daily update
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988-2013 Free Software Foundation, Inc.
4
5 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
6 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "gdb_assert.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "symtab.h"
29 #include "value.h"
30 #include "gdbcmd.h"
31 #include "language.h"
32 #include "gdbcore.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "gdbtypes.h"
36 #include "target.h"
37 #include "arch-utils.h"
38 #include "regcache.h"
39 #include "osabi.h"
40 #include "mips-tdep.h"
41 #include "block.h"
42 #include "reggroups.h"
43 #include "opcode/mips.h"
44 #include "elf/mips.h"
45 #include "elf-bfd.h"
46 #include "symcat.h"
47 #include "sim-regno.h"
48 #include "dis-asm.h"
49 #include "frame-unwind.h"
50 #include "frame-base.h"
51 #include "trad-frame.h"
52 #include "infcall.h"
53 #include "floatformat.h"
54 #include "remote.h"
55 #include "target-descriptions.h"
56 #include "dwarf2-frame.h"
57 #include "user-regs.h"
58 #include "valprint.h"
59 #include "ax.h"
60
61 static const struct objfile_data *mips_pdr_data;
62
63 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
64
65 static int mips32_instruction_has_delay_slot (struct gdbarch *, CORE_ADDR);
66 static int micromips_instruction_has_delay_slot (struct gdbarch *, CORE_ADDR,
67 int);
68 static int mips16_instruction_has_delay_slot (struct gdbarch *, CORE_ADDR,
69 int);
70
71 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
72 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
73 #define ST0_FR (1 << 26)
74
75 /* The sizes of floating point registers. */
76
77 enum
78 {
79 MIPS_FPU_SINGLE_REGSIZE = 4,
80 MIPS_FPU_DOUBLE_REGSIZE = 8
81 };
82
83 enum
84 {
85 MIPS32_REGSIZE = 4,
86 MIPS64_REGSIZE = 8
87 };
88
89 static const char *mips_abi_string;
90
91 static const char *const mips_abi_strings[] = {
92 "auto",
93 "n32",
94 "o32",
95 "n64",
96 "o64",
97 "eabi32",
98 "eabi64",
99 NULL
100 };
101
102 /* For backwards compatibility we default to MIPS16. This flag is
103 overridden as soon as unambiguous ELF file flags tell us the
104 compressed ISA encoding used. */
105 static const char mips_compression_mips16[] = "mips16";
106 static const char mips_compression_micromips[] = "micromips";
107 static const char *const mips_compression_strings[] =
108 {
109 mips_compression_mips16,
110 mips_compression_micromips,
111 NULL
112 };
113
114 static const char *mips_compression_string = mips_compression_mips16;
115
116 /* The standard register names, and all the valid aliases for them. */
117 struct register_alias
118 {
119 const char *name;
120 int regnum;
121 };
122
123 /* Aliases for o32 and most other ABIs. */
124 const struct register_alias mips_o32_aliases[] = {
125 { "ta0", 12 },
126 { "ta1", 13 },
127 { "ta2", 14 },
128 { "ta3", 15 }
129 };
130
131 /* Aliases for n32 and n64. */
132 const struct register_alias mips_n32_n64_aliases[] = {
133 { "ta0", 8 },
134 { "ta1", 9 },
135 { "ta2", 10 },
136 { "ta3", 11 }
137 };
138
139 /* Aliases for ABI-independent registers. */
140 const struct register_alias mips_register_aliases[] = {
141 /* The architecture manuals specify these ABI-independent names for
142 the GPRs. */
143 #define R(n) { "r" #n, n }
144 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
145 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
146 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
147 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
148 #undef R
149
150 /* k0 and k1 are sometimes called these instead (for "kernel
151 temp"). */
152 { "kt0", 26 },
153 { "kt1", 27 },
154
155 /* This is the traditional GDB name for the CP0 status register. */
156 { "sr", MIPS_PS_REGNUM },
157
158 /* This is the traditional GDB name for the CP0 BadVAddr register. */
159 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
160
161 /* This is the traditional GDB name for the FCSR. */
162 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
163 };
164
165 const struct register_alias mips_numeric_register_aliases[] = {
166 #define R(n) { #n, n }
167 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
168 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
169 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
170 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
171 #undef R
172 };
173
174 #ifndef MIPS_DEFAULT_FPU_TYPE
175 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
176 #endif
177 static int mips_fpu_type_auto = 1;
178 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
179
180 static unsigned int mips_debug = 0;
181
182 /* Properties (for struct target_desc) describing the g/G packet
183 layout. */
184 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
185 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
186
187 struct target_desc *mips_tdesc_gp32;
188 struct target_desc *mips_tdesc_gp64;
189
190 const struct mips_regnum *
191 mips_regnum (struct gdbarch *gdbarch)
192 {
193 return gdbarch_tdep (gdbarch)->regnum;
194 }
195
196 static int
197 mips_fpa0_regnum (struct gdbarch *gdbarch)
198 {
199 return mips_regnum (gdbarch)->fp0 + 12;
200 }
201
202 /* Return 1 if REGNUM refers to a floating-point general register, raw
203 or cooked. Otherwise return 0. */
204
205 static int
206 mips_float_register_p (struct gdbarch *gdbarch, int regnum)
207 {
208 int rawnum = regnum % gdbarch_num_regs (gdbarch);
209
210 return (rawnum >= mips_regnum (gdbarch)->fp0
211 && rawnum < mips_regnum (gdbarch)->fp0 + 32);
212 }
213
214 #define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
215 == MIPS_ABI_EABI32 \
216 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
217
218 #define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
219 (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
220
221 #define MIPS_LAST_ARG_REGNUM(gdbarch) \
222 (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
223
224 #define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
225
226 /* Return the MIPS ABI associated with GDBARCH. */
227 enum mips_abi
228 mips_abi (struct gdbarch *gdbarch)
229 {
230 return gdbarch_tdep (gdbarch)->mips_abi;
231 }
232
233 int
234 mips_isa_regsize (struct gdbarch *gdbarch)
235 {
236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
237
238 /* If we know how big the registers are, use that size. */
239 if (tdep->register_size_valid_p)
240 return tdep->register_size;
241
242 /* Fall back to the previous behavior. */
243 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
244 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
245 }
246
247 /* Return the currently configured (or set) saved register size. */
248
249 unsigned int
250 mips_abi_regsize (struct gdbarch *gdbarch)
251 {
252 switch (mips_abi (gdbarch))
253 {
254 case MIPS_ABI_EABI32:
255 case MIPS_ABI_O32:
256 return 4;
257 case MIPS_ABI_N32:
258 case MIPS_ABI_N64:
259 case MIPS_ABI_O64:
260 case MIPS_ABI_EABI64:
261 return 8;
262 case MIPS_ABI_UNKNOWN:
263 case MIPS_ABI_LAST:
264 default:
265 internal_error (__FILE__, __LINE__, _("bad switch"));
266 }
267 }
268
269 /* MIPS16/microMIPS function addresses are odd (bit 0 is set). Here
270 are some functions to handle addresses associated with compressed
271 code including but not limited to testing, setting, or clearing
272 bit 0 of such addresses. */
273
274 /* Return one iff compressed code is the MIPS16 instruction set. */
275
276 static int
277 is_mips16_isa (struct gdbarch *gdbarch)
278 {
279 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MIPS16;
280 }
281
282 /* Return one iff compressed code is the microMIPS instruction set. */
283
284 static int
285 is_micromips_isa (struct gdbarch *gdbarch)
286 {
287 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MICROMIPS;
288 }
289
290 /* Return one iff ADDR denotes compressed code. */
291
292 static int
293 is_compact_addr (CORE_ADDR addr)
294 {
295 return ((addr) & 1);
296 }
297
298 /* Return one iff ADDR denotes standard ISA code. */
299
300 static int
301 is_mips_addr (CORE_ADDR addr)
302 {
303 return !is_compact_addr (addr);
304 }
305
306 /* Return one iff ADDR denotes MIPS16 code. */
307
308 static int
309 is_mips16_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
310 {
311 return is_compact_addr (addr) && is_mips16_isa (gdbarch);
312 }
313
314 /* Return one iff ADDR denotes microMIPS code. */
315
316 static int
317 is_micromips_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
318 {
319 return is_compact_addr (addr) && is_micromips_isa (gdbarch);
320 }
321
322 /* Strip the ISA (compression) bit off from ADDR. */
323
324 static CORE_ADDR
325 unmake_compact_addr (CORE_ADDR addr)
326 {
327 return ((addr) & ~(CORE_ADDR) 1);
328 }
329
330 /* Add the ISA (compression) bit to ADDR. */
331
332 static CORE_ADDR
333 make_compact_addr (CORE_ADDR addr)
334 {
335 return ((addr) | (CORE_ADDR) 1);
336 }
337
338 /* Functions for setting and testing a bit in a minimal symbol that
339 marks it as MIPS16 or microMIPS function. The MSB of the minimal
340 symbol's "info" field is used for this purpose.
341
342 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
343 "special", i.e. refers to a MIPS16 or microMIPS function, and sets
344 one of the "special" bits in a minimal symbol to mark it accordingly.
345 The test checks an ELF-private flag that is valid for true function
346 symbols only; in particular synthetic symbols such as for PLT stubs
347 have no ELF-private part at all.
348
349 msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
350 in a minimal symbol. */
351
352 static void
353 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
354 {
355 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
356
357 if ((sym->flags & BSF_SYNTHETIC) != 0)
358 return;
359
360 if (ELF_ST_IS_MICROMIPS (elfsym->internal_elf_sym.st_other))
361 MSYMBOL_TARGET_FLAG_2 (msym) = 1;
362 else if (ELF_ST_IS_MIPS16 (elfsym->internal_elf_sym.st_other))
363 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
364 }
365
366 /* Return one iff MSYM refers to standard ISA code. */
367
368 static int
369 msymbol_is_mips (struct minimal_symbol *msym)
370 {
371 return !(MSYMBOL_TARGET_FLAG_1 (msym) | MSYMBOL_TARGET_FLAG_2 (msym));
372 }
373
374 /* Return one iff MSYM refers to MIPS16 code. */
375
376 static int
377 msymbol_is_mips16 (struct minimal_symbol *msym)
378 {
379 return MSYMBOL_TARGET_FLAG_1 (msym);
380 }
381
382 /* Return one iff MSYM refers to microMIPS code. */
383
384 static int
385 msymbol_is_micromips (struct minimal_symbol *msym)
386 {
387 return MSYMBOL_TARGET_FLAG_2 (msym);
388 }
389
390 /* XFER a value from the big/little/left end of the register.
391 Depending on the size of the value it might occupy the entire
392 register or just part of it. Make an allowance for this, aligning
393 things accordingly. */
394
395 static void
396 mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
397 int reg_num, int length,
398 enum bfd_endian endian, gdb_byte *in,
399 const gdb_byte *out, int buf_offset)
400 {
401 int reg_offset = 0;
402
403 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
404 /* Need to transfer the left or right part of the register, based on
405 the targets byte order. */
406 switch (endian)
407 {
408 case BFD_ENDIAN_BIG:
409 reg_offset = register_size (gdbarch, reg_num) - length;
410 break;
411 case BFD_ENDIAN_LITTLE:
412 reg_offset = 0;
413 break;
414 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
415 reg_offset = 0;
416 break;
417 default:
418 internal_error (__FILE__, __LINE__, _("bad switch"));
419 }
420 if (mips_debug)
421 fprintf_unfiltered (gdb_stderr,
422 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
423 reg_num, reg_offset, buf_offset, length);
424 if (mips_debug && out != NULL)
425 {
426 int i;
427 fprintf_unfiltered (gdb_stdlog, "out ");
428 for (i = 0; i < length; i++)
429 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
430 }
431 if (in != NULL)
432 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
433 in + buf_offset);
434 if (out != NULL)
435 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
436 out + buf_offset);
437 if (mips_debug && in != NULL)
438 {
439 int i;
440 fprintf_unfiltered (gdb_stdlog, "in ");
441 for (i = 0; i < length; i++)
442 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
443 }
444 if (mips_debug)
445 fprintf_unfiltered (gdb_stdlog, "\n");
446 }
447
448 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
449 compatiblity mode. A return value of 1 means that we have
450 physical 64-bit registers, but should treat them as 32-bit registers. */
451
452 static int
453 mips2_fp_compat (struct frame_info *frame)
454 {
455 struct gdbarch *gdbarch = get_frame_arch (frame);
456 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
457 meaningful. */
458 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
459 return 0;
460
461 #if 0
462 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
463 in all the places we deal with FP registers. PR gdb/413. */
464 /* Otherwise check the FR bit in the status register - it controls
465 the FP compatiblity mode. If it is clear we are in compatibility
466 mode. */
467 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
468 return 1;
469 #endif
470
471 return 0;
472 }
473
474 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
475
476 static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
477
478 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
479
480 /* The list of available "set mips " and "show mips " commands. */
481
482 static struct cmd_list_element *setmipscmdlist = NULL;
483 static struct cmd_list_element *showmipscmdlist = NULL;
484
485 /* Integer registers 0 thru 31 are handled explicitly by
486 mips_register_name(). Processor specific registers 32 and above
487 are listed in the following tables. */
488
489 enum
490 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
491
492 /* Generic MIPS. */
493
494 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
495 "sr", "lo", "hi", "bad", "cause", "pc",
496 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
497 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
498 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
499 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
500 "fsr", "fir",
501 };
502
503 /* Names of IDT R3041 registers. */
504
505 static const char *mips_r3041_reg_names[] = {
506 "sr", "lo", "hi", "bad", "cause", "pc",
507 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
508 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
509 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
510 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
511 "fsr", "fir", "", /*"fp" */ "",
512 "", "", "bus", "ccfg", "", "", "", "",
513 "", "", "port", "cmp", "", "", "epc", "prid",
514 };
515
516 /* Names of tx39 registers. */
517
518 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
519 "sr", "lo", "hi", "bad", "cause", "pc",
520 "", "", "", "", "", "", "", "",
521 "", "", "", "", "", "", "", "",
522 "", "", "", "", "", "", "", "",
523 "", "", "", "", "", "", "", "",
524 "", "", "", "",
525 "", "", "", "", "", "", "", "",
526 "", "", "config", "cache", "debug", "depc", "epc",
527 };
528
529 /* Names of IRIX registers. */
530 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
531 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
532 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
533 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
534 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
535 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
536 };
537
538 /* Names of registers with Linux kernels. */
539 static const char *mips_linux_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
540 "sr", "lo", "hi", "bad", "cause", "pc",
541 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
542 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
543 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
544 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
545 "fsr", "fir"
546 };
547
548
549 /* Return the name of the register corresponding to REGNO. */
550 static const char *
551 mips_register_name (struct gdbarch *gdbarch, int regno)
552 {
553 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
554 /* GPR names for all ABIs other than n32/n64. */
555 static char *mips_gpr_names[] = {
556 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
557 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
558 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
559 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
560 };
561
562 /* GPR names for n32 and n64 ABIs. */
563 static char *mips_n32_n64_gpr_names[] = {
564 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
565 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
566 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
567 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
568 };
569
570 enum mips_abi abi = mips_abi (gdbarch);
571
572 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
573 but then don't make the raw register names visible. This (upper)
574 range of user visible register numbers are the pseudo-registers.
575
576 This approach was adopted accommodate the following scenario:
577 It is possible to debug a 64-bit device using a 32-bit
578 programming model. In such instances, the raw registers are
579 configured to be 64-bits wide, while the pseudo registers are
580 configured to be 32-bits wide. The registers that the user
581 sees - the pseudo registers - match the users expectations
582 given the programming model being used. */
583 int rawnum = regno % gdbarch_num_regs (gdbarch);
584 if (regno < gdbarch_num_regs (gdbarch))
585 return "";
586
587 /* The MIPS integer registers are always mapped from 0 to 31. The
588 names of the registers (which reflects the conventions regarding
589 register use) vary depending on the ABI. */
590 if (0 <= rawnum && rawnum < 32)
591 {
592 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
593 return mips_n32_n64_gpr_names[rawnum];
594 else
595 return mips_gpr_names[rawnum];
596 }
597 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
598 return tdesc_register_name (gdbarch, rawnum);
599 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
600 {
601 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
602 if (tdep->mips_processor_reg_names[rawnum - 32])
603 return tdep->mips_processor_reg_names[rawnum - 32];
604 return "";
605 }
606 else
607 internal_error (__FILE__, __LINE__,
608 _("mips_register_name: bad register number %d"), rawnum);
609 }
610
611 /* Return the groups that a MIPS register can be categorised into. */
612
613 static int
614 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
615 struct reggroup *reggroup)
616 {
617 int vector_p;
618 int float_p;
619 int raw_p;
620 int rawnum = regnum % gdbarch_num_regs (gdbarch);
621 int pseudo = regnum / gdbarch_num_regs (gdbarch);
622 if (reggroup == all_reggroup)
623 return pseudo;
624 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
625 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
626 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
627 (gdbarch), as not all architectures are multi-arch. */
628 raw_p = rawnum < gdbarch_num_regs (gdbarch);
629 if (gdbarch_register_name (gdbarch, regnum) == NULL
630 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
631 return 0;
632 if (reggroup == float_reggroup)
633 return float_p && pseudo;
634 if (reggroup == vector_reggroup)
635 return vector_p && pseudo;
636 if (reggroup == general_reggroup)
637 return (!vector_p && !float_p) && pseudo;
638 /* Save the pseudo registers. Need to make certain that any code
639 extracting register values from a saved register cache also uses
640 pseudo registers. */
641 if (reggroup == save_reggroup)
642 return raw_p && pseudo;
643 /* Restore the same pseudo register. */
644 if (reggroup == restore_reggroup)
645 return raw_p && pseudo;
646 return 0;
647 }
648
649 /* Return the groups that a MIPS register can be categorised into.
650 This version is only used if we have a target description which
651 describes real registers (and their groups). */
652
653 static int
654 mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
655 struct reggroup *reggroup)
656 {
657 int rawnum = regnum % gdbarch_num_regs (gdbarch);
658 int pseudo = regnum / gdbarch_num_regs (gdbarch);
659 int ret;
660
661 /* Only save, restore, and display the pseudo registers. Need to
662 make certain that any code extracting register values from a
663 saved register cache also uses pseudo registers.
664
665 Note: saving and restoring the pseudo registers is slightly
666 strange; if we have 64 bits, we should save and restore all
667 64 bits. But this is hard and has little benefit. */
668 if (!pseudo)
669 return 0;
670
671 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
672 if (ret != -1)
673 return ret;
674
675 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
676 }
677
678 /* Map the symbol table registers which live in the range [1 *
679 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
680 registers. Take care of alignment and size problems. */
681
682 static enum register_status
683 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
684 int cookednum, gdb_byte *buf)
685 {
686 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
687 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
688 && cookednum < 2 * gdbarch_num_regs (gdbarch));
689 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
690 return regcache_raw_read (regcache, rawnum, buf);
691 else if (register_size (gdbarch, rawnum) >
692 register_size (gdbarch, cookednum))
693 {
694 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
695 return regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
696 else
697 {
698 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
699 LONGEST regval;
700 enum register_status status;
701
702 status = regcache_raw_read_signed (regcache, rawnum, &regval);
703 if (status == REG_VALID)
704 store_signed_integer (buf, 4, byte_order, regval);
705 return status;
706 }
707 }
708 else
709 internal_error (__FILE__, __LINE__, _("bad register size"));
710 }
711
712 static void
713 mips_pseudo_register_write (struct gdbarch *gdbarch,
714 struct regcache *regcache, int cookednum,
715 const gdb_byte *buf)
716 {
717 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
718 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
719 && cookednum < 2 * gdbarch_num_regs (gdbarch));
720 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
721 regcache_raw_write (regcache, rawnum, buf);
722 else if (register_size (gdbarch, rawnum) >
723 register_size (gdbarch, cookednum))
724 {
725 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
726 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
727 else
728 {
729 /* Sign extend the shortened version of the register prior
730 to placing it in the raw register. This is required for
731 some mips64 parts in order to avoid unpredictable behavior. */
732 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
733 LONGEST regval = extract_signed_integer (buf, 4, byte_order);
734 regcache_raw_write_signed (regcache, rawnum, regval);
735 }
736 }
737 else
738 internal_error (__FILE__, __LINE__, _("bad register size"));
739 }
740
741 static int
742 mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
743 struct agent_expr *ax, int reg)
744 {
745 int rawnum = reg % gdbarch_num_regs (gdbarch);
746 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
747 && reg < 2 * gdbarch_num_regs (gdbarch));
748
749 ax_reg_mask (ax, rawnum);
750
751 return 0;
752 }
753
754 static int
755 mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
756 struct agent_expr *ax, int reg)
757 {
758 int rawnum = reg % gdbarch_num_regs (gdbarch);
759 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
760 && reg < 2 * gdbarch_num_regs (gdbarch));
761 if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
762 {
763 ax_reg (ax, rawnum);
764
765 if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
766 {
767 if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
768 || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
769 {
770 ax_const_l (ax, 32);
771 ax_simple (ax, aop_lsh);
772 }
773 ax_const_l (ax, 32);
774 ax_simple (ax, aop_rsh_signed);
775 }
776 }
777 else
778 internal_error (__FILE__, __LINE__, _("bad register size"));
779
780 return 0;
781 }
782
783 /* Table to translate 3-bit register field to actual register number. */
784 static const signed char mips_reg3_to_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
785
786 /* Heuristic_proc_start may hunt through the text section for a long
787 time across a 2400 baud serial line. Allows the user to limit this
788 search. */
789
790 static unsigned int heuristic_fence_post = 0;
791
792 /* Number of bytes of storage in the actual machine representation for
793 register N. NOTE: This defines the pseudo register type so need to
794 rebuild the architecture vector. */
795
796 static int mips64_transfers_32bit_regs_p = 0;
797
798 static void
799 set_mips64_transfers_32bit_regs (char *args, int from_tty,
800 struct cmd_list_element *c)
801 {
802 struct gdbarch_info info;
803 gdbarch_info_init (&info);
804 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
805 instead of relying on globals. Doing that would let generic code
806 handle the search for this specific architecture. */
807 if (!gdbarch_update_p (info))
808 {
809 mips64_transfers_32bit_regs_p = 0;
810 error (_("32-bit compatibility mode not supported"));
811 }
812 }
813
814 /* Convert to/from a register and the corresponding memory value. */
815
816 /* This predicate tests for the case of an 8 byte floating point
817 value that is being transferred to or from a pair of floating point
818 registers each of which are (or are considered to be) only 4 bytes
819 wide. */
820 static int
821 mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
822 struct type *type)
823 {
824 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
825 && register_size (gdbarch, regnum) == 4
826 && mips_float_register_p (gdbarch, regnum)
827 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
828 }
829
830 /* This predicate tests for the case of a value of less than 8
831 bytes in width that is being transfered to or from an 8 byte
832 general purpose register. */
833 static int
834 mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
835 struct type *type)
836 {
837 int num_regs = gdbarch_num_regs (gdbarch);
838
839 return (register_size (gdbarch, regnum) == 8
840 && regnum % num_regs > 0 && regnum % num_regs < 32
841 && TYPE_LENGTH (type) < 8);
842 }
843
844 static int
845 mips_convert_register_p (struct gdbarch *gdbarch,
846 int regnum, struct type *type)
847 {
848 return (mips_convert_register_float_case_p (gdbarch, regnum, type)
849 || mips_convert_register_gpreg_case_p (gdbarch, regnum, type));
850 }
851
852 static int
853 mips_register_to_value (struct frame_info *frame, int regnum,
854 struct type *type, gdb_byte *to,
855 int *optimizedp, int *unavailablep)
856 {
857 struct gdbarch *gdbarch = get_frame_arch (frame);
858
859 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
860 {
861 get_frame_register (frame, regnum + 0, to + 4);
862 get_frame_register (frame, regnum + 1, to + 0);
863
864 if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
865 optimizedp, unavailablep))
866 return 0;
867
868 if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
869 optimizedp, unavailablep))
870 return 0;
871 *optimizedp = *unavailablep = 0;
872 return 1;
873 }
874 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
875 {
876 int len = TYPE_LENGTH (type);
877 CORE_ADDR offset;
878
879 offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
880 if (!get_frame_register_bytes (frame, regnum, offset, len, to,
881 optimizedp, unavailablep))
882 return 0;
883
884 *optimizedp = *unavailablep = 0;
885 return 1;
886 }
887 else
888 {
889 internal_error (__FILE__, __LINE__,
890 _("mips_register_to_value: unrecognized case"));
891 }
892 }
893
894 static void
895 mips_value_to_register (struct frame_info *frame, int regnum,
896 struct type *type, const gdb_byte *from)
897 {
898 struct gdbarch *gdbarch = get_frame_arch (frame);
899
900 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
901 {
902 put_frame_register (frame, regnum + 0, from + 4);
903 put_frame_register (frame, regnum + 1, from + 0);
904 }
905 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
906 {
907 gdb_byte fill[8];
908 int len = TYPE_LENGTH (type);
909
910 /* Sign extend values, irrespective of type, that are stored to
911 a 64-bit general purpose register. (32-bit unsigned values
912 are stored as signed quantities within a 64-bit register.
913 When performing an operation, in compiled code, that combines
914 a 32-bit unsigned value with a signed 64-bit value, a type
915 conversion is first performed that zeroes out the high 32 bits.) */
916 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
917 {
918 if (from[0] & 0x80)
919 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
920 else
921 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
922 put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
923 put_frame_register_bytes (frame, regnum, 8 - len, len, from);
924 }
925 else
926 {
927 if (from[len-1] & 0x80)
928 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
929 else
930 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
931 put_frame_register_bytes (frame, regnum, 0, len, from);
932 put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
933 }
934 }
935 else
936 {
937 internal_error (__FILE__, __LINE__,
938 _("mips_value_to_register: unrecognized case"));
939 }
940 }
941
942 /* Return the GDB type object for the "standard" data type of data in
943 register REG. */
944
945 static struct type *
946 mips_register_type (struct gdbarch *gdbarch, int regnum)
947 {
948 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
949 if (mips_float_register_p (gdbarch, regnum))
950 {
951 /* The floating-point registers raw, or cooked, always match
952 mips_isa_regsize(), and also map 1:1, byte for byte. */
953 if (mips_isa_regsize (gdbarch) == 4)
954 return builtin_type (gdbarch)->builtin_float;
955 else
956 return builtin_type (gdbarch)->builtin_double;
957 }
958 else if (regnum < gdbarch_num_regs (gdbarch))
959 {
960 /* The raw or ISA registers. These are all sized according to
961 the ISA regsize. */
962 if (mips_isa_regsize (gdbarch) == 4)
963 return builtin_type (gdbarch)->builtin_int32;
964 else
965 return builtin_type (gdbarch)->builtin_int64;
966 }
967 else
968 {
969 int rawnum = regnum - gdbarch_num_regs (gdbarch);
970
971 /* The cooked or ABI registers. These are sized according to
972 the ABI (with a few complications). */
973 if (rawnum == mips_regnum (gdbarch)->fp_control_status
974 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
975 return builtin_type (gdbarch)->builtin_int32;
976 else if (gdbarch_osabi (gdbarch) != GDB_OSABI_IRIX
977 && gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
978 && rawnum >= MIPS_FIRST_EMBED_REGNUM
979 && rawnum <= MIPS_LAST_EMBED_REGNUM)
980 /* The pseudo/cooked view of the embedded registers is always
981 32-bit. The raw view is handled below. */
982 return builtin_type (gdbarch)->builtin_int32;
983 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
984 /* The target, while possibly using a 64-bit register buffer,
985 is only transfering 32-bits of each integer register.
986 Reflect this in the cooked/pseudo (ABI) register value. */
987 return builtin_type (gdbarch)->builtin_int32;
988 else if (mips_abi_regsize (gdbarch) == 4)
989 /* The ABI is restricted to 32-bit registers (the ISA could be
990 32- or 64-bit). */
991 return builtin_type (gdbarch)->builtin_int32;
992 else
993 /* 64-bit ABI. */
994 return builtin_type (gdbarch)->builtin_int64;
995 }
996 }
997
998 /* Return the GDB type for the pseudo register REGNUM, which is the
999 ABI-level view. This function is only called if there is a target
1000 description which includes registers, so we know precisely the
1001 types of hardware registers. */
1002
1003 static struct type *
1004 mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
1005 {
1006 const int num_regs = gdbarch_num_regs (gdbarch);
1007 int rawnum = regnum % num_regs;
1008 struct type *rawtype;
1009
1010 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
1011
1012 /* Absent registers are still absent. */
1013 rawtype = gdbarch_register_type (gdbarch, rawnum);
1014 if (TYPE_LENGTH (rawtype) == 0)
1015 return rawtype;
1016
1017 if (mips_float_register_p (gdbarch, rawnum))
1018 /* Present the floating point registers however the hardware did;
1019 do not try to convert between FPU layouts. */
1020 return rawtype;
1021
1022 /* Use pointer types for registers if we can. For n32 we can not,
1023 since we do not have a 64-bit pointer type. */
1024 if (mips_abi_regsize (gdbarch)
1025 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
1026 {
1027 if (rawnum == MIPS_SP_REGNUM
1028 || rawnum == mips_regnum (gdbarch)->badvaddr)
1029 return builtin_type (gdbarch)->builtin_data_ptr;
1030 else if (rawnum == mips_regnum (gdbarch)->pc)
1031 return builtin_type (gdbarch)->builtin_func_ptr;
1032 }
1033
1034 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
1035 && ((rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_PS_REGNUM)
1036 || rawnum == mips_regnum (gdbarch)->lo
1037 || rawnum == mips_regnum (gdbarch)->hi
1038 || rawnum == mips_regnum (gdbarch)->badvaddr
1039 || rawnum == mips_regnum (gdbarch)->cause
1040 || rawnum == mips_regnum (gdbarch)->pc
1041 || (mips_regnum (gdbarch)->dspacc != -1
1042 && rawnum >= mips_regnum (gdbarch)->dspacc
1043 && rawnum < mips_regnum (gdbarch)->dspacc + 6)))
1044 return builtin_type (gdbarch)->builtin_int32;
1045
1046 if (gdbarch_osabi (gdbarch) != GDB_OSABI_IRIX
1047 && gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1048 && rawnum >= MIPS_EMBED_FP0_REGNUM + 32
1049 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1050 {
1051 /* The pseudo/cooked view of embedded registers is always
1052 32-bit, even if the target transfers 64-bit values for them.
