw_buffer,
6276 builtin_type (gdbarch)->builtin_uint32,
6277 &opts, 'w', file);
6278
6279 fprintf_filtered (file, " flt: ");
6280 if (inv1)
6281 fprintf_filtered (file, " <invalid float> ");
6282 else
6283 fprintf_filtered (file, "%-17.9g", flt1);
6284
6285 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
6286 {
6287 mips_read_fp_register_double (frame, regnum, raw_buffer);
6288 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6289 raw_buffer, &inv2);
6290
6291 fprintf_filtered (file, " dbl: ");
6292 if (inv2)
6293 fprintf_filtered (file, "<invalid double>");
6294 else
6295 fprintf_filtered (file, "%-24.17g", doub);
6296 }
6297 }
6298 else
6299 {
6300 struct value_print_options opts;
6301
6302 /* Eight byte registers: print each one as hex, float and double. */
6303 mips_read_fp_register_single (frame, regnum, raw_buffer);
6304 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6305 raw_buffer, &inv1);
6306
6307 mips_read_fp_register_double (frame, regnum, raw_buffer);
6308 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6309 raw_buffer, &inv2);
6310
6311 get_formatted_print_options (&opts, 'x');
6312 print_scalar_formatted (raw_buffer,
6313 builtin_type (gdbarch)->builtin_uint64,
6314 &opts, 'g', file);
6315
6316 fprintf_filtered (file, " flt: ");
6317 if (inv1)
6318 fprintf_filtered (file, "<invalid float>");
6319 else
6320 fprintf_filtered (file, "%-17.9g", flt1);
6321
6322 fprintf_filtered (file, " dbl: ");
6323 if (inv2)
6324 fprintf_filtered (file, "<invalid double>");
6325 else
6326 fprintf_filtered (file, "%-24.17g", doub);
6327 }
6328 }
6329
6330 static void
6331 mips_print_register (struct ui_file *file, struct frame_info *frame,
6332 int regnum)
6333 {
6334 struct gdbarch *gdbarch = get_frame_arch (frame);
6335 struct value_print_options opts;
6336 struct value *val;
6337
6338 if (mips_float_register_p (gdbarch, regnum))
6339 {
6340 mips_print_fp_register (file, frame, regnum);
6341 return;
6342 }
6343
6344 val = get_frame_register_value (frame, regnum);
6345
6346 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
6347
6348 /* The problem with printing numeric register names (r26, etc.) is that
6349 the user can't use them on input. Probably the best solution is to
6350 fix it so that either the numeric or the funky (a2, etc.) names
6351 are accepted on input. */
6352 if (regnum < MIPS_NUMREGS)
6353 fprintf_filtered (file, "(r%d): ", regnum);
6354 else
6355 fprintf_filtered (file, ": ");
6356
6357 get_formatted_print_options (&opts, 'x');
6358 val_print_scalar_formatted (value_type (val),
6359 value_embedded_offset (val),
6360 val,
6361 &opts, 0, file);
6362 }
6363
6364 /* Print IEEE exception condition bits in FLAGS. */
6365
6366 static void
6367 print_fpu_flags (struct ui_file *file, int flags)
6368 {
6369 if (flags & (1 << 0))
6370 fputs_filtered (" inexact", file);
6371 if (flags & (1 << 1))
6372 fputs_filtered (" uflow", file);
6373 if (flags & (1 << 2))
6374 fputs_filtered (" oflow", file);
6375 if (flags & (1 << 3))
6376 fputs_filtered (" div0", file);
6377 if (flags & (1 << 4))
6378 fputs_filtered (" inval", file);
6379 if (flags & (1 << 5))
6380 fputs_filtered (" unimp", file);
6381 fputc_filtered ('\n', file);
6382 }
6383
6384 /* Print interesting information about the floating point processor
6385 (if present) or emulator. */
6386
6387 static void
6388 mips_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
6389 struct frame_info *frame, const char *args)
6390 {
6391 int fcsr = mips_regnum (gdbarch)->fp_control_status;
6392 enum mips_fpu_type type = MIPS_FPU_TYPE (gdbarch);
6393 ULONGEST fcs = 0;
6394 int i;
6395
6396 if (fcsr == -1 || !read_frame_register_unsigned (frame, fcsr, &fcs))
6397 type = MIPS_FPU_NONE;
6398
6399 fprintf_filtered (file, "fpu type: %s\n",
6400 type == MIPS_FPU_DOUBLE ? "double-precision"
6401 : type == MIPS_FPU_SINGLE ? "single-precision"
6402 : "none / unused");
6403
6404 if (type == MIPS_FPU_NONE)
6405 return;
6406
6407 fprintf_filtered (file, "reg size: %d bits\n",
6408 register_size (gdbarch, mips_regnum (gdbarch)->fp0) * 8);
6409
6410 fputs_filtered ("cond :", file);
6411 if (fcs & (1 << 23))
6412 fputs_filtered (" 0", file);
6413 for (i = 1; i <= 7; i++)
6414 if (fcs & (1 << (24 + i)))
6415 fprintf_filtered (file, " %d", i);
6416 fputc_filtered ('\n', file);
6417
6418 fputs_filtered ("cause :", file);
6419 print_fpu_flags (file, (fcs >> 12) & 0x3f);
6420 fputs ("mask :", stdout);
6421 print_fpu_flags (file, (fcs >> 7) & 0x1f);
6422 fputs ("flags :", stdout);
6423 print_fpu_flags (file, (fcs >> 2) & 0x1f);
6424
6425 fputs_filtered ("rounding: ", file);
6426 switch (fcs & 3)
6427 {
6428 case 0: fputs_filtered ("nearest\n", file); break;
6429 case 1: fputs_filtered ("zero\n", file); break;
6430 case 2: fputs_filtered ("+inf\n", file); break;
6431 case 3: fputs_filtered ("-inf\n", file); break;
6432 }
6433
6434 fputs_filtered ("flush :", file);
6435 if (fcs & (1 << 21))
6436 fputs_filtered (" nearest", file);
6437 if (fcs & (1 << 22))
6438 fputs_filtered (" override", file);
6439 if (fcs & (1 << 24))
6440 fputs_filtered (" zero", file);
6441 if ((fcs & (0xb << 21)) == 0)
6442 fputs_filtered (" no", file);
6443 fputc_filtered ('\n', file);
6444
6445 fprintf_filtered (file, "nan2008 : %s\n", fcs & (1 << 18) ? "yes" : "no");
6446 fprintf_filtered (file, "abs2008 : %s\n", fcs & (1 << 19) ? "yes" : "no");
6447 fputc_filtered ('\n', file);
6448
6449 default_print_float_info (gdbarch, file, frame, args);
6450 }
6451
6452 /* Replacement for generic do_registers_info.
6453 Print regs in pretty columns. */
6454
6455 static int
6456 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
6457 int regnum)
6458 {
6459 fprintf_filtered (file, " ");
6460 mips_print_fp_register (file, frame, regnum);
6461 fprintf_filtered (file, "\n");
6462 return regnum + 1;
6463 }
6464
6465
6466 /* Print a row's worth of GP (int) registers, with name labels above. */
6467
6468 static int
6469 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
6470 int start_regnum)
6471 {
6472 struct gdbarch *gdbarch = get_frame_arch (frame);
6473 /* Do values for GP (int) regs. */
6474 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
6475 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols
6476 per row. */
6477 int col, byte;
6478 int regnum;
6479
6480 /* For GP registers, we print a separate row of names above the vals. */
6481 for (col = 0, regnum = start_regnum;
6482 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6483 + gdbarch_num_pseudo_regs (gdbarch);
6484 regnum++)
6485 {
6486 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6487 continue; /* unused register */
6488 if (mips_float_register_p (gdbarch, regnum))
6489 break; /* End the row: reached FP register. */
6490 /* Large registers are handled separately. */
6491 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6492 {
6493 if (col > 0)
6494 break; /* End the row before this register. */
6495
6496 /* Print this register on a row by itself. */
6497 mips_print_register (file, frame, regnum);
6498 fprintf_filtered (file, "\n");
6499 return regnum + 1;
6500 }
6501 if (col == 0)
6502 fprintf_filtered (file, " ");
6503 fprintf_filtered (file,
6504 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
6505 gdbarch_register_name (gdbarch, regnum));
6506 col++;
6507 }
6508
6509 if (col == 0)
6510 return regnum;
6511
6512 /* Print the R0 to R31 names. */
6513 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
6514 fprintf_filtered (file, "\n R%-4d",
6515 start_regnum % gdbarch_num_regs (gdbarch));
6516 else
6517 fprintf_filtered (file, "\n ");
6518
6519 /* Now print the values in hex, 4 or 8 to the row. */
6520 for (col = 0, regnum = start_regnum;
6521 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6522 + gdbarch_num_pseudo_regs (gdbarch);
6523 regnum++)
6524 {
6525 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6526 continue; /* unused register */
6527 if (mips_float_register_p (gdbarch, regnum))
6528 break; /* End row: reached FP register. */
6529 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6530 break; /* End row: large register. */
6531
6532 /* OK: get the data in raw format. */
6533 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
6534 error (_("can't read register %d (%s)"),
6535 regnum, gdbarch_register_name (gdbarch, regnum));
6536 /* pad small registers */
6537 for (byte = 0;
6538 byte < (mips_abi_regsize (gdbarch)
6539 - register_size (gdbarch, regnum)); byte++)
6540 printf_filtered (" ");
6541 /* Now print the register value in hex, endian order. */
6542 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6543 for (byte =
6544 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
6545 byte < register_size (gdbarch, regnum); byte++)
6546 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6547 else
6548 for (byte = register_size (gdbarch, regnum) - 1;
6549 byte >= 0; byte--)
6550 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6551 fprintf_filtered (file, " ");
6552 col++;
6553 }
6554 if (col > 0) /* ie. if we actually printed anything... */
6555 fprintf_filtered (file, "\n");
6556
6557 return regnum;
6558 }
6559
6560 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command. */
6561
6562 static void
6563 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
6564 struct frame_info *frame, int regnum, int all)
6565 {
6566 if (regnum != -1) /* Do one specified register. */
6567 {
6568 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
6569 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
6570 error (_("Not a valid register for the current processor type"));
6571
6572 mips_print_register (file, frame, regnum);
6573 fprintf_filtered (file, "\n");
6574 }
6575 else
6576 /* Do all (or most) registers. */
6577 {
6578 regnum = gdbarch_num_regs (gdbarch);
6579 while (regnum < gdbarch_num_regs (gdbarch)
6580 + gdbarch_num_pseudo_regs (gdbarch))
6581 {
6582 if (mips_float_register_p (gdbarch, regnum))
6583 {
6584 if (all) /* True for "INFO ALL-REGISTERS" command. */
6585 regnum = print_fp_register_row (file, frame, regnum);
6586 else
6587 regnum += MIPS_NUMREGS; /* Skip floating point regs. */
6588 }
6589 else
6590 regnum = print_gp_register_row (file, frame, regnum);
6591 }
6592 }
6593 }
6594
6595 static int
6596 mips_single_step_through_delay (struct gdbarch *gdbarch,
6597 struct frame_info *frame)
6598 {
6599 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6600 CORE_ADDR pc = get_frame_pc (frame);
6601 struct address_space *aspace;
6602 enum mips_isa isa;
6603 ULONGEST insn;
6604 int status;
6605 int size;
6606
6607 if ((mips_pc_is_mips (pc)
6608 && !mips32_insn_at_pc_has_delay_slot (gdbarch, pc))
6609 || (mips_pc_is_micromips (gdbarch, pc)
6610 && !micromips_insn_at_pc_has_delay_slot (gdbarch, pc, 0))
6611 || (mips_pc_is_mips16 (gdbarch, pc)
6612 && !mips16_insn_at_pc_has_delay_slot (gdbarch, pc, 0)))
6613 return 0;
6614
6615 isa = mips_pc_isa (gdbarch, pc);
6616 /* _has_delay_slot above will have validated the read. */
6617 insn = mips_fetch_instruction (gdbarch, isa, pc, NULL);
6618 size = mips_insn_size (isa, insn);
6619 aspace = get_frame_address_space (frame);
6620 return breakpoint_here_p (aspace, pc + size) != no_breakpoint_here;
6621 }
6622
6623 /* To skip prologues, I use this predicate. Returns either PC itself
6624 if the code at PC does not look like a function prologue; otherwise
6625 returns an address that (if we're lucky) follows the prologue. If
6626 LENIENT, then we must skip everything which is involved in setting
6627 up the frame (it's OK to skip more, just so long as we don't skip
6628 anything which might clobber the registers which are being saved.