1053 New targets relying on XML descriptions should only transfer
1054 the necessary 32 bits, but older versions of GDB expected 64,
1055 so allow the target to provide 64 bits without interfering
1056 with the displayed type. */
1057 return builtin_type (gdbarch)->builtin_int32;
1058 }
1059
1060 /* For all other registers, pass through the hardware type. */
1061 return rawtype;
1062 }
1063
1064 /* Should the upper word of 64-bit addresses be zeroed? */
1065 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
1066
1067 static int
1068 mips_mask_address_p (struct gdbarch_tdep *tdep)
1069 {
1070 switch (mask_address_var)
1071 {
1072 case AUTO_BOOLEAN_TRUE:
1073 return 1;
1074 case AUTO_BOOLEAN_FALSE:
1075 return 0;
1076 break;
1077 case AUTO_BOOLEAN_AUTO:
1078 return tdep->default_mask_address_p;
1079 default:
1080 internal_error (__FILE__, __LINE__,
1081 _("mips_mask_address_p: bad switch"));
1082 return -1;
1083 }
1084 }
1085
1086 static void
1087 show_mask_address (struct ui_file *file, int from_tty,
1088 struct cmd_list_element *c, const char *value)
1089 {
1090 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
1091
1092 deprecated_show_value_hack (file, from_tty, c, value);
1093 switch (mask_address_var)
1094 {
1095 case AUTO_BOOLEAN_TRUE:
1096 printf_filtered ("The 32 bit mips address mask is enabled\n");
1097 break;
1098 case AUTO_BOOLEAN_FALSE:
1099 printf_filtered ("The 32 bit mips address mask is disabled\n");
1100 break;
1101 case AUTO_BOOLEAN_AUTO:
1102 printf_filtered
1103 ("The 32 bit address mask is set automatically. Currently %s\n",
1104 mips_mask_address_p (tdep) ? "enabled" : "disabled");
1105 break;
1106 default:
1107 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
1108 break;
1109 }
1110 }
1111
1112 /* Tell if the program counter value in MEMADDR is in a standard ISA
1113 function. */
1114
1115 int
1116 mips_pc_is_mips (CORE_ADDR memaddr)
1117 {
1118 struct minimal_symbol *sym;
1119
1120 /* Flags indicating that this is a MIPS16 or microMIPS function is
1121 stored by elfread.c in the high bit of the info field. Use this
1122 to decide if the function is standard MIPS. Otherwise if bit 0
1123 of the address is clear, then this is a standard MIPS function. */
1124 sym = lookup_minimal_symbol_by_pc (memaddr);
1125 if (sym)
1126 return msymbol_is_mips (sym);
1127 else
1128 return is_mips_addr (memaddr);
1129 }
1130
1131 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
1132
1133 int
1134 mips_pc_is_mips16 (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1135 {
1136 struct minimal_symbol *sym;
1137
1138 /* A flag indicating that this is a MIPS16 function is stored by
1139 elfread.c in the high bit of the info field. Use this to decide
1140 if the function is MIPS16. Otherwise if bit 0 of the address is
1141 set, then ELF file flags will tell if this is a MIPS16 function. */
1142 sym = lookup_minimal_symbol_by_pc (memaddr);
1143 if (sym)
1144 return msymbol_is_mips16 (sym);
1145 else
1146 return is_mips16_addr (gdbarch, memaddr);
1147 }
1148
1149 /* Tell if the program counter value in MEMADDR is in a microMIPS function. */
1150
1151 int
1152 mips_pc_is_micromips (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1153 {
1154 struct minimal_symbol *sym;
1155
1156 /* A flag indicating that this is a microMIPS function is stored by
1157 elfread.c in the high bit of the info field. Use this to decide
1158 if the function is microMIPS. Otherwise if bit 0 of the address
1159 is set, then ELF file flags will tell if this is a microMIPS
1160 function. */
1161 sym = lookup_minimal_symbol_by_pc (memaddr);
1162 if (sym)
1163 return msymbol_is_micromips (sym);
1164 else
1165 return is_micromips_addr (gdbarch, memaddr);
1166 }
1167
1168 /* Tell the ISA type of the function the program counter value in MEMADDR
1169 is in. */
1170
1171 static enum mips_isa
1172 mips_pc_isa (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1173 {
1174 struct minimal_symbol *sym;
1175
1176 /* A flag indicating that this is a MIPS16 or a microMIPS function
1177 is stored by elfread.c in the high bit of the info field. Use
1178 this to decide if the function is MIPS16 or microMIPS or normal
1179 MIPS. Otherwise if bit 0 of the address is set, then ELF file
1180 flags will tell if this is a MIPS16 or a microMIPS function. */
1181 sym = lookup_minimal_symbol_by_pc (memaddr);
1182 if (sym)
1183 {
1184 if (msymbol_is_micromips (sym))
1185 return ISA_MICROMIPS;
1186 else if (msymbol_is_mips16 (sym))
1187 return ISA_MIPS16;
1188 else
1189 return ISA_MIPS;
1190 }
1191 else
1192 {
1193 if (is_mips_addr (memaddr))
1194 return ISA_MIPS;
1195 else if (is_micromips_addr (gdbarch, memaddr))
1196 return ISA_MICROMIPS;
1197 else
1198 return ISA_MIPS16;
1199 }
1200 }
1201
1202 /* Various MIPS16 thunk (aka stub or trampoline) names. */
1203
1204 static const char mips_str_mips16_call_stub[] = "__mips16_call_stub_";
1205 static const char mips_str_mips16_ret_stub[] = "__mips16_ret_";
1206 static const char mips_str_call_fp_stub[] = "__call_stub_fp_";
1207 static const char mips_str_call_stub[] = "__call_stub_";
1208 static const char mips_str_fn_stub[] = "__fn_stub_";
1209
1210 /* This is used as a PIC thunk prefix. */
1211
1212 static const char mips_str_pic[] = ".pic.";
1213
1214 /* Return non-zero if the PC is inside a call thunk (aka stub or
1215 trampoline) that should be treated as a temporary frame. */
1216
1217 static int
1218 mips_in_frame_stub (CORE_ADDR pc)
1219 {
1220 CORE_ADDR start_addr;
1221 const char *name;
1222
1223 /* Find the starting address of the function containing the PC. */
1224 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
1225 return 0;
1226
1227 /* If the PC is in __mips16_call_stub_*, this is a call/return stub. */
1228 if (strncmp (name, mips_str_mips16_call_stub,
1229 strlen (mips_str_mips16_call_stub)) == 0)
1230 return 1;
1231 /* If the PC is in __call_stub_*, this is a call/return or a call stub. */
1232 if (strncmp (name, mips_str_call_stub, strlen (mips_str_call_stub)) == 0)
1233 return 1;
1234 /* If the PC is in __fn_stub_*, this is a call stub. */
1235 if (strncmp (name, mips_str_fn_stub, strlen (mips_str_fn_stub)) == 0)
1236 return 1;
1237
1238 return 0; /* Not a stub. */
1239 }
1240
1241 /* MIPS believes that the PC has a sign extended value. Perhaps the
1242 all registers should be sign extended for simplicity? */
1243
1244 static CORE_ADDR
1245 mips_read_pc (struct regcache *regcache)
1246 {
1247 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
1248 ULONGEST pc;
1249
1250 regcache_cooked_read_signed (regcache, regnum, &pc);
1251 if (is_compact_addr (pc))
1252 pc = unmake_compact_addr (pc);
1253 return pc;
1254 }
1255
1256 static CORE_ADDR
1257 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1258 {
1259 CORE_ADDR pc;
1260
1261 pc = frame_unwind_register_signed (next_frame, gdbarch_pc_regnum (gdbarch));
1262 if (is_compact_addr (pc))
1263 pc = unmake_compact_addr (pc);
1264 /* macro/2012-04-20: This hack skips over MIPS16 call thunks as
1265 intermediate frames. In this case we can get the caller's address
1266 from $ra, or if $ra contains an address within a thunk as well, then
1267 it must be in the return path of __mips16_call_stub_{s,d}{f,c}_{0..10}
1268 and thus the caller's address is in $s2. */
1269 if (frame_relative_level (next_frame) >= 0 && mips_in_frame_stub (pc))
1270 {
1271 pc = frame_unwind_register_signed
1272 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
1273 if (is_compact_addr (pc))
1274 pc = unmake_compact_addr (pc);
1275 if (mips_in_frame_stub (pc))
1276 {
1277 pc = frame_unwind_register_signed
1278 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
1279 if (is_compact_addr (pc))
1280 pc = unmake_compact_addr (pc);
1281 }
1282 }
1283 return pc;
1284 }
1285
1286 static CORE_ADDR
1287 mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1288 {
1289 return frame_unwind_register_signed
1290 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
1291 }
1292
1293 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
1294 dummy frame. The frame ID's base needs to match the TOS value
1295 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1296 breakpoint. */
1297
1298 static struct frame_id
1299 mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1300 {
1301 return frame_id_build
1302 (get_frame_register_signed (this_frame,
1303 gdbarch_num_regs (gdbarch)
1304 + MIPS_SP_REGNUM),
1305 get_frame_pc (this_frame));
1306 }
1307
1308 /* Implement the "write_pc" gdbarch method. */
1309
1310 void
1311 mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
1312 {
1313 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
1314
1315 if (mips_pc_is_mips (pc))
1316 regcache_cooked_write_unsigned (regcache, regnum, pc);
1317 else
1318 regcache_cooked_write_unsigned (regcache, regnum, make_compact_addr (pc));
1319 }
1320
1321 /* Fetch and return instruction from the specified location. Handle
1322 MIPS16/microMIPS as appropriate. */
1323
1324 static ULONGEST
1325 mips_fetch_instruction (struct gdbarch *gdbarch,
1326 enum mips_isa isa, CORE_ADDR addr, int *statusp)
1327 {
1328 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1329 gdb_byte buf[MIPS_INSN32_SIZE];
1330 int instlen;
1331 int status;
1332
1333 switch (isa)
1334 {
1335 case ISA_MICROMIPS:
1336 case ISA_MIPS16:
1337 instlen = MIPS_INSN16_SIZE;
1338 addr = unmake_compact_addr (addr);
1339 break;
1340 case ISA_MIPS:
1341 instlen = MIPS_INSN32_SIZE;
1342 break;
1343 default:
1344 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1345 break;
1346 }
1347 status = target_read_memory (addr, buf, instlen);
1348 if (statusp != NULL)
1349 *statusp = status;
1350 if (status)
1351 {
1352 if (statusp == NULL)
1353 memory_error (status, addr);
1354 return 0;
1355 }
1356 return extract_unsigned_integer (buf, instlen, byte_order);
1357 }
1358
1359 /* These are the fields of 32 bit mips instructions. */
1360 #define mips32_op(x) (x >> 26)
1361 #define itype_op(x) (x >> 26)
1362 #define itype_rs(x) ((x >> 21) & 0x1f)
1363 #define itype_rt(x) ((x >> 16) & 0x1f)
1364 #define itype_immediate(x) (x & 0xffff)
1365
1366 #define jtype_op(x) (x >> 26)
1367 #define jtype_target(x) (x & 0x03ffffff)
1368
1369 #define rtype_op(x) (x >> 26)
1370 #define rtype_rs(x) ((x >> 21) & 0x1f)
1371 #define rtype_rt(x) ((x >> 16) & 0x1f)
1372 #define rtype_rd(x) ((x >> 11) & 0x1f)
1373 #define rtype_shamt(x) ((x >> 6) & 0x1f)
1374 #define rtype_funct(x) (x & 0x3f)
1375
1376 /* MicroMIPS instruction fields. */
1377 #define micromips_op(x) ((x) >> 10)
1378
1379 /* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
1380 bit and the size respectively of the field extracted. */
1381 #define b0s4_imm(x) ((x) & 0xf)
1382 #define b0s5_imm(x) ((x) & 0x1f)
1383 #define b0s5_reg(x) ((x) & 0x1f)
1384 #define b0s7_imm(x) ((x) & 0x7f)
1385 #define b0s10_imm(x) ((x) & 0x3ff)
1386 #define b1s4_imm(x) (((x) >> 1) & 0xf)
1387 #define b1s9_imm(x) (((x) >> 1) & 0x1ff)
1388 #define b2s3_cc(x) (((x) >> 2) & 0x7)
1389 #define b4s2_regl(x) (((x) >> 4) & 0x3)
1390 #define b5s5_op(x) (((x) >> 5) & 0x1f)
1391 #define b5s5_reg(x) (((x) >> 5) & 0x1f)
1392 #define b6s4_op(x) (((x) >> 6) & 0xf)
1393 #define b7s3_reg(x) (((x) >> 7) & 0x7)
1394
1395 /* 32-bit instruction formats, B and S refer to the lowest bit and the size
1396 respectively of the field extracted. */
1397 #define b0s6_op(x) ((x) & 0x3f)
1398 #define b0s11_op(x) ((x) & 0x7ff)
1399 #define b0s12_imm(x) ((x) & 0xfff)
1400 #define b0s16_imm(x) ((x) & 0xffff)
1401 #define b0s26_imm(x) ((x) & 0x3ffffff)
1402 #define b6s10_ext(x) (((x) >> 6) & 0x3ff)
1403 #define b11s5_reg(x) (((x) >> 11) & 0x1f)
1404 #define b12s4_op(x) (((x) >> 12) & 0xf)
1405
1406 /* Return the size in bytes of the instruction INSN encoded in the ISA
1407 instruction set. */
1408
1409 static int
1410 mips_insn_size (enum mips_isa isa, ULONGEST insn)
1411 {
1412 switch (isa)
1413 {
1414 case ISA_MICROMIPS:
1415 if (micromips_op (insn) == 0x1f)
1416 return 3 * MIPS_INSN16_SIZE;
1417 else if (((micromips_op (insn) & 0x4) == 0x4)
1418 || ((micromips_op (insn) & 0x7) == 0x0))
1419 return 2 * MIPS_INSN16_SIZE;
1420 else
1421 return MIPS_INSN16_SIZE;
1422 case ISA_MIPS16:
1423 if ((insn & 0xf800) == 0xf000)
1424 return 2 * MIPS_INSN16_SIZE;
1425 else
1426 return MIPS_INSN16_SIZE;
1427 case ISA_MIPS:
1428 return MIPS_INSN32_SIZE;
1429 }
1430 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1431 }
1432
1433 static LONGEST
1434 mips32_relative_offset (ULONGEST inst)
1435 {
1436 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
1437 }
1438
1439 /* Determine the address of the next instruction executed after the INST
1440 floating condition branch instruction at PC. COUNT specifies the
1441 number of the floating condition bits tested by the branch. */
1442
1443 static CORE_ADDR
1444 mips32_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
1445 ULONGEST inst, CORE_ADDR pc, int count)
1446 {
1447 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1448 int cnum = (itype_rt (inst) >> 2) & (count - 1);
1449 int tf = itype_rt (inst) & 1;
1450 int mask = (1 << count) - 1;
1451 ULONGEST fcs;
1452 int cond;
1453
1454 if (fcsr == -1)
1455 /* No way to handle; it'll most likely trap anyway. */
1456 return pc;
1457
1458 fcs = get_frame_register_unsigned (frame, fcsr);
1459 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1460
1461 if (((cond >> cnum) & mask) != mask * !tf)
1462 pc += mips32_relative_offset (inst);
1463 else
1464 pc += 4;
1465
1466 return pc;
1467 }
1468
1469 /* Return nonzero if the gdbarch is an Octeon series. */
1470
1471 static int
1472 is_octeon (struct gdbarch *gdbarch)
1473 {
1474 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
1475
1476 return (info->mach == bfd_mach_mips_octeon
1477 || info->mach == bfd_mach_mips_octeonp
1478 || info->mach == bfd_mach_mips_octeon2);
1479 }
1480
1481 /* Return true if the OP represents the Octeon's BBIT instruction. */
1482
1483 static int
1484 is_octeon_bbit_op (int op, struct gdbarch *gdbarch)
1485 {
1486 if (!is_octeon (gdbarch))
1487 return 0;
1488 /* BBIT0 is encoded as LWC2: 110 010. */
1489 /* BBIT032 is encoded as LDC2: 110 110. */
1490 /* BBIT1 is encoded as SWC2: 111 010. */
1491 /* BBIT132 is encoded as SDC2: 111 110. */
1492 if (op == 50 || op == 54 || op == 58 || op == 62)
1493 return 1;
1494 return 0;
1495 }
1496
1497
1498 /* Determine where to set a single step breakpoint while considering
1499 branch prediction. */
1500
1501 static CORE_ADDR
1502 mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
1503 {
1504 struct gdbarch *gdbarch = get_frame_arch (frame);
1505 unsigned long inst;
1506 int op;
1507 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
1508 op = itype_op (inst);
1509 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch
1510 instruction. */
1511 {
1512 if (op >> 2 == 5)
1513 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1514 {
1515 switch (op & 0x03)
1516 {
1517 case 0: /* BEQL */
1518 goto equal_branch;
1519 case 1: /* BNEL */
1520 goto neq_branch;
1521 case 2: /* BLEZL */
1522 goto less_branch;
1523 case 3: /* BGTZL */
1524 goto greater_branch;
1525 default:
1526 pc += 4;
1527 }
1528 }
1529 else if (op == 17 && itype_rs (inst) == 8)
1530 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1531 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 1);
1532 else if (op == 17 && itype_rs (inst) == 9
1533 && (itype_rt (inst) & 2) == 0)
1534 /* BC1ANY2F, BC1ANY2T: 010001 01001 xxx0x */
1535 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 2);
1536 else if (op == 17 && itype_rs (inst) == 10
1537 && (itype_rt (inst) & 2) == 0)
1538 /* BC1ANY4F, BC1ANY4T: 010001 01010 xxx0x */
1539 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 4);
1540 else if (op == 29)
1541 /* JALX: 011101 */
1542 /* The new PC will be alternate mode. */
1543 {
1544 unsigned long reg;
1545
1546 reg = jtype_target (inst) << 2;
1547 /* Add 1 to indicate 16-bit mode -- invert ISA mode. */
1548 pc = ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + reg + 1;
1549 }
1550 else if (is_octeon_bbit_op (op, gdbarch))
1551 {
1552 int bit, branch_if;
1553
1554 branch_if = op == 58 || op == 62;
1555 bit = itype_rt (inst);
1556
1557 /* Take into account the *32 instructions. */
1558 if (op == 54 || op == 62)
1559 bit += 32;
1560
1561 if (((get_frame_register_signed (frame,
1562 itype_rs (inst)) >> bit) & 1)
1563 == branch_if)
1564 pc += mips32_relative_offset (inst) + 4;
1565 else
1566 pc += 8; /* After the delay slot. */
1567 }
1568
1569 else
1570 pc += 4; /* Not a branch, next instruction is easy. */
1571 }
1572 else
1573 { /* This gets way messy. */
1574
1575 /* Further subdivide into SPECIAL, REGIMM and other. */
1576 switch (op & 0x07) /* Extract bits 28,27,26. */
1577 {
1578 case 0: /* SPECIAL */
1579 op = rtype_funct (inst);
1580 switch (op)
1581 {
1582 case 8: /* JR */
1583 case 9: /* JALR */
1584 /* Set PC to that address. */
1585 pc = get_frame_register_signed (frame, rtype_rs (inst));
1586 break;
1587 case 12: /* SYSCALL */
1588 {
1589 struct gdbarch_tdep *tdep;
1590
1591 tdep = gdbarch_tdep (get_frame_arch (frame));
1592 if (tdep->syscall_next_pc != NULL)
1593 pc = tdep->syscall_next_pc (frame);
1594 else
1595 pc += 4;
1596 }
1597 break;
1598 default:
1599 pc += 4;
1600 }
1601
1602 break; /* end SPECIAL */
1603 case 1: /* REGIMM */
1604 {
1605 op = itype_rt (inst); /* branch condition */
1606 switch (op)
1607 {
1608 case 0: /* BLTZ */
1609 case 2: /* BLTZL */
1610 case 16: /* BLTZAL */
1611 case 18: /* BLTZALL */
1612 less_branch:
1613 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
1614 pc += mips32_relative_offset (inst) + 4;
1615 else
1616 pc += 8; /* after the delay slot */
1617 break;
1618 case 1: /* BGEZ */
1619 case 3: /* BGEZL */
1620 case 17: /* BGEZAL */
1621 case 19: /* BGEZALL */
1622 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
1623 pc += mips32_relative_offset (inst) + 4;
1624 else
1625 pc += 8; /* after the delay slot */
1626 break;
1627 case 0x1c: /* BPOSGE32 */
1628 case 0x1e: /* BPOSGE64 */
1629 pc += 4;
1630 if (itype_rs (inst) == 0)
1631 {
1632 unsigned int pos = (op & 2) ? 64 : 32;
1633 int dspctl = mips_regnum (gdbarch)->dspctl;
1634
1635 if (dspctl == -1)
1636 /* No way to handle; it'll most likely trap anyway. */
1637 break;
1638
1639 if ((get_frame_register_unsigned (frame,
1640 dspctl) & 0x7f) >= pos)
1641 pc += mips32_relative_offset (inst);
1642 else
1643 pc += 4;
1644 }
1645 break;
1646 /* All of the other instructions in the REGIMM category */
1647 default:
1648 pc += 4;
1649 }
1650 }
1651 break; /* end REGIMM */
1652 case 2: /* J */
1653 case 3: /* JAL */
1654 {
1655 unsigned long reg;
1656 reg = jtype_target (inst) << 2;
1657 /* Upper four bits get never changed... */
1658 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1659 }
1660 break;
1661 case 4: /* BEQ, BEQL */
1662 equal_branch:
1663 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1664 get_frame_register_signed (frame, itype_rt (inst)))
1665 pc += mips32_relative_offset (inst) + 4;
1666 else
1667 pc += 8;
1668 break;
1669 case 5: /* BNE, BNEL */
1670 neq_branch:
1671 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1672 get_frame_register_signed (frame, itype_rt (inst)))
1673 pc += mips32_relative_offset (inst) + 4;
1674 else
1675 pc += 8;
1676 break;
1677 case 6: /* BLEZ, BLEZL */
1678 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
1679 pc += mips32_relative_offset (inst) + 4;
1680 else
1681 pc += 8;
1682 break;
1683 case 7:
1684 default:
1685 greater_branch: /* BGTZ, BGTZL */
1686 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
1687 pc += mips32_relative_offset (inst) + 4;
1688 else
1689 pc += 8;
1690 break;
1691 } /* switch */
1692 } /* else */
1693 return pc;
1694 } /* mips32_next_pc */
1695
1696 /* Extract the 7-bit signed immediate offset from the microMIPS instruction
1697 INSN. */
1698
1699 static LONGEST
1700 micromips_relative_offset7 (ULONGEST insn)
1701 {
1702 return ((b0s7_imm (insn) ^ 0x40) - 0x40) << 1;
1703 }
1704
1705 /* Extract the 10-bit signed immediate offset from the microMIPS instruction
1706 INSN. */
1707
1708 static LONGEST
1709 micromips_relative_offset10 (ULONGEST insn)
1710 {
1711 return ((b0s10_imm (insn) ^ 0x200) - 0x200) << 1;
1712 }
1713
1714 /* Extract the 16-bit signed immediate offset from the microMIPS instruction
1715 INSN. */
1716
1717 static LONGEST
1718 micromips_relative_offset16 (ULONGEST insn)
1719 {
1720 return ((b0s16_imm (insn) ^ 0x8000) - 0x8000) << 1;
1721 }
1722
1723 /* Return the size in bytes of the microMIPS instruction at the address PC. */
1724
1725 static int
1726 micromips_pc_insn_size (struct gdbarch *gdbarch, CORE_ADDR pc)
1727 {
1728 ULONGEST insn;
1729
1730 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1731 return mips_insn_size (ISA_MICROMIPS, insn);
1732 }
1733
1734 /* Calculate the address of the next microMIPS instruction to execute
1735 after the INSN coprocessor 1 conditional branch instruction at the
1736 address PC. COUNT denotes the number of coprocessor condition bits
1737 examined by the branch. */
1738
1739 static CORE_ADDR
1740 micromips_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
1741 ULONGEST insn, CORE_ADDR pc, int count)
1742 {
1743 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1744 int cnum = b2s3_cc (insn >> 16) & (count - 1);
1745 int tf = b5s5_op (insn >> 16) & 1;
1746 int mask = (1 << count) - 1;
1747 ULONGEST fcs;
1748 int cond;
1749
1750 if (fcsr == -1)
1751 /* No way to handle; it'll most likely trap anyway. */
1752 return pc;
1753
1754 fcs = get_frame_register_unsigned (frame, fcsr);
1755 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1756
1757 if (((cond >> cnum) & mask) != mask * !tf)
1758 pc += micromips_relative_offset16 (insn);
1759 else
1760 pc += micromips_pc_insn_size (gdbarch, pc);
1761
1762 return pc;
1763 }
1764
1765 /* Calculate the address of the next microMIPS instruction to execute
1766 after the instruction at the address PC. */
1767
1768 static CORE_ADDR
1769 micromips_next_pc (struct frame_info *frame, CORE_ADDR pc)
1770 {
1771 struct gdbarch *gdbarch = get_frame_arch (frame);
1772 ULONGEST insn;
1773
1774 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1775 pc += MIPS_INSN16_SIZE;
1776 switch (mips_insn_size (ISA_MICROMIPS, insn))
1777 {
1778 /* 48-bit instructions. */
1779 case 3 * MIPS_INSN16_SIZE: /* POOL48A: bits 011111 */
1780 /* No branch or jump instructions in this category. */
1781 pc += 2 * MIPS_INSN16_SIZE;
1782 break;
1783
1784 /* 32-bit instructions. */
1785 case 2 * MIPS_INSN16_SIZE:
1786 insn <<= 16;
1787 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1788 pc += MIPS_INSN16_SIZE;
1789 switch (micromips_op (insn >> 16))
1790 {
1791 case 0x00: /* POOL32A: bits 000000 */
1792 if (b0s6_op (insn) == 0x3c
1793 /* POOL32Axf: bits 000000 ... 111100 */
1794 && (b6s10_ext (insn) & 0x2bf) == 0x3c)
1795 /* JALR, JALR.HB: 000000 000x111100 111100 */
1796 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
1797 pc = get_frame_register_signed (frame, b0s5_reg (insn >> 16));
1798 break;
1799
1800 case 0x10: /* POOL32I: bits 010000 */
1801 switch (b5s5_op (insn >> 16))
1802 {
1803 case 0x00: /* BLTZ: bits 010000 00000 */
1804 case 0x01: /* BLTZAL: bits 010000 00001 */
1805 case 0x11: /* BLTZALS: bits 010000 10001 */
1806 if (get_frame_register_signed (frame,
1807 b0s5_reg (insn >> 16)) < 0)
1808 pc += micromips_relative_offset16 (insn);
1809 else
1810 pc += micromips_pc_insn_size (gdbarch, pc);
1811 break;
1812
1813 case 0x02: /* BGEZ: bits 010000 00010 */
1814 case 0x03: /* BGEZAL: bits 010000 00011 */
1815 case 0x13: /* BGEZALS: bits 010000 10011 */
1816 if (get_frame_register_signed (frame,
1817 b0s5_reg (insn >> 16)) >= 0)
1818 pc += micromips_relative_offset16 (insn);
1819 else
1820 pc += micromips_pc_insn_size (gdbarch, pc);
1821 break;
1822
1823 case 0x04: /* BLEZ: bits 010000 00100 */
1824 if (get_frame_register_signed (frame,
1825 b0s5_reg (insn >> 16)) <= 0)
1826 pc += micromips_relative_offset16 (insn);
1827 else
1828 pc += micromips_pc_insn_size (gdbarch, pc);
1829 break;
1830
1831 case 0x05: /* BNEZC: bits 010000 00101 */
1832 if (get_frame_register_signed (frame,
1833 b0s5_reg (insn >> 16)) != 0)
1834 pc += micromips_relative_offset16 (insn);
1835 break;
1836
1837 case 0x06: /* BGTZ: bits 010000 00110 */
1838 if (get_frame_register_signed (frame,
1839 b0s5_reg (insn >> 16)) > 0)
1840 pc += micromips_relative_offset16 (insn);
1841 else
1842 pc += micromips_pc_insn_size (gdbarch, pc);
1843 break;
1844
1845 case 0x07: /* BEQZC: bits 010000 00111 */
1846 if (get_frame_register_signed (frame,
1847 b0s5_reg (insn >> 16)) == 0)
1848 pc += micromips_relative_offset16 (insn);
1849 break;
1850
1851 case 0x14: /* BC2F: bits 010000 10100 xxx00 */
1852 case 0x15: /* BC2T: bits 010000 10101 xxx00 */
1853 if (((insn >> 16) & 0x3) == 0x0)
1854 /* BC2F, BC2T: don't know how to handle these. */
1855 break;
1856 break;
1857
1858 case 0x1a: /* BPOSGE64: bits 010000 11010 */
1859 case 0x1b: /* BPOSGE32: bits 010000 11011 */
1860 {
1861 unsigned int pos = (b5s5_op (insn >> 16) & 1) ? 32 : 64;
1862 int dspctl = mips_regnum (gdbarch)->dspctl;
1863
1864 if (dspctl == -1)
1865 /* No way to handle; it'll most likely trap anyway. */
1866 break;
1867
1868 if ((get_frame_register_unsigned (frame,
1869 dspctl) & 0x7f) >= pos)
1870 pc += micromips_relative_offset16 (insn);
1871 else
1872 pc += micromips_pc_insn_size (gdbarch, pc);
1873 }
1874 break;
1875
1876 case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
1877 /* BC1ANY2F: bits 010000 11100 xxx01 */
1878 case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
1879 /* BC1ANY2T: bits 010000 11101 xxx01 */
1880 if (((insn >> 16) & 0x2) == 0x0)
1881 pc = micromips_bc1_pc (gdbarch, frame, insn, pc,
1882 ((insn >> 16) & 0x1) + 1);
1883 break;
1884
1885 case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
1886 case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
1887 if (((insn >> 16) & 0x3) == 0x1)
1888 pc = micromips_bc1_pc (gdbarch, frame, insn, pc, 4);
1889 break;
1890 }
1891 break;
1892
1893 case 0x1d: /* JALS: bits 011101 */
1894 case 0x35: /* J: bits 110101 */
1895 case 0x3d: /* JAL: bits 111101 */
1896 pc = ((pc | 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn) << 1);
1897 break;
1898
1899 case 0x25: /* BEQ: bits 100101 */
1900 if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
1901 == get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
1902 pc += micromips_relative_offset16 (insn);
1903 else
1904 pc += micromips_pc_insn_size (gdbarch, pc);
1905 break;
1906
1907 case 0x2d: /* BNE: bits 101101 */
1908 if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
1909 != get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
1910 pc += micromips_relative_offset16 (insn);
1911 else
1912 pc += micromips_pc_insn_size (gdbarch, pc);
1913 break;
1914
1915 case 0x3c: /* JALX: bits 111100 */
1916 pc = ((pc | 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn) << 2);
1917 break;
1918 }
1919 break;
1920
1921 /* 16-bit instructions. */
1922 case MIPS_INSN16_SIZE:
1923 switch (micromips_op (insn))
1924 {
1925 case 0x11: /* POOL16C: bits 010001 */
1926 if ((b5s5_op (insn) & 0x1c) == 0xc)
1927 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
1928 pc = get_frame_register_signed (frame, b0s5_reg (insn));
1929 else if (b5s5_op (insn) == 0x18)
1930 /* JRADDIUSP: bits 010001 11000 */
1931 pc = get_frame_register_signed (frame, MIPS_RA_REGNUM);
1932 break;
1933
1934 case 0x23: /* BEQZ16: bits 100011 */
1935 {
1936 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
1937
1938 if (get_frame_register_signed (frame, rs) == 0)
1939 pc += micromips_relative_offset7 (insn);
1940 else
1941 pc += micromips_pc_insn_size (gdbarch, pc);
1942 }
1943 break;
1944
1945 case 0x2b: /* BNEZ16: bits 101011 */
1946 {
1947 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
1948
1949 if (get_frame_register_signed (frame, rs) != 0)
1950 pc += micromips_relative_offset7 (insn);
1951 else
1952 pc += micromips_pc_insn_size (gdbarch, pc);
1953 }
1954 break;
1955
1956 case 0x33: /* B16: bits 110011 */
1957 pc += micromips_relative_offset10 (insn);
1958 break;
1959 }
1960 break;
1961 }
1962
1963 return pc;
1964 }
1965
1966 /* Decoding the next place to set a breakpoint is irregular for the
1967 mips 16 variant, but fortunately, there fewer instructions. We have
1968 to cope ith extensions for 16 bit instructions and a pair of actual
1969 32 bit instructions. We dont want to set a single step instruction
1970 on the extend instruction either. */
1971
1972 /* Lots of mips16 instruction formats */
1973 /* Predicting jumps requires itype,ritype,i8type
1974 and their extensions extItype,extritype,extI8type. */
1975 enum mips16_inst_fmts
1976 {
1977 itype, /* 0 immediate 5,10 */
1978 ritype, /* 1 5,3,8 */
1979 rrtype, /* 2 5,3,3,5 */
1980 rritype, /* 3 5,3,3,5 */
1981 rrrtype, /* 4 5,3,3,3,2 */
1982 rriatype, /* 5 5,3,3,1,4 */
1983 shifttype, /* 6 5,3,3,3,2 */
1984 i8type, /* 7 5,3,8 */
1985 i8movtype, /* 8 5,3,3,5 */
1986 i8mov32rtype, /* 9 5,3,5,3 */
1987 i64type, /* 10 5,3,8 */
1988 ri64type, /* 11 5,3,3,5 */
1989 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1990 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1991 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1992 extRRItype, /* 15 5,5,5,5,3,3,5 */
1993 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1994 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1995 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1996 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1997 extRi64type, /* 20 5,6,5,5,3,3,5 */
1998 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1999 };
2000 /* I am heaping all the fields of the formats into one structure and
2001 then, only the fields which are involved in instruction extension. */
2002 struct upk_mips16
2003 {
2004 CORE_ADDR offset;
2005 unsigned int regx; /* Function in i8 type. */
2006 unsigned int regy;
2007 };
2008
2009
2010 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
2011 for the bits which make up the immediate extension. */
2012
2013 static CORE_ADDR
2014 extended_offset (unsigned int extension)
2015 {
2016 CORE_ADDR value;
2017
2018 value = (extension >> 16) & 0x1f; /* Extract 15:11. */
2019 value = value << 6;
2020 value |= (extension >> 21) & 0x3f; /* Extract 10:5. */
2021 value = value << 5;
2022 value |= extension & 0x1f; /* Extract 4:0. */
2023
2024 return value;
2025 }
2026
2027 /* Only call this function if you know that this is an extendable
2028 instruction. It won't malfunction, but why make excess remote memory
2029 references? If the immediate operands get sign extended or something,
2030 do it after the extension is performed. */
2031 /* FIXME: Every one of these cases needs to worry about sign extension
2032 when the offset is to be used in relative addressing. */
2033
2034 static unsigned int
2035 fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
2036 {
2037 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2038 gdb_byte buf[8];
2039 pc &= 0xfffffffe; /* Clear the low order bit. */
2040 target_read_memory (pc, buf, 2);
2041 return extract_unsigned_integer (buf, 2, byte_order);
2042 }
2043
2044 static void
2045 unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
2046 unsigned int extension,
2047 unsigned int inst,
2048 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
2049 {
2050 CORE_ADDR offset;
2051 int regx;
2052 int regy;
2053 switch (insn_format)
2054 {
2055 case itype:
2056 {
2057 CORE_ADDR value;
2058 if (extension)
2059 {
2060 value = extended_offset ((extension << 16) | inst);
2061 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2062 }
2063 else
2064 {
2065 value = inst & 0x7ff;
2066 value = (value ^ 0x400) - 0x400; /* Sign-extend. */
2067 }
2068 offset = value;
2069 regx = -1;
2070 regy = -1;
2071 }
2072 break;
2073 case ritype:
2074 case i8type:
2075 { /* A register identifier and an offset. */
2076 /* Most of the fields are the same as I type but the
2077 immediate value is of a different length. */
2078 CORE_ADDR value;
2079 if (extension)
2080 {
2081 value = extended_offset ((extension << 16) | inst);
2082 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2083 }
2084 else
2085 {
2086 value = inst & 0xff; /* 8 bits */
2087 value = (value ^ 0x80) - 0x80; /* Sign-extend. */
2088 }
2089 offset = value;
2090 regx = (inst >> 8) & 0x07; /* i8 funct */
2091 regy = -1;
2092 break;
2093 }
2094 case jalxtype:
2095 {
2096 unsigned long value;
2097 unsigned int nexthalf;
2098 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
2099 value = value << 16;
2100 nexthalf = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc + 2, NULL);
2101 /* Low bit still set. */
2102 value |= nexthalf;
2103 offset = value;
2104 regx = -1;
2105 regy = -1;
2106 break;
2107 }
2108 default:
2109 internal_error (__FILE__, __LINE__, _("bad switch"));
2110 }
2111 upk->offset = offset;
2112 upk->regx = regx;
2113 upk->regy = regy;
2114 }
2115
2116
2117 static CORE_ADDR
2118 add_offset_16 (CORE_ADDR pc, int offset)
2119 {
2120 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
2121 }
2122
2123 static CORE_ADDR
2124 extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
2125 unsigned int extension, unsigned int insn)
2126 {
2127 struct gdbarch *gdbarch = get_frame_arch (frame);
2128 int op = (insn >> 11);
2129 switch (op)
2130 {
2131 case 2: /* Branch */
2132 {
2133 struct upk_mips16 upk;
2134 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
2135 pc += (upk.offset << 1) + 2;
2136 break;
2137 }
2138 case 3: /* JAL , JALX - Watch out, these are 32 bit
2139 instructions. */
2140 {
2141 struct upk_mips16 upk;
2142 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
2143 pc = add_offset_16 (pc, upk.offset);
2144 if ((insn >> 10) & 0x01) /* Exchange mode */
2145 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode. */
2146 else
2147 pc |= 0x01;
2148 break;
2149 }
2150 case 4: /* beqz */
2151 {
2152 struct upk_mips16 upk;
2153 int reg;
2154 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2155 reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
2156 if (reg == 0)
2157 pc += (upk.offset << 1) + 2;
2158 else
2159 pc += 2;
2160 break;
2161 }
2162 case 5: /* bnez */
2163 {
2164 struct upk_mips16 upk;
2165 int reg;
2166 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2167 reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
2168 if (reg != 0)
2169 pc += (upk.offset << 1) + 2;
2170 else
2171 pc += 2;
2172 break;
2173 }
2174 case 12: /* I8 Formats btez btnez */
2175 {
2176 struct upk_mips16 upk;
2177 int reg;
2178 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
2179 /* upk.regx contains the opcode */
2180 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
2181 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
2182 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
2183 /* pc = add_offset_16(pc,upk.offset) ; */
2184 pc += (upk.offset << 1) + 2;
2185 else
2186 pc += 2;
2187 break;
2188 }
2189 case 29: /* RR Formats JR, JALR, JALR-RA */
2190 {
2191 struct upk_mips16 upk;
2192 /* upk.fmt = rrtype; */
2193 op = insn & 0x1f;
2194 if (op == 0)
2195 {
2196 int reg;
2197 upk.regx = (insn >> 8) & 0x07;
2198 upk.regy = (insn >> 5) & 0x07;
2199 if ((upk.regy & 1) == 0)
2200 reg = mips_reg3_to_reg[upk.regx];
2201 else
2202 reg = 31; /* Function return instruction. */
2203 pc = get_frame_register_signed (frame, reg);
2204 }
2205 else
2206 pc += 2;
2207 break;
2208 }
2209 case 30:
2210 /* This is an instruction extension. Fetch the real instruction
2211 (which follows the extension) and decode things based on
2212 that. */
2213 {
2214 pc += 2;
2215 pc = extended_mips16_next_pc (frame, pc, insn,
2216 fetch_mips_16 (gdbarch, pc));
2217 break;
2218 }
2219 default:
2220 {
2221 pc += 2;
2222 break;
2223 }
2224 }
2225 return pc;
2226 }
2227
2228 static CORE_ADDR
2229 mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
2230 {
2231 struct gdbarch *gdbarch = get_frame_arch (frame);
2232 unsigned int insn = fetch_mips_16 (gdbarch, pc);
2233 return extended_mips16_next_pc (frame, pc, 0, insn);
2234 }
2235
2236 /* The mips_next_pc function supports single_step when the remote
2237 target monitor or stub is not developed enough to do a single_step.
2238 It works by decoding the current instruction and predicting where a
2239 branch will go. This isnt hard because all the data is available.
2240 The MIPS32, MIPS16 and microMIPS variants are quite different. */
2241 static CORE_ADDR
2242 mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
2243 {
2244 struct gdbarch *gdbarch = get_frame_arch (frame);
2245
2246 if (mips_pc_is_mips16 (gdbarch, pc))
2247 return mips16_next_pc (frame, pc);
2248 else if (mips_pc_is_micromips (gdbarch, pc))
2249 return micromips_next_pc (frame, pc);
2250 else
2251 return mips32_next_pc (frame, pc);
2252 }
2253
2254 struct mips_frame_cache
2255 {
2256 CORE_ADDR base;
2257 struct trad_frame_saved_reg *saved_regs;
2258 };
2259
2260 /* Set a register's saved stack address in temp_saved_regs. If an
2261 address has already been set for this register, do nothing; this
2262 way we will only recognize the first save of a given register in a
2263 function prologue.
2264
2265 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
2266 [gdbarch_num_regs .. 2*gdbarch_num_regs).
2267 Strictly speaking, only the second range is used as it is only second
2268 range (the ABI instead of ISA registers) that comes into play when finding
2269 saved registers in a frame. */
2270
2271 static void
2272 set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
2273 int regnum, CORE_ADDR offset)
2274 {
2275 if (this_cache != NULL
2276 && this_cache->saved_regs[regnum].addr == -1)
2277 {
2278 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
2279 = offset;
2280 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
2281 = offset;
2282 }
2283 }
2284
2285
2286 /* Fetch the immediate value from a MIPS16 instruction.
2287 If the previous instruction was an EXTEND, use it to extend
2288 the upper bits of the immediate value. This is a helper function
2289 for mips16_scan_prologue. */
2290
2291 static int
2292 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2293 unsigned short inst, /* current instruction */
2294 int nbits, /* number of bits in imm field */
2295 int scale, /* scale factor to be applied to imm */
2296 int is_signed) /* is the imm field signed? */
2297 {
2298 int offset;
2299
2300 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2301 {
2302 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2303 if (offset & 0x8000) /* check for negative extend */
2304 offset = 0 - (0x10000 - (offset & 0xffff));
2305 return offset | (inst & 0x1f);
2306 }
2307 else
2308 {
2309 int max_imm = 1 << nbits;
2310 int mask = max_imm - 1;
2311 int sign_bit = max_imm >> 1;
2312
2313 offset = inst & mask;
2314 if (is_signed && (offset & sign_bit))
2315 offset = 0 - (max_imm - offset);
2316 return offset * scale;
2317 }
2318 }
2319
2320
2321 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
2322 the associated FRAME_CACHE if not null.
2323 Return the address of the first instruction past the prologue. */
2324
2325 static CORE_ADDR
2326 mips16_scan_prologue (struct gdbarch *gdbarch,
2327 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2328 struct frame_info *this_frame,
2329 struct mips_frame_cache *this_cache)
2330 {
2331 CORE_ADDR cur_pc;
2332 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer. */
2333 CORE_ADDR sp;
2334 long frame_offset = 0; /* Size of stack frame. */
2335 long frame_adjust = 0; /* Offset of FP from SP. */
2336 int frame_reg = MIPS_SP_REGNUM;
2337 unsigned short prev_inst = 0; /* saved copy of previous instruction. */
2338 unsigned inst = 0; /* current instruction */
2339 unsigned entry_inst = 0; /* the entry instruction */
2340 unsigned save_inst = 0; /* the save instruction */
2341 int reg, offset;
2342
2343 int extend_bytes = 0;
2344 int prev_extend_bytes;
2345 CORE_ADDR end_prologue_addr = 0;
2346
2347 /* Can be called when there's no process, and hence when there's no
2348 THIS_FRAME. */
2349 if (this_frame != NULL)
2350 sp = get_frame_register_signed (this_frame,
2351 gdbarch_num_regs (gdbarch)
2352 + MIPS_SP_REGNUM);
2353 else
2354 sp = 0;
2355
2356 if (limit_pc > start_pc + 200)
2357 limit_pc = start_pc + 200;
2358
2359 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
2360 {
2361 /* Save the previous instruction. If it's an EXTEND, we'll extract
2362 the immediate offset extension from it in mips16_get_imm. */
2363 prev_inst = inst;
2364
2365 /* Fetch and decode the instruction. */
2366 inst = (unsigned short) mips_fetch_instruction (gdbarch, ISA_MIPS16,
2367 cur_pc, NULL);
2368
2369 /* Normally we ignore extend instructions. However, if it is
2370 not followed by a valid prologue instruction, then this
2371 instruction is not part of the prologue either. We must
2372 remember in this case to adjust the end_prologue_addr back
2373 over the extend. */
2374 if ((inst & 0xf800) == 0xf000) /* extend */
2375 {
2376 extend_bytes = MIPS_INSN16_SIZE;
2377 continue;
2378 }
2379
2380 prev_extend_bytes = extend_bytes;
2381 extend_bytes = 0;
2382
2383 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2384 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2385 {
2386 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
2387 if (offset < 0) /* Negative stack adjustment? */
2388 frame_offset -= offset;
2389 else
2390 /* Exit loop if a positive stack adjustment is found, which
2391 usually means that the stack cleanup code in the function
2392 epilogue is reached. */
2393 break;
2394 }
2395 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2396 {
2397 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2398 reg = mips_reg3_to_reg[(inst & 0x700) >> 8];
2399 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2400 }
2401 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2402 {
2403 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2404 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2405 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2406 }
2407 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2408 {
2409 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2410 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2411 }
2412 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2413 {
2414 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2415 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2416 }
2417 else if (inst == 0x673d) /* move $s1, $sp */
2418 {
2419 frame_addr = sp;
2420 frame_reg = 17;
2421 }
2422 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2423 {
2424 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2425 frame_addr = sp + offset;
2426 frame_reg = 17;
2427 frame_adjust = offset;
2428 }
2429 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2430 {
2431 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2432 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2433 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2434 }
2435 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2436 {
2437 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2438 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2439 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2440 }
2441 else if ((inst & 0xf81f) == 0xe809
2442 && (inst & 0x700) != 0x700) /* entry */
2443 entry_inst = inst; /* Save for later processing. */
2444 else if ((inst & 0xff80) == 0x6480) /* save */
2445 {
2446 save_inst = inst; /* Save for later processing. */
2447 if (prev_extend_bytes) /* extend */
2448 save_inst |= prev_inst << 16;
2449 }
2450 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
2451 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
2452 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
2453 {
2454 /* This instruction is part of the prologue, but we don't
2455 need to do anything special to handle it. */
2456 }
2457 else
2458 {
2459 /* This instruction is not an instruction typically found
2460 in a prologue, so we must have reached the end of the
2461 prologue. */
2462 if (end_prologue_addr == 0)
2463 end_prologue_addr = cur_pc - prev_extend_bytes;
2464 }
2465 }
2466
2467 /* The entry instruction is typically the first instruction in a function,
2468 and it stores registers at offsets relative to the value of the old SP
2469 (before the prologue). But the value of the sp parameter to this
2470 function is the new SP (after the prologue has been executed). So we
2471 can't calculate those offsets until we've seen the entire prologue,
2472 and can calculate what the old SP must have been. */
2473 if (entry_inst != 0)
2474 {
2475 int areg_count = (entry_inst >> 8) & 7;
2476 int sreg_count = (entry_inst >> 6) & 3;
2477
2478 /* The entry instruction always subtracts 32 from the SP. */
2479 frame_offset += 32;
2480
2481 /* Now we can calculate what the SP must have been at the
2482 start of the function prologue. */
2483 sp += frame_offset;
2484
2485 /* Check if a0-a3 were saved in the caller's argument save area. */
2486 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2487 {
2488 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2489 offset += mips_abi_regsize (gdbarch);
2490 }
2491
2492 /* Check if the ra register was pushed on the stack. */
2493 offset = -4;
2494 if (entry_inst & 0x20)
2495 {
2496 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2497 offset -= mips_abi_regsize (gdbarch);
2498 }
2499
2500 /* Check if the s0 and s1 registers were pushed on the stack. */
2501 for (reg = 16; reg < sreg_count + 16; reg++)
2502 {
2503 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2504 offset -= mips_abi_regsize (gdbarch);
2505 }
2506 }
2507
2508 /* The SAVE instruction is similar to ENTRY, except that defined by the
2509 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
2510 size of the frame is specified as an immediate field of instruction
2511 and an extended variation exists which lets additional registers and
2512 frame space to be specified. The instruction always treats registers
2513 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
2514 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
2515 {
2516 static int args_table[16] = {
2517 0, 0, 0, 0, 1, 1, 1, 1,
2518 2, 2, 2, 0, 3, 3, 4, -1,
2519 };
2520 static int astatic_table[16] = {
2521 0, 1, 2, 3, 0, 1, 2, 3,
2522 0, 1, 2, 4, 0, 1, 0, -1,
2523 };
2524 int aregs = (save_inst >> 16) & 0xf;
2525 int xsregs = (save_inst >> 24) & 0x7;
2526 int args = args_table[aregs];
2527 int astatic = astatic_table[aregs];
2528 long frame_size;
2529
2530 if (args < 0)
2531 {
2532 warning (_("Invalid number of argument registers encoded in SAVE."));
2533 args = 0;
2534 }
2535 if (astatic < 0)
2536 {
2537 warning (_("Invalid number of static registers encoded in SAVE."));
2538 astatic = 0;
2539 }
2540
2541 /* For standard SAVE the frame size of 0 means 128. */
2542 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
2543 if (frame_size == 0 && (save_inst >> 16) == 0)
2544 frame_size = 16;
2545 frame_size *= 8;
2546 frame_offset += frame_size;
2547
2548 /* Now we can calculate what the SP must have been at the
2549 start of the function prologue. */
2550 sp += frame_offset;
2551
2552 /* Check if A0-A3 were saved in the caller's argument save area. */
2553 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
2554 {
2555 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2556 offset += mips_abi_regsize (gdbarch);
2557 }
2558
2559 offset = -4;
2560
2561 /* Check if the RA register was pushed on the stack. */
2562 if (save_inst & 0x40)
2563 {
2564 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2565 offset -= mips_abi_regsize (gdbarch);
2566 }
2567
2568 /* Check if the S8 register was pushed on the stack. */
2569 if (xsregs > 6)
2570 {
2571 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
2572 offset -= mips_abi_regsize (gdbarch);
2573 xsregs--;
2574 }
2575 /* Check if S2-S7 were pushed on the stack. */
2576 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
2577 {
2578 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2579 offset -= mips_abi_regsize (gdbarch);
2580 }
2581
2582 /* Check if the S1 register was pushed on the stack. */
2583 if (save_inst & 0x10)
2584 {
2585 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
2586 offset -= mips_abi_regsize (gdbarch);
2587 }
2588 /* Check if the S0 register was pushed on the stack. */
2589 if (save_inst & 0x20)
2590 {
2591 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
2592 offset -= mips_abi_regsize (gdbarch);
2593 }
2594
2595 /* Check if A0-A3 were pushed on the stack. */
2596 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
2597 {
2598 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2599 offset -= mips_abi_regsize (gdbarch);
2600 }
2601 }
2602
2603 if (this_cache != NULL)
2604 {
2605 this_cache->base =
2606 (get_frame_register_signed (this_frame,
2607 gdbarch_num_regs (gdbarch) + frame_reg)
2608 + frame_offset - frame_adjust);
2609 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
2610 be able to get rid of the assignment below, evetually. But it's
2611 still needed for now. */
2612 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2613 + mips_regnum (gdbarch)->pc]
2614 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
2615 }
2616
2617 /* If we didn't reach the end of the prologue when scanning the function
2618 instructions, then set end_prologue_addr to the address of the
2619 instruction immediately after the last one we scanned. */
2620 if (end_prologue_addr == 0)
2621 end_prologue_addr = cur_pc;
2622
2623 return end_prologue_addr;
2624 }
2625
2626 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
2627 Procedures that use the 32-bit instruction set are handled by the
2628 mips_insn32 unwinder. */
2629
2630 static struct mips_frame_cache *
2631 mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
2632 {
2633 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2634 struct mips_frame_cache *cache;
2635
2636 if ((*this_cache) != NULL)
2637 return (*this_cache);
2638 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2639 (*this_cache) = cache;
2640 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2641
2642 /* Analyze the function prologue. */
2643 {
2644 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2645 CORE_ADDR start_addr;
2646
2647 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2648 if (start_addr == 0)
2649 start_addr = heuristic_proc_start (gdbarch, pc);
2650 /* We can't analyze the prologue if we couldn't find the begining
2651 of the function. */
2652 if (start_addr == 0)
2653 return cache;
2654
2655 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
2656 }
2657
2658 /* gdbarch_sp_regnum contains the value and not the address. */
2659 trad_frame_set_value (cache->saved_regs,
2660 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2661 cache->base);
2662
2663 return (*this_cache);
2664 }
2665
2666 static void
2667 mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
2668 struct frame_id *this_id)
2669 {
2670 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2671 this_cache);
2672 /* This marks the outermost frame. */
2673 if (info->base == 0)
2674 return;
2675 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2676 }
2677
2678 static struct value *
2679 mips_insn16_frame_prev_register (struct frame_info *this_frame,
2680 void **this_cache, int regnum)
2681 {
2682 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2683 this_cache);
2684 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2685 }
2686
2687 static int
2688 mips_insn16_frame_sniffer (const struct frame_unwind *self,
2689 struct frame_info *this_frame, void **this_cache)
2690 {
2691 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2692 CORE_ADDR pc = get_frame_pc (this_frame);
2693 if (mips_pc_is_mips16 (gdbarch, pc))
2694 return 1;
2695 return 0;
2696 }
2697
2698 static const struct frame_unwind mips_insn16_frame_unwind =
2699 {
2700 NORMAL_FRAME,
2701 default_frame_unwind_stop_reason,
2702 mips_insn16_frame_this_id,
2703 mips_insn16_frame_prev_register,
2704 NULL,
2705 mips_insn16_frame_sniffer
2706 };
2707
2708 static CORE_ADDR
2709 mips_insn16_frame_base_address (struct frame_info *this_frame,
2710 void **this_cache)
2711 {
2712 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2713 this_cache);
2714 return info->base;
2715 }
2716
2717 static const struct frame_base mips_insn16_frame_base =
2718 {
2719 &mips_insn16_frame_unwind,
2720 mips_insn16_frame_base_address,
2721 mips_insn16_frame_base_address,
2722 mips_insn16_frame_base_address
2723 };
2724
2725 static const struct frame_base *
2726 mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
2727 {
2728 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2729 CORE_ADDR pc = get_frame_pc (this_frame);
2730 if (mips_pc_is_mips16 (gdbarch, pc))
2731 return &mips_insn16_frame_base;
2732 else
2733 return NULL;
2734 }
2735
2736 /* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
2737 to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
2738 interpreted directly, and then multiplied by 4. */
2739
2740 static int
2741 micromips_decode_imm9 (int imm)
2742 {
2743 imm = (imm ^ 0x100) - 0x100;
2744 if (imm > -3 && imm < 2)
2745 imm ^= 0x100;
2746 return imm << 2;
2747 }
2748
2749 /* Analyze the function prologue from START_PC to LIMIT_PC. Return
2750 the address of the first instruction past the prologue. */
2751
2752 static CORE_ADDR
2753 micromips_scan_prologue (struct gdbarch *gdbarch,
2754 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2755 struct frame_info *this_frame,
2756 struct mips_frame_cache *this_cache)
2757 {
2758 CORE_ADDR end_prologue_addr = 0;
2759 int prev_non_prologue_insn = 0;
2760 int frame_reg = MIPS_SP_REGNUM;
2761 int this_non_prologue_insn;
2762 int non_prologue_insns = 0;
2763 long frame_offset = 0; /* Size of stack frame. */
2764 long frame_adjust = 0; /* Offset of FP from SP. */
2765 CORE_ADDR frame_addr = 0; /* Value of $30, used as frame pointer. */
2766 CORE_ADDR prev_pc;
2767 CORE_ADDR cur_pc;
2768 ULONGEST insn; /* current instruction */
2769 CORE_ADDR sp;
2770 long offset;
2771 long sp_adj;
2772 long v1_off = 0; /* The assumption is LUI will replace it. */
2773 int reglist;
2774 int breg;
2775 int dreg;
2776 int sreg;
2777 int treg;
2778 int loc;
2779 int op;
2780 int s;
2781 int i;
2782
2783 /* Can be called when there's no process, and hence when there's no
2784 THIS_FRAME. */
2785 if (this_frame != NULL)
2786 sp = get_frame_register_signed (this_frame,
2787 gdbarch_num_regs (gdbarch)
2788 + MIPS_SP_REGNUM);
2789 else
2790 sp = 0;
2791
2792 if (limit_pc > start_pc + 200)
2793 limit_pc = start_pc + 200;
2794 prev_pc = start_pc;
2795
2796 /* Permit at most one non-prologue non-control-transfer instruction
2797 in the middle which may have been reordered by the compiler for
2798 optimisation. */
2799 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += loc)
2800 {
2801 this_non_prologue_insn = 0;
2802 sp_adj = 0;
2803 loc = 0;
2804 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, cur_pc, NULL);
2805 loc += MIPS_INSN16_SIZE;
2806 switch (mips_insn_size (ISA_MICROMIPS, insn))
2807 {
2808 /* 48-bit instructions. */
2809 case 3 * MIPS_INSN16_SIZE:
2810 /* No prologue instructions in this category. */
2811 this_non_prologue_insn = 1;
2812 loc += 2 * MIPS_INSN16_SIZE;
2813 break;
2814
2815 /* 32-bit instructions. */
2816 case 2 * MIPS_INSN16_SIZE:
2817 insn <<= 16;
2818 insn |= mips_fetch_instruction (gdbarch,
2819 ISA_MICROMIPS, cur_pc + loc, NULL);
2820 loc += MIPS_INSN16_SIZE;
2821 switch (micromips_op (insn >> 16))
2822 {
2823 /* Record $sp/$fp adjustment. */
2824 /* Discard (D)ADDU $gp,$jp used for PIC code. */
2825 case 0x0: /* POOL32A: bits 000000 */
2826 case 0x16: /* POOL32S: bits 010110 */
2827 op = b0s11_op (insn);
2828 sreg = b0s5_reg (insn >> 16);
2829 treg = b5s5_reg (insn >> 16);
2830 dreg = b11s5_reg (insn);
2831 if (op == 0x1d0
2832 /* SUBU: bits 000000 00111010000 */
2833 /* DSUBU: bits 010110 00111010000 */
2834 && dreg == MIPS_SP_REGNUM && sreg == MIPS_SP_REGNUM
2835 && treg == 3)
2836 /* (D)SUBU $sp, $v1 */
2837 sp_adj = v1_off;
2838 else if (op != 0x150
2839 /* ADDU: bits 000000 00101010000 */
2840 /* DADDU: bits 010110 00101010000 */
2841 || dreg != 28 || sreg != 28 || treg != MIPS_T9_REGNUM)
2842 this_non_prologue_insn = 1;
2843 break;
2844
2845 case 0x8: /* POOL32B: bits 001000 */
2846 op = b12s4_op (insn);
2847 breg = b0s5_reg (insn >> 16);
2848 reglist = sreg = b5s5_reg (insn >> 16);
2849 offset = (b0s12_imm (insn) ^ 0x800) - 0x800;
2850 if ((op == 0x9 || op == 0xc)
2851 /* SWP: bits 001000 1001 */
2852 /* SDP: bits 001000 1100 */
2853 && breg == MIPS_SP_REGNUM && sreg < MIPS_RA_REGNUM)
2854 /* S[DW]P reg,offset($sp) */
2855 {
2856 s = 4 << ((b12s4_op (insn) & 0x4) == 0x4);
2857 set_reg_offset (gdbarch, this_cache,
2858 sreg, sp + offset);
2859 set_reg_offset (gdbarch, this_cache,
2860 sreg + 1, sp + offset + s);
2861 }
2862 else if ((op == 0xd || op == 0xf)
2863 /* SWM: bits 001000 1101 */
2864 /* SDM: bits 001000 1111 */
2865 && breg == MIPS_SP_REGNUM
2866 /* SWM reglist,offset($sp) */
2867 && ((reglist >= 1 && reglist <= 9)
2868 || (reglist >= 16 && reglist <= 25)))
2869 {
2870 int sreglist = min(reglist & 0xf, 8);
2871
2872 s = 4 << ((b12s4_op (insn) & 0x2) == 0x2);
2873 for (i = 0; i < sreglist; i++)
2874 set_reg_offset (gdbarch, this_cache, 16 + i, sp + s * i);
2875 if ((reglist & 0xf) > 8)
2876 set_reg_offset (gdbarch, this_cache, 30, sp + s * i++);
2877 if ((reglist & 0x10) == 0x10)
2878 set_reg_offset (gdbarch, this_cache,
2879 MIPS_RA_REGNUM, sp + s * i++);
2880 }
2881 else
2882 this_non_prologue_insn = 1;
2883 break;
2884
2885 /* Record $sp/$fp adjustment. */
2886 /* Discard (D)ADDIU $gp used for PIC code. */
2887 case 0xc: /* ADDIU: bits 001100 */
2888 case 0x17: /* DADDIU: bits 010111 */
2889 sreg = b0s5_reg (insn >> 16);
2890 dreg = b5s5_reg (insn >> 16);
2891 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
2892 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM)
2893 /* (D)ADDIU $sp, imm */
2894 sp_adj = offset;
2895 else if (sreg == MIPS_SP_REGNUM && dreg == 30)
2896 /* (D)ADDIU $fp, $sp, imm */
2897 {
2898 frame_addr = sp + offset;
2899 frame_adjust = offset;
2900 frame_reg = 30;
2901 }
2902 else if (sreg != 28 || dreg != 28)
2903 /* (D)ADDIU $gp, imm */
2904 this_non_prologue_insn = 1;
2905 break;
2906
2907 /* LUI $v1 is used for larger $sp adjustments. */
2908 /* Discard LUI $gp is used for PIC code. */
2909 case 0x10: /* POOL32I: bits 010000 */
2910 if (b5s5_op (insn >> 16) == 0xd
2911 /* LUI: bits 010000 001101 */
2912 && b0s5_reg (insn >> 16) == 3)
2913 /* LUI $v1, imm */
2914 v1_off = ((b0s16_imm (insn) << 16) ^ 0x80000000) - 0x80000000;
2915 else if (b5s5_op (insn >> 16) != 0xd
2916 /* LUI: bits 010000 001101 */
2917 || b0s5_reg (insn >> 16) != 28)
2918 /* LUI $gp, imm */
2919 this_non_prologue_insn = 1;
2920 break;
2921
2922 /* ORI $v1 is used for larger $sp adjustments. */
2923 case 0x14: /* ORI: bits 010100 */
2924 sreg = b0s5_reg (insn >> 16);
2925 dreg = b5s5_reg (insn >> 16);
2926 if (sreg == 3 && dreg == 3)
2927 /* ORI $v1, imm */
2928 v1_off |= b0s16_imm (insn);
2929 else
2930 this_non_prologue_insn = 1;
2931 break;
2932
2933 case 0x26: /* SWC1: bits 100110 */
2934 case 0x2e: /* SDC1: bits 101110 */
2935 breg = b0s5_reg (insn >> 16);
2936 if (breg != MIPS_SP_REGNUM)
2937 /* S[DW]C1 reg,offset($sp) */
2938 this_non_prologue_insn = 1;
2939 break;
2940
2941 case 0x36: /* SD: bits 110110 */
2942 case 0x3e: /* SW: bits 111110 */
2943 breg = b0s5_reg (insn >> 16);
2944 sreg = b5s5_reg (insn >> 16);
2945 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
2946 if (breg == MIPS_SP_REGNUM)
2947 /* S[DW] reg,offset($sp) */
2948 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
2949 else
2950 this_non_prologue_insn = 1;
2951 break;
2952
2953 default:
2954 this_non_prologue_insn = 1;
2955 break;
2956 }
2957 break;
2958
2959 /* 16-bit instructions. */
2960 case MIPS_INSN16_SIZE:
2961 switch (micromips_op (insn))
2962 {
2963 case 0x3: /* MOVE: bits 000011 */
2964 sreg = b0s5_reg (insn);
2965 dreg = b5s5_reg (insn);
2966 if (sreg == MIPS_SP_REGNUM && dreg == 30)
2967 /* MOVE $fp, $sp */
2968 {
2969 frame_addr = sp;
2970 frame_reg = 30;
2971 }
2972 else if ((sreg & 0x1c) != 0x4)
2973 /* MOVE reg, $a0-$a3 */
2974 this_non_prologue_insn = 1;
2975 break;
2976
2977 case 0x11: /* POOL16C: bits 010001 */
2978 if (b6s4_op (insn) == 0x5)
2979 /* SWM: bits 010001 0101 */
2980 {
2981 offset = ((b0s4_imm (insn) << 2) ^ 0x20) - 0x20;
2982 reglist = b4s2_regl (insn);
2983 for (i = 0; i <= reglist; i++)
2984 set_reg_offset (gdbarch, this_cache, 16 + i, sp + 4 * i);
2985 set_reg_offset (gdbarch, this_cache,
2986 MIPS_RA_REGNUM, sp + 4 * i++);
2987 }
2988 else
2989 this_non_prologue_insn = 1;
2990 break;
2991
2992 case 0x13: /* POOL16D: bits 010011 */
2993 if ((insn & 0x1) == 0x1)
2994 /* ADDIUSP: bits 010011 1 */
2995 sp_adj = micromips_decode_imm9 (b1s9_imm (insn));
2996 else if (b5s5_reg (insn) == MIPS_SP_REGNUM)
2997 /* ADDIUS5: bits 010011 0 */
2998 /* ADDIUS5 $sp, imm */
2999 sp_adj = (b1s4_imm (insn) ^ 8) - 8;
3000 else
3001 this_non_prologue_insn = 1;
3002 break;
3003
3004 case 0x32: /* SWSP: bits 110010 */
3005 offset = b0s5_imm (insn) << 2;
3006 sreg = b5s5_reg (insn);
3007 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3008 break;
3009
3010 default:
3011 this_non_prologue_insn = 1;
3012 break;
3013 }
3014 break;
3015 }
3016 if (sp_adj < 0)
3017 frame_offset -= sp_adj;
3018
3019 non_prologue_insns += this_non_prologue_insn;
3020 /* Enough non-prologue insns seen or positive stack adjustment? */
3021 if (end_prologue_addr == 0 && (non_prologue_insns > 1 || sp_adj > 0))
3022 {
3023 end_prologue_addr = prev_non_prologue_insn ? prev_pc : cur_pc;
3024 break;
3025 }
3026 prev_non_prologue_insn = this_non_prologue_insn;
3027 prev_pc = cur_pc;
3028 }
3029
3030 if (this_cache != NULL)
3031 {
3032 this_cache->base =
3033 (get_frame_register_signed (this_frame,
3034 gdbarch_num_regs (gdbarch) + frame_reg)
3035 + frame_offset - frame_adjust);
3036 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
3037 be able to get rid of the assignment below, evetually. But it's
3038 still needed for now. */
3039 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3040 + mips_regnum (gdbarch)->pc]
3041 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
3042 }
3043
3044 /* If we didn't reach the end of the prologue when scanning the function
3045 instructions, then set end_prologue_addr to the address of the
3046 instruction immediately after the last one we scanned. Unless the
3047 last one looked like a non-prologue instruction (and we looked ahead),
3048 in which case use its address instead. */
3049 if (end_prologue_addr == 0)
3050 end_prologue_addr = prev_non_prologue_insn ? prev_pc : cur_pc;
3051
3052 return end_prologue_addr;
3053 }
3054
3055 /* Heuristic unwinder for procedures using microMIPS instructions.
3056 Procedures that use the 32-bit instruction set are handled by the
3057 mips_insn32 unwinder. Likewise MIPS16 and the mips_insn16 unwinder. */
3058
3059 static struct mips_frame_cache *
3060 mips_micro_frame_cache (struct frame_info *this_frame, void **this_cache)
3061 {
3062 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3063 struct mips_frame_cache *cache;
3064
3065 if ((*this_cache) != NULL)
3066 return (*this_cache);
3067
3068 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3069 (*this_cache) = cache;
3070 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3071
3072 /* Analyze the function prologue. */
3073 {
3074 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3075 CORE_ADDR start_addr;
3076
3077 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3078 if (start_addr == 0)
3079 start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
3080 /* We can't analyze the prologue if we couldn't find the begining
3081 of the function. */
3082 if (start_addr == 0)
3083 return cache;
3084
3085 micromips_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
3086 }
3087
3088 /* gdbarch_sp_regnum contains the value and not the address. */
3089 trad_frame_set_value (cache->saved_regs,
3090 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3091 cache->base);
3092
3093 return (*this_cache);
3094 }
3095
3096 static void
3097 mips_micro_frame_this_id (struct frame_info *this_frame, void **this_cache,
3098 struct frame_id *this_id)
3099 {
3100 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3101 this_cache);
3102 /* This marks the outermost frame. */
3103 if (info->base == 0)
3104 return;
3105 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3106 }
3107
3108 static struct value *
3109 mips_micro_frame_prev_register (struct frame_info *this_frame,
3110 void **this_cache, int regnum)
3111 {
3112 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3113 this_cache);
3114 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3115 }
3116
3117 static int
3118 mips_micro_frame_sniffer (const struct frame_unwind *self,
3119 struct frame_info *this_frame, void **this_cache)
3120 {
3121 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3122 CORE_ADDR pc = get_frame_pc (this_frame);
3123
3124 if (mips_pc_is_micromips (gdbarch, pc))
3125 return 1;
3126 return 0;
3127 }
3128
3129 static const struct frame_unwind mips_micro_frame_unwind =
3130 {
3131 NORMAL_FRAME,
3132 default_frame_unwind_stop_reason,
3133 mips_micro_frame_this_id,
3134 mips_micro_frame_prev_register,
3135 NULL,
3136 mips_micro_frame_sniffer
3137 };
3138
3139 static CORE_ADDR
3140 mips_micro_frame_base_address (struct frame_info *this_frame,
3141 void **this_cache)
3142 {
3143 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3144 this_cache);
3145 return info->base;
3146 }
3147
3148 static const struct frame_base mips_micro_frame_base =
3149 {
3150 &mips_micro_frame_unwind,
3151 mips_micro_frame_base_address,
3152 mips_micro_frame_base_address,
3153 mips_micro_frame_base_address
3154 };
3155
3156 static const struct frame_base *
3157 mips_micro_frame_base_sniffer (struct frame_info *this_frame)
3158 {
3159 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3160 CORE_ADDR pc = get_frame_pc (this_frame);
3161
3162 if (mips_pc_is_micromips (gdbarch, pc))
3163 return &mips_micro_frame_base;
3164 else
3165 return NULL;
3166 }
3167
3168 /* Mark all the registers as unset in the saved_regs array
3169 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
3170
3171 static void
3172 reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
3173 {
3174 if (this_cache == NULL || this_cache->saved_regs == NULL)
3175 return;
3176
3177 {
3178 const int num_regs = gdbarch_num_regs (gdbarch);
3179 int i;
3180
3181 for (i = 0; i < num_regs; i++)
3182 {
3183 this_cache->saved_regs[i].addr = -1;
3184 }
3185 }
3186 }
3187
3188 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
3189 the associated FRAME_CACHE if not null.
3190 Return the address of the first instruction past the prologue. */
3191
3192 static CORE_ADDR
3193 mips32_scan_prologue (struct gdbarch *gdbarch,
3194 CORE_ADDR start_pc, CORE_ADDR limit_pc,
3195 struct frame_info *this_frame,
3196 struct mips_frame_cache *this_cache)
3197 {
3198 CORE_ADDR cur_pc;
3199 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
3200 frame-pointer. */
3201 CORE_ADDR sp;
3202 long frame_offset;
3203 int frame_reg = MIPS_SP_REGNUM;
3204
3205 CORE_ADDR end_prologue_addr = 0;
3206 int seen_sp_adjust = 0;
3207 int load_immediate_bytes = 0;
3208 int in_delay_slot = 0;
3209 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
3210
3211 /* Can be called when there's no process, and hence when there's no
3212 THIS_FRAME. */
3213 if (this_frame != NULL)
3214 sp = get_frame_register_signed (this_frame,
3215 gdbarch_num_regs (gdbarch)
3216 + MIPS_SP_REGNUM);
3217 else
3218 sp = 0;
3219
3220 if (limit_pc > start_pc + 200)
3221 limit_pc = start_pc + 200;
3222
3223 restart:
3224
3225 frame_offset = 0;
3226 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
3227 {
3228 unsigned long inst, high_word, low_word;
3229 int reg;
3230
3231 /* Fetch the instruction. */
3232 inst = (unsigned long) mips_fetch_instruction (gdbarch, ISA_MIPS,
3233 cur_pc, NULL);
3234
3235 /* Save some code by pre-extracting some useful fields. */
3236 high_word = (inst >> 16) & 0xffff;
3237 low_word = inst & 0xffff;
3238 reg = high_word & 0x1f;
3239
3240 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
3241 || high_word == 0x23bd /* addi $sp,$sp,-i */
3242 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
3243 {
3244 if (low_word & 0x8000) /* Negative stack adjustment? */
3245 frame_offset += 0x10000 - low_word;
3246 else
3247 /* Exit loop if a positive stack adjustment is found, which
3248 usually means that the stack cleanup code in the function
3249 epilogue is reached. */
3250 break;
3251 seen_sp_adjust = 1;
3252 }
3253 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
3254 && !regsize_is_64_bits)
3255 {
3256 set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
3257 }
3258 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
3259 && regsize_is_64_bits)
3260 {
3261 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
3262 set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
3263 }
3264 else if (high_word == 0x27be) /* addiu $30,$sp,size */
3265 {
3266 /* Old gcc frame, r30 is virtual frame pointer. */
3267 if ((long) low_word != frame_offset)
3268 frame_addr = sp + low_word;
3269 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
3270 {
3271 unsigned alloca_adjust;
3272
3273 frame_reg = 30;
3274 frame_addr = get_frame_register_signed
3275 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3276
3277 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
3278 if (alloca_adjust > 0)
3279 {
3280 /* FP > SP + frame_size. This may be because of
3281 an alloca or somethings similar. Fix sp to
3282 "pre-alloca" value, and try again. */
3283 sp += alloca_adjust;
3284 /* Need to reset the status of all registers. Otherwise,
3285 we will hit a guard that prevents the new address
3286 for each register to be recomputed during the second
3287 pass. */
3288 reset_saved_regs (gdbarch, this_cache);
3289 goto restart;
3290 }
3291 }
3292 }
3293 /* move $30,$sp. With different versions of gas this will be either
3294 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
3295 Accept any one of these. */
3296 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3297 {
3298 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
3299 if (this_frame && frame_reg == MIPS_SP_REGNUM)
3300 {
3301 unsigned alloca_adjust;
3302
3303 frame_reg = 30;
3304 frame_addr = get_frame_register_signed
3305 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3306
3307 alloca_adjust = (unsigned) (frame_addr - sp);
3308 if (alloca_adjust > 0)
3309 {
3310 /* FP > SP + frame_size. This may be because of
3311 an alloca or somethings similar. Fix sp to
3312 "pre-alloca" value, and try again. */
3313 sp = frame_addr;
3314 /* Need to reset the status of all registers. Otherwise,
3315 we will hit a guard that prevents the new address
3316 for each register to be recomputed during the second
3317 pass. */
3318 reset_saved_regs (gdbarch, this_cache);
3319 goto restart;
3320 }
3321 }
3322 }
3323 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
3324 && !regsize_is_64_bits)
3325 {
3326 set_reg_offset (gdbarch, this_cache, reg, frame_addr + low_word);
3327 }
3328 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
3329 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
3330 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
3331 || high_word == 0x3c1c /* lui $gp,n */
3332 || high_word == 0x279c /* addiu $gp,$gp,n */
3333 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3334 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
3335 )
3336 {
3337 /* These instructions are part of the prologue, but we don't
3338 need to do anything special to handle them. */
3339 }
3340 /* The instructions below load $at or $t0 with an immediate
3341 value in preparation for a stack adjustment via
3342 subu $sp,$sp,[$at,$t0]. These instructions could also
3343 initialize a local variable, so we accept them only before
3344 a stack adjustment instruction was seen. */
3345 else if (!seen_sp_adjust
3346 && (high_word == 0x3c01 /* lui $at,n */
3347 || high_word == 0x3c08 /* lui $t0,n */
3348 || high_word == 0x3421 /* ori $at,$at,n */
3349 || high_word == 0x3508 /* ori $t0,$t0,n */
3350 || high_word == 0x3401 /* ori $at,$zero,n */
3351 || high_word == 0x3408 /* ori $t0,$zero,n */
3352 ))
3353 {
3354 if (end_prologue_addr == 0)
3355 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
3356 }
3357 else
3358 {
3359 /* This instruction is not an instruction typically found
3360 in a prologue, so we must have reached the end of the
3361 prologue. */
3362 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
3363 loop now? Why would we need to continue scanning the function
3364 instructions? */
3365 if (end_prologue_addr == 0)
3366 end_prologue_addr = cur_pc;
3367
3368 /* Check for branches and jumps. For now, only jump to
3369 register are caught (i.e. returns). */
3370 if ((itype_op (inst) & 0x07) == 0 && rtype_funct (inst) == 8)
3371 in_delay_slot = 1;
3372 }
3373
3374 /* If the previous instruction was a jump, we must have reached
3375 the end of the prologue by now. Stop scanning so that we do
3376 not go past the function return. */
3377 if (in_delay_slot)
3378 break;
3379 }
3380
3381 if (this_cache != NULL)
3382 {
3383 this_cache->base =
3384 (get_frame_register_signed (this_frame,
3385 gdbarch_num_regs (gdbarch) + frame_reg)
3386 + frame_offset);
3387 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
3388 this assignment below, eventually. But it's still needed
3389 for now. */
3390 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3391 + mips_regnum (gdbarch)->pc]
3392 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3393 + MIPS_RA_REGNUM];
3394 }
3395
3396 /* If we didn't reach the end of the prologue when scanning the function
3397 instructions, then set end_prologue_addr to the address of the
3398 instruction immediately after the last one we scanned. */
3399 /* brobecker/2004-10-10: I don't think this would ever happen, but
3400 we may as well be careful and do our best if we have a null
3401 end_prologue_addr. */
3402 if (end_prologue_addr == 0)
3403 end_prologue_addr = cur_pc;
3404
3405 /* In a frameless function, we might have incorrectly
3406 skipped some load immediate instructions. Undo the skipping
3407 if the load immediate was not followed by a stack adjustment. */
3408 if (load_immediate_bytes && !seen_sp_adjust)
3409 end_prologue_addr -= load_immediate_bytes;
3410
3411 return end_prologue_addr;
3412 }
3413
3414 /* Heuristic unwinder for procedures using 32-bit instructions (covers
3415 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
3416 instructions (a.k.a. MIPS16) are handled by the mips_insn16
3417 unwinder. Likewise microMIPS and the mips_micro unwinder. */
3418
3419 static struct mips_frame_cache *
3420 mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
3421 {
3422 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3423 struct mips_frame_cache *cache;
3424
3425 if ((*this_cache) != NULL)
3426 return (*this_cache);
3427
3428 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3429 (*this_cache) = cache;
3430 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3431
3432 /* Analyze the function prologue. */
3433 {
3434 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3435 CORE_ADDR start_addr;
3436
3437 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3438 if (start_addr == 0)
3439 start_addr = heuristic_proc_start (gdbarch, pc);
3440 /* We can't analyze the prologue if we couldn't find the begining
3441 of the function. */
3442 if (start_addr == 0)
3443 return cache;
3444
3445 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
3446 }
3447
3448 /* gdbarch_sp_regnum contains the value and not the address. */
3449 trad_frame_set_value (cache->saved_regs,
3450 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3451 cache->base);
3452
3453 return (*this_cache);
3454 }
3455
3456 static void
3457 mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
3458 struct frame_id *this_id)
3459 {
3460 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3461 this_cache);
3462 /* This marks the outermost frame. */
3463 if (info->base == 0)
3464 return;
3465 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3466 }
3467
3468 static struct value *
3469 mips_insn32_frame_prev_register (struct frame_info *this_frame,
3470 void **this_cache, int regnum)
3471 {
3472 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3473 this_cache);
3474 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3475 }
3476
3477 static int
3478 mips_insn32_frame_sniffer (const struct frame_unwind *self,
3479 struct frame_info *this_frame, void **this_cache)
3480 {
3481 CORE_ADDR pc = get_frame_pc (this_frame);
3482 if (mips_pc_is_mips (pc))
3483 return 1;
3484 return 0;
3485 }
3486
3487 static const struct frame_unwind mips_insn32_frame_unwind =
3488 {
3489 NORMAL_FRAME,
3490 default_frame_unwind_stop_reason,
3491 mips_insn32_frame_this_id,
3492 mips_insn32_frame_prev_register,
3493 NULL,
3494 mips_insn32_frame_sniffer
3495 };
3496
3497 static CORE_ADDR
3498 mips_insn32_frame_base_address (struct frame_info *this_frame,
3499 void **this_cache)
3500 {
3501 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3502 this_cache);
3503 return info->base;
3504 }
3505
3506 static const struct frame_base mips_insn32_frame_base =
3507 {
3508 &mips_insn32_frame_unwind,
3509 mips_insn32_frame_base_address,
3510 mips_insn32_frame_base_address,
3511 mips_insn32_frame_base_address
3512 };
3513
3514 static const struct frame_base *
3515 mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
3516 {
3517 CORE_ADDR pc = get_frame_pc (this_frame);
3518 if (mips_pc_is_mips (pc))
3519 return &mips_insn32_frame_base;
3520 else
3521 return NULL;
3522 }
3523
3524 static struct trad_frame_cache *
3525 mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
3526 {
3527 CORE_ADDR pc;
3528 CORE_ADDR start_addr;
3529 CORE_ADDR stack_addr;
3530 struct trad_frame_cache *this_trad_cache;
3531 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3532 int num_regs = gdbarch_num_regs (gdbarch);
3533
3534 if ((*this_cache) != NULL)
3535 return (*this_cache);
3536 this_trad_cache = trad_frame_cache_zalloc (this_frame);
3537 (*this_cache) = this_trad_cache;
3538
3539 /* The return address is in the link register. */
3540 trad_frame_set_reg_realreg (this_trad_cache,
3541 gdbarch_pc_regnum (gdbarch),
3542 num_regs + MIPS_RA_REGNUM);
3543
3544 /* Frame ID, since it's a frameless / stackless function, no stack
3545 space is allocated and SP on entry is the current SP. */
3546 pc = get_frame_pc (this_frame);
3547 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3548 stack_addr = get_frame_register_signed (this_frame,
3549 num_regs + MIPS_SP_REGNUM);
3550 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
3551
3552 /* Assume that the frame's base is the same as the
3553 stack-pointer. */
3554 trad_frame_set_this_base (this_trad_cache, stack_addr);
3555
3556 return this_trad_cache;
3557 }
3558
3559 static void
3560 mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
3561 struct frame_id *this_id)
3562 {
3563 struct trad_frame_cache *this_trad_cache
3564 = mips_stub_frame_cache (this_frame, this_cache);
3565 trad_frame_get_id (this_trad_cache, this_id);
3566 }
3567
3568 static struct value *
3569 mips_stub_frame_prev_register (struct frame_info *this_frame,
3570 void **this_cache, int regnum)
3571 {
3572 struct trad_frame_cache *this_trad_cache
3573 = mips_stub_frame_cache (this_frame, this_cache);
3574 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
3575 }
3576
3577 static int
3578 mips_stub_frame_sniffer (const struct frame_unwind *self,
3579 struct frame_info *this_frame, void **this_cache)
3580 {
3581 gdb_byte dummy[4];
3582 struct obj_section *s;
3583 CORE_ADDR pc = get_frame_address_in_block (this_frame);
3584 struct minimal_symbol *msym;
3585
3586 /* Use the stub unwinder for unreadable code. */
3587 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
3588 return 1;
3589
3590 if (in_plt_section (pc, NULL))
3591 return 1;
3592
3593 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
3594 s = find_pc_section (pc);
3595
3596 if (s != NULL
3597 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
3598 ".MIPS.stubs") == 0)
3599 return 1;
3600
3601 /* Calling a PIC function from a non-PIC function passes through a
3602 stub. The stub for foo is named ".pic.foo". */
3603 msym = lookup_minimal_symbol_by_pc (pc);
3604 if (msym != NULL
3605 && SYMBOL_LINKAGE_NAME (msym) != NULL
3606 && strncmp (SYMBOL_LINKAGE_NAME (msym), ".pic.", 5) == 0)
3607 return 1;
3608
3609 return 0;
3610 }
3611
3612 static const struct frame_unwind mips_stub_frame_unwind =
3613 {
3614 NORMAL_FRAME,
3615 default_frame_unwind_stop_reason,
3616 mips_stub_frame_this_id,
3617 mips_stub_frame_prev_register,
3618 NULL,
3619 mips_stub_frame_sniffer
3620 };
3621
3622 static CORE_ADDR
3623 mips_stub_frame_base_address (struct frame_info *this_frame,
3624 void **this_cache)
3625 {
3626 struct trad_frame_cache *this_trad_cache
3627 = mips_stub_frame_cache (this_frame, this_cache);
3628 return trad_frame_get_this_base (this_trad_cache);
3629 }
3630
3631 static const struct frame_base mips_stub_frame_base =
3632 {
3633 &mips_stub_frame_unwind,
3634 mips_stub_frame_base_address,
3635 mips_stub_frame_base_address,
3636 mips_stub_frame_base_address
3637 };
3638
3639 static const struct frame_base *
3640 mips_stub_frame_base_sniffer (struct frame_info *this_frame)
3641 {
3642 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
3643 return &mips_stub_frame_base;
3644 else
3645 return NULL;
3646 }
3647
3648 /* mips_addr_bits_remove - remove useless address bits */
3649
3650 static CORE_ADDR
3651 mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
3652 {
3653 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3654
3655 if (is_compact_addr (addr))
3656 addr = unmake_compact_addr (addr);
3657
3658 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
3659 /* This hack is a work-around for existing boards using PMON, the
3660 simulator, and any other 64-bit targets that doesn't have true
3661 64-bit addressing. On these targets, the upper 32 bits of
3662 addresses are ignored by the hardware. Thus, the PC or SP are
3663 likely to have been sign extended to all 1s by instruction
3664 sequences that load 32-bit addresses. For example, a typical
3665 piece of code that loads an address is this:
3666
3667 lui $r2, <upper 16 bits>
3668 ori $r2, <lower 16 bits>
3669
3670 But the lui sign-extends the value such that the upper 32 bits
3671 may be all 1s. The workaround is simply to mask off these
3672 bits. In the future, gcc may be changed to support true 64-bit
3673 addressing, and this masking will have to be disabled. */
3674 return addr &= 0xffffffffUL;
3675 else
3676 return addr;
3677 }
3678
3679
3680 /* Checks for an atomic sequence of instructions beginning with a LL/LLD
3681 instruction and ending with a SC/SCD instruction. If such a sequence
3682 is found, attempt to step through it. A breakpoint is placed at the end of
3683 the sequence. */
3684
3685 /* Instructions used during single-stepping of atomic sequences, standard
3686 ISA version. */
3687 #define LL_OPCODE 0x30
3688 #define LLD_OPCODE 0x34
3689 #define SC_OPCODE 0x38
3690 #define SCD_OPCODE 0x3c
3691
3692 static int
3693 mips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
3694 struct address_space *aspace, CORE_ADDR pc)
3695 {
3696 CORE_ADDR breaks[2] = {-1, -1};
3697 CORE_ADDR loc = pc;
3698 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
3699 ULONGEST insn;
3700 int insn_count;
3701 int index;
3702 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3703 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3704
3705 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3706 /* Assume all atomic sequences start with a ll/lld instruction. */
3707 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
3708 return 0;
3709
3710 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
3711 instructions. */
3712 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
3713 {
3714 int is_branch = 0;
3715 loc += MIPS_INSN32_SIZE;
3716 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3717
3718 /* Assume that there is at most one branch in the atomic
3719 sequence. If a branch is found, put a breakpoint in its
3720 destination address. */
3721 switch (itype_op (insn))
3722 {
3723 case 0: /* SPECIAL */
3724 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
3725 return 0; /* fallback to the standard single-step code. */
3726 break;
3727 case 1: /* REGIMM */
3728 is_branch = ((itype_rt (insn) & 0xc) == 0 /* B{LT,GE}Z* */
3729 || ((itype_rt (insn) & 0x1e) == 0
3730 && itype_rs (insn) == 0)); /* BPOSGE* */
3731 break;
3732 case 2: /* J */
3733 case 3: /* JAL */
3734 return 0; /* fallback to the standard single-step code. */
3735 case 4: /* BEQ */
3736 case 5: /* BNE */
3737 case 6: /* BLEZ */
3738 case 7: /* BGTZ */
3739 case 20: /* BEQL */
3740 case 21: /* BNEL */
3741 case 22: /* BLEZL */
3742 case 23: /* BGTTL */
3743 is_branch = 1;
3744 break;
3745 case 17: /* COP1 */
3746 is_branch = ((itype_rs (insn) == 9 || itype_rs (insn) == 10)
3747 && (itype_rt (insn) & 0x2) == 0);
3748 if (is_branch) /* BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T */
3749 break;
3750 /* Fall through. */
3751 case 18: /* COP2 */
3752 case 19: /* COP3 */
3753 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
3754 break;
3755 }
3756 if (is_branch)
3757 {
3758 branch_bp = loc + mips32_relative_offset (insn) + 4;
3759 if (last_breakpoint >= 1)
3760 return 0; /* More than one branch found, fallback to the
3761 standard single-step code. */
3762 breaks[1] = branch_bp;
3763 last_breakpoint++;
3764 }
3765
3766 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
3767 break;
3768 }
3769
3770 /* Assume that the atomic sequence ends with a sc/scd instruction. */
3771 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
3772 return 0;
3773
3774 loc += MIPS_INSN32_SIZE;
3775
3776 /* Insert a breakpoint right after the end of the atomic sequence. */
3777 breaks[0] = loc;
3778
3779 /* Check for duplicated breakpoints. Check also for a breakpoint
3780 placed (branch instruction's destination) in the atomic sequence. */
3781 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3782 last_breakpoint = 0;
3783
3784 /* Effectively inserts the breakpoints. */
3785 for (index = 0; index <= last_breakpoint; index++)
3786 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
3787
3788 return 1;
3789 }
3790
3791 static int
3792 micromips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
3793 struct address_space *aspace,
3794 CORE_ADDR pc)
3795 {
3796 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3797 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3798 CORE_ADDR breaks[2] = {-1, -1};
3799 CORE_ADDR branch_bp = 0; /* Breakpoint at branch instruction's
3800 destination. */
3801 CORE_ADDR loc = pc;
3802 int sc_found = 0;
3803 ULONGEST insn;
3804 int insn_count;
3805 int index;
3806
3807 /* Assume all atomic sequences start with a ll/lld instruction. */
3808 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
3809 if (micromips_op (insn) != 0x18) /* POOL32C: bits 011000 */
3810 return 0;
3811 loc += MIPS_INSN16_SIZE;
3812 insn <<= 16;
3813 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
3814 if ((b12s4_op (insn) & 0xb) != 0x3) /* LL, LLD: bits 011000 0x11 */
3815 return 0;
3816 loc += MIPS_INSN16_SIZE;
3817
3818 /* Assume all atomic sequences end with an sc/scd instruction. Assume
3819 that no atomic sequence is longer than "atomic_sequence_length"
3820 instructions. */
3821 for (insn_count = 0;
3822 !sc_found && insn_count < atomic_sequence_length;
3823 ++insn_count)
3824 {
3825 int is_branch = 0;
3826
3827 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
3828 loc += MIPS_INSN16_SIZE;
3829
3830 /* Assume that there is at most one conditional branch in the
3831 atomic sequence. If a branch is found, put a breakpoint in
3832 its destination address. */
3833 switch (mips_insn_size (ISA_MICROMIPS, insn))
3834 {
3835 /* 48-bit instructions. */
3836 case 3 * MIPS_INSN16_SIZE: /* POOL48A: bits 011111 */
3837 loc += 2 * MIPS_INSN16_SIZE;
3838 break;
3839
3840 /* 32-bit instructions. */
3841 case 2 * MIPS_INSN16_SIZE:
3842 switch (micromips_op (insn))
3843 {
3844 case 0x10: /* POOL32I: bits 010000 */
3845 if ((b5s5_op (insn) & 0x18) != 0x0
3846 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
3847 /* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
3848 && (b5s5_op (insn) & 0x1d) != 0x11
3849 /* BLTZALS, BGEZALS: bits 010000 100x1 */
3850 && ((b5s5_op (insn) & 0x1e) != 0x14
3851 || (insn & 0x3) != 0x0)
3852 /* BC2F, BC2T: bits 010000 1010x xxx00 */
3853 && (b5s5_op (insn) & 0x1e) != 0x1a
3854 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
3855 && ((b5s5_op (insn) & 0x1e) != 0x1c
3856 || (insn & 0x3) != 0x0)
3857 /* BC1F, BC1T: bits 010000 1110x xxx00 */
3858 && ((b5s5_op (insn) & 0x1c) != 0x1c
3859 || (insn & 0x3) != 0x1))
3860 /* BC1ANY*: bits 010000 111xx xxx01 */
3861 break;
3862 /* Fall through. */
3863
3864 case 0x25: /* BEQ: bits 100101 */
3865 case 0x2d: /* BNE: bits 101101 */
3866 insn <<= 16;
3867 insn |= mips_fetch_instruction (gdbarch,
3868 ISA_MICROMIPS, loc, NULL);
3869 branch_bp = (loc + MIPS_INSN16_SIZE
3870 + micromips_relative_offset16 (insn));
3871 is_branch = 1;
3872 break;
3873
3874 case 0x00: /* POOL32A: bits 000000 */
3875 insn <<= 16;
3876 insn |= mips_fetch_instruction (gdbarch,
3877 ISA_MICROMIPS, loc, NULL);
3878 if (b0s6_op (insn) != 0x3c
3879 /* POOL32Axf: bits 000000 ... 111100 */
3880 || (b6s10_ext (insn) & 0x2bf) != 0x3c)
3881 /* JALR, JALR.HB: 000000 000x111100 111100 */
3882 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
3883 break;
3884 /* Fall through. */
3885
3886 case 0x1d: /* JALS: bits 011101 */
3887 case 0x35: /* J: bits 110101 */
3888 case 0x3d: /* JAL: bits 111101 */
3889 case 0x3c: /* JALX: bits 111100 */
3890 return 0; /* Fall back to the standard single-step code. */
3891
3892 case 0x18: /* POOL32C: bits 011000 */
3893 if ((b12s4_op (insn) & 0xb) == 0xb)
3894 /* SC, SCD: bits 011000 1x11 */
3895 sc_found = 1;
3896 break;
3897 }
3898 loc += MIPS_INSN16_SIZE;
3899 break;
3900
3901 /* 16-bit instructions. */
3902 case MIPS_INSN16_SIZE:
3903 switch (micromips_op (insn))
3904 {
3905 case 0x23: /* BEQZ16: bits 100011 */
3906 case 0x2b: /* BNEZ16: bits 101011 */
3907 branch_bp = loc + micromips_relative_offset7 (insn);
3908 is_branch = 1;
3909 break;
3910
3911 case 0x11: /* POOL16C: bits 010001 */
3912 if ((b5s5_op (insn) & 0x1c) != 0xc
3913 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
3914 && b5s5_op (insn) != 0x18)
3915 /* JRADDIUSP: bits 010001 11000 */
3916 break;
3917 return 0; /* Fall back to the standard single-step code. */
3918
3919 case 0x33: /* B16: bits 110011 */
3920 return 0; /* Fall back to the standard single-step code. */
3921 }
3922 break;
3923 }
3924 if (is_branch)
3925 {
3926 if (last_breakpoint >= 1)
3927 return 0; /* More than one branch found, fallback to the
3928 standard single-step code. */
3929 breaks[1] = branch_bp;
3930 last_breakpoint++;
3931 }
3932 }
3933 if (!sc_found)
3934 return 0;
3935
3936 /* Insert a breakpoint right after the end of the atomic sequence. */
3937 breaks[0] = loc;
3938
3939 /* Check for duplicated breakpoints. Check also for a breakpoint
3940 placed (branch instruction's destination) in the atomic sequence */
3941 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3942 last_breakpoint = 0;
3943
3944 /* Effectively inserts the breakpoints. */
3945 for (index = 0; index <= last_breakpoint; index++)
3946 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
3947
3948 return 1;
3949 }
3950