6629 We must skip more in the case where part of the prologue is in the
6630 delay slot of a non-prologue instruction). */
6631
6632 static CORE_ADDR
6633 mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
6634 {
6635 CORE_ADDR limit_pc;
6636 CORE_ADDR func_addr;
6637
6638 /* See if we can determine the end of the prologue via the symbol table.
6639 If so, then return either PC, or the PC after the prologue, whichever
6640 is greater. */
6641 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
6642 {
6643 CORE_ADDR post_prologue_pc
6644 = skip_prologue_using_sal (gdbarch, func_addr);
6645 if (post_prologue_pc != 0)
6646 return std::max (pc, post_prologue_pc);
6647 }
6648
6649 /* Can't determine prologue from the symbol table, need to examine
6650 instructions. */
6651
6652 /* Find an upper limit on the function prologue using the debug
6653 information. If the debug information could not be used to provide
6654 that bound, then use an arbitrary large number as the upper bound. */
6655 limit_pc = skip_prologue_using_sal (gdbarch, pc);
6656 if (limit_pc == 0)
6657 limit_pc = pc + 100; /* Magic. */
6658
6659 if (mips_pc_is_mips16 (gdbarch, pc))
6660 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6661 else if (mips_pc_is_micromips (gdbarch, pc))
6662 return micromips_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6663 else
6664 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6665 }
6666
6667 /* Implement the stack_frame_destroyed_p gdbarch method (32-bit version).
6668 This is a helper function for mips_stack_frame_destroyed_p. */
6669
6670 static int
6671 mips32_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6672 {
6673 CORE_ADDR func_addr = 0, func_end = 0;
6674
6675 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6676 {
6677 /* The MIPS epilogue is max. 12 bytes long. */
6678 CORE_ADDR addr = func_end - 12;
6679
6680 if (addr < func_addr + 4)
6681 addr = func_addr + 4;
6682 if (pc < addr)
6683 return 0;
6684
6685 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
6686 {
6687 unsigned long high_word;
6688 unsigned long inst;
6689
6690 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
6691 high_word = (inst >> 16) & 0xffff;
6692
6693 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
6694 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
6695 && inst != 0x03e00008 /* jr $ra */
6696 && inst != 0x00000000) /* nop */
6697 return 0;
6698 }
6699
6700 return 1;
6701 }
6702
6703 return 0;
6704 }
6705
6706 /* Implement the stack_frame_destroyed_p gdbarch method (microMIPS version).
6707 This is a helper function for mips_stack_frame_destroyed_p. */
6708
6709 static int
6710 micromips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6711 {
6712 CORE_ADDR func_addr = 0;
6713 CORE_ADDR func_end = 0;
6714 CORE_ADDR addr;
6715 ULONGEST insn;
6716 long offset;
6717 int dreg;
6718 int sreg;
6719 int loc;
6720
6721 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6722 return 0;
6723
6724 /* The microMIPS epilogue is max. 12 bytes long. */
6725 addr = func_end - 12;
6726
6727 if (addr < func_addr + 2)
6728 addr = func_addr + 2;
6729 if (pc < addr)
6730 return 0;
6731
6732 for (; pc < func_end; pc += loc)
6733 {
6734 loc = 0;
6735 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
6736 loc += MIPS_INSN16_SIZE;
6737 switch (mips_insn_size (ISA_MICROMIPS, insn))
6738 {
6739 /* 32-bit instructions. */
6740 case 2 * MIPS_INSN16_SIZE:
6741 insn <<= 16;
6742 insn |= mips_fetch_instruction (gdbarch,
6743 ISA_MICROMIPS, pc + loc, NULL);
6744 loc += MIPS_INSN16_SIZE;
6745 switch (micromips_op (insn >> 16))
6746 {
6747 case 0xc: /* ADDIU: bits 001100 */
6748 case 0x17: /* DADDIU: bits 010111 */
6749 sreg = b0s5_reg (insn >> 16);
6750 dreg = b5s5_reg (insn >> 16);
6751 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
6752 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
6753 /* (D)ADDIU $sp, imm */
6754 && offset >= 0)
6755 break;
6756 return 0;
6757
6758 default:
6759 return 0;
6760 }
6761 break;
6762
6763 /* 16-bit instructions. */
6764 case MIPS_INSN16_SIZE:
6765 switch (micromips_op (insn))
6766 {
6767 case 0x3: /* MOVE: bits 000011 */
6768 sreg = b0s5_reg (insn);
6769 dreg = b5s5_reg (insn);
6770 if (sreg == 0 && dreg == 0)
6771 /* MOVE $zero, $zero aka NOP */
6772 break;
6773 return 0;
6774
6775 case 0x11: /* POOL16C: bits 010001 */
6776 if (b5s5_op (insn) == 0x18
6777 /* JRADDIUSP: bits 010011 11000 */
6778 || (b5s5_op (insn) == 0xd
6779 /* JRC: bits 010011 01101 */
6780 && b0s5_reg (insn) == MIPS_RA_REGNUM))
6781 /* JRC $ra */
6782 break;
6783 return 0;
6784
6785 case 0x13: /* POOL16D: bits 010011 */
6786 offset = micromips_decode_imm9 (b1s9_imm (insn));
6787 if ((insn & 0x1) == 0x1
6788 /* ADDIUSP: bits 010011 1 */
6789 && offset > 0)
6790 break;
6791 return 0;
6792
6793 default:
6794 return 0;
6795 }
6796 }
6797 }
6798
6799 return 1;
6800 }
6801
6802 /* Implement the stack_frame_destroyed_p gdbarch method (16-bit version).
6803 This is a helper function for mips_stack_frame_destroyed_p. */
6804
6805 static int
6806 mips16_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6807 {
6808 CORE_ADDR func_addr = 0, func_end = 0;
6809
6810 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6811 {
6812 /* The MIPS epilogue is max. 12 bytes long. */
6813 CORE_ADDR addr = func_end - 12;
6814
6815 if (addr < func_addr + 4)
6816 addr = func_addr + 4;
6817 if (pc < addr)
6818 return 0;
6819
6820 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
6821 {
6822 unsigned short inst;
6823
6824 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc, NULL);
6825
6826 if ((inst & 0xf800) == 0xf000) /* extend */
6827 continue;
6828
6829 if (inst != 0x6300 /* addiu $sp,offset */
6830 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
6831 && inst != 0xe820 /* jr $ra */
6832 && inst != 0xe8a0 /* jrc $ra */
6833 && inst != 0x6500) /* nop */
6834 return 0;
6835 }
6836
6837 return 1;
6838 }
6839
6840 return 0;
6841 }
6842
6843 /* Implement the stack_frame_destroyed_p gdbarch method.
6844
6845 The epilogue is defined here as the area at the end of a function,
6846 after an instruction which destroys the function's stack frame. */
6847
6848 static int
6849 mips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6850 {
6851 if (mips_pc_is_mips16 (gdbarch, pc))
6852 return mips16_stack_frame_destroyed_p (gdbarch, pc);
6853 else if (mips_pc_is_micromips (gdbarch, pc))
6854 return micromips_stack_frame_destroyed_p (gdbarch, pc);
6855 else
6856 return mips32_stack_frame_destroyed_p (gdbarch, pc);
6857 }
6858
6859 /* Root of all "set mips "/"show mips " commands. This will eventually be
6860 used for all MIPS-specific commands. */
6861
6862 static void
6863 show_mips_command (char *args, int from_tty)
6864 {
6865 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
6866 }
6867
6868 static void
6869 set_mips_command (char *args, int from_tty)
6870 {
6871 printf_unfiltered
6872 ("\"set mips\" must be followed by an appropriate subcommand.\n");
6873 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
6874 }
6875
6876 /* Commands to show/set the MIPS FPU type. */
6877
6878 static void
6879 show_mipsfpu_command (char *args, int from_tty)
6880 {
6881 char *fpu;
6882
6883 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
6884 {
6885 printf_unfiltered
6886 ("The MIPS floating-point coprocessor is unknown "
6887 "because the current architecture is not MIPS.\n");
6888 return;
6889 }
6890
6891 switch (MIPS_FPU_TYPE (target_gdbarch ()))
6892 {
6893 case MIPS_FPU_SINGLE:
6894 fpu = "single-precision";
6895 break;
6896 case MIPS_FPU_DOUBLE:
6897 fpu = "double-precision";
6898 break;
6899 case MIPS_FPU_NONE:
6900 fpu = "absent (none)";
6901 break;
6902 default:
6903 internal_error (__FILE__, __LINE__, _("bad switch"));
6904 }
6905 if (mips_fpu_type_auto)
6906 printf_unfiltered ("The MIPS floating-point coprocessor "
6907 "is set automatically (currently %s)\n",
6908 fpu);
6909 else
6910 printf_unfiltered
6911 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
6912 }
6913
6914
6915 static void
6916 set_mipsfpu_command (char *args, int from_tty)
6917 {
6918 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
6919 "\"single\",\"none\" or \"auto\".\n");
6920 show_mipsfpu_command (args, from_tty);
6921 }
6922
6923 static void
6924 set_mipsfpu_single_command (char *args, int from_tty)
6925 {
6926 struct gdbarch_info info;
6927 gdbarch_info_init (&info);
6928 mips_fpu_type = MIPS_FPU_SINGLE;
6929 mips_fpu_type_auto = 0;
6930 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6931 instead of relying on globals. Doing that would let generic code
6932 handle the search for this specific architecture. */
6933 if (!gdbarch_update_p (info))
6934 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6935 }
6936
6937 static void
6938 set_mipsfpu_double_command (char *args, int from_tty)
6939 {
6940 struct gdbarch_info info;
6941 gdbarch_info_init (&info);
6942 mips_fpu_type = MIPS_FPU_DOUBLE;
6943 mips_fpu_type_auto = 0;
6944 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6945 instead of relying on globals. Doing that would let generic code
6946 handle the search for this specific architecture. */
6947 if (!gdbarch_update_p (info))
6948 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6949 }
6950
6951 static void
6952 set_mipsfpu_none_command (char *args, int from_tty)
6953 {
6954 struct gdbarch_info info;
6955 gdbarch_info_init (&info);
6956 mips_fpu_type = MIPS_FPU_NONE;
6957 mips_fpu_type_auto = 0;
6958 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6959 instead of relying on globals. Doing that would let generic code
6960 handle the search for this specific architecture. */
6961 if (!gdbarch_update_p (info))
6962 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6963 }
6964
6965 static void
6966 set_mipsfpu_auto_command (char *args, int from_tty)
6967 {
6968 mips_fpu_type_auto = 1;
6969 }
6970
6971 /* Just like reinit_frame_cache, but with the right arguments to be
6972 callable as an sfunc. */
6973
6974 static void
6975 reinit_frame_cache_sfunc (char *args, int from_tty,
6976 struct cmd_list_element *c)
6977 {
6978 reinit_frame_cache ();
6979 }
6980
6981 static int
6982 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
6983 {
6984 struct gdbarch *gdbarch = (struct gdbarch *) info->application_data;
6985
6986 /* FIXME: cagney/2003-06-26: Is this even necessary? The
6987 disassembler needs to be able to locally determine the ISA, and
6988 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
6989 work. */
6990 if (mips_pc_is_mips16 (gdbarch, memaddr))
6991 info->mach = bfd_mach_mips16;
6992 else if (mips_pc_is_micromips (gdbarch, memaddr))
6993 info->mach = bfd_mach_mips_micromips;
6994
6995 /* Round down the instruction address to the appropriate boundary. */
6996 memaddr &= (info->mach == bfd_mach_mips16
6997 || info->mach == bfd_mach_mips_micromips) ? ~1 : ~3;
6998
6999 /* Set the disassembler options. */
7000 if (!info->disassembler_options)
7001 /* This string is not recognized explicitly by the disassembler,
7002 but it tells the disassembler to not try to guess the ABI from
7003 the bfd elf headers, such that, if the user overrides the ABI
7004 of a program linked as NewABI, the disassembly will follow the
7005 register naming conventions specified by the user. */
7006 info->disassembler_options = "gpr-names=32";
7007
7008 /* Call the appropriate disassembler based on the target endian-ness. */
7009 if (info->endian == BFD_ENDIAN_BIG)
7010 return print_insn_big_mips (memaddr, info);
7011 else
7012 return print_insn_little_mips (memaddr, info);
7013 }
7014
7015 static int
7016 gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
7017 {
7018 /* Set up the disassembler info, so that we get the right
7019 register names from libopcodes. */
7020 info->disassembler_options = "gpr-names=n32";
7021 info->flavour = bfd_target_elf_flavour;
7022
7023 return gdb_print_insn_mips (memaddr, info);
7024 }
7025
7026 static int
7027 gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
7028 {
7029 /* Set up the disassembler info, so that we get the right
7030 register names from libopcodes. */
7031 info->disassembler_options = "gpr-names=64";
7032 info->flavour = bfd_target_elf_flavour;
7033
7034 return gdb_print_insn_mips (memaddr, info);
7035 }
7036
7037 /* Implement the breakpoint_kind_from_pc gdbarch method. */
7038
7039 static int
7040 mips_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
7041 {
7042 CORE_ADDR pc = *pcptr;
7043
7044 if (mips_pc_is_mips16 (gdbarch, pc))
7045 {
7046 *pcptr = unmake_compact_addr (pc);
7047 return MIPS_BP_KIND_MIPS16;
7048 }
7049 else if (mips_pc_is_micromips (gdbarch, pc))
7050 {
7051 ULONGEST insn;
7052 int status;
7053
7054 *pcptr = unmake_compact_addr (pc);
7055 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
7056 if (status || (mips_insn_size (ISA_MICROMIPS, insn) == 2))
7057 return MIPS_BP_KIND_MICROMIPS16;
7058 else
7059 return MIPS_BP_KIND_MICROMIPS32;
7060 }
7061 else
7062 return MIPS_BP_KIND_MIPS32;
7063 }
7064
7065 /* Implement the sw_breakpoint_from_kind gdbarch method. */
7066
7067 static const gdb_byte *
7068 mips_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
7069 {
7070 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7071
7072 switch (kind)
7073 {
7074 case MIPS_BP_KIND_MIPS16:
7075 {
7076 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
7077 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
7078
7079 *size = 2;
7080 if (byte_order_for_code == BFD_ENDIAN_BIG)
7081 return mips16_big_breakpoint;
7082 else
7083 return mips16_little_breakpoint;
7084 }
7085 case MIPS_BP_KIND_MICROMIPS16:
7086 {
7087 static gdb_byte micromips16_big_breakpoint[] = { 0x46, 0x85 };
7088 static gdb_byte micromips16_little_breakpoint[] = { 0x85, 0x46 };
7089
7090 *size = 2;
7091
7092 if (byte_order_for_code == BFD_ENDIAN_BIG)
7093 return micromips16_big_breakpoint;
7094 else
7095 return micromips16_little_breakpoint;
7096 }
7097 case MIPS_BP_KIND_MICROMIPS32:
7098 {
7099 static gdb_byte micromips32_big_breakpoint[] = { 0, 0x5, 0, 0x7 };
7100 static gdb_byte micromips32_little_breakpoint[] = { 0x5, 0, 0x7, 0 };
7101
7102 *size = 4;
7103 if (byte_order_for_code == BFD_ENDIAN_BIG)
7104 return micromips32_big_breakpoint;
7105 else
7106 return micromips32_little_breakpoint;
7107 }
7108 case MIPS_BP_KIND_MIPS32:
7109 {
7110 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
7111 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
7112
7113 *size = 4;
7114 if (byte_order_for_code == BFD_ENDIAN_BIG)
7115 return big_breakpoint;
7116 else
7117 return little_breakpoint;
7118 }
7119 default:
7120 gdb_assert_not_reached ("unexpected mips breakpoint kind");
7121 };
7122 }
7123
7124 /* Return non-zero if the standard MIPS instruction INST has a branch
7125 delay slot (i.e. it is a jump or branch instruction). This function
7126 is based on mips32_next_pc. */
7127
7128 static int
7129 mips32_instruction_has_delay_slot (struct gdbarch *gdbarch, ULONGEST inst)
7130 {
7131 int op;
7132 int rs;
7133 int rt;
7134
7135 op = itype_op (inst);
7136 if ((inst & 0xe0000000) != 0)
7137 {
7138 rs = itype_rs (inst);
7139 rt = itype_rt (inst);
7140 return (is_octeon_bbit_op (op, gdbarch)
7141 || op >> 2 == 5 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
7142 || op == 29 /* JALX: bits 011101 */
7143 || (op == 17
7144 && (rs == 8
7145 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
7146 || (rs == 9 && (rt & 0x2) == 0)
7147 /* BC1ANY2F, BC1ANY2T: bits 010001 01001 */
7148 || (rs == 10 && (rt & 0x2) == 0))));
7149 /* BC1ANY4F, BC1ANY4T: bits 010001 01010 */
7150 }
7151 else
7152 switch (op & 0x07) /* extract bits 28,27,26 */
7153 {
7154 case 0: /* SPECIAL */
7155 op = rtype_funct (inst);
7156 return (op == 8 /* JR */
7157 || op == 9); /* JALR */
7158 break; /* end SPECIAL */
7159 case 1: /* REGIMM */
7160 rs = itype_rs (inst);
7161 rt = itype_rt (inst); /* branch condition */
7162 return ((rt & 0xc) == 0
7163 /* BLTZ, BLTZL, BGEZ, BGEZL: bits 000xx */
7164 /* BLTZAL, BLTZALL, BGEZAL, BGEZALL: 100xx */
7165 || ((rt & 0x1e) == 0x1c && rs == 0));
7166 /* BPOSGE32, BPOSGE64: bits 1110x */
7167 break; /* end REGIMM */
7168 default: /* J, JAL, BEQ, BNE, BLEZ, BGTZ */
7169 return 1;
7170 break;
7171 }
7172 }
7173
7174 /* Return non-zero if a standard MIPS instruction at ADDR has a branch
7175 delay slot (i.e. it is a jump or branch instruction). */
7176
7177 static int
7178 mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr)
7179 {
7180 ULONGEST insn;
7181 int status;
7182
7183 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, addr, &status);
7184 if (status)
7185 return 0;
7186
7187 return mips32_instruction_has_delay_slot (gdbarch, insn);
7188 }
7189
7190 /* Return non-zero if the microMIPS instruction INSN, comprising the
7191 16-bit major opcode word in the high 16 bits and any second word
7192 in the low 16 bits, has a branch delay slot (i.e. it is a non-compact
7193 jump or branch instruction). The instruction must be 32-bit if
7194 MUSTBE32 is set or can be any instruction otherwise. */
7195
7196 static int
7197 micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32)
7198 {
7199 ULONGEST major = insn >> 16;
7200
7201 switch (micromips_op (major))
7202 {
7203 /* 16-bit instructions. */
7204 case 0x33: /* B16: bits 110011 */
7205 case 0x2b: /* BNEZ16: bits 101011 */
7206 case 0x23: /* BEQZ16: bits 100011 */
7207 return !mustbe32;
7208 case 0x11: /* POOL16C: bits 010001 */
7209 return (!mustbe32
7210 && ((b5s5_op (major) == 0xc
7211 /* JR16: bits 010001 01100 */
7212 || (b5s5_op (major) & 0x1e) == 0xe)));
7213 /* JALR16, JALRS16: bits 010001 0111x */
7214 /* 32-bit instructions. */
7215 case 0x3d: /* JAL: bits 111101 */
7216 case 0x3c: /* JALX: bits 111100 */
7217 case 0x35: /* J: bits 110101 */
7218 case 0x2d: /* BNE: bits 101101 */
7219 case 0x25: /* BEQ: bits 100101 */
7220 case 0x1d: /* JALS: bits 011101 */
7221 return 1;
7222 case 0x10: /* POOL32I: bits 010000 */
7223 return ((b5s5_op (major) & 0x1c) == 0x0
7224 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
7225 || (b5s5_op (major) & 0x1d) == 0x4
7226 /* BLEZ, BGTZ: bits 010000 001x0 */
7227 || (b5s5_op (major) & 0x1d) == 0x11
7228 /* BLTZALS, BGEZALS: bits 010000 100x1 */
7229 || ((b5s5_op (major) & 0x1e) == 0x14
7230 && (major & 0x3) == 0x0)
7231 /* BC2F, BC2T: bits 010000 1010x xxx00 */
7232 || (b5s5_op (major) & 0x1e) == 0x1a
7233 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
7234 || ((b5s5_op (major) & 0x1e) == 0x1c
7235 && (major & 0x3) == 0x0)
7236 /* BC1F, BC1T: bits 010000 1110x xxx00 */
7237 || ((b5s5_op (major) & 0x1c) == 0x1c
7238 && (major & 0x3) == 0x1));
7239 /* BC1ANY*: bits 010000 111xx xxx01 */
7240 case 0x0: /* POOL32A: bits 000000 */
7241 return (b0s6_op (insn) == 0x3c
7242 /* POOL32Axf: bits 000000 ... 111100 */
7243 && (b6s10_ext (insn) & 0x2bf) == 0x3c);
7244 /* JALR, JALR.HB: 000000 000x111100 111100 */
7245 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7246 default:
7247 return 0;
7248 }
7249 }
7250
7251 /* Return non-zero if a microMIPS instruction at ADDR has a branch delay
7252 slot (i.e. it is a non-compact jump instruction). The instruction
7253 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7254
7255 static int
7256 micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7257 CORE_ADDR addr, int mustbe32)
7258 {
7259 ULONGEST insn;
7260 int status;
7261 int size;
7262
7263 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7264 if (status)
7265 return 0;
7266 size = mips_insn_size (ISA_MICROMIPS, insn);
7267 insn <<= 16;
7268 if (size == 2 * MIPS_INSN16_SIZE)
7269 {
7270 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7271 if (status)
7272 return 0;
7273 }
7274
7275 return micromips_instruction_has_delay_slot (insn, mustbe32);
7276 }
7277
7278 /* Return non-zero if the MIPS16 instruction INST, which must be
7279 a 32-bit instruction if MUSTBE32 is set or can be any instruction
7280 otherwise, has a branch delay slot (i.e. it is a non-compact jump
7281 instruction). This function is based on mips16_next_pc. */
7282
7283 static int
7284 mips16_instruction_has_delay_slot (unsigned short inst, int mustbe32)
7285 {
7286 if ((inst & 0xf89f) == 0xe800) /* JR/JALR (16-bit instruction) */
7287 return !mustbe32;
7288 return (inst & 0xf800) == 0x1800; /* JAL/JALX (32-bit instruction) */
7289 }
7290
7291 /* Return non-zero if a MIPS16 instruction at ADDR has a branch delay
7292 slot (i.e. it is a non-compact jump instruction). The instruction
7293 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7294
7295 static int
7296 mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7297 CORE_ADDR addr, int mustbe32)
7298 {
7299 unsigned short insn;
7300 int status;
7301
7302 insn = mips_fetch_instruction (gdbarch, ISA_MIPS16, addr, &status);
7303 if (status)
7304 return 0;
7305
7306 return mips16_instruction_has_delay_slot (insn, mustbe32);
7307 }
7308
7309 /* Calculate the starting address of the MIPS memory segment BPADDR is in.