3951 static int
3952 deal_with_atomic_sequence (struct gdbarch *gdbarch,
3953 struct address_space *aspace, CORE_ADDR pc)
3954 {
3955 if (mips_pc_is_mips (pc))
3956 return mips_deal_with_atomic_sequence (gdbarch, aspace, pc);
3957 else if (mips_pc_is_micromips (gdbarch, pc))
3958 return micromips_deal_with_atomic_sequence (gdbarch, aspace, pc);
3959 else
3960 return 0;
3961 }
3962
3963 /* mips_software_single_step() is called just before we want to resume
3964 the inferior, if we want to single-step it but there is no hardware
3965 or kernel single-step support (MIPS on GNU/Linux for example). We find
3966 the target of the coming instruction and breakpoint it. */
3967
3968 int
3969 mips_software_single_step (struct frame_info *frame)
3970 {
3971 struct gdbarch *gdbarch = get_frame_arch (frame);
3972 struct address_space *aspace = get_frame_address_space (frame);
3973 CORE_ADDR pc, next_pc;
3974
3975 pc = get_frame_pc (frame);
3976 if (deal_with_atomic_sequence (gdbarch, aspace, pc))
3977 return 1;
3978
3979 next_pc = mips_next_pc (frame, pc);
3980
3981 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
3982 return 1;
3983 }
3984
3985 /* Test whether the PC points to the return instruction at the
3986 end of a function. */
3987
3988 static int
3989 mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
3990 {
3991 ULONGEST insn;
3992 ULONGEST hint;
3993
3994 /* This used to check for MIPS16, but this piece of code is never
3995 called for MIPS16 functions. And likewise microMIPS ones. */
3996 gdb_assert (mips_pc_is_mips (pc));
3997
3998 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
3999 hint = 0x7c0;
4000 return (insn & ~hint) == 0x3e00008; /* jr(.hb) $ra */
4001 }
4002
4003
4004 /* This fencepost looks highly suspicious to me. Removing it also
4005 seems suspicious as it could affect remote debugging across serial
4006 lines. */
4007
4008 static CORE_ADDR
4009 heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
4010 {
4011 CORE_ADDR start_pc;
4012 CORE_ADDR fence;
4013 int instlen;
4014 int seen_adjsp = 0;
4015 struct inferior *inf;
4016
4017 pc = gdbarch_addr_bits_remove (gdbarch, pc);
4018 start_pc = pc;
4019 fence = start_pc - heuristic_fence_post;
4020 if (start_pc == 0)
4021 return 0;
4022
4023 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
4024 fence = VM_MIN_ADDRESS;
4025
4026 instlen = mips_pc_is_mips (pc) ? MIPS_INSN32_SIZE : MIPS_INSN16_SIZE;
4027
4028 inf = current_inferior ();
4029
4030 /* Search back for previous return. */
4031 for (start_pc -= instlen;; start_pc -= instlen)
4032 if (start_pc < fence)
4033 {
4034 /* It's not clear to me why we reach this point when
4035 stop_soon, but with this test, at least we
4036 don't print out warnings for every child forked (eg, on
4037 decstation). 22apr93 rich@cygnus.com. */
4038 if (inf->control.stop_soon == NO_STOP_QUIETLY)
4039 {
4040 static int blurb_printed = 0;
4041
4042 warning (_("GDB can't find the start of the function at %s."),
4043 paddress (gdbarch, pc));
4044
4045 if (!blurb_printed)
4046 {
4047 /* This actually happens frequently in embedded
4048 development, when you first connect to a board
4049 and your stack pointer and pc are nowhere in
4050 particular. This message needs to give people
4051 in that situation enough information to
4052 determine that it's no big deal. */
4053 printf_filtered ("\n\
4054 GDB is unable to find the start of the function at %s\n\
4055 and thus can't determine the size of that function's stack frame.\n\
4056 This means that GDB may be unable to access that stack frame, or\n\
4057 the frames below it.\n\
4058 This problem is most likely caused by an invalid program counter or\n\
4059 stack pointer.\n\
4060 However, if you think GDB should simply search farther back\n\
4061 from %s for code which looks like the beginning of a\n\
4062 function, you can increase the range of the search using the `set\n\
4063 heuristic-fence-post' command.\n",
4064 paddress (gdbarch, pc), paddress (gdbarch, pc));
4065 blurb_printed = 1;
4066 }
4067 }
4068
4069 return 0;
4070 }
4071 else if (mips_pc_is_mips16 (gdbarch, start_pc))
4072 {
4073 unsigned short inst;
4074
4075 /* On MIPS16, any one of the following is likely to be the
4076 start of a function:
4077 extend save
4078 save
4079 entry
4080 addiu sp,-n
4081 daddiu sp,-n
4082 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
4083 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, start_pc, NULL);
4084 if ((inst & 0xff80) == 0x6480) /* save */
4085 {
4086 if (start_pc - instlen >= fence)
4087 {
4088 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16,
4089 start_pc - instlen, NULL);
4090 if ((inst & 0xf800) == 0xf000) /* extend */
4091 start_pc -= instlen;
4092 }
4093 break;
4094 }
4095 else if (((inst & 0xf81f) == 0xe809
4096 && (inst & 0x700) != 0x700) /* entry */
4097 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
4098 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
4099 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
4100 break;
4101 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
4102 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
4103 seen_adjsp = 1;
4104 else
4105 seen_adjsp = 0;
4106 }
4107 else if (mips_pc_is_micromips (gdbarch, start_pc))
4108 {
4109 ULONGEST insn;
4110 int stop = 0;
4111 long offset;
4112 int dreg;
4113 int sreg;
4114
4115 /* On microMIPS, any one of the following is likely to be the
4116 start of a function:
4117 ADDIUSP -imm
4118 (D)ADDIU $sp, -imm
4119 LUI $gp, imm */
4120 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
4121 switch (micromips_op (insn))
4122 {
4123 case 0xc: /* ADDIU: bits 001100 */
4124 case 0x17: /* DADDIU: bits 010111 */
4125 sreg = b0s5_reg (insn);
4126 dreg = b5s5_reg (insn);
4127 insn <<= 16;
4128 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS,
4129 pc + MIPS_INSN16_SIZE, NULL);
4130 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
4131 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
4132 /* (D)ADDIU $sp, imm */
4133 && offset < 0)
4134 stop = 1;
4135 break;
4136
4137 case 0x10: /* POOL32I: bits 010000 */
4138 if (b5s5_op (insn) == 0xd
4139 /* LUI: bits 010000 001101 */
4140 && b0s5_reg (insn >> 16) == 28)
4141 /* LUI $gp, imm */
4142 stop = 1;
4143 break;
4144
4145 case 0x13: /* POOL16D: bits 010011 */
4146 if ((insn & 0x1) == 0x1)
4147 /* ADDIUSP: bits 010011 1 */
4148 {
4149 offset = micromips_decode_imm9 (b1s9_imm (insn));
4150 if (offset < 0)
4151 /* ADDIUSP -imm */
4152 stop = 1;
4153 }
4154 else
4155 /* ADDIUS5: bits 010011 0 */
4156 {
4157 dreg = b5s5_reg (insn);
4158 offset = (b1s4_imm (insn) ^ 8) - 8;
4159 if (dreg == MIPS_SP_REGNUM && offset < 0)
4160 /* ADDIUS5 $sp, -imm */
4161 stop = 1;
4162 }
4163 break;
4164 }
4165 if (stop)
4166 break;
4167 }
4168 else if (mips_about_to_return (gdbarch, start_pc))
4169 {
4170 /* Skip return and its delay slot. */
4171 start_pc += 2 * MIPS_INSN32_SIZE;
4172 break;
4173 }
4174
4175 return start_pc;
4176 }
4177
4178 struct mips_objfile_private
4179 {
4180 bfd_size_type size;
4181 char *contents;
4182 };
4183
4184 /* According to the current ABI, should the type be passed in a
4185 floating-point register (assuming that there is space)? When there
4186 is no FPU, FP are not even considered as possible candidates for
4187 FP registers and, consequently this returns false - forces FP
4188 arguments into integer registers. */
4189
4190 static int
4191 fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
4192 struct type *arg_type)
4193 {
4194 return ((typecode == TYPE_CODE_FLT
4195 || (MIPS_EABI (gdbarch)
4196 && (typecode == TYPE_CODE_STRUCT
4197 || typecode == TYPE_CODE_UNION)
4198 && TYPE_NFIELDS (arg_type) == 1
4199 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
4200 == TYPE_CODE_FLT))
4201 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
4202 }
4203
4204 /* On o32, argument passing in GPRs depends on the alignment of the type being
4205 passed. Return 1 if this type must be aligned to a doubleword boundary. */
4206
4207 static int
4208 mips_type_needs_double_align (struct type *type)
4209 {
4210 enum type_code typecode = TYPE_CODE (type);
4211
4212 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
4213 return 1;
4214 else if (typecode == TYPE_CODE_STRUCT)
4215 {
4216 if (TYPE_NFIELDS (type) < 1)
4217 return 0;
4218 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
4219 }
4220 else if (typecode == TYPE_CODE_UNION)
4221 {
4222 int i, n;
4223
4224 n = TYPE_NFIELDS (type);
4225 for (i = 0; i < n; i++)
4226 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
4227 return 1;
4228 return 0;
4229 }
4230 return 0;
4231 }
4232
4233 /* Adjust the address downward (direction of stack growth) so that it
4234 is correctly aligned for a new stack frame. */
4235 static CORE_ADDR
4236 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
4237 {
4238 return align_down (addr, 16);
4239 }
4240
4241 /* Implement the "push_dummy_code" gdbarch method. */
4242
4243 static CORE_ADDR
4244 mips_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
4245 CORE_ADDR funaddr, struct value **args,
4246 int nargs, struct type *value_type,
4247 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
4248 struct regcache *regcache)
4249 {
4250 static gdb_byte nop_insn[] = { 0, 0, 0, 0 };
4251 CORE_ADDR nop_addr;
4252 CORE_ADDR bp_slot;
4253
4254 /* Reserve enough room on the stack for our breakpoint instruction. */
4255 bp_slot = sp - sizeof (nop_insn);
4256
4257 /* Return to microMIPS mode if calling microMIPS code to avoid
4258 triggering an address error exception on processors that only
4259 support microMIPS execution. */
4260 *bp_addr = (mips_pc_is_micromips (gdbarch, funaddr)
4261 ? make_compact_addr (bp_slot) : bp_slot);
4262
4263 /* The breakpoint layer automatically adjusts the address of
4264 breakpoints inserted in a branch delay slot. With enough
4265 bad luck, the 4 bytes located just before our breakpoint
4266 instruction could look like a branch instruction, and thus
4267 trigger the adjustement, and break the function call entirely.
4268 So, we reserve those 4 bytes and write a nop instruction
4269 to prevent that from happening. */
4270 nop_addr = bp_slot - sizeof (nop_insn);
4271 write_memory (nop_addr, nop_insn, sizeof (nop_insn));
4272 sp = mips_frame_align (gdbarch, nop_addr);
4273
4274 /* Inferior resumes at the function entry point. */
4275 *real_pc = funaddr;
4276
4277 return sp;
4278 }
4279
4280 static CORE_ADDR
4281 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4282 struct regcache *regcache, CORE_ADDR bp_addr,
4283 int nargs, struct value **args, CORE_ADDR sp,
4284 int struct_return, CORE_ADDR struct_addr)
4285 {
4286 int argreg;
4287 int float_argreg;
4288 int argnum;
4289 int len = 0;
4290 int stack_offset = 0;
4291 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4292 CORE_ADDR func_addr = find_function_addr (function, NULL);
4293 int regsize = mips_abi_regsize (gdbarch);
4294
4295 /* For shared libraries, "t9" needs to point at the function
4296 address. */
4297 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4298
4299 /* Set the return address register to point to the entry point of
4300 the program, where a breakpoint lies in wait. */
4301 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4302
4303 /* First ensure that the stack and structure return address (if any)
4304 are properly aligned. The stack has to be at least 64-bit
4305 aligned even on 32-bit machines, because doubles must be 64-bit
4306 aligned. For n32 and n64, stack frames need to be 128-bit
4307 aligned, so we round to this widest known alignment. */
4308
4309 sp = align_down (sp, 16);
4310 struct_addr = align_down (struct_addr, 16);
4311
4312 /* Now make space on the stack for the args. We allocate more
4313 than necessary for EABI, because the first few arguments are
4314 passed in registers, but that's OK. */
4315 for (argnum = 0; argnum < nargs; argnum++)
4316 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
4317 sp -= align_up (len, 16);
4318
4319 if (mips_debug)
4320 fprintf_unfiltered (gdb_stdlog,
4321 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
4322 paddress (gdbarch, sp), (long) align_up (len, 16));
4323
4324 /* Initialize the integer and float register pointers. */
4325 argreg = MIPS_A0_REGNUM;
4326 float_argreg = mips_fpa0_regnum (gdbarch);
4327
4328 /* The struct_return pointer occupies the first parameter-passing reg. */
4329 if (struct_return)
4330 {
4331 if (mips_debug)
4332 fprintf_unfiltered (gdb_stdlog,
4333 "mips_eabi_push_dummy_call: "
4334 "struct_return reg=%d %s\n",
4335 argreg, paddress (gdbarch, struct_addr));
4336 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4337 }
4338
4339 /* Now load as many as possible of the first arguments into
4340 registers, and push the rest onto the stack. Loop thru args
4341 from first to last. */
4342 for (argnum = 0; argnum < nargs; argnum++)
4343 {
4344 const gdb_byte *val;
4345 gdb_byte valbuf[MAX_REGISTER_SIZE];
4346 struct value *arg = args[argnum];
4347 struct type *arg_type = check_typedef (value_type (arg));
4348 int len = TYPE_LENGTH (arg_type);
4349 enum type_code typecode = TYPE_CODE (arg_type);
4350
4351 if (mips_debug)
4352 fprintf_unfiltered (gdb_stdlog,
4353 "mips_eabi_push_dummy_call: %d len=%d type=%d",
4354 argnum + 1, len, (int) typecode);
4355
4356 /* Function pointer arguments to mips16 code need to be made into
4357 mips16 pointers. */
4358 if (typecode == TYPE_CODE_PTR
4359 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
4360 {
4361 CORE_ADDR addr = extract_signed_integer (value_contents (arg),
4362 len, byte_order);
4363 if (mips_pc_is_mips (addr))
4364 val = value_contents (arg);
4365 else
4366 {
4367 store_signed_integer (valbuf, len, byte_order,
4368 make_compact_addr (addr));
4369 val = valbuf;
4370 }
4371 }
4372 /* The EABI passes structures that do not fit in a register by
4373 reference. */
4374 else if (len > regsize
4375 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
4376 {
4377 store_unsigned_integer (valbuf, regsize, byte_order,
4378 value_address (arg));
4379 typecode = TYPE_CODE_PTR;
4380 len = regsize;
4381 val = valbuf;
4382 if (mips_debug)
4383 fprintf_unfiltered (gdb_stdlog, " push");
4384 }
4385 else
4386 val = value_contents (arg);
4387
4388 /* 32-bit ABIs always start floating point arguments in an
4389 even-numbered floating point register. Round the FP register
4390 up before the check to see if there are any FP registers
4391 left. Non MIPS_EABI targets also pass the FP in the integer
4392 registers so also round up normal registers. */
4393 if (regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
4394 {
4395 if ((float_argreg & 1))
4396 float_argreg++;
4397 }
4398
4399 /* Floating point arguments passed in registers have to be
4400 treated specially. On 32-bit architectures, doubles
4401 are passed in register pairs; the even register gets
4402 the low word, and the odd register gets the high word.
4403 On non-EABI processors, the first two floating point arguments are
4404 also copied to general registers, because MIPS16 functions
4405 don't use float registers for arguments. This duplication of
4406 arguments in general registers can't hurt non-MIPS16 functions
4407 because those registers are normally skipped. */
4408 /* MIPS_EABI squeezes a struct that contains a single floating
4409 point value into an FP register instead of pushing it onto the
4410 stack. */
4411 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4412 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
4413 {
4414 /* EABI32 will pass doubles in consecutive registers, even on
4415 64-bit cores. At one time, we used to check the size of
4416 `float_argreg' to determine whether or not to pass doubles
4417 in consecutive registers, but this is not sufficient for
4418 making the ABI determination. */
4419 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
4420 {
4421 int low_offset = gdbarch_byte_order (gdbarch)
4422 == BFD_ENDIAN_BIG ? 4 : 0;
4423 long regval;
4424
4425 /* Write the low word of the double to the even register(s). */
4426 regval = extract_signed_integer (val + low_offset,
4427 4, byte_order);
4428 if (mips_debug)
4429 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4430 float_argreg, phex (regval, 4));
4431 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4432
4433 /* Write the high word of the double to the odd register(s). */
4434 regval = extract_signed_integer (val + 4 - low_offset,
4435 4, byte_order);
4436 if (mips_debug)
4437 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4438 float_argreg, phex (regval, 4));
4439 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4440 }
4441 else
4442 {
4443 /* This is a floating point value that fits entirely
4444 in a single register. */
4445 /* On 32 bit ABI's the float_argreg is further adjusted
4446 above to ensure that it is even register aligned. */
4447 LONGEST regval = extract_signed_integer (val, len, byte_order);
4448 if (mips_debug)
4449 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4450 float_argreg, phex (regval, len));
4451 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4452 }
4453 }
4454 else
4455 {
4456 /* Copy the argument to general registers or the stack in
4457 register-sized pieces. Large arguments are split between
4458 registers and stack. */
4459 /* Note: structs whose size is not a multiple of regsize
4460 are treated specially: Irix cc passes
4461 them in registers where gcc sometimes puts them on the
4462 stack. For maximum compatibility, we will put them in
4463 both places. */
4464 int odd_sized_struct = (len > regsize && len % regsize != 0);
4465
4466 /* Note: Floating-point values that didn't fit into an FP
4467 register are only written to memory. */
4468 while (len > 0)
4469 {
4470 /* Remember if the argument was written to the stack. */
4471 int stack_used_p = 0;
4472 int partial_len = (len < regsize ? len : regsize);
4473
4474 if (mips_debug)
4475 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4476 partial_len);
4477
4478 /* Write this portion of the argument to the stack. */
4479 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
4480 || odd_sized_struct
4481 || fp_register_arg_p (gdbarch, typecode, arg_type))
4482 {
4483 /* Should shorter than int integer values be
4484 promoted to int before being stored? */
4485 int longword_offset = 0;
4486 CORE_ADDR addr;
4487 stack_used_p = 1;
4488 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4489 {
4490 if (regsize == 8
4491 && (typecode == TYPE_CODE_INT
4492 || typecode == TYPE_CODE_PTR
4493 || typecode == TYPE_CODE_FLT) && len <= 4)
4494 longword_offset = regsize - len;
4495 else if ((typecode == TYPE_CODE_STRUCT
4496 || typecode == TYPE_CODE_UNION)
4497 && TYPE_LENGTH (arg_type) < regsize)
4498 longword_offset = regsize - len;
4499 }
4500
4501 if (mips_debug)
4502 {
4503 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4504 paddress (gdbarch, stack_offset));
4505 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4506 paddress (gdbarch, longword_offset));
4507 }
4508
4509 addr = sp + stack_offset + longword_offset;
4510
4511 if (mips_debug)
4512 {
4513 int i;
4514 fprintf_unfiltered (gdb_stdlog, " @%s ",
4515 paddress (gdbarch, addr));
4516 for (i = 0; i < partial_len; i++)
4517 {
4518 fprintf_unfiltered (gdb_stdlog, "%02x",
4519 val[i] & 0xff);
4520 }
4521 }
4522 write_memory (addr, val, partial_len);
4523 }
4524
4525 /* Note!!! This is NOT an else clause. Odd sized
4526 structs may go thru BOTH paths. Floating point
4527 arguments will not. */
4528 /* Write this portion of the argument to a general
4529 purpose register. */
4530 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
4531 && !fp_register_arg_p (gdbarch, typecode, arg_type))
4532 {
4533 LONGEST regval =
4534 extract_signed_integer (val, partial_len, byte_order);
4535
4536 if (mips_debug)
4537 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
4538 argreg,
4539 phex (regval, regsize));
4540 regcache_cooked_write_signed (regcache, argreg, regval);
4541 argreg++;
4542 }
4543
4544 len -= partial_len;
4545 val += partial_len;
4546
4547 /* Compute the offset into the stack at which we will
4548 copy the next parameter.
4549
4550 In the new EABI (and the NABI32), the stack_offset
4551 only needs to be adjusted when it has been used. */
4552
4553 if (stack_used_p)
4554 stack_offset += align_up (partial_len, regsize);
4555 }
4556 }
4557 if (mips_debug)
4558 fprintf_unfiltered (gdb_stdlog, "\n");
4559 }
4560
4561 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
4562
4563 /* Return adjusted stack pointer. */
4564 return sp;
4565 }
4566
4567 /* Determine the return value convention being used. */
4568
4569 static enum return_value_convention
4570 mips_eabi_return_value (struct gdbarch *gdbarch, struct value *function,
4571 struct type *type, struct regcache *regcache,
4572 gdb_byte *readbuf, const gdb_byte *writebuf)
4573 {
4574 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4575 int fp_return_type = 0;
4576 int offset, regnum, xfer;
4577
4578 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
4579 return RETURN_VALUE_STRUCT_CONVENTION;
4580
4581 /* Floating point type? */
4582 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
4583 {
4584 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4585 fp_return_type = 1;
4586 /* Structs with a single field of float type
4587 are returned in a floating point register. */
4588 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
4589 || TYPE_CODE (type) == TYPE_CODE_UNION)
4590 && TYPE_NFIELDS (type) == 1)
4591 {
4592 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
4593
4594 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
4595 fp_return_type = 1;
4596 }
4597 }
4598
4599 if (fp_return_type)
4600 {
4601 /* A floating-point value belongs in the least significant part
4602 of FP0/FP1. */
4603 if (mips_debug)
4604 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4605 regnum = mips_regnum (gdbarch)->fp0;
4606 }
4607 else
4608 {
4609 /* An integer value goes in V0/V1. */
4610 if (mips_debug)
4611 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
4612 regnum = MIPS_V0_REGNUM;
4613 }
4614 for (offset = 0;
4615 offset < TYPE_LENGTH (type);
4616 offset += mips_abi_regsize (gdbarch), regnum++)
4617 {
4618 xfer = mips_abi_regsize (gdbarch);
4619 if (offset + xfer > TYPE_LENGTH (type))
4620 xfer = TYPE_LENGTH (type) - offset;
4621 mips_xfer_register (gdbarch, regcache,
4622 gdbarch_num_regs (gdbarch) + regnum, xfer,
4623 gdbarch_byte_order (gdbarch), readbuf, writebuf,
4624 offset);
4625 }
4626
4627 return RETURN_VALUE_REGISTER_CONVENTION;
4628 }
4629
4630
4631 /* N32/N64 ABI stuff. */
4632
4633 /* Search for a naturally aligned double at OFFSET inside a struct
4634 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
4635 registers. */
4636
4637 static int
4638 mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
4639 int offset)
4640 {
4641 int i;
4642
4643 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
4644 return 0;
4645
4646 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
4647 return 0;
4648
4649 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
4650 return 0;
4651
4652 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
4653 {
4654 int pos;
4655 struct type *field_type;
4656
4657 /* We're only looking at normal fields. */
4658 if (field_is_static (&TYPE_FIELD (arg_type, i))
4659 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
4660 continue;
4661
4662 /* If we have gone past the offset, there is no double to pass. */
4663 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
4664 if (pos > offset)
4665 return 0;
4666
4667 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
4668
4669 /* If this field is entirely before the requested offset, go
4670 on to the next one. */
4671 if (pos + TYPE_LENGTH (field_type) <= offset)
4672 continue;
4673
4674 /* If this is our special aligned double, we can stop. */
4675 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
4676 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
4677 return 1;
4678
4679 /* This field starts at or before the requested offset, and
4680 overlaps it. If it is a structure, recurse inwards. */
4681 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
4682 }
4683
4684 return 0;
4685 }
4686
4687 static CORE_ADDR
4688 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4689 struct regcache *regcache, CORE_ADDR bp_addr,
4690 int nargs, struct value **args, CORE_ADDR sp,
4691 int struct_return, CORE_ADDR struct_addr)
4692 {
4693 int argreg;
4694 int float_argreg;
4695 int argnum;
4696 int len = 0;
4697 int stack_offset = 0;
4698 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4699 CORE_ADDR func_addr = find_function_addr (function, NULL);
4700
4701 /* For shared libraries, "t9" needs to point at the function
4702 address. */
4703 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4704
4705 /* Set the return address register to point to the entry point of
4706 the program, where a breakpoint lies in wait. */
4707 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4708
4709 /* First ensure that the stack and structure return address (if any)
4710 are properly aligned. The stack has to be at least 64-bit
4711 aligned even on 32-bit machines, because doubles must be 64-bit
4712 aligned. For n32 and n64, stack frames need to be 128-bit
4713 aligned, so we round to this widest known alignment. */
4714
4715 sp = align_down (sp, 16);
4716 struct_addr = align_down (struct_addr, 16);
4717
4718 /* Now make space on the stack for the args. */
4719 for (argnum = 0; argnum < nargs; argnum++)
4720 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
4721 sp -= align_up (len, 16);
4722
4723 if (mips_debug)
4724 fprintf_unfiltered (gdb_stdlog,
4725 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
4726 paddress (gdbarch, sp), (long) align_up (len, 16));
4727
4728 /* Initialize the integer and float register pointers. */
4729 argreg = MIPS_A0_REGNUM;
4730 float_argreg = mips_fpa0_regnum (gdbarch);
4731
4732 /* The struct_return pointer occupies the first parameter-passing reg. */
4733 if (struct_return)
4734 {
4735 if (mips_debug)
4736 fprintf_unfiltered (gdb_stdlog,
4737 "mips_n32n64_push_dummy_call: "
4738 "struct_return reg=%d %s\n",
4739 argreg, paddress (gdbarch, struct_addr));
4740 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4741 }
4742
4743 /* Now load as many as possible of the first arguments into
4744 registers, and push the rest onto the stack. Loop thru args
4745 from first to last. */
4746 for (argnum = 0; argnum < nargs; argnum++)
4747 {
4748 const gdb_byte *val;
4749 struct value *arg = args[argnum];
4750 struct type *arg_type = check_typedef (value_type (arg));
4751 int len = TYPE_LENGTH (arg_type);
4752 enum type_code typecode = TYPE_CODE (arg_type);
4753
4754 if (mips_debug)
4755 fprintf_unfiltered (gdb_stdlog,
4756 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
4757 argnum + 1, len, (int) typecode);
4758
4759 val = value_contents (arg);
4760
4761 /* A 128-bit long double value requires an even-odd pair of
4762 floating-point registers. */
4763 if (len == 16
4764 && fp_register_arg_p (gdbarch, typecode, arg_type)
4765 && (float_argreg & 1))
4766 {
4767 float_argreg++;
4768 argreg++;
4769 }
4770
4771 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4772 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
4773 {
4774 /* This is a floating point value that fits entirely
4775 in a single register or a pair of registers. */
4776 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4777 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
4778 if (mips_debug)
4779 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4780 float_argreg, phex (regval, reglen));
4781 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4782
4783 if (mips_debug)
4784 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4785 argreg, phex (regval, reglen));
4786 regcache_cooked_write_unsigned (regcache, argreg, regval);
4787 float_argreg++;
4788 argreg++;
4789 if (len == 16)
4790 {
4791 regval = extract_unsigned_integer (val + reglen,
4792 reglen, byte_order);
4793 if (mips_debug)
4794 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4795 float_argreg, phex (regval, reglen));
4796 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4797
4798 if (mips_debug)
4799 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4800 argreg, phex (regval, reglen));
4801 regcache_cooked_write_unsigned (regcache, argreg, regval);
4802 float_argreg++;
4803 argreg++;
4804 }
4805 }
4806 else
4807 {
4808 /* Copy the argument to general registers or the stack in
4809 register-sized pieces. Large arguments are split between
4810 registers and stack. */
4811 /* For N32/N64, structs, unions, or other composite types are
4812 treated as a sequence of doublewords, and are passed in integer
4813 or floating point registers as though they were simple scalar
4814 parameters to the extent that they fit, with any excess on the
4815 stack packed according to the normal memory layout of the
4816 object.