7310 This assumes KSSEG exists. */
7311
7312 static CORE_ADDR
7313 mips_segment_boundary (CORE_ADDR bpaddr)
7314 {
7315 CORE_ADDR mask = CORE_ADDR_MAX;
7316 int segsize;
7317
7318 if (sizeof (CORE_ADDR) == 8)
7319 /* Get the topmost two bits of bpaddr in a 32-bit safe manner (avoid
7320 a compiler warning produced where CORE_ADDR is a 32-bit type even
7321 though in that case this is dead code). */
7322 switch (bpaddr >> ((sizeof (CORE_ADDR) << 3) - 2) & 3)
7323 {
7324 case 3:
7325 if (bpaddr == (bfd_signed_vma) (int32_t) bpaddr)
7326 segsize = 29; /* 32-bit compatibility segment */
7327 else
7328 segsize = 62; /* xkseg */
7329 break;
7330 case 2: /* xkphys */
7331 segsize = 59;
7332 break;
7333 default: /* xksseg (1), xkuseg/kuseg (0) */
7334 segsize = 62;
7335 break;
7336 }
7337 else if (bpaddr & 0x80000000) /* kernel segment */
7338 segsize = 29;
7339 else
7340 segsize = 31; /* user segment */
7341 mask <<= segsize;
7342 return bpaddr & mask;
7343 }
7344
7345 /* Move the breakpoint at BPADDR out of any branch delay slot by shifting
7346 it backwards if necessary. Return the address of the new location. */
7347
7348 static CORE_ADDR
7349 mips_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
7350 {
7351 CORE_ADDR prev_addr;
7352 CORE_ADDR boundary;
7353 CORE_ADDR func_addr;
7354
7355 /* If a breakpoint is set on the instruction in a branch delay slot,
7356 GDB gets confused. When the breakpoint is hit, the PC isn't on
7357 the instruction in the branch delay slot, the PC will point to
7358 the branch instruction. Since the PC doesn't match any known
7359 breakpoints, GDB reports a trap exception.
7360
7361 There are two possible fixes for this problem.
7362
7363 1) When the breakpoint gets hit, see if the BD bit is set in the
7364 Cause register (which indicates the last exception occurred in a
7365 branch delay slot). If the BD bit is set, fix the PC to point to
7366 the instruction in the branch delay slot.
7367
7368 2) When the user sets the breakpoint, don't allow him to set the
7369 breakpoint on the instruction in the branch delay slot. Instead
7370 move the breakpoint to the branch instruction (which will have
7371 the same result).
7372
7373 The problem with the first solution is that if the user then
7374 single-steps the processor, the branch instruction will get
7375 skipped (since GDB thinks the PC is on the instruction in the
7376 branch delay slot).
7377
7378 So, we'll use the second solution. To do this we need to know if
7379 the instruction we're trying to set the breakpoint on is in the
7380 branch delay slot. */
7381
7382 boundary = mips_segment_boundary (bpaddr);
7383
7384 /* Make sure we don't scan back before the beginning of the current
7385 function, since we may fetch constant data or insns that look like
7386 a jump. Of course we might do that anyway if the compiler has
7387 moved constants inline. :-( */
7388 if (find_pc_partial_function (bpaddr, NULL, &func_addr, NULL)
7389 && func_addr > boundary && func_addr <= bpaddr)
7390 boundary = func_addr;
7391
7392 if (mips_pc_is_mips (bpaddr))
7393 {
7394 if (bpaddr == boundary)
7395 return bpaddr;
7396
7397 /* If the previous instruction has a branch delay slot, we have
7398 to move the breakpoint to the branch instruction. */
7399 prev_addr = bpaddr - 4;
7400 if (mips32_insn_at_pc_has_delay_slot (gdbarch, prev_addr))
7401 bpaddr = prev_addr;
7402 }
7403 else
7404 {
7405 int (*insn_at_pc_has_delay_slot) (struct gdbarch *, CORE_ADDR, int);
7406 CORE_ADDR addr, jmpaddr;
7407 int i;
7408
7409 boundary = unmake_compact_addr (boundary);
7410
7411 /* The only MIPS16 instructions with delay slots are JAL, JALX,
7412 JALR and JR. An absolute JAL/JALX is always 4 bytes long,
7413 so try for that first, then try the 2 byte JALR/JR.
7414 The microMIPS ASE has a whole range of jumps and branches
7415 with delay slots, some of which take 4 bytes and some take
7416 2 bytes, so the idea is the same.
7417 FIXME: We have to assume that bpaddr is not the second half
7418 of an extended instruction. */
7419 insn_at_pc_has_delay_slot = (mips_pc_is_micromips (gdbarch, bpaddr)
7420 ? micromips_insn_at_pc_has_delay_slot
7421 : mips16_insn_at_pc_has_delay_slot);
7422
7423 jmpaddr = 0;
7424 addr = bpaddr;
7425 for (i = 1; i < 4; i++)
7426 {
7427 if (unmake_compact_addr (addr) == boundary)
7428 break;
7429 addr -= MIPS_INSN16_SIZE;
7430 if (i == 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 0))
7431 /* Looks like a JR/JALR at [target-1], but it could be
7432 the second word of a previous JAL/JALX, so record it
7433 and check back one more. */
7434 jmpaddr = addr;
7435 else if (i > 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 1))
7436 {
7437 if (i == 2)
7438 /* Looks like a JAL/JALX at [target-2], but it could also
7439 be the second word of a previous JAL/JALX, record it,
7440 and check back one more. */
7441 jmpaddr = addr;
7442 else
7443 /* Looks like a JAL/JALX at [target-3], so any previously
7444 recorded JAL/JALX or JR/JALR must be wrong, because:
7445
7446 >-3: JAL
7447 -2: JAL-ext (can't be JAL/JALX)
7448 -1: bdslot (can't be JR/JALR)
7449 0: target insn
7450
7451 Of course it could be another JAL-ext which looks
7452 like a JAL, but in that case we'd have broken out
7453 of this loop at [target-2]:
7454
7455 -4: JAL
7456 >-3: JAL-ext
7457 -2: bdslot (can't be jmp)
7458 -1: JR/JALR
7459 0: target insn */
7460 jmpaddr = 0;
7461 }
7462 else
7463 {
7464 /* Not a jump instruction: if we're at [target-1] this
7465 could be the second word of a JAL/JALX, so continue;
7466 otherwise we're done. */
7467 if (i > 1)
7468 break;
7469 }
7470 }
7471
7472 if (jmpaddr)
7473 bpaddr = jmpaddr;
7474 }
7475
7476 return bpaddr;
7477 }
7478
7479 /* Return non-zero if SUFFIX is one of the numeric suffixes used for MIPS16
7480 call stubs, one of 1, 2, 5, 6, 9, 10, or, if ZERO is non-zero, also 0. */
7481
7482 static int
7483 mips_is_stub_suffix (const char *suffix, int zero)
7484 {
7485 switch (suffix[0])
7486 {
7487 case '0':
7488 return zero && suffix[1] == '\0';
7489 case '1':
7490 return suffix[1] == '\0' || (suffix[1] == '0' && suffix[2] == '\0');
7491 case '2':
7492 case '5':
7493 case '6':
7494 case '9':
7495 return suffix[1] == '\0';
7496 default:
7497 return 0;
7498 }
7499 }
7500
7501 /* Return non-zero if MODE is one of the mode infixes used for MIPS16
7502 call stubs, one of sf, df, sc, or dc. */
7503
7504 static int
7505 mips_is_stub_mode (const char *mode)
7506 {
7507 return ((mode[0] == 's' || mode[0] == 'd')
7508 && (mode[1] == 'f' || mode[1] == 'c'));
7509 }
7510
7511 /* Code at PC is a compiler-generated stub. Such a stub for a function
7512 bar might have a name like __fn_stub_bar, and might look like this:
7513
7514 mfc1 $4, $f13
7515 mfc1 $5, $f12
7516 mfc1 $6, $f15
7517 mfc1 $7, $f14
7518
7519 followed by (or interspersed with):
7520
7521 j bar
7522
7523 or:
7524
7525 lui $25, %hi(bar)
7526 addiu $25, $25, %lo(bar)
7527 jr $25
7528
7529 ($1 may be used in old code; for robustness we accept any register)
7530 or, in PIC code:
7531
7532 lui $28, %hi(_gp_disp)
7533 addiu $28, $28, %lo(_gp_disp)
7534 addu $28, $28, $25
7535 lw $25, %got(bar)
7536 addiu $25, $25, %lo(bar)
7537 jr $25
7538
7539 In the case of a __call_stub_bar stub, the sequence to set up
7540 arguments might look like this:
7541
7542 mtc1 $4, $f13
7543 mtc1 $5, $f12
7544 mtc1 $6, $f15
7545 mtc1 $7, $f14
7546
7547 followed by (or interspersed with) one of the jump sequences above.
7548
7549 In the case of a __call_stub_fp_bar stub, JAL or JALR is used instead
7550 of J or JR, respectively, followed by:
7551
7552 mfc1 $2, $f0
7553 mfc1 $3, $f1
7554 jr $18
7555
7556 We are at the beginning of the stub here, and scan down and extract
7557 the target address from the jump immediate instruction or, if a jump
7558 register instruction is used, from the register referred. Return
7559 the value of PC calculated or 0 if inconclusive.
7560
7561 The limit on the search is arbitrarily set to 20 instructions. FIXME. */
7562
7563 static CORE_ADDR
7564 mips_get_mips16_fn_stub_pc (struct frame_info *frame, CORE_ADDR pc)
7565 {
7566 struct gdbarch *gdbarch = get_frame_arch (frame);
7567 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7568 int addrreg = MIPS_ZERO_REGNUM;
7569 CORE_ADDR start_pc = pc;
7570 CORE_ADDR target_pc = 0;
7571 CORE_ADDR addr = 0;
7572 CORE_ADDR gp = 0;
7573 int status = 0;
7574 int i;
7575
7576 for (i = 0;
7577 status == 0 && target_pc == 0 && i < 20;
7578 i++, pc += MIPS_INSN32_SIZE)
7579 {
7580 ULONGEST inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
7581 CORE_ADDR imm;
7582 int rt;
7583 int rs;
7584 int rd;
7585
7586 switch (itype_op (inst))
7587 {
7588 case 0: /* SPECIAL */
7589 switch (rtype_funct (inst))
7590 {
7591 case 8: /* JR */
7592 case 9: /* JALR */
7593 rs = rtype_rs (inst);
7594 if (rs == MIPS_GP_REGNUM)
7595 target_pc = gp; /* Hmm... */
7596 else if (rs == addrreg)
7597 target_pc = addr;
7598 break;
7599
7600 case 0x21: /* ADDU */
7601 rt = rtype_rt (inst);
7602 rs = rtype_rs (inst);
7603 rd = rtype_rd (inst);
7604 if (rd == MIPS_GP_REGNUM
7605 && ((rs == MIPS_GP_REGNUM && rt == MIPS_T9_REGNUM)
7606 || (rs == MIPS_T9_REGNUM && rt == MIPS_GP_REGNUM)))
7607 gp += start_pc;
7608 break;
7609 }
7610 break;
7611
7612 case 2: /* J */
7613 case 3: /* JAL */
7614 target_pc = jtype_target (inst) << 2;
7615 target_pc += ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
7616 break;
7617
7618 case 9: /* ADDIU */
7619 rt = itype_rt (inst);
7620 rs = itype_rs (inst);
7621 if (rt == rs)
7622 {
7623 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7624 if (rt == MIPS_GP_REGNUM)
7625 gp += imm;
7626 else if (rt == addrreg)
7627 addr += imm;
7628 }
7629 break;
7630
7631 case 0xf: /* LUI */
7632 rt = itype_rt (inst);
7633 imm = ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 16;
7634 if (rt == MIPS_GP_REGNUM)
7635 gp = imm;
7636 else if (rt != MIPS_ZERO_REGNUM)
7637 {
7638 addrreg = rt;
7639 addr = imm;
7640 }
7641 break;
7642
7643 case 0x23: /* LW */
7644 rt = itype_rt (inst);
7645 rs = itype_rs (inst);
7646 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7647 if (gp != 0 && rs == MIPS_GP_REGNUM)
7648 {
7649 gdb_byte buf[4];
7650
7651 memset (buf, 0, sizeof (buf));
7652 status = target_read_memory (gp + imm, buf, sizeof (buf));
7653 addrreg = rt;
7654 addr = extract_signed_integer (buf, sizeof (buf), byte_order);
7655 }
7656 break;
7657 }
7658 }
7659
7660 return target_pc;
7661 }
7662
7663 /* If PC is in a MIPS16 call or return stub, return the address of the
7664 target PC, which is either the callee or the caller. There are several
7665 cases which must be handled:
7666
7667 * If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7668 and the target PC is in $31 ($ra).
7669 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7670 and the target PC is in $2.
7671 * If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7672 i.e. before the JALR instruction, this is effectively a call stub
7673 and the target PC is in $2. Otherwise this is effectively
7674 a return stub and the target PC is in $18.
7675 * If the PC is at the start of __call_stub_fp_*, i.e. before the
7676 JAL or JALR instruction, this is effectively a call stub and the
7677 target PC is buried in the instruction stream. Otherwise this
7678 is effectively a return stub and the target PC is in $18.
7679 * If the PC is in __call_stub_* or in __fn_stub_*, this is a call
7680 stub and the target PC is buried in the instruction stream.
7681
7682 See the source code for the stubs in gcc/config/mips/mips16.S, or the
7683 stub builder in gcc/config/mips/mips.c (mips16_build_call_stub) for the
7684 gory details. */
7685
7686 static CORE_ADDR
7687 mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7688 {
7689 struct gdbarch *gdbarch = get_frame_arch (frame);
7690 CORE_ADDR start_addr;
7691 const char *name;
7692 size_t prefixlen;
7693
7694 /* Find the starting address and name of the function containing the PC. */
7695 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
7696 return 0;
7697
7698 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7699 and the target PC is in $31 ($ra). */
7700 prefixlen = strlen (mips_str_mips16_ret_stub);
7701 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7702 && mips_is_stub_mode (name + prefixlen)
7703 && name[prefixlen + 2] == '\0')
7704 return get_frame_register_signed
7705 (frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
7706
7707 /* If the PC is in __mips16_call_stub_*, this is one of the call
7708 call/return stubs. */
7709 prefixlen = strlen (mips_str_mips16_call_stub);
7710 if (strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0)
7711 {
7712 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7713 and the target PC is in $2. */
7714 if (mips_is_stub_suffix (name + prefixlen, 0))
7715 return get_frame_register_signed
7716 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7717
7718 /* If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7719 i.e. before the JALR instruction, this is effectively a call stub
7720 and the target PC is in $2. Otherwise this is effectively
7721 a return stub and the target PC is in $18. */
7722 else if (mips_is_stub_mode (name + prefixlen)
7723 && name[prefixlen + 2] == '_'
7724 && mips_is_stub_suffix (name + prefixlen + 3, 0))
7725 {
7726 if (pc == start_addr)
7727 /* This is the 'call' part of a call stub. The return
7728 address is in $2. */
7729 return get_frame_register_signed
7730 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7731 else
7732 /* This is the 'return' part of a call stub. The return
7733 address is in $18. */
7734 return get_frame_register_signed
7735 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7736 }
7737 else
7738 return 0; /* Not a stub. */
7739 }
7740
7741 /* If the PC is in __call_stub_* or __fn_stub*, this is one of the
7742 compiler-generated call or call/return stubs. */
7743 if (startswith (name, mips_str_fn_stub)
7744 || startswith (name, mips_str_call_stub))
7745 {
7746 if (pc == start_addr)
7747 /* This is the 'call' part of a call stub. Call this helper
7748 to scan through this code for interesting instructions
7749 and determine the final PC. */
7750 return mips_get_mips16_fn_stub_pc (frame, pc);
7751 else
7752 /* This is the 'return' part of a call stub. The return address
7753 is in $18. */
7754 return get_frame_register_signed
7755 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7756 }
7757
7758 return 0; /* Not a stub. */
7759 }
7760
7761 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
7762 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
7763
7764 static int
7765 mips_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name)
7766 {
7767 CORE_ADDR start_addr;
7768 size_t prefixlen;
7769
7770 /* Find the starting address of the function containing the PC. */
7771 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
7772 return 0;
7773
7774 /* If the PC is in __mips16_call_stub_{s,d}{f,c}_{0..10} but not at
7775 the start, i.e. after the JALR instruction, this is effectively
7776 a return stub. */
7777 prefixlen = strlen (mips_str_mips16_call_stub);
7778 if (pc != start_addr
7779 && strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0
7780 && mips_is_stub_mode (name + prefixlen)
7781 && name[prefixlen + 2] == '_'
7782 && mips_is_stub_suffix (name + prefixlen + 3, 1))
7783 return 1;
7784
7785 /* If the PC is in __call_stub_fp_* but not at the start, i.e. after
7786 the JAL or JALR instruction, this is effectively a return stub. */
7787 prefixlen = strlen (mips_str_call_fp_stub);
7788 if (pc != start_addr
7789 && strncmp (name, mips_str_call_fp_stub, prefixlen) == 0)
7790 return 1;
7791
7792 /* Consume the .pic. prefix of any PIC stub, this function must return
7793 true when the PC is in a PIC stub of a __mips16_ret_{d,s}{f,c} stub
7794 or the call stub path will trigger in handle_inferior_event causing
7795 it to go astray. */
7796 prefixlen = strlen (mips_str_pic);
7797 if (strncmp (name, mips_str_pic, prefixlen) == 0)
7798 name += prefixlen;
7799
7800 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub. */
7801 prefixlen = strlen (mips_str_mips16_ret_stub);
7802 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7803 && mips_is_stub_mode (name + prefixlen)
7804 && name[prefixlen + 2] == '\0')
7805 return 1;
7806
7807 return 0; /* Not a stub. */
7808 }
7809
7810 /* If the current PC is the start of a non-PIC-to-PIC stub, return the
7811 PC of the stub target. The stub just loads $t9 and jumps to it,
7812 so that $t9 has the correct value at function entry. */
7813
7814 static CORE_ADDR
7815 mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7816 {
7817 struct gdbarch *gdbarch = get_frame_arch (frame);
7818 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7819 struct bound_minimal_symbol msym;
7820 int i;
7821 gdb_byte stub_code[16];
7822 int32_t stub_words[4];
7823
7824 /* The stub for foo is named ".pic.foo", and is either two
7825 instructions inserted before foo or a three instruction sequence
7826 which jumps to foo. */
7827 msym = lookup_minimal_symbol_by_pc (pc);
7828 if (msym.minsym == NULL
7829 || BMSYMBOL_VALUE_ADDRESS (msym) != pc
7830 || MSYMBOL_LINKAGE_NAME (msym.minsym) == NULL
7831 || !startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
7832 return 0;
7833
7834 /* A two-instruction header. */
7835 if (MSYMBOL_SIZE (msym.minsym) == 8)
7836 return pc + 8;
7837
7838 /* A three-instruction (plus delay slot) trampoline. */
7839 if (MSYMBOL_SIZE (msym.minsym) == 16)
7840 {
7841 if (target_read_memory (pc, stub_code, 16) != 0)
7842 return 0;
7843 for (i = 0; i < 4; i++)
7844 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
7845 4, byte_order);
7846
7847 /* A stub contains these instructions:
7848 lui t9, %hi(target)
7849 j target
7850 addiu t9, t9, %lo(target)
7851 nop
7852
7853 This works even for N64, since stubs are only generated with
7854 -msym32. */
7855 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
7856 && (stub_words[1] & 0xfc000000U) == 0x08000000
7857 && (stub_words[2] & 0xffff0000U) == 0x27390000
7858 && stub_words[3] == 0x00000000)
7859 return ((((stub_words[0] & 0x0000ffff) << 16)
7860 + (stub_words[2] & 0x0000ffff)) ^ 0x8000) - 0x8000;
7861 }
7862
7863 /* Not a recognized stub. */
7864 return 0;
7865 }
7866
7867 static CORE_ADDR
7868 mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7869 {
7870 CORE_ADDR requested_pc = pc;
7871 CORE_ADDR target_pc;
7872 CORE_ADDR new_pc;
7873
7874 do
7875 {
7876 target_pc = pc;
7877
7878 new_pc = mips_skip_mips16_trampoline_code (frame, pc);
7879 if (new_pc)
7880 pc = new_pc;
7881
7882 new_pc = find_solib_trampoline_target (frame, pc);
7883 if (new_pc)
7884 pc = new_pc;
7885
7886 new_pc = mips_skip_pic_trampoline_code (frame, pc);
7887 if (new_pc)
7888 pc = new_pc;
7889 }
7890 while (pc != target_pc);
7891
7892 return pc != requested_pc ? pc : 0;
7893 }
7894
7895 /* Convert a dbx stab register number (from `r' declaration) to a GDB
7896 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7897
7898 static int
7899 mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
7900 {
7901 int regnum;
7902 if (num >= 0 && num < 32)
7903 regnum = num;
7904 else if (num >= 38 && num < 70)
7905 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
7906 else if (num == 70)
7907 regnum = mips_regnum (gdbarch)->hi;
7908 else if (num == 71)
7909 regnum = mips_regnum (gdbarch)->lo;
7910 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 72 && num < 78)
7911 regnum = num + mips_regnum (gdbarch)->dspacc - 72;
7912 else
7913 return -1;
7914 return gdbarch_num_regs (gdbarch) + regnum;
7915 }
7916
7917
7918 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
7919 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7920
7921 static int
7922 mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
7923 {
7924 int regnum;
7925 if (num >= 0 && num < 32)
7926 regnum = num;
7927 else if (num >= 32 && num < 64)
7928 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
7929 else if (num == 64)
7930 regnum = mips_regnum (gdbarch)->hi;
7931 else if (num == 65)
7932 regnum = mips_regnum (gdbarch)->lo;
7933 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 66 && num < 72)
7934 regnum = num + mips_regnum (gdbarch)->dspacc - 66;
7935 else
7936 return -1;
7937 return gdbarch_num_regs (gdbarch) + regnum;
7938 }
7939
7940 static int
7941 mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
7942 {
7943 /* Only makes sense to supply raw registers. */
7944 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
7945 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
7946 decide if it is valid. Should instead define a standard sim/gdb
7947 register numbering scheme. */
7948 if (gdbarch_register_name (gdbarch,
7949 gdbarch_num_regs (gdbarch) + regnum) != NULL
7950 && gdbarch_register_name (gdbarch,
7951 gdbarch_num_regs (gdbarch)
7952 + regnum)[0] != '\0')
7953 return regnum;
7954 else
7955 return LEGACY_SIM_REGNO_IGNORE;
7956 }
7957
7958
7959 /* Convert an integer into an address. Extracting the value signed
7960 guarantees a correctly sign extended address. */
7961
7962 static CORE_ADDR
7963 mips_integer_to_address (struct gdbarch *gdbarch,
7964 struct type *type, const gdb_byte *buf)
7965 {
7966 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7967 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
7968 }
7969
7970 /* Dummy virtual frame pointer method. This is no more or less accurate
7971 than most other architectures; we just need to be explicit about it,
7972 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
7973 an assertion failure. */
7974
7975 static void
7976 mips_virtual_frame_pointer (struct gdbarch *gdbarch,
7977 CORE_ADDR pc, int *reg, LONGEST *offset)
7978 {
7979 *reg = MIPS_SP_REGNUM;
7980 *offset = 0;
7981 }
7982
7983 static void
7984 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
7985 {
7986 enum mips_abi *abip = (enum mips_abi *) obj;
7987 const char *name = bfd_get_section_name (abfd, sect);
7988
7989 if (*abip != MIPS_ABI_UNKNOWN)
7990 return;
7991
7992 if (!startswith (name, ".mdebug."))