4817 The caller does not reserve space for the register arguments;
4818 the callee is responsible for reserving it if required. */
4819 /* Note: Floating-point values that didn't fit into an FP
4820 register are only written to memory. */
4821 while (len > 0)
4822 {
4823 /* Remember if the argument was written to the stack. */
4824 int stack_used_p = 0;
4825 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4826
4827 if (mips_debug)
4828 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4829 partial_len);
4830
4831 if (fp_register_arg_p (gdbarch, typecode, arg_type))
4832 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
4833
4834 /* Write this portion of the argument to the stack. */
4835 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
4836 {
4837 /* Should shorter than int integer values be
4838 promoted to int before being stored? */
4839 int longword_offset = 0;
4840 CORE_ADDR addr;
4841 stack_used_p = 1;
4842 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4843 {
4844 if ((typecode == TYPE_CODE_INT
4845 || typecode == TYPE_CODE_PTR)
4846 && len <= 4)
4847 longword_offset = MIPS64_REGSIZE - len;
4848 }
4849
4850 if (mips_debug)
4851 {
4852 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4853 paddress (gdbarch, stack_offset));
4854 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4855 paddress (gdbarch, longword_offset));
4856 }
4857
4858 addr = sp + stack_offset + longword_offset;
4859
4860 if (mips_debug)
4861 {
4862 int i;
4863 fprintf_unfiltered (gdb_stdlog, " @%s ",
4864 paddress (gdbarch, addr));
4865 for (i = 0; i < partial_len; i++)
4866 {
4867 fprintf_unfiltered (gdb_stdlog, "%02x",
4868 val[i] & 0xff);
4869 }
4870 }
4871 write_memory (addr, val, partial_len);
4872 }
4873
4874 /* Note!!! This is NOT an else clause. Odd sized
4875 structs may go thru BOTH paths. */
4876 /* Write this portion of the argument to a general
4877 purpose register. */
4878 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
4879 {
4880 LONGEST regval;
4881
4882 /* Sign extend pointers, 32-bit integers and signed
4883 16-bit and 8-bit integers; everything else is taken
4884 as is. */
4885
4886 if ((partial_len == 4
4887 && (typecode == TYPE_CODE_PTR
4888 || typecode == TYPE_CODE_INT))
4889 || (partial_len < 4
4890 && typecode == TYPE_CODE_INT
4891 && !TYPE_UNSIGNED (arg_type)))
4892 regval = extract_signed_integer (val, partial_len,
4893 byte_order);
4894 else
4895 regval = extract_unsigned_integer (val, partial_len,
4896 byte_order);
4897
4898 /* A non-floating-point argument being passed in a
4899 general register. If a struct or union, and if
4900 the remaining length is smaller than the register
4901 size, we have to adjust the register value on
4902 big endian targets.
4903
4904 It does not seem to be necessary to do the
4905 same for integral types. */
4906
4907 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
4908 && partial_len < MIPS64_REGSIZE
4909 && (typecode == TYPE_CODE_STRUCT
4910 || typecode == TYPE_CODE_UNION))
4911 regval <<= ((MIPS64_REGSIZE - partial_len)
4912 * TARGET_CHAR_BIT);
4913
4914 if (mips_debug)
4915 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
4916 argreg,
4917 phex (regval, MIPS64_REGSIZE));
4918 regcache_cooked_write_unsigned (regcache, argreg, regval);
4919
4920 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
4921 TYPE_LENGTH (arg_type) - len))
4922 {
4923 if (mips_debug)
4924 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
4925 float_argreg,
4926 phex (regval, MIPS64_REGSIZE));
4927 regcache_cooked_write_unsigned (regcache, float_argreg,
4928 regval);
4929 }
4930
4931 float_argreg++;
4932 argreg++;
4933 }
4934
4935 len -= partial_len;
4936 val += partial_len;
4937
4938 /* Compute the offset into the stack at which we will
4939 copy the next parameter.
4940
4941 In N32 (N64?), the stack_offset only needs to be
4942 adjusted when it has been used. */
4943
4944 if (stack_used_p)
4945 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
4946 }
4947 }
4948 if (mips_debug)
4949 fprintf_unfiltered (gdb_stdlog, "\n");
4950 }
4951
4952 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
4953
4954 /* Return adjusted stack pointer. */
4955 return sp;
4956 }
4957
4958 static enum return_value_convention
4959 mips_n32n64_return_value (struct gdbarch *gdbarch, struct value *function,
4960 struct type *type, struct regcache *regcache,
4961 gdb_byte *readbuf, const gdb_byte *writebuf)
4962 {
4963 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4964
4965 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
4966
4967 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
4968 if needed), as appropriate for the type. Composite results (struct,
4969 union, or array) are returned in $2/$f0 and $3/$f2 according to the
4970 following rules:
4971
4972 * A struct with only one or two floating point fields is returned in $f0
4973 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
4974 case.
4975
4976 * Any other composite results of at most 128 bits are returned in
4977 $2 (first 64 bits) and $3 (remainder, if necessary).
4978
4979 * Larger composite results are handled by converting the function to a
4980 procedure with an implicit first parameter, which is a pointer to an area
4981 reserved by the caller to receive the result. [The o32-bit ABI requires
4982 that all composite results be handled by conversion to implicit first
4983 parameters. The MIPS/SGI Fortran implementation has always made a
4984 specific exception to return COMPLEX results in the floating point
4985 registers.] */
4986
4987 if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
4988 return RETURN_VALUE_STRUCT_CONVENTION;
4989 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4990 && TYPE_LENGTH (type) == 16
4991 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4992 {
4993 /* A 128-bit floating-point value fills both $f0 and $f2. The
4994 two registers are used in the same as memory order, so the
4995 eight bytes with the lower memory address are in $f0. */
4996 if (mips_debug)
4997 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
4998 mips_xfer_register (gdbarch, regcache,
4999 (gdbarch_num_regs (gdbarch)
5000 + mips_regnum (gdbarch)->fp0),
5001 8, gdbarch_byte_order (gdbarch),
5002 readbuf, writebuf, 0);
5003 mips_xfer_register (gdbarch, regcache,
5004 (gdbarch_num_regs (gdbarch)
5005 + mips_regnum (gdbarch)->fp0 + 2),
5006 8, gdbarch_byte_order (gdbarch),
5007 readbuf ? readbuf + 8 : readbuf,
5008 writebuf ? writebuf + 8 : writebuf, 0);
5009 return RETURN_VALUE_REGISTER_CONVENTION;
5010 }
5011 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5012 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5013 {
5014 /* A single or double floating-point value that fits in FP0. */
5015 if (mips_debug)
5016 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5017 mips_xfer_register (gdbarch, regcache,
5018 (gdbarch_num_regs (gdbarch)
5019 + mips_regnum (gdbarch)->fp0),
5020 TYPE_LENGTH (type),
5021 gdbarch_byte_order (gdbarch),
5022 readbuf, writebuf, 0);
5023 return RETURN_VALUE_REGISTER_CONVENTION;
5024 }
5025 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5026 && TYPE_NFIELDS (type) <= 2
5027 && TYPE_NFIELDS (type) >= 1
5028 && ((TYPE_NFIELDS (type) == 1
5029 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5030 == TYPE_CODE_FLT))
5031 || (TYPE_NFIELDS (type) == 2
5032 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5033 == TYPE_CODE_FLT)
5034 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
5035 == TYPE_CODE_FLT))))
5036 {
5037 /* A struct that contains one or two floats. Each value is part
5038 in the least significant part of their floating point
5039 register (or GPR, for soft float). */
5040 int regnum;
5041 int field;
5042 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
5043 ? mips_regnum (gdbarch)->fp0
5044 : MIPS_V0_REGNUM);
5045 field < TYPE_NFIELDS (type); field++, regnum += 2)
5046 {
5047 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5048 / TARGET_CHAR_BIT);
5049 if (mips_debug)
5050 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5051 offset);
5052 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
5053 {
5054 /* A 16-byte long double field goes in two consecutive
5055 registers. */
5056 mips_xfer_register (gdbarch, regcache,
5057 gdbarch_num_regs (gdbarch) + regnum,
5058 8,
5059 gdbarch_byte_order (gdbarch),
5060 readbuf, writebuf, offset);
5061 mips_xfer_register (gdbarch, regcache,
5062 gdbarch_num_regs (gdbarch) + regnum + 1,
5063 8,
5064 gdbarch_byte_order (gdbarch),
5065 readbuf, writebuf, offset + 8);
5066 }
5067 else
5068 mips_xfer_register (gdbarch, regcache,
5069 gdbarch_num_regs (gdbarch) + regnum,
5070 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5071 gdbarch_byte_order (gdbarch),
5072 readbuf, writebuf, offset);
5073 }
5074 return RETURN_VALUE_REGISTER_CONVENTION;
5075 }
5076 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5077 || TYPE_CODE (type) == TYPE_CODE_UNION
5078 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5079 {
5080 /* A composite type. Extract the left justified value,
5081 regardless of the byte order. I.e. DO NOT USE
5082 mips_xfer_lower. */
5083 int offset;
5084 int regnum;
5085 for (offset = 0, regnum = MIPS_V0_REGNUM;
5086 offset < TYPE_LENGTH (type);
5087 offset += register_size (gdbarch, regnum), regnum++)
5088 {
5089 int xfer = register_size (gdbarch, regnum);
5090 if (offset + xfer > TYPE_LENGTH (type))
5091 xfer = TYPE_LENGTH (type) - offset;
5092 if (mips_debug)
5093 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5094 offset, xfer, regnum);
5095 mips_xfer_register (gdbarch, regcache,
5096 gdbarch_num_regs (gdbarch) + regnum,
5097 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
5098 offset);
5099 }
5100 return RETURN_VALUE_REGISTER_CONVENTION;
5101 }
5102 else
5103 {
5104 /* A scalar extract each part but least-significant-byte
5105 justified. */
5106 int offset;
5107 int regnum;
5108 for (offset = 0, regnum = MIPS_V0_REGNUM;
5109 offset < TYPE_LENGTH (type);
5110 offset += register_size (gdbarch, regnum), regnum++)
5111 {
5112 int xfer = register_size (gdbarch, regnum);
5113 if (offset + xfer > TYPE_LENGTH (type))
5114 xfer = TYPE_LENGTH (type) - offset;
5115 if (mips_debug)
5116 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5117 offset, xfer, regnum);
5118 mips_xfer_register (gdbarch, regcache,
5119 gdbarch_num_regs (gdbarch) + regnum,
5120 xfer, gdbarch_byte_order (gdbarch),
5121 readbuf, writebuf, offset);
5122 }
5123 return RETURN_VALUE_REGISTER_CONVENTION;
5124 }
5125 }
5126
5127 /* Which registers to use for passing floating-point values between
5128 function calls, one of floating-point, general and both kinds of
5129 registers. O32 and O64 use different register kinds for standard
5130 MIPS and MIPS16 code; to make the handling of cases where we may
5131 not know what kind of code is being used (e.g. no debug information)
5132 easier we sometimes use both kinds. */
5133
5134 enum mips_fval_reg
5135 {
5136 mips_fval_fpr,
5137 mips_fval_gpr,
5138 mips_fval_both
5139 };
5140
5141 /* O32 ABI stuff. */
5142
5143 static CORE_ADDR
5144 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5145 struct regcache *regcache, CORE_ADDR bp_addr,
5146 int nargs, struct value **args, CORE_ADDR sp,
5147 int struct_return, CORE_ADDR struct_addr)
5148 {
5149 int argreg;
5150 int float_argreg;
5151 int argnum;
5152 int len = 0;
5153 int stack_offset = 0;
5154 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5155 CORE_ADDR func_addr = find_function_addr (function, NULL);
5156
5157 /* For shared libraries, "t9" needs to point at the function
5158 address. */
5159 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5160
5161 /* Set the return address register to point to the entry point of
5162 the program, where a breakpoint lies in wait. */
5163 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5164
5165 /* First ensure that the stack and structure return address (if any)
5166 are properly aligned. The stack has to be at least 64-bit
5167 aligned even on 32-bit machines, because doubles must be 64-bit
5168 aligned. For n32 and n64, stack frames need to be 128-bit
5169 aligned, so we round to this widest known alignment. */
5170
5171 sp = align_down (sp, 16);
5172 struct_addr = align_down (struct_addr, 16);
5173
5174 /* Now make space on the stack for the args. */
5175 for (argnum = 0; argnum < nargs; argnum++)
5176 {
5177 struct type *arg_type = check_typedef (value_type (args[argnum]));
5178
5179 /* Align to double-word if necessary. */
5180 if (mips_type_needs_double_align (arg_type))
5181 len = align_up (len, MIPS32_REGSIZE * 2);
5182 /* Allocate space on the stack. */
5183 len += align_up (TYPE_LENGTH (arg_type), MIPS32_REGSIZE);
5184 }
5185 sp -= align_up (len, 16);
5186
5187 if (mips_debug)
5188 fprintf_unfiltered (gdb_stdlog,
5189 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
5190 paddress (gdbarch, sp), (long) align_up (len, 16));
5191
5192 /* Initialize the integer and float register pointers. */
5193 argreg = MIPS_A0_REGNUM;
5194 float_argreg = mips_fpa0_regnum (gdbarch);
5195
5196 /* The struct_return pointer occupies the first parameter-passing reg. */
5197 if (struct_return)
5198 {
5199 if (mips_debug)
5200 fprintf_unfiltered (gdb_stdlog,
5201 "mips_o32_push_dummy_call: "
5202 "struct_return reg=%d %s\n",
5203 argreg, paddress (gdbarch, struct_addr));
5204 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5205 stack_offset += MIPS32_REGSIZE;
5206 }
5207
5208 /* Now load as many as possible of the first arguments into
5209 registers, and push the rest onto the stack. Loop thru args
5210 from first to last. */
5211 for (argnum = 0; argnum < nargs; argnum++)
5212 {
5213 const gdb_byte *val;
5214 struct value *arg = args[argnum];
5215 struct type *arg_type = check_typedef (value_type (arg));
5216 int len = TYPE_LENGTH (arg_type);
5217 enum type_code typecode = TYPE_CODE (arg_type);
5218
5219 if (mips_debug)
5220 fprintf_unfiltered (gdb_stdlog,
5221 "mips_o32_push_dummy_call: %d len=%d type=%d",
5222 argnum + 1, len, (int) typecode);
5223
5224 val = value_contents (arg);
5225
5226 /* 32-bit ABIs always start floating point arguments in an
5227 even-numbered floating point register. Round the FP register
5228 up before the check to see if there are any FP registers
5229 left. O32 targets also pass the FP in the integer registers
5230 so also round up normal registers. */
5231 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5232 {
5233 if ((float_argreg & 1))
5234 float_argreg++;
5235 }
5236
5237 /* Floating point arguments passed in registers have to be
5238 treated specially. On 32-bit architectures, doubles are
5239 passed in register pairs; the even FP register gets the
5240 low word, and the odd FP register gets the high word.
5241 On O32, the first two floating point arguments are also
5242 copied to general registers, following their memory order,
5243 because MIPS16 functions don't use float registers for
5244 arguments. This duplication of arguments in general
5245 registers can't hurt non-MIPS16 functions, because those
5246 registers are normally skipped. */
5247
5248 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5249 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5250 {
5251 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
5252 {
5253 int freg_offset = gdbarch_byte_order (gdbarch)
5254 == BFD_ENDIAN_BIG ? 1 : 0;
5255 unsigned long regval;
5256
5257 /* First word. */
5258 regval = extract_unsigned_integer (val, 4, byte_order);
5259 if (mips_debug)
5260 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5261 float_argreg + freg_offset,
5262 phex (regval, 4));
5263 regcache_cooked_write_unsigned (regcache,
5264 float_argreg++ + freg_offset,
5265 regval);
5266 if (mips_debug)
5267 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5268 argreg, phex (regval, 4));
5269 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5270
5271 /* Second word. */
5272 regval = extract_unsigned_integer (val + 4, 4, byte_order);
5273 if (mips_debug)
5274 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5275 float_argreg - freg_offset,
5276 phex (regval, 4));
5277 regcache_cooked_write_unsigned (regcache,
5278 float_argreg++ - freg_offset,
5279 regval);
5280 if (mips_debug)
5281 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5282 argreg, phex (regval, 4));
5283 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5284 }
5285 else
5286 {
5287 /* This is a floating point value that fits entirely
5288 in a single register. */
5289 /* On 32 bit ABI's the float_argreg is further adjusted
5290 above to ensure that it is even register aligned. */
5291 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5292 if (mips_debug)
5293 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5294 float_argreg, phex (regval, len));
5295 regcache_cooked_write_unsigned (regcache,
5296 float_argreg++, regval);
5297 /* Although two FP registers are reserved for each
5298 argument, only one corresponding integer register is
5299 reserved. */
5300 if (mips_debug)
5301 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5302 argreg, phex (regval, len));
5303 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5304 }
5305 /* Reserve space for the FP register. */
5306 stack_offset += align_up (len, MIPS32_REGSIZE);
5307 }
5308 else
5309 {
5310 /* Copy the argument to general registers or the stack in
5311 register-sized pieces. Large arguments are split between
5312 registers and stack. */
5313 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
5314 are treated specially: Irix cc passes
5315 them in registers where gcc sometimes puts them on the
5316 stack. For maximum compatibility, we will put them in
5317 both places. */
5318 int odd_sized_struct = (len > MIPS32_REGSIZE
5319 && len % MIPS32_REGSIZE != 0);
5320 /* Structures should be aligned to eight bytes (even arg registers)
5321 on MIPS_ABI_O32, if their first member has double precision. */
5322 if (mips_type_needs_double_align (arg_type))
5323 {
5324 if ((argreg & 1))
5325 {
5326 argreg++;
5327 stack_offset += MIPS32_REGSIZE;
5328 }
5329 }
5330 while (len > 0)
5331 {
5332 /* Remember if the argument was written to the stack. */
5333 int stack_used_p = 0;
5334 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
5335
5336 if (mips_debug)
5337 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5338 partial_len);
5339
5340 /* Write this portion of the argument to the stack. */
5341 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5342 || odd_sized_struct)
5343 {
5344 /* Should shorter than int integer values be
5345 promoted to int before being stored? */
5346 int longword_offset = 0;
5347 CORE_ADDR addr;
5348 stack_used_p = 1;
5349
5350 if (mips_debug)
5351 {
5352 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5353 paddress (gdbarch, stack_offset));
5354 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5355 paddress (gdbarch, longword_offset));
5356 }
5357
5358 addr = sp + stack_offset + longword_offset;
5359
5360 if (mips_debug)
5361 {
5362 int i;
5363 fprintf_unfiltered (gdb_stdlog, " @%s ",
5364 paddress (gdbarch, addr));
5365 for (i = 0; i < partial_len; i++)
5366 {
5367 fprintf_unfiltered (gdb_stdlog, "%02x",
5368 val[i] & 0xff);
5369 }
5370 }
5371 write_memory (addr, val, partial_len);
5372 }
5373
5374 /* Note!!! This is NOT an else clause. Odd sized
5375 structs may go thru BOTH paths. */
5376 /* Write this portion of the argument to a general
5377 purpose register. */
5378 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5379 {
5380 LONGEST regval = extract_signed_integer (val, partial_len,
5381 byte_order);
5382 /* Value may need to be sign extended, because
5383 mips_isa_regsize() != mips_abi_regsize(). */
5384
5385 /* A non-floating-point argument being passed in a
5386 general register. If a struct or union, and if
5387 the remaining length is smaller than the register
5388 size, we have to adjust the register value on
5389 big endian targets.
5390
5391 It does not seem to be necessary to do the
5392 same for integral types.
5393
5394 Also don't do this adjustment on O64 binaries.
5395
5396 cagney/2001-07-23: gdb/179: Also, GCC, when
5397 outputting LE O32 with sizeof (struct) <
5398 mips_abi_regsize(), generates a left shift
5399 as part of storing the argument in a register
5400 (the left shift isn't generated when
5401 sizeof (struct) >= mips_abi_regsize()). Since
5402 it is quite possible that this is GCC
5403 contradicting the LE/O32 ABI, GDB has not been
5404 adjusted to accommodate this. Either someone
5405 needs to demonstrate that the LE/O32 ABI
5406 specifies such a left shift OR this new ABI gets
5407 identified as such and GDB gets tweaked
5408 accordingly. */
5409
5410 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5411 && partial_len < MIPS32_REGSIZE
5412 && (typecode == TYPE_CODE_STRUCT
5413 || typecode == TYPE_CODE_UNION))
5414 regval <<= ((MIPS32_REGSIZE - partial_len)
5415 * TARGET_CHAR_BIT);
5416
5417 if (mips_debug)
5418 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5419 argreg,
5420 phex (regval, MIPS32_REGSIZE));
5421 regcache_cooked_write_unsigned (regcache, argreg, regval);
5422 argreg++;
5423
5424 /* Prevent subsequent floating point arguments from
5425 being passed in floating point registers. */
5426 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
5427 }
5428
5429 len -= partial_len;
5430 val += partial_len;
5431
5432 /* Compute the offset into the stack at which we will
5433 copy the next parameter.
5434
5435 In older ABIs, the caller reserved space for
5436 registers that contained arguments. This was loosely
5437 refered to as their "home". Consequently, space is
5438 always allocated. */
5439
5440 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
5441 }
5442 }
5443 if (mips_debug)
5444 fprintf_unfiltered (gdb_stdlog, "\n");
5445 }
5446
5447 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5448
5449 /* Return adjusted stack pointer. */
5450 return sp;
5451 }
5452
5453 static enum return_value_convention
5454 mips_o32_return_value (struct gdbarch *gdbarch, struct value *function,
5455 struct type *type, struct regcache *regcache,
5456 gdb_byte *readbuf, const gdb_byte *writebuf)
5457 {
5458 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
5459 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
5460 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5461 enum mips_fval_reg fval_reg;
5462
5463 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
5464 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5465 || TYPE_CODE (type) == TYPE_CODE_UNION
5466 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5467 return RETURN_VALUE_STRUCT_CONVENTION;
5468 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5469 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5470 {
5471 /* A single-precision floating-point value. If reading in or copying,
5472 then we get it from/put it to FP0 for standard MIPS code or GPR2
5473 for MIPS16 code. If writing out only, then we put it to both FP0
5474 and GPR2. We do not support reading in with no function known, if
5475 this safety check ever triggers, then we'll have to try harder. */
5476 gdb_assert (function || !readbuf);
5477 if (mips_debug)
5478 switch (fval_reg)
5479 {
5480 case mips_fval_fpr:
5481 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5482 break;
5483 case mips_fval_gpr:
5484 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5485 break;
5486 case mips_fval_both:
5487 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5488 break;
5489 }
5490 if (fval_reg != mips_fval_gpr)
5491 mips_xfer_register (gdbarch, regcache,
5492 (gdbarch_num_regs (gdbarch)
5493 + mips_regnum (gdbarch)->fp0),
5494 TYPE_LENGTH (type),
5495 gdbarch_byte_order (gdbarch),
5496 readbuf, writebuf, 0);
5497 if (fval_reg != mips_fval_fpr)
5498 mips_xfer_register (gdbarch, regcache,
5499 gdbarch_num_regs (gdbarch) + 2,
5500 TYPE_LENGTH (type),
5501 gdbarch_byte_order (gdbarch),
5502 readbuf, writebuf, 0);
5503 return RETURN_VALUE_REGISTER_CONVENTION;
5504 }
5505 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5506 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5507 {
5508 /* A double-precision floating-point value. If reading in or copying,
5509 then we get it from/put it to FP1 and FP0 for standard MIPS code or
5510 GPR2 and GPR3 for MIPS16 code. If writing out only, then we put it
5511 to both FP1/FP0 and GPR2/GPR3. We do not support reading in with
5512 no function known, if this safety check ever triggers, then we'll
5513 have to try harder. */
5514 gdb_assert (function || !readbuf);
5515 if (mips_debug)
5516 switch (fval_reg)
5517 {
5518 case mips_fval_fpr:
5519 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
5520 break;
5521 case mips_fval_gpr:
5522 fprintf_unfiltered (gdb_stderr, "Return float in $2/$3\n");
5523 break;
5524 case mips_fval_both:
5525 fprintf_unfiltered (gdb_stderr,
5526 "Return float in $fp1/$fp0 and $2/$3\n");
5527 break;
5528 }
5529 if (fval_reg != mips_fval_gpr)
5530 {
5531 /* The most significant part goes in FP1, and the least significant
5532 in FP0. */
5533 switch (gdbarch_byte_order (gdbarch))
5534 {
5535 case BFD_ENDIAN_LITTLE:
5536 mips_xfer_register (gdbarch, regcache,
5537 (gdbarch_num_regs (gdbarch)
5538 + mips_regnum (gdbarch)->fp0 + 0),
5539 4, gdbarch_byte_order (gdbarch),
5540 readbuf, writebuf, 0);
5541 mips_xfer_register (gdbarch, regcache,
5542 (gdbarch_num_regs (gdbarch)
5543 + mips_regnum (gdbarch)->fp0 + 1),
5544 4, gdbarch_byte_order (gdbarch),
5545 readbuf, writebuf, 4);
5546 break;
5547 case BFD_ENDIAN_BIG:
5548 mips_xfer_register (gdbarch, regcache,
5549 (gdbarch_num_regs (gdbarch)
5550 + mips_regnum (gdbarch)->fp0 + 1),
5551 4, gdbarch_byte_order (gdbarch),
5552 readbuf, writebuf, 0);
5553 mips_xfer_register (gdbarch, regcache,
5554 (gdbarch_num_regs (gdbarch)
5555 + mips_regnum (gdbarch)->fp0 + 0),
5556 4, gdbarch_byte_order (gdbarch),
5557 readbuf, writebuf, 4);
5558 break;
5559 default:
5560 internal_error (__FILE__, __LINE__, _("bad switch"));
5561 }
5562 }
5563 if (fval_reg != mips_fval_fpr)
5564 {
5565 /* The two 32-bit parts are always placed in GPR2 and GPR3
5566 following these registers' memory order. */
5567 mips_xfer_register (gdbarch, regcache,
5568 gdbarch_num_regs (gdbarch) + 2,
5569 4, gdbarch_byte_order (gdbarch),
5570 readbuf, writebuf, 0);
5571 mips_xfer_register (gdbarch, regcache,
5572 gdbarch_num_regs (gdbarch) + 3,
5573 4, gdbarch_byte_order (gdbarch),
5574 readbuf, writebuf, 4);
5575 }
5576 return RETURN_VALUE_REGISTER_CONVENTION;
5577 }
5578 #if 0
5579 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5580 && TYPE_NFIELDS (type) <= 2
5581 && TYPE_NFIELDS (type) >= 1
5582 && ((TYPE_NFIELDS (type) == 1
5583 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5584 == TYPE_CODE_FLT))
5585 || (TYPE_NFIELDS (type) == 2
5586 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5587 == TYPE_CODE_FLT)
5588 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
5589 == TYPE_CODE_FLT)))
5590 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5591 {
5592 /* A struct that contains one or two floats. Each value is part
5593 in the least significant part of their floating point
5594 register.. */
5595 gdb_byte reg[MAX_REGISTER_SIZE];
5596 int regnum;
5597 int field;
5598 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
5599 field < TYPE_NFIELDS (type); field++, regnum += 2)
5600 {
5601 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5602 / TARGET_CHAR_BIT);
5603 if (mips_debug)
5604 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5605 offset);
5606 mips_xfer_register (gdbarch, regcache,
5607 gdbarch_num_regs (gdbarch) + regnum,
5608 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5609 gdbarch_byte_order (gdbarch),
5610 readbuf, writebuf, offset);
5611 }
5612 return RETURN_VALUE_REGISTER_CONVENTION;
5613 }
5614 #endif
5615 #if 0
5616 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5617 || TYPE_CODE (type) == TYPE_CODE_UNION)
5618 {
5619 /* A structure or union. Extract the left justified value,
5620 regardless of the byte order. I.e. DO NOT USE
5621 mips_xfer_lower. */
5622 int offset;
5623 int regnum;
5624 for (offset = 0, regnum = MIPS_V0_REGNUM;
5625 offset < TYPE_LENGTH (type);
5626 offset += register_size (gdbarch, regnum), regnum++)
5627 {
5628 int xfer = register_size (gdbarch, regnum);
5629 if (offset + xfer > TYPE_LENGTH (type))
5630 xfer = TYPE_LENGTH (type) - offset;
5631 if (mips_debug)
5632 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5633 offset, xfer, regnum);
5634 mips_xfer_register (gdbarch, regcache,
5635 gdbarch_num_regs (gdbarch) + regnum, xfer,
5636 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
5637 }
5638 return RETURN_VALUE_REGISTER_CONVENTION;
5639 }
5640 #endif
5641 else
5642 {
5643 /* A scalar extract each part but least-significant-byte
5644 justified. o32 thinks registers are 4 byte, regardless of
5645 the ISA. */
5646 int offset;
5647 int regnum;
5648 for (offset = 0, regnum = MIPS_V0_REGNUM;
5649 offset < TYPE_LENGTH (type);
5650 offset += MIPS32_REGSIZE, regnum++)
5651 {
5652 int xfer = MIPS32_REGSIZE;
5653 if (offset + xfer > TYPE_LENGTH (type))
5654 xfer = TYPE_LENGTH (type) - offset;
5655 if (mips_debug)
5656 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5657 offset, xfer, regnum);
5658 mips_xfer_register (gdbarch, regcache,
5659 gdbarch_num_regs (gdbarch) + regnum, xfer,
5660 gdbarch_byte_order (gdbarch),
5661 readbuf, writebuf, offset);
5662 }
5663 return RETURN_VALUE_REGISTER_CONVENTION;
5664 }
5665 }
5666
5667 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
5668 ABI. */
5669
5670 static CORE_ADDR
5671 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5672 struct regcache *regcache, CORE_ADDR bp_addr,
5673 int nargs,
5674 struct value **args, CORE_ADDR sp,
5675 int struct_return, CORE_ADDR struct_addr)
5676 {
5677 int argreg;
5678 int float_argreg;
5679 int argnum;
5680 int len = 0;
5681 int stack_offset = 0;
5682 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5683 CORE_ADDR func_addr = find_function_addr (function, NULL);
5684
5685 /* For shared libraries, "t9" needs to point at the function
5686 address. */
5687 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5688
5689 /* Set the return address register to point to the entry point of
5690 the program, where a breakpoint lies in wait. */
5691 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5692
5693 /* First ensure that the stack and structure return address (if any)
5694 are properly aligned. The stack has to be at least 64-bit
5695 aligned even on 32-bit machines, because doubles must be 64-bit
5696 aligned. For n32 and n64, stack frames need to be 128-bit
5697 aligned, so we round to this widest known alignment. */
5698
5699 sp = align_down (sp, 16);
5700 struct_addr = align_down (struct_addr, 16);
5701
5702 /* Now make space on the stack for the args. */
5703 for (argnum = 0; argnum < nargs; argnum++)
5704 {
5705 struct type *arg_type = check_typedef (value_type (args[argnum]));
5706
5707 /* Allocate space on the stack. */
5708 len += align_up (TYPE_LENGTH (arg_type), MIPS64_REGSIZE);
5709 }
5710 sp -= align_up (len, 16);
5711
5712 if (mips_debug)
5713 fprintf_unfiltered (gdb_stdlog,
5714 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
5715 paddress (gdbarch, sp), (long) align_up (len, 16));
5716
5717 /* Initialize the integer and float register pointers. */
5718 argreg = MIPS_A0_REGNUM;
5719 float_argreg = mips_fpa0_regnum (gdbarch);
5720
5721 /* The struct_return pointer occupies the first parameter-passing reg. */
5722 if (struct_return)
5723 {
5724 if (mips_debug)
5725 fprintf_unfiltered (gdb_stdlog,
5726 "mips_o64_push_dummy_call: "
5727 "struct_return reg=%d %s\n",
5728 argreg, paddress (gdbarch, struct_addr));
5729 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5730 stack_offset += MIPS64_REGSIZE;
5731 }
5732
5733 /* Now load as many as possible of the first arguments into
5734 registers, and push the rest onto the stack. Loop thru args
5735 from first to last. */
5736 for (argnum = 0; argnum < nargs; argnum++)
5737 {
5738 const gdb_byte *val;
5739 gdb_byte valbuf[MAX_REGISTER_SIZE];
5740 struct value *arg = args[argnum];
5741 struct type *arg_type = check_typedef (value_type (arg));
5742 int len = TYPE_LENGTH (arg_type);
5743 enum type_code typecode = TYPE_CODE (arg_type);
5744
5745 if (mips_debug)
5746 fprintf_unfiltered (gdb_stdlog,
5747 "mips_o64_push_dummy_call: %d len=%d type=%d",
5748 argnum + 1, len, (int) typecode);
5749
5750 val = value_contents (arg);
5751
5752 /* Function pointer arguments to mips16 code need to be made into
5753 mips16 pointers. */
5754 if (typecode == TYPE_CODE_PTR
5755 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
5756 {
5757 CORE_ADDR addr = extract_signed_integer (value_contents (arg),
5758 len, byte_order);
5759 if (!mips_pc_is_mips (addr))
5760 {
5761 store_signed_integer (valbuf, len, byte_order,
5762 make_compact_addr (addr));
5763 val = valbuf;
5764 }
5765 }
5766
5767 /* Floating point arguments passed in registers have to be
5768 treated specially. On 32-bit architectures, doubles are
5769 passed in register pairs; the even FP register gets the
5770 low word, and the odd FP register gets the high word.
5771 On O64, the first two floating point arguments are also
5772 copied to general registers, because MIPS16 functions
5773 don't use float registers for arguments. This duplication
5774 of arguments in general registers can't hurt non-MIPS16
5775 functions because those registers are normally skipped. */
5776
5777 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5778 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5779 {
5780 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5781 if (mips_debug)
5782 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5783 float_argreg, phex (regval, len));
5784 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
5785 if (mips_debug)
5786 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5787 argreg, phex (regval, len));
5788 regcache_cooked_write_unsigned (regcache, argreg, regval);
5789 argreg++;
5790 /* Reserve space for the FP register. */
5791 stack_offset += align_up (len, MIPS64_REGSIZE);
5792 }
5793 else
5794 {
5795 /* Copy the argument to general registers or the stack in
5796 register-sized pieces. Large arguments are split between
5797 registers and stack. */
5798 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
5799 are treated specially: Irix cc passes them in registers
5800 where gcc sometimes puts them on the stack. For maximum
5801 compatibility, we will put them in both places. */
5802 int odd_sized_struct = (len > MIPS64_REGSIZE
5803 && len % MIPS64_REGSIZE != 0);
5804 while (len > 0)
5805 {
5806 /* Remember if the argument was written to the stack. */
5807 int stack_used_p = 0;
5808 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
5809
5810 if (mips_debug)
5811 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5812 partial_len);
5813
5814 /* Write this portion of the argument to the stack. */
5815 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5816 || odd_sized_struct)
5817 {
5818 /* Should shorter than int integer values be
5819 promoted to int before being stored? */
5820 int longword_offset = 0;
5821 CORE_ADDR addr;
5822 stack_used_p = 1;
5823 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5824 {
5825 if ((typecode == TYPE_CODE_INT
5826 || typecode == TYPE_CODE_PTR
5827 || typecode == TYPE_CODE_FLT)
5828 && len <= 4)
5829 longword_offset = MIPS64_REGSIZE - len;
5830 }
5831
5832 if (mips_debug)
5833 {
5834 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5835 paddress (gdbarch, stack_offset));
5836 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5837 paddress (gdbarch, longword_offset));
5838 }
5839
5840 addr = sp + stack_offset + longword_offset;
5841
5842 if (mips_debug)
5843 {
5844 int i;
5845 fprintf_unfiltered (gdb_stdlog, " @%s ",
5846 paddress (gdbarch, addr));
5847 for (i = 0; i < partial_len; i++)
5848 {
5849 fprintf_unfiltered (gdb_stdlog, "%02x",
5850 val[i] & 0xff);
5851 }
5852 }
5853 write_memory (addr, val, partial_len);
5854 }
5855
5856 /* Note!!! This is NOT an else clause. Odd sized
5857 structs may go thru BOTH paths. */
5858 /* Write this portion of the argument to a general
5859 purpose register. */
5860 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5861 {
5862 LONGEST regval = extract_signed_integer (val, partial_len,
5863 byte_order);
5864 /* Value may need to be sign extended, because
5865 mips_isa_regsize() != mips_abi_regsize(). */
5866
5867 /* A non-floating-point argument being passed in a
5868 general register. If a struct or union, and if
5869 the remaining length is smaller than the register
5870 size, we have to adjust the register value on
5871 big endian targets.
5872
5873 It does not seem to be necessary to do the
5874 same for integral types. */
5875
5876 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5877 && partial_len < MIPS64_REGSIZE
5878 && (typecode == TYPE_CODE_STRUCT
5879 || typecode == TYPE_CODE_UNION))
5880 regval <<= ((MIPS64_REGSIZE - partial_len)
5881 * TARGET_CHAR_BIT);
5882
5883 if (mips_debug)
5884 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5885 argreg,
5886 phex (regval, MIPS64_REGSIZE));
5887 regcache_cooked_write_unsigned (regcache, argreg, regval);
5888 argreg++;
5889
5890 /* Prevent subsequent floating point arguments from
5891 being passed in floating point registers. */
5892 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
5893 }
5894
5895 len -= partial_len;
5896 val += partial_len;
5897
5898 /* Compute the offset into the stack at which we will
5899 copy the next parameter.
5900
5901 In older ABIs, the caller reserved space for
5902 registers that contained arguments. This was loosely
5903 refered to as their "home". Consequently, space is
5904 always allocated. */
5905
5906 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
5907 }
5908 }
5909 if (mips_debug)
5910 fprintf_unfiltered (gdb_stdlog, "\n");
5911 }
5912
5913 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5914
5915 /* Return adjusted stack pointer. */
5916 return sp;
5917 }
5918
5919 static enum return_value_convention
5920 mips_o64_return_value (struct gdbarch *gdbarch, struct value *function,
5921 struct type *type, struct regcache *regcache,
5922 gdb_byte *readbuf, const gdb_byte *writebuf)
5923 {
5924 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
5925 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
5926 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5927 enum mips_fval_reg fval_reg;
5928
5929 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
5930 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5931 || TYPE_CODE (type) == TYPE_CODE_UNION
5932 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5933 return RETURN_VALUE_STRUCT_CONVENTION;
5934 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
5935 {
5936 /* A floating-point value. If reading in or copying, then we get it
5937 from/put it to FP0 for standard MIPS code or GPR2 for MIPS16 code.
5938 If writing out only, then we put it to both FP0 and GPR2. We do
5939 not support reading in with no function known, if this safety
5940 check ever triggers, then we'll have to try harder. */
5941 gdb_assert (function || !readbuf);
5942 if (mips_debug)
5943 switch (fval_reg)
5944 {
5945 case mips_fval_fpr:
5946 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5947 break;
5948 case mips_fval_gpr:
5949 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5950 break;
5951 case mips_fval_both:
5952 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5953 break;
5954 }
5955 if (fval_reg != mips_fval_gpr)
5956 mips_xfer_register (gdbarch, regcache,
5957 (gdbarch_num_regs (gdbarch)
5958 + mips_regnum (gdbarch)->fp0),
5959 TYPE_LENGTH (type),
5960 gdbarch_byte_order (gdbarch),
5961 readbuf, writebuf, 0);
5962 if (fval_reg != mips_fval_fpr)
5963 mips_xfer_register (gdbarch, regcache,
5964 gdbarch_num_regs (gdbarch) + 2,
5965 TYPE_LENGTH (type),
5966 gdbarch_byte_order (gdbarch),
5967 readbuf, writebuf, 0);
5968 return RETURN_VALUE_REGISTER_CONVENTION;
5969 }
5970 else
5971 {
5972 /* A scalar extract each part but least-significant-byte
5973 justified. */
5974 int offset;
5975 int regnum;
5976 for (offset = 0, regnum = MIPS_V0_REGNUM;
5977 offset < TYPE_LENGTH (type);
5978 offset += MIPS64_REGSIZE, regnum++)
5979 {
5980 int xfer = MIPS64_REGSIZE;
5981 if (offset + xfer > TYPE_LENGTH (type))
5982 xfer = TYPE_LENGTH (type) - offset;
5983 if (mips_debug)
5984 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5985 offset, xfer, regnum);
5986 mips_xfer_register (gdbarch, regcache,
5987 gdbarch_num_regs (gdbarch) + regnum,
5988 xfer, gdbarch_byte_order (gdbarch),
5989 readbuf, writebuf, offset);
5990 }
5991 return RETURN_VALUE_REGISTER_CONVENTION;
5992 }
5993 }
5994
5995 /* Floating point register management.
5996
5997 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
5998 64bit operations, these early MIPS cpus treat fp register pairs
5999 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
6000 registers and offer a compatibility mode that emulates the MIPS2 fp
6001 model. When operating in MIPS2 fp compat mode, later cpu's split
6002 double precision floats into two 32-bit chunks and store them in
6003 consecutive fp regs. To display 64-bit floats stored in this
6004 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
6005 Throw in user-configurable endianness and you have a real mess.
6006
6007 The way this works is:
6008 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
6009 double-precision value will be split across two logical registers.
6010 The lower-numbered logical register will hold the low-order bits,
6011 regardless of the processor's endianness.
6012 - If we are on a 64-bit processor, and we are looking for a
6013 single-precision value, it will be in the low ordered bits
6014 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
6015 save slot in memory.
6016 - If we are in 64-bit mode, everything is straightforward.
6017
6018 Note that this code only deals with "live" registers at the top of the
6019 stack. We will attempt to deal with saved registers later, when
6020 the raw/cooked register interface is in place. (We need a general
6021 interface that can deal with dynamic saved register sizes -- fp
6022 regs could be 32 bits wide in one frame and 64 on the frame above
6023 and below). */
6024
6025 /* Copy a 32-bit single-precision value from the current frame
6026 into rare_buffer. */
6027
6028 static void
6029 mips_read_fp_register_single (struct frame_info *frame, int regno,
6030 gdb_byte *rare_buffer)
6031 {
6032 struct gdbarch *gdbarch = get_frame_arch (frame);
6033 int raw_size = register_size (gdbarch, regno);
6034 gdb_byte *raw_buffer = alloca (raw_size);
6035
6036 if (!deprecated_frame_register_read (frame, regno, raw_buffer))
6037 error (_("can't read register %d (%s)"),
6038 regno, gdbarch_register_name (gdbarch, regno));
6039 if (raw_size == 8)
6040 {
6041 /* We have a 64-bit value for this register. Find the low-order
6042 32 bits. */
6043 int offset;
6044
6045 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6046 offset = 4;
6047 else
6048 offset = 0;
6049
6050 memcpy (rare_buffer, raw_buffer + offset, 4);
6051 }
6052 else
6053 {
6054 memcpy (rare_buffer, raw_buffer, 4);
6055 }
6056 }
6057
6058 /* Copy a 64-bit double-precision value from the current frame into
6059 rare_buffer. This may include getting half of it from the next
6060 register. */
6061
6062 static void
6063 mips_read_fp_register_double (struct frame_info *frame, int regno,
6064 gdb_byte *rare_buffer)
6065 {
6066 struct gdbarch *gdbarch = get_frame_arch (frame);
6067 int raw_size = register_size (gdbarch, regno);
6068
6069 if (raw_size == 8 && !mips2_fp_compat (frame))
6070 {
6071 /* We have a 64-bit value for this register, and we should use
6072 all 64 bits. */
6073 if (!deprecated_frame_register_read (frame, regno, rare_buffer))
6074 error (_("can't read register %d (%s)"),
6075 regno, gdbarch_register_name (gdbarch, regno));
6076 }
6077 else
6078 {
6079 int rawnum = regno % gdbarch_num_regs (gdbarch);
6080
6081 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
6082 internal_error (__FILE__, __LINE__,
6083 _("mips_read_fp_register_double: bad access to "
6084 "odd-numbered FP register"));
6085
6086 /* mips_read_fp_register_single will find the correct 32 bits from
6087 each register. */
6088 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6089 {
6090 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
6091 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
6092 }
6093 else
6094 {
6095 mips_read_fp_register_single (frame, regno, rare_buffer);
6096 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
6097 }
6098 }
6099 }
6100
6101 static void
6102 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
6103 int regnum)
6104 { /* Do values for FP (float) regs. */
6105 struct gdbarch *gdbarch = get_frame_arch (frame);
6106 gdb_byte *raw_buffer;
6107 double doub, flt1; /* Doubles extracted from raw hex data. */
6108 int inv1, inv2;
6109
6110 raw_buffer = alloca (2 * register_size (gdbarch,
6111 mips_regnum (gdbarch)->fp0));
6112
6113 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
6114 fprintf_filtered (file, "%*s",
6115 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
6116 "");
6117
6118 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
6119 {
6120 struct value_print_options opts;
6121
6122 /* 4-byte registers: Print hex and floating. Also print even
6123 numbered registers as doubles. */
6124 mips_read_fp_register_single (frame, regnum, raw_buffer);
6125 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6126 raw_buffer, &inv1);
6127
6128 get_formatted_print_options (&opts, 'x');
6129 print_scalar_formatted (raw_buffer,
6130 builtin_type (gdbarch)->builtin_uint32,
6131 &opts, 'w', file);
6132
6133 fprintf_filtered (file, " flt: ");
6134 if (inv1)
6135 fprintf_filtered (file, " <invalid float> ");
6136 else
6137 fprintf_filtered (file, "%-17.9g", flt1);
6138
6139 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
6140 {
6141 mips_read_fp_register_double (frame, regnum, raw_buffer);
6142 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6143 raw_buffer, &inv2);
6144
6145 fprintf_filtered (file, " dbl: ");
6146 if (inv2)
6147 fprintf_filtered (file, "<invalid double>");
6148 else
6149 fprintf_filtered (file, "%-24.17g", doub);
6150 }
6151 }
6152 else
6153 {
6154 struct value_print_options opts;
6155
6156 /* Eight byte registers: print each one as hex, float and double. */
6157 mips_read_fp_register_single (frame, regnum, raw_buffer);
6158 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6159 raw_buffer, &inv1);
6160
6161 mips_read_fp_register_double (frame, regnum, raw_buffer);
6162 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6163 raw_buffer, &inv2);
6164
6165 get_formatted_print_options (&opts, 'x');
6166 print_scalar_formatted (raw_buffer,
6167 builtin_type (gdbarch)->builtin_uint64,
6168 &opts, 'g', file);
6169
6170 fprintf_filtered (file, " flt: ");
6171 if (inv1)
6172 fprintf_filtered (file, "<invalid float>");
6173 else
6174 fprintf_filtered (file, "%-17.9g", flt1);
6175
6176 fprintf_filtered (file, " dbl: ");
6177 if (inv2)
6178 fprintf_filtered (file, "<invalid double>");
6179 else
6180 fprintf_filtered (file, "%-24.17g", doub);
6181 }
6182 }
6183
6184 static void
6185 mips_print_register (struct ui_file *file, struct frame_info *frame,
6186 int regnum)
6187 {
6188 struct gdbarch *gdbarch = get_frame_arch (frame);
6189 struct value_print_options opts;
6190 struct value *val;
6191
6192 if (mips_float_register_p (gdbarch, regnum))
6193 {
6194 mips_print_fp_register (file, frame, regnum);
6195 return;
6196 }
6197
6198 val = get_frame_register_value (frame, regnum);
6199 if (value_optimized_out (val))
6200 {
6201 fprintf_filtered (file, "%s: [Invalid]",
6202 gdbarch_register_name (gdbarch, regnum));
6203 return;
6204 }
6205
6206 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
6207
6208 /* The problem with printing numeric register names (r26, etc.) is that
6209 the user can't use them on input. Probably the best solution is to
6210 fix it so that either the numeric or the funky (a2, etc.) names
6211 are accepted on input. */
6212 if (regnum < MIPS_NUMREGS)
6213 fprintf_filtered (file, "(r%d): ", regnum);
6214 else
6215 fprintf_filtered (file, ": ");
6216
6217 get_formatted_print_options (&opts, 'x');
6218 val_print_scalar_formatted (value_type (val),
6219 value_contents_for_printing (val),
6220 value_embedded_offset (val),
6221 val,
6222 &opts, 0, file);
6223 }
6224
6225 /* Replacement for generic do_registers_info.
6226 Print regs in pretty columns. */
6227
6228 static int
6229 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
6230 int regnum)
6231 {
6232 fprintf_filtered (file, " ");
6233 mips_print_fp_register (file, frame, regnum);
6234 fprintf_filtered (file, "\n");
6235 return regnum + 1;
6236 }
6237
6238
6239 /* Print a row's worth of GP (int) registers, with name labels above. */
6240
6241 static int
6242 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
6243 int start_regnum)
6244 {
6245 struct gdbarch *gdbarch = get_frame_arch (frame);
6246 /* Do values for GP (int) regs. */
6247 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
6248 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols
6249 per row. */
6250 int col, byte;
6251 int regnum;
6252
6253 /* For GP registers, we print a separate row of names above the vals. */
6254 for (col = 0, regnum = start_regnum;
6255 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6256 + gdbarch_num_pseudo_regs (gdbarch);
6257 regnum++)
6258 {
6259 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6260 continue; /* unused register */
6261 if (mips_float_register_p (gdbarch, regnum))
6262 break; /* End the row: reached FP register. */
6263 /* Large registers are handled separately. */
6264 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6265 {
6266 if (col > 0)
6267 break; /* End the row before this register. */
6268
6269 /* Print this register on a row by itself. */
6270 mips_print_register (file, frame, regnum);
6271 fprintf_filtered (file, "\n");
6272 return regnum + 1;
6273 }
6274 if (col == 0)
6275 fprintf_filtered (file, " ");
6276 fprintf_filtered (file,
6277 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
6278 gdbarch_register_name (gdbarch, regnum));
6279 col++;
6280 }
6281
6282 if (col == 0)
6283 return regnum;
6284
6285 /* Print the R0 to R31 names. */
6286 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
6287 fprintf_filtered (file, "\n R%-4d",
6288 start_regnum % gdbarch_num_regs (gdbarch));
6289 else
6290 fprintf_filtered (file, "\n ");
6291
6292 /* Now print the values in hex, 4 or 8 to the row. */
6293 for (col = 0, regnum = start_regnum;
6294 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6295 + gdbarch_num_pseudo_regs (gdbarch);
6296 regnum++)
6297 {
6298 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6299 continue; /* unused register */
6300 if (mips_float_register_p (gdbarch, regnum))
6301 break; /* End row: reached FP register. */
6302 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6303 break; /* End row: large register. */
6304
6305 /* OK: get the data in raw format. */
6306 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
6307 error (_("can't read register %d (%s)"),
6308 regnum, gdbarch_register_name (gdbarch, regnum));
6309 /* pad small registers */
6310 for (byte = 0;
6311 byte < (mips_abi_regsize (gdbarch)
6312 - register_size (gdbarch, regnum)); byte++)
6313 printf_filtered (" ");
6314 /* Now print the register value in hex, endian order. */
6315 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6316 for (byte =
6317 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
6318 byte < register_size (gdbarch, regnum); byte++)
6319 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6320 else
6321 for (byte = register_size (gdbarch, regnum) - 1;
6322 byte >= 0; byte--)
6323 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6324 fprintf_filtered (file, " ");
6325 col++;
6326 }
6327 if (col > 0) /* ie. if we actually printed anything... */
6328 fprintf_filtered (file, "\n");
6329
6330 return regnum;
6331 }
6332
6333 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command. */
6334
6335 static void
6336 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
6337 struct frame_info *frame, int regnum, int all)
6338 {
6339 if (regnum != -1) /* Do one specified register. */
6340 {
6341 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
6342 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
6343 error (_("Not a valid register for the current processor type"));
6344
6345 mips_print_register (file, frame, regnum);
6346 fprintf_filtered (file, "\n");
6347 }
6348 else
6349 /* Do all (or most) registers. */
6350 {
6351 regnum = gdbarch_num_regs (gdbarch);
6352 while (regnum < gdbarch_num_regs (gdbarch)
6353 + gdbarch_num_pseudo_regs (gdbarch))
6354 {
6355 if (mips_float_register_p (gdbarch, regnum))
6356 {
6357 if (all) /* True for "INFO ALL-REGISTERS" command. */
6358 regnum = print_fp_register_row (file, frame, regnum);
6359 else
6360 regnum += MIPS_NUMREGS; /* Skip floating point regs. */
6361 }
6362 else
6363 regnum = print_gp_register_row (file, frame, regnum);
6364 }
6365 }
6366 }
6367
6368 static int
6369 mips_single_step_through_delay (struct gdbarch *gdbarch,
6370 struct frame_info *frame)
6371 {
6372 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6373 CORE_ADDR pc = get_frame_pc (frame);
6374 struct address_space *aspace;
6375 enum mips_isa isa;
6376 ULONGEST insn;
6377 int status;
6378 int size;
6379
6380 if ((mips_pc_is_mips (pc)
6381 && !mips32_instruction_has_delay_slot (gdbarch, pc))
6382 || (mips_pc_is_micromips (gdbarch, pc)
6383 && !micromips_instruction_has_delay_slot (gdbarch, pc, 0))
6384 || (mips_pc_is_mips16 (gdbarch, pc)
6385 && !mips16_instruction_has_delay_slot (gdbarch, pc, 0)))
6386 return 0;
6387
6388 isa = mips_pc_isa (gdbarch, pc);
6389 /* _has_delay_slot above will have validated the read. */
6390 insn = mips_fetch_instruction (gdbarch, isa, pc, NULL);
6391 size = mips_insn_size (isa, insn);
6392 aspace = get_frame_address_space (frame);
6393 return breakpoint_here_p (aspace, pc + size) != no_breakpoint_here;
6394 }
6395
6396 /* To skip prologues, I use this predicate. Returns either PC itself
6397 if the code at PC does not look like a function prologue; otherwise
6398 returns an address that (if we're lucky) follows the prologue. If
6399 LENIENT, then we must skip everything which is involved in setting
6400 up the frame (it's OK to skip more, just so long as we don't skip
6401 anything which might clobber the registers which are being saved.
6402 We must skip more in the case where part of the prologue is in the
6403 delay slot of a non-prologue instruction). */
6404
6405 static CORE_ADDR
6406 mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
6407 {
6408 CORE_ADDR limit_pc;
6409 CORE_ADDR func_addr;
6410
6411 /* See if we can determine the end of the prologue via the symbol table.
6412 If so, then return either PC, or the PC after the prologue, whichever
6413 is greater. */
6414 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
6415 {
6416 CORE_ADDR post_prologue_pc
6417 = skip_prologue_using_sal (gdbarch, func_addr);
6418 if (post_prologue_pc != 0)
6419 return max (pc, post_prologue_pc);
6420 }
6421
6422 /* Can't determine prologue from the symbol table, need to examine
6423 instructions. */
6424
6425 /* Find an upper limit on the function prologue using the debug
6426 information. If the debug information could not be used to provide
6427 that bound, then use an arbitrary large number as the upper bound. */
6428 limit_pc = skip_prologue_using_sal (gdbarch, pc);
6429 if (limit_pc == 0)
6430 limit_pc = pc + 100; /* Magic. */
6431
6432 if (mips_pc_is_mips16 (gdbarch, pc))
6433 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6434 else if (mips_pc_is_micromips (gdbarch, pc))
6435 return micromips_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6436 else
6437 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6438 }
6439
6440 /* Check whether the PC is in a function epilogue (32-bit version).
6441 This is a helper function for mips_in_function_epilogue_p. */
6442 static int
6443 mips32_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6444 {
6445 CORE_ADDR func_addr = 0, func_end = 0;
6446
6447 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6448 {
6449 /* The MIPS epilogue is max. 12 bytes long. */
6450 CORE_ADDR addr = func_end - 12;
6451
6452 if (addr < func_addr + 4)
6453 addr = func_addr + 4;
6454 if (pc < addr)
6455 return 0;
6456
6457 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
6458 {
6459 unsigned long high_word;
6460 unsigned long inst;
6461
6462 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
6463 high_word = (inst >> 16) & 0xffff;
6464
6465 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
6466 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
6467 && inst != 0x03e00008 /* jr $ra */
6468 && inst != 0x00000000) /* nop */
6469 return 0;
6470 }
6471
6472 return 1;
6473 }
6474
6475 return 0;
6476 }
6477
6478 /* Check whether the PC is in a function epilogue (microMIPS version).
6479 This is a helper function for mips_in_function_epilogue_p. */
6480
6481 static int
6482 micromips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6483 {
6484 CORE_ADDR func_addr = 0;
6485 CORE_ADDR func_end = 0;
6486 CORE_ADDR addr;
6487 ULONGEST insn;
6488 long offset;
6489 int dreg;
6490 int sreg;
6491 int loc;
6492
6493 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6494 return 0;
6495
6496 /* The microMIPS epilogue is max. 12 bytes long. */
6497 addr = func_end - 12;
6498
6499 if (addr < func_addr + 2)
6500 addr = func_addr + 2;
6501 if (pc < addr)
6502 return 0;
6503
6504 for (; pc < func_end; pc += loc)
6505 {
6506 loc = 0;
6507 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
6508 loc += MIPS_INSN16_SIZE;
6509 switch (mips_insn_size (ISA_MICROMIPS, insn))
6510 {
6511 /* 48-bit instructions. */
6512 case 3 * MIPS_INSN16_SIZE:
6513 /* No epilogue instructions in this category. */
6514 return 0;
6515
6516 /* 32-bit instructions. */
6517 case 2 * MIPS_INSN16_SIZE:
6518 insn <<= 16;
6519 insn |= mips_fetch_instruction (gdbarch,
6520 ISA_MICROMIPS, pc + loc, NULL);
6521 loc += MIPS_INSN16_SIZE;
6522 switch (micromips_op (insn >> 16))
6523 {
6524 case 0xc: /* ADDIU: bits 001100 */
6525 case 0x17: /* DADDIU: bits 010111 */
6526 sreg = b0s5_reg (insn >> 16);
6527 dreg = b5s5_reg (insn >> 16);
6528 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
6529 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
6530 /* (D)ADDIU $sp, imm */
6531 && offset >= 0)
6532 break;
6533 return 0;
6534
6535 default:
6536 return 0;
6537 }
6538 break;
6539
6540 /* 16-bit instructions. */
6541 case MIPS_INSN16_SIZE:
6542 switch (micromips_op (insn))
6543 {
6544 case 0x3: /* MOVE: bits 000011 */
6545 sreg = b0s5_reg (insn);
6546 dreg = b5s5_reg (insn);
6547 if (sreg == 0 && dreg == 0)
6548 /* MOVE $zero, $zero aka NOP */
6549 break;
6550 return 0;
6551
6552 case 0x11: /* POOL16C: bits 010001 */
6553 if (b5s5_op (insn) == 0x18
6554 /* JRADDIUSP: bits 010011 11000 */
6555 || (b5s5_op (insn) == 0xd
6556 /* JRC: bits 010011 01101 */
6557 && b0s5_reg (insn) == MIPS_RA_REGNUM))
6558 /* JRC $ra */
6559 break;
6560 return 0;
6561
6562 case 0x13: /* POOL16D: bits 010011 */
6563 offset = micromips_decode_imm9 (b1s9_imm (insn));
6564 if ((insn & 0x1) == 0x1
6565 /* ADDIUSP: bits 010011 1 */
6566 && offset > 0)
6567 break;
6568 return 0;
6569
6570 default:
6571 return 0;
6572 }
6573 }
6574 }
6575
6576 return 1;
6577 }
6578
6579 /* Check whether the PC is in a function epilogue (16-bit version).