7993 return;
7994
7995 if (strcmp (name, ".mdebug.abi32") == 0)
7996 *abip = MIPS_ABI_O32;
7997 else if (strcmp (name, ".mdebug.abiN32") == 0)
7998 *abip = MIPS_ABI_N32;
7999 else if (strcmp (name, ".mdebug.abi64") == 0)
8000 *abip = MIPS_ABI_N64;
8001 else if (strcmp (name, ".mdebug.abiO64") == 0)
8002 *abip = MIPS_ABI_O64;
8003 else if (strcmp (name, ".mdebug.eabi32") == 0)
8004 *abip = MIPS_ABI_EABI32;
8005 else if (strcmp (name, ".mdebug.eabi64") == 0)
8006 *abip = MIPS_ABI_EABI64;
8007 else
8008 warning (_("unsupported ABI %s."), name + 8);
8009 }
8010
8011 static void
8012 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
8013 {
8014 int *lbp = (int *) obj;
8015 const char *name = bfd_get_section_name (abfd, sect);
8016
8017 if (startswith (name, ".gcc_compiled_long32"))
8018 *lbp = 32;
8019 else if (startswith (name, ".gcc_compiled_long64"))
8020 *lbp = 64;
8021 else if (startswith (name, ".gcc_compiled_long"))
8022 warning (_("unrecognized .gcc_compiled_longXX"));
8023 }
8024
8025 static enum mips_abi
8026 global_mips_abi (void)
8027 {
8028 int i;
8029
8030 for (i = 0; mips_abi_strings[i] != NULL; i++)
8031 if (mips_abi_strings[i] == mips_abi_string)
8032 return (enum mips_abi) i;
8033
8034 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
8035 }
8036
8037 /* Return the default compressed instruction set, either of MIPS16
8038 or microMIPS, selected when none could have been determined from
8039 the ELF header of the binary being executed (or no binary has been
8040 selected. */
8041
8042 static enum mips_isa
8043 global_mips_compression (void)
8044 {
8045 int i;
8046
8047 for (i = 0; mips_compression_strings[i] != NULL; i++)
8048 if (mips_compression_strings[i] == mips_compression_string)
8049 return (enum mips_isa) i;
8050
8051 internal_error (__FILE__, __LINE__, _("unknown compressed ISA string"));
8052 }
8053
8054 static void
8055 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
8056 {
8057 /* If the size matches the set of 32-bit or 64-bit integer registers,
8058 assume that's what we've got. */
8059 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
8060 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
8061
8062 /* If the size matches the full set of registers GDB traditionally
8063 knows about, including floating point, for either 32-bit or
8064 64-bit, assume that's what we've got. */
8065 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
8066 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
8067
8068 /* Otherwise we don't have a useful guess. */
8069 }
8070
8071 static struct value *
8072 value_of_mips_user_reg (struct frame_info *frame, const void *baton)
8073 {
8074 const int *reg_p = (const int *) baton;
8075 return value_of_register (*reg_p, frame);
8076 }
8077
8078 static struct gdbarch *
8079 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8080 {
8081 struct gdbarch *gdbarch;
8082 struct gdbarch_tdep *tdep;
8083 int elf_flags;
8084 enum mips_abi mips_abi, found_abi, wanted_abi;
8085 int i, num_regs;
8086 enum mips_fpu_type fpu_type;
8087 struct tdesc_arch_data *tdesc_data = NULL;
8088 int elf_fpu_type = Val_GNU_MIPS_ABI_FP_ANY;
8089 const char **reg_names;
8090 struct mips_regnum mips_regnum, *regnum;
8091 enum mips_isa mips_isa;
8092 int dspacc;
8093 int dspctl;
8094
8095 /* Fill in the OS dependent register numbers and names. */
8096 if (info.osabi == GDB_OSABI_LINUX)
8097 {
8098 mips_regnum.fp0 = 38;
8099 mips_regnum.pc = 37;
8100 mips_regnum.cause = 36;
8101 mips_regnum.badvaddr = 35;
8102 mips_regnum.hi = 34;
8103 mips_regnum.lo = 33;
8104 mips_regnum.fp_control_status = 70;
8105 mips_regnum.fp_implementation_revision = 71;
8106 mips_regnum.dspacc = -1;
8107 mips_regnum.dspctl = -1;
8108 dspacc = 72;
8109 dspctl = 78;
8110 num_regs = 90;
8111 reg_names = mips_linux_reg_names;
8112 }
8113 else
8114 {
8115 mips_regnum.lo = MIPS_EMBED_LO_REGNUM;
8116 mips_regnum.hi = MIPS_EMBED_HI_REGNUM;
8117 mips_regnum.badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
8118 mips_regnum.cause = MIPS_EMBED_CAUSE_REGNUM;
8119 mips_regnum.pc = MIPS_EMBED_PC_REGNUM;
8120 mips_regnum.fp0 = MIPS_EMBED_FP0_REGNUM;
8121 mips_regnum.fp_control_status = 70;
8122 mips_regnum.fp_implementation_revision = 71;
8123 mips_regnum.dspacc = dspacc = -1;
8124 mips_regnum.dspctl = dspctl = -1;
8125 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
8126 if (info.bfd_arch_info != NULL
8127 && info.bfd_arch_info->mach == bfd_mach_mips3900)
8128 reg_names = mips_tx39_reg_names;
8129 else
8130 reg_names = mips_generic_reg_names;
8131 }
8132
8133 /* Check any target description for validity. */
8134 if (tdesc_has_registers (info.target_desc))
8135 {
8136 static const char *const mips_gprs[] = {
8137 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8138 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8139 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
8140 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
8141 };
8142 static const char *const mips_fprs[] = {
8143 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
8144 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
8145 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
8146 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
8147 };
8148
8149 const struct tdesc_feature *feature;
8150 int valid_p;
8151
8152 feature = tdesc_find_feature (info.target_desc,
8153 "org.gnu.gdb.mips.cpu");
8154 if (feature == NULL)
8155 return NULL;
8156
8157 tdesc_data = tdesc_data_alloc ();
8158
8159 valid_p = 1;
8160 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
8161 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8162 mips_gprs[i]);
8163
8164
8165 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8166 mips_regnum.lo, "lo");
8167 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8168 mips_regnum.hi, "hi");
8169 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8170 mips_regnum.pc, "pc");
8171
8172 if (!valid_p)
8173 {
8174 tdesc_data_cleanup (tdesc_data);
8175 return NULL;
8176 }
8177
8178 feature = tdesc_find_feature (info.target_desc,
8179 "org.gnu.gdb.mips.cp0");
8180 if (feature == NULL)
8181 {
8182 tdesc_data_cleanup (tdesc_data);
8183 return NULL;
8184 }
8185
8186 valid_p = 1;
8187 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8188 mips_regnum.badvaddr, "badvaddr");
8189 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8190 MIPS_PS_REGNUM, "status");
8191 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8192 mips_regnum.cause, "cause");
8193
8194 if (!valid_p)
8195 {
8196 tdesc_data_cleanup (tdesc_data);
8197 return NULL;
8198 }
8199
8200 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
8201 backend is not prepared for that, though. */
8202 feature = tdesc_find_feature (info.target_desc,
8203 "org.gnu.gdb.mips.fpu");
8204 if (feature == NULL)
8205 {
8206 tdesc_data_cleanup (tdesc_data);
8207 return NULL;
8208 }
8209
8210 valid_p = 1;
8211 for (i = 0; i < 32; i++)
8212 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8213 i + mips_regnum.fp0, mips_fprs[i]);
8214
8215 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8216 mips_regnum.fp_control_status,
8217 "fcsr");
8218 valid_p
8219 &= tdesc_numbered_register (feature, tdesc_data,
8220 mips_regnum.fp_implementation_revision,
8221 "fir");
8222
8223 if (!valid_p)
8224 {
8225 tdesc_data_cleanup (tdesc_data);
8226 return NULL;
8227 }
8228
8229 num_regs = mips_regnum.fp_implementation_revision + 1;
8230
8231 if (dspacc >= 0)
8232 {
8233 feature = tdesc_find_feature (info.target_desc,
8234 "org.gnu.gdb.mips.dsp");
8235 /* The DSP registers are optional; it's OK if they are absent. */
8236 if (feature != NULL)
8237 {
8238 i = 0;
8239 valid_p = 1;
8240 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8241 dspacc + i++, "hi1");
8242 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8243 dspacc + i++, "lo1");
8244 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8245 dspacc + i++, "hi2");
8246 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8247 dspacc + i++, "lo2");
8248 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8249 dspacc + i++, "hi3");
8250 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8251 dspacc + i++, "lo3");
8252
8253 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8254 dspctl, "dspctl");
8255
8256 if (!valid_p)
8257 {
8258 tdesc_data_cleanup (tdesc_data);
8259 return NULL;
8260 }
8261
8262 mips_regnum.dspacc = dspacc;
8263 mips_regnum.dspctl = dspctl;
8264
8265 num_regs = mips_regnum.dspctl + 1;
8266 }
8267 }
8268
8269 /* It would be nice to detect an attempt to use a 64-bit ABI
8270 when only 32-bit registers are provided. */
8271 reg_names = NULL;
8272 }
8273
8274 /* First of all, extract the elf_flags, if available. */
8275 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8276 elf_flags = elf_elfheader (info.abfd)->e_flags;
8277 else if (arches != NULL)
8278 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
8279 else
8280 elf_flags = 0;
8281 if (gdbarch_debug)
8282 fprintf_unfiltered (gdb_stdlog,
8283 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
8284
8285 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
8286 switch ((elf_flags & EF_MIPS_ABI))
8287 {
8288 case E_MIPS_ABI_O32:
8289 found_abi = MIPS_ABI_O32;
8290 break;
8291 case E_MIPS_ABI_O64:
8292 found_abi = MIPS_ABI_O64;
8293 break;
8294 case E_MIPS_ABI_EABI32:
8295 found_abi = MIPS_ABI_EABI32;
8296 break;
8297 case E_MIPS_ABI_EABI64:
8298 found_abi = MIPS_ABI_EABI64;
8299 break;
8300 default:
8301 if ((elf_flags & EF_MIPS_ABI2))
8302 found_abi = MIPS_ABI_N32;
8303 else
8304 found_abi = MIPS_ABI_UNKNOWN;
8305 break;
8306 }
8307
8308 /* GCC creates a pseudo-section whose name describes the ABI. */
8309 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
8310 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
8311
8312 /* If we have no useful BFD information, use the ABI from the last
8313 MIPS architecture (if there is one). */
8314 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
8315 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
8316
8317 /* Try the architecture for any hint of the correct ABI. */
8318 if (found_abi == MIPS_ABI_UNKNOWN
8319 && info.bfd_arch_info != NULL
8320 && info.bfd_arch_info->arch == bfd_arch_mips)
8321 {
8322 switch (info.bfd_arch_info->mach)
8323 {
8324 case bfd_mach_mips3900:
8325 found_abi = MIPS_ABI_EABI32;
8326 break;
8327 case bfd_mach_mips4100:
8328 case bfd_mach_mips5000:
8329 found_abi = MIPS_ABI_EABI64;
8330 break;
8331 case bfd_mach_mips8000:
8332 case bfd_mach_mips10000:
8333 /* On Irix, ELF64 executables use the N64 ABI. The
8334 pseudo-sections which describe the ABI aren't present
8335 on IRIX. (Even for executables created by gcc.) */
8336 if (info.abfd != NULL
8337 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8338 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8339 found_abi = MIPS_ABI_N64;
8340 else
8341 found_abi = MIPS_ABI_N32;
8342 break;
8343 }
8344 }
8345
8346 /* Default 64-bit objects to N64 instead of O32. */
8347 if (found_abi == MIPS_ABI_UNKNOWN
8348 && info.abfd != NULL
8349 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8350 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8351 found_abi = MIPS_ABI_N64;
8352
8353 if (gdbarch_debug)
8354 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
8355 found_abi);
8356
8357 /* What has the user specified from the command line? */
8358 wanted_abi = global_mips_abi ();
8359 if (gdbarch_debug)
8360 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
8361 wanted_abi);
8362
8363 /* Now that we have found what the ABI for this binary would be,
8364 check whether the user is overriding it. */
8365 if (wanted_abi != MIPS_ABI_UNKNOWN)
8366 mips_abi = wanted_abi;
8367 else if (found_abi != MIPS_ABI_UNKNOWN)
8368 mips_abi = found_abi;
8369 else
8370 mips_abi = MIPS_ABI_O32;
8371 if (gdbarch_debug)
8372 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
8373 mips_abi);
8374
8375 /* Determine the default compressed ISA. */
8376 if ((elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0
8377 && (elf_flags & EF_MIPS_ARCH_ASE_M16) == 0)
8378 mips_isa = ISA_MICROMIPS;
8379 else if ((elf_flags & EF_MIPS_ARCH_ASE_M16) != 0
8380 && (elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) == 0)
8381 mips_isa = ISA_MIPS16;
8382 else
8383 mips_isa = global_mips_compression ();
8384 mips_compression_string = mips_compression_strings[mips_isa];
8385
8386 /* Also used when doing an architecture lookup. */
8387 if (gdbarch_debug)
8388 fprintf_unfiltered (gdb_stdlog,
8389 "mips_gdbarch_init: "
8390 "mips64_transfers_32bit_regs_p = %d\n",
8391 mips64_transfers_32bit_regs_p);
8392
8393 /* Determine the MIPS FPU type. */
8394 #ifdef HAVE_ELF
8395 if (info.abfd
8396 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8397 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8398 Tag_GNU_MIPS_ABI_FP);
8399 #endif /* HAVE_ELF */
8400
8401 if (!mips_fpu_type_auto)
8402 fpu_type = mips_fpu_type;
8403 else if (elf_fpu_type != Val_GNU_MIPS_ABI_FP_ANY)
8404 {
8405 switch (elf_fpu_type)
8406 {
8407 case Val_GNU_MIPS_ABI_FP_DOUBLE:
8408 fpu_type = MIPS_FPU_DOUBLE;
8409 break;
8410 case Val_GNU_MIPS_ABI_FP_SINGLE:
8411 fpu_type = MIPS_FPU_SINGLE;
8412 break;
8413 case Val_GNU_MIPS_ABI_FP_SOFT:
8414 default:
8415 /* Soft float or unknown. */
8416 fpu_type = MIPS_FPU_NONE;
8417 break;
8418 }
8419 }
8420 else if (info.bfd_arch_info != NULL
8421 && info.bfd_arch_info->arch == bfd_arch_mips)
8422 switch (info.bfd_arch_info->mach)
8423 {
8424 case bfd_mach_mips3900:
8425 case bfd_mach_mips4100:
8426 case bfd_mach_mips4111:
8427 case bfd_mach_mips4120:
8428 fpu_type = MIPS_FPU_NONE;
8429 break;
8430 case bfd_mach_mips4650:
8431 fpu_type = MIPS_FPU_SINGLE;
8432 break;
8433 default:
8434 fpu_type = MIPS_FPU_DOUBLE;
8435 break;
8436 }
8437 else if (arches != NULL)
8438 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
8439 else
8440 fpu_type = MIPS_FPU_DOUBLE;
8441 if (gdbarch_debug)
8442 fprintf_unfiltered (gdb_stdlog,
8443 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8444
8445 /* Check for blatant incompatibilities. */
8446
8447 /* If we have only 32-bit registers, then we can't debug a 64-bit
8448 ABI. */
8449 if (info.target_desc
8450 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
8451 && mips_abi != MIPS_ABI_EABI32
8452 && mips_abi != MIPS_ABI_O32)
8453 {
8454 if (tdesc_data != NULL)
8455 tdesc_data_cleanup (tdesc_data);
8456 return NULL;
8457 }
8458
8459 /* Try to find a pre-existing architecture. */
8460 for (arches = gdbarch_list_lookup_by_info (arches, &info);
8461 arches != NULL;
8462 arches = gdbarch_list_lookup_by_info (arches->next, &info))
8463 {
8464 /* MIPS needs to be pedantic about which ABI and the compressed
8465 ISA variation the object is using. */
8466 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
8467 continue;
8468 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
8469 continue;
8470 if (gdbarch_tdep (arches->gdbarch)->mips_isa != mips_isa)
8471 continue;
8472 /* Need to be pedantic about which register virtual size is
8473 used. */
8474 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
8475 != mips64_transfers_32bit_regs_p)
8476 continue;
8477 /* Be pedantic about which FPU is selected. */
8478 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
8479 continue;
8480
8481 if (tdesc_data != NULL)
8482 tdesc_data_cleanup (tdesc_data);
8483 return arches->gdbarch;
8484 }
8485
8486 /* Need a new architecture. Fill in a target specific vector. */
8487 tdep = XNEW (struct gdbarch_tdep);
8488 gdbarch = gdbarch_alloc (&info, tdep);
8489 tdep->elf_flags = elf_flags;
8490 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
8491 tdep->found_abi = found_abi;
8492 tdep->mips_abi = mips_abi;
8493 tdep->mips_isa = mips_isa;
8494 tdep->mips_fpu_type = fpu_type;
8495 tdep->register_size_valid_p = 0;
8496 tdep->register_size = 0;
8497
8498 if (info.target_desc)
8499 {
8500 /* Some useful properties can be inferred from the target. */
8501 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
8502 {
8503 tdep->register_size_valid_p = 1;
8504 tdep->register_size = 4;
8505 }
8506 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
8507 {
8508 tdep->register_size_valid_p = 1;
8509 tdep->register_size = 8;
8510 }
8511 }
8512
8513 /* Initially set everything according to the default ABI/ISA. */
8514 set_gdbarch_short_bit (gdbarch, 16);
8515 set_gdbarch_int_bit (gdbarch, 32);
8516 set_gdbarch_float_bit (gdbarch, 32);
8517 set_gdbarch_double_bit (gdbarch, 64);
8518 set_gdbarch_long_double_bit (gdbarch, 64);
8519 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
8520 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
8521 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
8522
8523 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8524 mips_ax_pseudo_register_collect);
8525 set_gdbarch_ax_pseudo_register_push_stack
8526 (gdbarch, mips_ax_pseudo_register_push_stack);
8527
8528 set_gdbarch_elf_make_msymbol_special (gdbarch,
8529 mips_elf_make_msymbol_special);
8530 set_gdbarch_make_symbol_special (gdbarch, mips_make_symbol_special);
8531 set_gdbarch_adjust_dwarf2_addr (gdbarch, mips_adjust_dwarf2_addr);
8532 set_gdbarch_adjust_dwarf2_line (gdbarch, mips_adjust_dwarf2_line);
8533
8534 regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct mips_regnum);
8535 *regnum = mips_regnum;
8536 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
8537 set_gdbarch_num_regs (gdbarch, num_regs);
8538 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8539 set_gdbarch_register_name (gdbarch, mips_register_name);
8540 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
8541 tdep->mips_processor_reg_names = reg_names;
8542 tdep->regnum = regnum;
8543
8544 switch (mips_abi)
8545 {
8546 case MIPS_ABI_O32:
8547 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
8548 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
8549 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8550 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8551 tdep->default_mask_address_p = 0;
8552 set_gdbarch_long_bit (gdbarch, 32);
8553 set_gdbarch_ptr_bit (gdbarch, 32);
8554 set_gdbarch_long_long_bit (gdbarch, 64);
8555 break;
8556 case MIPS_ABI_O64:
8557 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
8558 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
8559 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8560 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8561 tdep->default_mask_address_p = 0;
8562 set_gdbarch_long_bit (gdbarch, 32);
8563 set_gdbarch_ptr_bit (gdbarch, 32);
8564 set_gdbarch_long_long_bit (gdbarch, 64);
8565 break;
8566 case MIPS_ABI_EABI32:
8567 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8568 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8569 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8570 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8571 tdep->default_mask_address_p = 0;
8572 set_gdbarch_long_bit (gdbarch, 32);
8573 set_gdbarch_ptr_bit (gdbarch, 32);
8574 set_gdbarch_long_long_bit (gdbarch, 64);
8575 break;
8576 case MIPS_ABI_EABI64:
8577 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8578 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8579 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8580 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8581 tdep->default_mask_address_p = 0;
8582 set_gdbarch_long_bit (gdbarch, 64);
8583 set_gdbarch_ptr_bit (gdbarch, 64);
8584 set_gdbarch_long_long_bit (gdbarch, 64);
8585 break;
8586 case MIPS_ABI_N32:
8587 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8588 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8589 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8590 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8591 tdep->default_mask_address_p = 0;
8592 set_gdbarch_long_bit (gdbarch, 32);
8593 set_gdbarch_ptr_bit (gdbarch, 32);
8594 set_gdbarch_long_long_bit (gdbarch, 64);
8595 set_gdbarch_long_double_bit (gdbarch, 128);
8596 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8597 break;
8598 case MIPS_ABI_N64:
8599 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8600 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8601 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8602 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8603 tdep->default_mask_address_p = 0;
8604 set_gdbarch_long_bit (gdbarch, 64);
8605 set_gdbarch_ptr_bit (gdbarch, 64);
8606 set_gdbarch_long_long_bit (gdbarch, 64);
8607 set_gdbarch_long_double_bit (gdbarch, 128);
8608 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8609 break;
8610 default:
8611 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8612 }
8613
8614 /* GCC creates a pseudo-section whose name specifies the size of
8615 longs, since -mlong32 or -mlong64 may be used independent of
8616 other options. How those options affect pointer sizes is ABI and
8617 architecture dependent, so use them to override the default sizes
8618 set by the ABI. This table shows the relationship between ABI,
8619 -mlongXX, and size of pointers:
8620
8621 ABI -mlongXX ptr bits
8622 --- -------- --------
8623 o32 32 32
8624 o32 64 32
8625 n32 32 32
8626 n32 64 64
8627 o64 32 32
8628 o64 64 64
8629 n64 32 32
8630 n64 64 64
8631 eabi32 32 32
8632 eabi32 64 32
8633 eabi64 32 32
8634 eabi64 64 64
8635
8636 Note that for o32 and eabi32, pointers are always 32 bits
8637 regardless of any -mlongXX option. For all others, pointers and
8638 longs are the same, as set by -mlongXX or set by defaults. */
8639
8640 if (info.abfd != NULL)
8641 {
8642 int long_bit = 0;
8643
8644 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
8645 if (long_bit)
8646 {
8647 set_gdbarch_long_bit (gdbarch, long_bit);
8648 switch (mips_abi)
8649 {
8650 case MIPS_ABI_O32:
8651 case MIPS_ABI_EABI32:
8652 break;
8653 case MIPS_ABI_N32:
8654 case MIPS_ABI_O64:
8655 case MIPS_ABI_N64:
8656 case MIPS_ABI_EABI64:
8657 set_gdbarch_ptr_bit (gdbarch, long_bit);
8658 break;
8659 default:
8660 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8661 }
8662 }
8663 }
8664
8665 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
8666 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
8667 comment:
8668
8669 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
8670 flag in object files because to do so would make it impossible to
8671 link with libraries compiled without "-gp32". This is
8672 unnecessarily restrictive.
8673
8674 We could solve this problem by adding "-gp32" multilibs to gcc,
8675 but to set this flag before gcc is built with such multilibs will
8676 break too many systems.''
8677
8678 But even more unhelpfully, the default linker output target for
8679 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
8680 for 64-bit programs - you need to change the ABI to change this,
8681 and not all gcc targets support that currently. Therefore using
8682 this flag to detect 32-bit mode would do the wrong thing given
8683 the current gcc - it would make GDB treat these 64-bit programs
8684 as 32-bit programs by default. */
8685
8686 set_gdbarch_read_pc (gdbarch, mips_read_pc);
8687 set_gdbarch_write_pc (gdbarch, mips_write_pc);
8688
8689 /* Add/remove bits from an address. The MIPS needs be careful to
8690 ensure that all 32 bit addresses are sign extended to 64 bits. */
8691 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
8692
8693 /* Unwind the frame. */
8694 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
8695 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
8696 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
8697
8698 /* Map debug register numbers onto internal register numbers. */
8699 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
8700 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
8701 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8702 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
8703 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8704 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
8705
8706 /* MIPS version of CALL_DUMMY. */
8707
8708 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8709 set_gdbarch_push_dummy_code (gdbarch, mips_push_dummy_code);
8710 set_gdbarch_frame_align (gdbarch, mips_frame_align);
8711
8712 set_gdbarch_print_float_info (gdbarch, mips_print_float_info);
8713
8714 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
8715 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
8716 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
8717
8718 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8719 set_gdbarch_breakpoint_kind_from_pc (gdbarch, mips_breakpoint_kind_from_pc);
8720 set_gdbarch_sw_breakpoint_from_kind (gdbarch, mips_sw_breakpoint_from_kind);
8721 set_gdbarch_adjust_breakpoint_address (gdbarch,
8722 mips_adjust_breakpoint_address);
8723
8724 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
8725
8726 set_gdbarch_stack_frame_destroyed_p (gdbarch, mips_stack_frame_destroyed_p);
8727
8728 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
8729 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
8730 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
8731
8732 set_gdbarch_register_type (gdbarch, mips_register_type);
8733
8734 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
8735
8736 if (mips_abi == MIPS_ABI_N32)
8737 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
8738 else if (mips_abi == MIPS_ABI_N64)
8739 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
8740 else
8741 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
8742
8743 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
8744 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
8745 need to all be folded into the target vector. Since they are
8746 being used as guards for target_stopped_by_watchpoint, why not have
8747 target_stopped_by_watchpoint return the type of watchpoint that the code
8748 is sitting on? */
8749 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8750
8751 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
8752
8753 /* NOTE drow/2012-04-25: We overload the core solib trampoline code
8754 to support MIPS16. This is a bad thing. Make sure not to do it
8755 if we have an OS ABI that actually supports shared libraries, since
8756 shared library support is more important. If we have an OS someday
8757 that supports both shared libraries and MIPS16, we'll have to find
8758 a better place for these.
8759 macro/2012-04-25: But that applies to return trampolines only and
8760 currently no MIPS OS ABI uses shared libraries that have them. */
8761 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
8762
8763 set_gdbarch_single_step_through_delay (gdbarch,
8764 mips_single_step_through_delay);
8765
8766 /* Virtual tables. */
8767 set_gdbarch_vbit_in_delta (gdbarch, 1);
8768
8769 mips_register_g_packet_guesses (gdbarch);
8770
8771 /* Hook in OS ABI-specific overrides, if they have been registered. */
8772 info.tdep_info = tdesc_data;
8773 gdbarch_init_osabi (info, gdbarch);
8774
8775 /* The hook may have adjusted num_regs, fetch the final value and
8776 set pc_regnum and sp_regnum now that it has been fixed. */
8777 num_regs = gdbarch_num_regs (gdbarch);
8778 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
8779 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8780
8781 /* Unwind the frame. */
8782 dwarf2_append_unwinders (gdbarch);
8783 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
8784 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
8785 frame_unwind_append_unwinder (gdbarch, &mips_micro_frame_unwind);
8786 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
8787 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
8788 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
8789 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
8790 frame_base_append_sniffer (gdbarch, mips_micro_frame_base_sniffer);
8791 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
8792
8793 if (tdesc_data)
8794 {
8795 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
8796 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
8797
8798 /* Override the normal target description methods to handle our
8799 dual real and pseudo registers. */
8800 set_gdbarch_register_name (gdbarch, mips_register_name);
8801 set_gdbarch_register_reggroup_p (gdbarch,
8802 mips_tdesc_register_reggroup_p);
8803
8804 num_regs = gdbarch_num_regs (gdbarch);
8805 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8806 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
8807 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8808 }
8809
8810 /* Add ABI-specific aliases for the registers. */
8811 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
8812 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
8813 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
8814 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
8815 else
8816 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
8817 user_reg_add (gdbarch, mips_o32_aliases[i].name,
8818 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
8819
8820 /* Add some other standard aliases. */
8821 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
8822 user_reg_add (gdbarch, mips_register_aliases[i].name,
8823 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
8824
8825 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
8826 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
8827 value_of_mips_user_reg,
8828 &mips_numeric_register_aliases[i].regnum);
8829
8830 return gdbarch;
8831 }
8832
8833 static void
8834 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
8835 {
8836 struct gdbarch_info info;
8837
8838 /* Force the architecture to update, and (if it's a MIPS architecture)
8839 mips_gdbarch_init will take care of the rest. */
8840 gdbarch_info_init (&info);
8841 gdbarch_update_p (info);
8842 }
8843
8844 /* Print out which MIPS ABI is in use. */
8845
8846 static void
8847 show_mips_abi (struct ui_file *file,
8848 int from_tty,
8849 struct cmd_list_element *ignored_cmd,
8850 const char *ignored_value)
8851 {
8852 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
8853 fprintf_filtered
8854 (file,
8855 "The MIPS ABI is unknown because the current architecture "
8856 "is not MIPS.\n");
8857 else
8858 {
8859 enum mips_abi global_abi = global_mips_abi ();
8860 enum mips_abi actual_abi = mips_abi (target_gdbarch ());
8861 const char *actual_abi_str = mips_abi_strings[actual_abi];
8862
8863 if (global_abi == MIPS_ABI_UNKNOWN)
8864 fprintf_filtered
8865 (file,
8866 "The MIPS ABI is set automatically (currently \"%s\").\n",
8867 actual_abi_str);
8868 else if (global_abi == actual_abi)
8869 fprintf_filtered
8870 (file,
8871 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
8872 actual_abi_str);
8873 else
8874 {
8875 /* Probably shouldn't happen... */
8876 fprintf_filtered (file,
8877 "The (auto detected) MIPS ABI \"%s\" is in use "
8878 "even though the user setting was \"%s\".\n",
8879 actual_abi_str, mips_abi_strings[global_abi]);
8880 }
8881 }
8882 }
8883
8884 /* Print out which MIPS compressed ISA encoding is used. */
8885
8886 static void
8887 show_mips_compression (struct ui_file *file, int from_tty,
8888 struct cmd_list_element *c, const char *value)
8889 {
8890 fprintf_filtered (file, _("The compressed ISA encoding used is %s.\n"),
8891 value);
8892 }
8893
8894 static void
8895 mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
8896 {
8897 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8898 if (tdep != NULL)
8899 {
8900 int ef_mips_arch;
8901 int ef_mips_32bitmode;
8902 /* Determine the ISA. */
8903 switch (tdep->elf_flags & EF_MIPS_ARCH)
8904 {
8905 case E_MIPS_ARCH_1:
8906 ef_mips_arch = 1;
8907 break;
8908 case E_MIPS_ARCH_2:
8909 ef_mips_arch = 2;
8910 break;
8911 case E_MIPS_ARCH_3:
8912 ef_mips_arch = 3;
8913 break;
8914 case E_MIPS_ARCH_4:
8915 ef_mips_arch = 4;
8916 break;
8917 default:
8918 ef_mips_arch = 0;
8919 break;
8920 }
8921 /* Determine the size of a pointer. */
8922 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
8923 fprintf_unfiltered (file,
8924 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
8925 tdep->elf_flags);
8926 fprintf_unfiltered (file,
8927 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
8928 ef_mips_32bitmode);
8929 fprintf_unfiltered (file,
8930 "mips_dump_tdep: ef_mips_arch = %d\n",
8931 ef_mips_arch);
8932 fprintf_unfiltered (file,
8933 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
8934 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
8935 fprintf_unfiltered (file,
8936 "mips_dump_tdep: "
8937 "mips_mask_address_p() %d (default %d)\n",
8938 mips_mask_address_p (tdep),
8939 tdep->default_mask_address_p);
8940 }
8941 fprintf_unfiltered (file,
8942 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
8943 MIPS_DEFAULT_FPU_TYPE,
8944 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
8945 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
8946 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
8947 : "???"));
8948 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
8949 MIPS_EABI (gdbarch));
8950 fprintf_unfiltered (file,
8951 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
8952 MIPS_FPU_TYPE (gdbarch),
8953 (MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_NONE ? "none"
8954 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_SINGLE ? "single"
8955 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_DOUBLE ? "double"
8956 : "???"));
8957 }
8958
8959 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
8960
8961 void
8962 _initialize_mips_tdep (void)
8963 {
8964 static struct cmd_list_element *mipsfpulist = NULL;
8965 struct cmd_list_element *c;
8966
8967 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
8968 if (MIPS_ABI_LAST + 1
8969 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
8970 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
8971
8972 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
8973
8974 mips_pdr_data = register_objfile_data ();
8975
8976 /* Create feature sets with the appropriate properties. The values
8977 are not important. */
8978 mips_tdesc_gp32 = allocate_target_description ();
8979 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
8980
8981 mips_tdesc_gp64 = allocate_target_description ();
8982 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
8983
8984 /* Add root prefix command for all "set mips"/"show mips" commands. */
8985 add_prefix_cmd ("mips", no_class, set_mips_command,
8986 _("Various MIPS specific commands."),
8987 &setmipscmdlist, "set mips ", 0, &setlist);
8988
8989 add_prefix_cmd ("mips", no_class, show_mips_command,
8990 _("Various MIPS specific commands."),
8991 &showmipscmdlist, "show mips ", 0, &showlist);
8992
8993 /* Allow the user to override the ABI. */
8994 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
8995 &mips_abi_string, _("\
8996 Set the MIPS ABI used by this program."), _("\
8997 Show the MIPS ABI used by this program."), _("\
8998 This option can be set to one of:\n\
8999 auto - the default ABI associated with the current binary\n\
9000 o32\n\
9001 o64\n\
9002 n32\n\
9003 n64\n\
9004 eabi32\n\
9005 eabi64"),
9006 mips_abi_update,
9007 show_mips_abi,
9008 &setmipscmdlist, &showmipscmdlist);
9009
9010 /* Allow the user to set the ISA to assume for compressed code if ELF
9011 file flags don't tell or there is no program file selected. This
9012 setting is updated whenever unambiguous ELF file flags are interpreted,
9013 and carried over to subsequent sessions. */
9014 add_setshow_enum_cmd ("compression", class_obscure, mips_compression_strings,
9015 &mips_compression_string, _("\
9016 Set the compressed ISA encoding used by MIPS code."), _("\
9017 Show the compressed ISA encoding used by MIPS code."), _("\
9018 Select the compressed ISA encoding used in functions that have no symbol\n\
9019 information available. The encoding can be set to either of:\n\
9020 mips16\n\
9021 micromips\n\
9022 and is updated automatically from ELF file flags if available."),
9023 mips_abi_update,
9024 show_mips_compression,
9025 &setmipscmdlist, &showmipscmdlist);
9026
9027 /* Let the user turn off floating point and set the fence post for
9028 heuristic_proc_start. */
9029
9030 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
9031 _("Set use of MIPS floating-point coprocessor."),
9032 &mipsfpulist, "set mipsfpu ", 0, &setlist);
9033 add_cmd ("single", class_support, set_mipsfpu_single_command,
9034 _("Select single-precision MIPS floating-point coprocessor."),
9035 &mipsfpulist);
9036 add_cmd ("double", class_support, set_mipsfpu_double_command,
9037 _("Select double-precision MIPS floating-point coprocessor."),
9038 &mipsfpulist);
9039 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
9040 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
9041 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
9042 add_cmd ("none", class_support, set_mipsfpu_none_command,
9043 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
9044 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
9045 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
9046 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
9047 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
9048 _("Select MIPS floating-point coprocessor automatically."),
9049 &mipsfpulist);
9050 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
9051 _("Show current use of MIPS floating-point coprocessor target."),
9052 &showlist);
9053
9054 /* We really would like to have both "0" and "unlimited" work, but
9055 command.c doesn't deal with that. So make it a var_zinteger
9056 because the user can always use "999999" or some such for unlimited. */
9057 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
9058 &heuristic_fence_post, _("\
9059 Set the distance searched for the start of a function."), _("\
9060 Show the distance searched for the start of a function."), _("\
9061 If you are debugging a stripped executable, GDB needs to search through the\n\
9062 program for the start of a function. This command sets the distance of the\n\
9063 search. The only need to set it is when debugging a stripped executable."),
9064 reinit_frame_cache_sfunc,
9065 NULL, /* FIXME: i18n: The distance searched for
9066 the start of a function is %s. */
9067 &setlist, &showlist);
9068
9069 /* Allow the user to control whether the upper bits of 64-bit
9070 addresses should be zeroed. */
9071 add_setshow_auto_boolean_cmd ("mask-address", no_class,
9072 &mask_address_var, _("\
9073 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
9074 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
9075 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
9076 allow GDB to determine the correct value."),
9077 NULL, show_mask_address,
9078 &setmipscmdlist, &showmipscmdlist);
9079
9080 /* Allow the user to control the size of 32 bit registers within the
9081 raw remote packet. */
9082 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
9083 &mips64_transfers_32bit_regs_p, _("\
9084 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9085 _("\
9086 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9087 _("\
9088 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
9089 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
9090 64 bits for others. Use \"off\" to disable compatibility mode"),
9091 set_mips64_transfers_32bit_regs,
9092 NULL, /* FIXME: i18n: Compatibility with 64-bit
9093 MIPS target that transfers 32-bit
9094 quantities is %s. */
9095 &setlist, &showlist);
9096
9097 /* Debug this files internals. */
9098 add_setshow_zuinteger_cmd ("mips", class_maintenance,
9099 &mips_debug, _("\
9100 Set mips debugging."), _("\
9101 Show mips debugging."), _("\
9102 When non-zero, mips specific debugging is enabled."),
9103 NULL,
9104 NULL, /* FIXME: i18n: Mips debugging is
9105 currently %s. */
9106 &setdebuglist, &showdebuglist);
9107 }
This page took 0.226694 seconds and 4 git commands to generate.