6580 This is a helper function for mips_in_function_epilogue_p. */
6581 static int
6582 mips16_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6583 {
6584 CORE_ADDR func_addr = 0, func_end = 0;
6585
6586 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6587 {
6588 /* The MIPS epilogue is max. 12 bytes long. */
6589 CORE_ADDR addr = func_end - 12;
6590
6591 if (addr < func_addr + 4)
6592 addr = func_addr + 4;
6593 if (pc < addr)
6594 return 0;
6595
6596 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
6597 {
6598 unsigned short inst;
6599
6600 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc, NULL);
6601
6602 if ((inst & 0xf800) == 0xf000) /* extend */
6603 continue;
6604
6605 if (inst != 0x6300 /* addiu $sp,offset */
6606 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
6607 && inst != 0xe820 /* jr $ra */
6608 && inst != 0xe8a0 /* jrc $ra */
6609 && inst != 0x6500) /* nop */
6610 return 0;
6611 }
6612
6613 return 1;
6614 }
6615
6616 return 0;
6617 }
6618
6619 /* The epilogue is defined here as the area at the end of a function,
6620 after an instruction which destroys the function's stack frame. */
6621 static int
6622 mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6623 {
6624 if (mips_pc_is_mips16 (gdbarch, pc))
6625 return mips16_in_function_epilogue_p (gdbarch, pc);
6626 else if (mips_pc_is_micromips (gdbarch, pc))
6627 return micromips_in_function_epilogue_p (gdbarch, pc);
6628 else
6629 return mips32_in_function_epilogue_p (gdbarch, pc);
6630 }
6631
6632 /* Root of all "set mips "/"show mips " commands. This will eventually be
6633 used for all MIPS-specific commands. */
6634
6635 static void
6636 show_mips_command (char *args, int from_tty)
6637 {
6638 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
6639 }
6640
6641 static void
6642 set_mips_command (char *args, int from_tty)
6643 {
6644 printf_unfiltered
6645 ("\"set mips\" must be followed by an appropriate subcommand.\n");
6646 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
6647 }
6648
6649 /* Commands to show/set the MIPS FPU type. */
6650
6651 static void
6652 show_mipsfpu_command (char *args, int from_tty)
6653 {
6654 char *fpu;
6655
6656 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
6657 {
6658 printf_unfiltered
6659 ("The MIPS floating-point coprocessor is unknown "
6660 "because the current architecture is not MIPS.\n");
6661 return;
6662 }
6663
6664 switch (MIPS_FPU_TYPE (target_gdbarch ()))
6665 {
6666 case MIPS_FPU_SINGLE:
6667 fpu = "single-precision";
6668 break;
6669 case MIPS_FPU_DOUBLE:
6670 fpu = "double-precision";
6671 break;
6672 case MIPS_FPU_NONE:
6673 fpu = "absent (none)";
6674 break;
6675 default:
6676 internal_error (__FILE__, __LINE__, _("bad switch"));
6677 }
6678 if (mips_fpu_type_auto)
6679 printf_unfiltered ("The MIPS floating-point coprocessor "
6680 "is set automatically (currently %s)\n",
6681 fpu);
6682 else
6683 printf_unfiltered
6684 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
6685 }
6686
6687
6688 static void
6689 set_mipsfpu_command (char *args, int from_tty)
6690 {
6691 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
6692 "\"single\",\"none\" or \"auto\".\n");
6693 show_mipsfpu_command (args, from_tty);
6694 }
6695
6696 static void
6697 set_mipsfpu_single_command (char *args, int from_tty)
6698 {
6699 struct gdbarch_info info;
6700 gdbarch_info_init (&info);
6701 mips_fpu_type = MIPS_FPU_SINGLE;
6702 mips_fpu_type_auto = 0;
6703 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6704 instead of relying on globals. Doing that would let generic code
6705 handle the search for this specific architecture. */
6706 if (!gdbarch_update_p (info))
6707 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6708 }
6709
6710 static void
6711 set_mipsfpu_double_command (char *args, int from_tty)
6712 {
6713 struct gdbarch_info info;
6714 gdbarch_info_init (&info);
6715 mips_fpu_type = MIPS_FPU_DOUBLE;
6716 mips_fpu_type_auto = 0;
6717 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6718 instead of relying on globals. Doing that would let generic code
6719 handle the search for this specific architecture. */
6720 if (!gdbarch_update_p (info))
6721 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6722 }
6723
6724 static void
6725 set_mipsfpu_none_command (char *args, int from_tty)
6726 {
6727 struct gdbarch_info info;
6728 gdbarch_info_init (&info);
6729 mips_fpu_type = MIPS_FPU_NONE;
6730 mips_fpu_type_auto = 0;
6731 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6732 instead of relying on globals. Doing that would let generic code
6733 handle the search for this specific architecture. */
6734 if (!gdbarch_update_p (info))
6735 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6736 }
6737
6738 static void
6739 set_mipsfpu_auto_command (char *args, int from_tty)
6740 {
6741 mips_fpu_type_auto = 1;
6742 }
6743
6744 /* Attempt to identify the particular processor model by reading the
6745 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
6746 the relevant processor still exists (it dates back to '94) and
6747 secondly this is not the way to do this. The processor type should
6748 be set by forcing an architecture change. */
6749
6750 void
6751 deprecated_mips_set_processor_regs_hack (void)
6752 {
6753 struct regcache *regcache = get_current_regcache ();
6754 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6755 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6756 ULONGEST prid;
6757
6758 regcache_cooked_read_unsigned (regcache, MIPS_PRID_REGNUM, &prid);
6759 if ((prid & ~0xf) == 0x700)
6760 tdep->mips_processor_reg_names = mips_r3041_reg_names;
6761 }
6762
6763 /* Just like reinit_frame_cache, but with the right arguments to be
6764 callable as an sfunc. */
6765
6766 static void
6767 reinit_frame_cache_sfunc (char *args, int from_tty,
6768 struct cmd_list_element *c)
6769 {
6770 reinit_frame_cache ();
6771 }
6772
6773 static int
6774 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
6775 {
6776 struct gdbarch *gdbarch = info->application_data;
6777
6778 /* FIXME: cagney/2003-06-26: Is this even necessary? The
6779 disassembler needs to be able to locally determine the ISA, and
6780 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
6781 work. */
6782 if (mips_pc_is_mips16 (gdbarch, memaddr))
6783 info->mach = bfd_mach_mips16;
6784 else if (mips_pc_is_micromips (gdbarch, memaddr))
6785 info->mach = bfd_mach_mips_micromips;
6786
6787 /* Round down the instruction address to the appropriate boundary. */
6788 memaddr &= (info->mach == bfd_mach_mips16
6789 || info->mach == bfd_mach_mips_micromips) ? ~1 : ~3;
6790
6791 /* Set the disassembler options. */
6792 if (!info->disassembler_options)
6793 /* This string is not recognized explicitly by the disassembler,
6794 but it tells the disassembler to not try to guess the ABI from
6795 the bfd elf headers, such that, if the user overrides the ABI
6796 of a program linked as NewABI, the disassembly will follow the
6797 register naming conventions specified by the user. */
6798 info->disassembler_options = "gpr-names=32";
6799
6800 /* Call the appropriate disassembler based on the target endian-ness. */
6801 if (info->endian == BFD_ENDIAN_BIG)
6802 return print_insn_big_mips (memaddr, info);
6803 else
6804 return print_insn_little_mips (memaddr, info);
6805 }
6806
6807 static int
6808 gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
6809 {
6810 /* Set up the disassembler info, so that we get the right
6811 register names from libopcodes. */
6812 info->disassembler_options = "gpr-names=n32";
6813 info->flavour = bfd_target_elf_flavour;
6814
6815 return gdb_print_insn_mips (memaddr, info);
6816 }
6817
6818 static int
6819 gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
6820 {
6821 /* Set up the disassembler info, so that we get the right
6822 register names from libopcodes. */
6823 info->disassembler_options = "gpr-names=64";
6824 info->flavour = bfd_target_elf_flavour;
6825
6826 return gdb_print_insn_mips (memaddr, info);
6827 }
6828
6829 /* This function implements gdbarch_breakpoint_from_pc. It uses the
6830 program counter value to determine whether a 16- or 32-bit breakpoint
6831 should be used. It returns a pointer to a string of bytes that encode a
6832 breakpoint instruction, stores the length of the string to *lenptr, and
6833 adjusts pc (if necessary) to point to the actual memory location where
6834 the breakpoint should be inserted. */
6835
6836 static const gdb_byte *
6837 mips_breakpoint_from_pc (struct gdbarch *gdbarch,
6838 CORE_ADDR *pcptr, int *lenptr)
6839 {
6840 CORE_ADDR pc = *pcptr;
6841
6842 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6843 {
6844 if (mips_pc_is_mips16 (gdbarch, pc))
6845 {
6846 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
6847 *pcptr = unmake_compact_addr (pc);
6848 *lenptr = sizeof (mips16_big_breakpoint);
6849 return mips16_big_breakpoint;
6850 }
6851 else if (mips_pc_is_micromips (gdbarch, pc))
6852 {
6853 static gdb_byte micromips16_big_breakpoint[] = { 0x46, 0x85 };
6854 static gdb_byte micromips32_big_breakpoint[] = { 0, 0x5, 0, 0x7 };
6855 ULONGEST insn;
6856 int status;
6857 int size;
6858
6859 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
6860 size = status ? 2
6861 : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
6862 *pcptr = unmake_compact_addr (pc);
6863 *lenptr = size;
6864 return (size == 2) ? micromips16_big_breakpoint
6865 : micromips32_big_breakpoint;
6866 }
6867 else
6868 {
6869 /* The IDT board uses an unusual breakpoint value, and
6870 sometimes gets confused when it sees the usual MIPS
6871 breakpoint instruction. */
6872 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
6873 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
6874 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
6875 /* Likewise, IRIX appears to expect a different breakpoint,
6876 although this is not apparent until you try to use pthreads. */
6877 static gdb_byte irix_big_breakpoint[] = { 0, 0, 0, 0xd };
6878
6879 *lenptr = sizeof (big_breakpoint);
6880
6881 if (strcmp (target_shortname, "mips") == 0)
6882 return idt_big_breakpoint;
6883 else if (strcmp (target_shortname, "ddb") == 0
6884 || strcmp (target_shortname, "pmon") == 0
6885 || strcmp (target_shortname, "lsi") == 0)
6886 return pmon_big_breakpoint;
6887 else if (gdbarch_osabi (gdbarch) == GDB_OSABI_IRIX)
6888 return irix_big_breakpoint;
6889 else
6890 return big_breakpoint;
6891 }
6892 }
6893 else
6894 {
6895 if (mips_pc_is_mips16 (gdbarch, pc))
6896 {
6897 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
6898 *pcptr = unmake_compact_addr (pc);
6899 *lenptr = sizeof (mips16_little_breakpoint);
6900 return mips16_little_breakpoint;
6901 }
6902 else if (mips_pc_is_micromips (gdbarch, pc))
6903 {
6904 static gdb_byte micromips16_little_breakpoint[] = { 0x85, 0x46 };
6905 static gdb_byte micromips32_little_breakpoint[] = { 0x5, 0, 0x7, 0 };
6906 ULONGEST insn;
6907 int status;
6908 int size;
6909
6910 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
6911 size = status ? 2
6912 : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
6913 *pcptr = unmake_compact_addr (pc);
6914 *lenptr = size;
6915 return (size == 2) ? micromips16_little_breakpoint
6916 : micromips32_little_breakpoint;
6917 }
6918 else
6919 {
6920 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
6921 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
6922 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
6923
6924 *lenptr = sizeof (little_breakpoint);
6925
6926 if (strcmp (target_shortname, "mips") == 0)
6927 return idt_little_breakpoint;
6928 else if (strcmp (target_shortname, "ddb") == 0
6929 || strcmp (target_shortname, "pmon") == 0
6930 || strcmp (target_shortname, "lsi") == 0)
6931 return pmon_little_breakpoint;
6932 else
6933 return little_breakpoint;
6934 }
6935 }
6936 }
6937
6938 /* Determine the remote breakpoint kind suitable for the PC. The following
6939 kinds are used:
6940
6941 * 2 -- 16-bit MIPS16 mode breakpoint,
6942
6943 * 3 -- 16-bit microMIPS mode breakpoint,
6944
6945 * 4 -- 32-bit standard MIPS mode breakpoint,
6946
6947 * 5 -- 32-bit microMIPS mode breakpoint. */
6948
6949 static void
6950 mips_remote_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
6951 int *kindptr)
6952 {
6953 CORE_ADDR pc = *pcptr;
6954
6955 if (mips_pc_is_mips16 (gdbarch, pc))
6956 {
6957 *pcptr = unmake_compact_addr (pc);
6958 *kindptr = 2;
6959 }
6960 else if (mips_pc_is_micromips (gdbarch, pc))
6961 {
6962 ULONGEST insn;
6963 int status;
6964 int size;
6965
6966 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
6967 size = status ? 2 : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
6968 *pcptr = unmake_compact_addr (pc);
6969 *kindptr = size | 1;
6970 }
6971 else
6972 *kindptr = 4;
6973 }
6974
6975 /* Return non-zero if the ADDR instruction has a branch delay slot
6976 (i.e. it is a jump or branch instruction). This function is based
6977 on mips32_next_pc. */
6978
6979 static int
6980 mips32_instruction_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr)
6981 {
6982 unsigned long inst;
6983 int status;
6984 int op;
6985 int rs;
6986 int rt;
6987
6988 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, addr, &status);
6989 if (status)
6990 return 0;
6991
6992 op = itype_op (inst);
6993 if ((inst & 0xe0000000) != 0)
6994 {
6995 rs = itype_rs (inst);
6996 rt = itype_rt (inst);
6997 return (is_octeon_bbit_op (op, gdbarch)
6998 || op >> 2 == 5 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
6999 || op == 29 /* JALX: bits 011101 */
7000 || (op == 17
7001 && (rs == 8
7002 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
7003 || (rs == 9 && (rt & 0x2) == 0)
7004 /* BC1ANY2F, BC1ANY2T: bits 010001 01001 */
7005 || (rs == 10 && (rt & 0x2) == 0))));
7006 /* BC1ANY4F, BC1ANY4T: bits 010001 01010 */
7007 }
7008 else
7009 switch (op & 0x07) /* extract bits 28,27,26 */
7010 {
7011 case 0: /* SPECIAL */
7012 op = rtype_funct (inst);
7013 return (op == 8 /* JR */
7014 || op == 9); /* JALR */
7015 break; /* end SPECIAL */
7016 case 1: /* REGIMM */
7017 rs = itype_rs (inst);
7018 rt = itype_rt (inst); /* branch condition */
7019 return ((rt & 0xc) == 0
7020 /* BLTZ, BLTZL, BGEZ, BGEZL: bits 000xx */
7021 /* BLTZAL, BLTZALL, BGEZAL, BGEZALL: 100xx */
7022 || ((rt & 0x1e) == 0x1c && rs == 0));
7023 /* BPOSGE32, BPOSGE64: bits 1110x */
7024 break; /* end REGIMM */
7025 default: /* J, JAL, BEQ, BNE, BLEZ, BGTZ */
7026 return 1;
7027 break;
7028 }
7029 }
7030
7031 /* Return non-zero if the ADDR instruction, which must be a 32-bit
7032 instruction if MUSTBE32 is set or can be any instruction otherwise,
7033 has a branch delay slot (i.e. it is a non-compact jump instruction). */
7034
7035 static int
7036 micromips_instruction_has_delay_slot (struct gdbarch *gdbarch,
7037 CORE_ADDR addr, int mustbe32)
7038 {
7039 ULONGEST insn;
7040 int status;
7041
7042 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7043 if (status)
7044 return 0;
7045
7046 if (!mustbe32) /* 16-bit instructions. */
7047 return (micromips_op (insn) == 0x11
7048 /* POOL16C: bits 010001 */
7049 && (b5s5_op (insn) == 0xc
7050 /* JR16: bits 010001 01100 */
7051 || (b5s5_op (insn) & 0x1e) == 0xe))
7052 /* JALR16, JALRS16: bits 010001 0111x */
7053 || (micromips_op (insn) & 0x37) == 0x23
7054 /* BEQZ16, BNEZ16: bits 10x011 */
7055 || micromips_op (insn) == 0x33;
7056 /* B16: bits 110011 */
7057
7058 /* 32-bit instructions. */
7059 if (micromips_op (insn) == 0x0)
7060 /* POOL32A: bits 000000 */
7061 {
7062 insn <<= 16;
7063 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7064 if (status)
7065 return 0;
7066 return b0s6_op (insn) == 0x3c
7067 /* POOL32Axf: bits 000000 ... 111100 */
7068 && (b6s10_ext (insn) & 0x2bf) == 0x3c;
7069 /* JALR, JALR.HB: 000000 000x111100 111100 */
7070 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7071 }
7072
7073 return (micromips_op (insn) == 0x10
7074 /* POOL32I: bits 010000 */
7075 && ((b5s5_op (insn) & 0x1c) == 0x0
7076 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
7077 || (b5s5_op (insn) & 0x1d) == 0x4
7078 /* BLEZ, BGTZ: bits 010000 001x0 */
7079 || (b5s5_op (insn) & 0x1d) == 0x11
7080 /* BLTZALS, BGEZALS: bits 010000 100x1 */
7081 || ((b5s5_op (insn) & 0x1e) == 0x14
7082 && (insn & 0x3) == 0x0)
7083 /* BC2F, BC2T: bits 010000 1010x xxx00 */
7084 || (b5s5_op (insn) & 0x1e) == 0x1a
7085 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
7086 || ((b5s5_op (insn) & 0x1e) == 0x1c
7087 && (insn & 0x3) == 0x0)
7088 /* BC1F, BC1T: bits 010000 1110x xxx00 */
7089 || ((b5s5_op (insn) & 0x1c) == 0x1c
7090 && (insn & 0x3) == 0x1)))
7091 /* BC1ANY*: bits 010000 111xx xxx01 */
7092 || (micromips_op (insn) & 0x1f) == 0x1d
7093 /* JALS, JAL: bits x11101 */
7094 || (micromips_op (insn) & 0x37) == 0x25
7095 /* BEQ, BNE: bits 10x101 */
7096 || micromips_op (insn) == 0x35
7097 /* J: bits 110101 */
7098 || micromips_op (insn) == 0x3c;
7099 /* JALX: bits 111100 */
7100 }
7101
7102 static int
7103 mips16_instruction_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr,
7104 int mustbe32)
7105 {
7106 unsigned short inst;
7107 int status;
7108
7109 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, addr, &status);
7110 if (status)
7111 return 0;
7112
7113 if (!mustbe32)
7114 return (inst & 0xf89f) == 0xe800; /* JR/JALR (16-bit instruction) */
7115 return (inst & 0xf800) == 0x1800; /* JAL/JALX (32-bit instruction) */
7116 }
7117
7118 /* Calculate the starting address of the MIPS memory segment BPADDR is in.
7119 This assumes KSSEG exists. */
7120
7121 static CORE_ADDR
7122 mips_segment_boundary (CORE_ADDR bpaddr)
7123 {
7124 CORE_ADDR mask = CORE_ADDR_MAX;
7125 int segsize;
7126
7127 if (sizeof (CORE_ADDR) == 8)
7128 /* Get the topmost two bits of bpaddr in a 32-bit safe manner (avoid
7129 a compiler warning produced where CORE_ADDR is a 32-bit type even
7130 though in that case this is dead code). */
7131 switch (bpaddr >> ((sizeof (CORE_ADDR) << 3) - 2) & 3)
7132 {
7133 case 3:
7134 if (bpaddr == (bfd_signed_vma) (int32_t) bpaddr)
7135 segsize = 29; /* 32-bit compatibility segment */
7136 else
7137 segsize = 62; /* xkseg */
7138 break;
7139 case 2: /* xkphys */
7140 segsize = 59;
7141 break;
7142 default: /* xksseg (1), xkuseg/kuseg (0) */
7143 segsize = 62;
7144 break;
7145 }
7146 else if (bpaddr & 0x80000000) /* kernel segment */
7147 segsize = 29;
7148 else
7149 segsize = 31; /* user segment */
7150 mask <<= segsize;
7151 return bpaddr & mask;
7152 }
7153
7154 /* Move the breakpoint at BPADDR out of any branch delay slot by shifting
7155 it backwards if necessary. Return the address of the new location. */
7156
7157 static CORE_ADDR
7158 mips_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
7159 {
7160 CORE_ADDR prev_addr;
7161 CORE_ADDR boundary;
7162 CORE_ADDR func_addr;
7163
7164 /* If a breakpoint is set on the instruction in a branch delay slot,
7165 GDB gets confused. When the breakpoint is hit, the PC isn't on
7166 the instruction in the branch delay slot, the PC will point to
7167 the branch instruction. Since the PC doesn't match any known
7168 breakpoints, GDB reports a trap exception.
7169
7170 There are two possible fixes for this problem.
7171
7172 1) When the breakpoint gets hit, see if the BD bit is set in the
7173 Cause register (which indicates the last exception occurred in a
7174 branch delay slot). If the BD bit is set, fix the PC to point to
7175 the instruction in the branch delay slot.
7176
7177 2) When the user sets the breakpoint, don't allow him to set the
7178 breakpoint on the instruction in the branch delay slot. Instead
7179 move the breakpoint to the branch instruction (which will have
7180 the same result).
7181
7182 The problem with the first solution is that if the user then
7183 single-steps the processor, the branch instruction will get
7184 skipped (since GDB thinks the PC is on the instruction in the
7185 branch delay slot).
7186
7187 So, we'll use the second solution. To do this we need to know if
7188 the instruction we're trying to set the breakpoint on is in the
7189 branch delay slot. */
7190
7191 boundary = mips_segment_boundary (bpaddr);
7192
7193 /* Make sure we don't scan back before the beginning of the current
7194 function, since we may fetch constant data or insns that look like
7195 a jump. Of course we might do that anyway if the compiler has
7196 moved constants inline. :-( */
7197 if (find_pc_partial_function (bpaddr, NULL, &func_addr, NULL)
7198 && func_addr > boundary && func_addr <= bpaddr)
7199 boundary = func_addr;
7200
7201 if (mips_pc_is_mips (bpaddr))
7202 {
7203 if (bpaddr == boundary)
7204 return bpaddr;
7205
7206 /* If the previous instruction has a branch delay slot, we have
7207 to move the breakpoint to the branch instruction. */
7208 prev_addr = bpaddr - 4;
7209 if (mips32_instruction_has_delay_slot (gdbarch, prev_addr))
7210 bpaddr = prev_addr;
7211 }
7212 else
7213 {
7214 int (*instruction_has_delay_slot) (struct gdbarch *, CORE_ADDR, int);
7215 CORE_ADDR addr, jmpaddr;
7216 int i;
7217
7218 boundary = unmake_compact_addr (boundary);
7219
7220 /* The only MIPS16 instructions with delay slots are JAL, JALX,
7221 JALR and JR. An absolute JAL/JALX is always 4 bytes long,
7222 so try for that first, then try the 2 byte JALR/JR.
7223 The microMIPS ASE has a whole range of jumps and branches
7224 with delay slots, some of which take 4 bytes and some take
7225 2 bytes, so the idea is the same.
7226 FIXME: We have to assume that bpaddr is not the second half
7227 of an extended instruction. */
7228 instruction_has_delay_slot = (mips_pc_is_micromips (gdbarch, bpaddr)
7229 ? micromips_instruction_has_delay_slot
7230 : mips16_instruction_has_delay_slot);
7231
7232 jmpaddr = 0;
7233 addr = bpaddr;
7234 for (i = 1; i < 4; i++)
7235 {
7236 if (unmake_compact_addr (addr) == boundary)
7237 break;
7238 addr -= MIPS_INSN16_SIZE;
7239 if (i == 1 && instruction_has_delay_slot (gdbarch, addr, 0))
7240 /* Looks like a JR/JALR at [target-1], but it could be
7241 the second word of a previous JAL/JALX, so record it
7242 and check back one more. */
7243 jmpaddr = addr;
7244 else if (i > 1 && instruction_has_delay_slot (gdbarch, addr, 1))
7245 {
7246 if (i == 2)
7247 /* Looks like a JAL/JALX at [target-2], but it could also
7248 be the second word of a previous JAL/JALX, record it,
7249 and check back one more. */
7250 jmpaddr = addr;
7251 else
7252 /* Looks like a JAL/JALX at [target-3], so any previously
7253 recorded JAL/JALX or JR/JALR must be wrong, because:
7254
7255 >-3: JAL
7256 -2: JAL-ext (can't be JAL/JALX)
7257 -1: bdslot (can't be JR/JALR)
7258 0: target insn
7259
7260 Of course it could be another JAL-ext which looks
7261 like a JAL, but in that case we'd have broken out
7262 of this loop at [target-2]:
7263
7264 -4: JAL
7265 >-3: JAL-ext
7266 -2: bdslot (can't be jmp)
7267 -1: JR/JALR
7268 0: target insn */
7269 jmpaddr = 0;
7270 }
7271 else
7272 {
7273 /* Not a jump instruction: if we're at [target-1] this
7274 could be the second word of a JAL/JALX, so continue;
7275 otherwise we're done. */
7276 if (i > 1)
7277 break;
7278 }
7279 }
7280
7281 if (jmpaddr)
7282 bpaddr = jmpaddr;
7283 }
7284
7285 return bpaddr;
7286 }
7287
7288 /* Return non-zero if SUFFIX is one of the numeric suffixes used for MIPS16
7289 call stubs, one of 1, 2, 5, 6, 9, 10, or, if ZERO is non-zero, also 0. */
7290
7291 static int
7292 mips_is_stub_suffix (const char *suffix, int zero)
7293 {
7294 switch (suffix[0])
7295 {
7296 case '0':
7297 return zero && suffix[1] == '\0';
7298 case '1':
7299 return suffix[1] == '\0' || (suffix[1] == '0' && suffix[2] == '\0');
7300 case '2':
7301 case '5':
7302 case '6':
7303 case '9':
7304 return suffix[1] == '\0';
7305 default:
7306 return 0;
7307 }
7308 }
7309
7310 /* Return non-zero if MODE is one of the mode infixes used for MIPS16
7311 call stubs, one of sf, df, sc, or dc. */
7312
7313 static int
7314 mips_is_stub_mode (const char *mode)
7315 {
7316 return ((mode[0] == 's' || mode[0] == 'd')
7317 && (mode[1] == 'f' || mode[1] == 'c'));
7318 }
7319
7320 /* Code at PC is a compiler-generated stub. Such a stub for a function
7321 bar might have a name like __fn_stub_bar, and might look like this:
7322
7323 mfc1 $4, $f13
7324 mfc1 $5, $f12
7325 mfc1 $6, $f15
7326 mfc1 $7, $f14
7327
7328 followed by (or interspersed with):
7329
7330 j bar
7331
7332 or:
7333
7334 lui $25, %hi(bar)
7335 addiu $25, $25, %lo(bar)
7336 jr $25
7337
7338 ($1 may be used in old code; for robustness we accept any register)
7339 or, in PIC code:
7340
7341 lui $28, %hi(_gp_disp)
7342 addiu $28, $28, %lo(_gp_disp)
7343 addu $28, $28, $25
7344 lw $25, %got(bar)
7345 addiu $25, $25, %lo(bar)
7346 jr $25
7347
7348 In the case of a __call_stub_bar stub, the sequence to set up
7349 arguments might look like this:
7350
7351 mtc1 $4, $f13
7352 mtc1 $5, $f12
7353 mtc1 $6, $f15
7354 mtc1 $7, $f14
7355
7356 followed by (or interspersed with) one of the jump sequences above.
7357
7358 In the case of a __call_stub_fp_bar stub, JAL or JALR is used instead
7359 of J or JR, respectively, followed by:
7360
7361 mfc1 $2, $f0
7362 mfc1 $3, $f1
7363 jr $18
7364
7365 We are at the beginning of the stub here, and scan down and extract
7366 the target address from the jump immediate instruction or, if a jump
7367 register instruction is used, from the register referred. Return
7368 the value of PC calculated or 0 if inconclusive.
7369
7370 The limit on the search is arbitrarily set to 20 instructions. FIXME. */
7371
7372 static CORE_ADDR
7373 mips_get_mips16_fn_stub_pc (struct frame_info *frame, CORE_ADDR pc)
7374 {
7375 struct gdbarch *gdbarch = get_frame_arch (frame);
7376 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7377 int addrreg = MIPS_ZERO_REGNUM;
7378 CORE_ADDR start_pc = pc;
7379 CORE_ADDR target_pc = 0;
7380 CORE_ADDR addr = 0;
7381 CORE_ADDR gp = 0;
7382 int status = 0;
7383 int i;
7384
7385 for (i = 0;
7386 status == 0 && target_pc == 0 && i < 20;
7387 i++, pc += MIPS_INSN32_SIZE)
7388 {
7389 ULONGEST inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
7390 CORE_ADDR imm;
7391 int rt;
7392 int rs;
7393 int rd;
7394
7395 switch (itype_op (inst))
7396 {
7397 case 0: /* SPECIAL */
7398 switch (rtype_funct (inst))
7399 {
7400 case 8: /* JR */
7401 case 9: /* JALR */
7402 rs = rtype_rs (inst);
7403 if (rs == MIPS_GP_REGNUM)
7404 target_pc = gp; /* Hmm... */
7405 else if (rs == addrreg)
7406 target_pc = addr;
7407 break;
7408
7409 case 0x21: /* ADDU */
7410 rt = rtype_rt (inst);
7411 rs = rtype_rs (inst);
7412 rd = rtype_rd (inst);
7413 if (rd == MIPS_GP_REGNUM
7414 && ((rs == MIPS_GP_REGNUM && rt == MIPS_T9_REGNUM)
7415 || (rs == MIPS_T9_REGNUM && rt == MIPS_GP_REGNUM)))
7416 gp += start_pc;
7417 break;
7418 }
7419 break;
7420
7421 case 2: /* J */
7422 case 3: /* JAL */
7423 target_pc = jtype_target (inst) << 2;
7424 target_pc += ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
7425 break;
7426
7427 case 9: /* ADDIU */
7428 rt = itype_rt (inst);
7429 rs = itype_rs (inst);
7430 if (rt == rs)
7431 {
7432 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7433 if (rt == MIPS_GP_REGNUM)
7434 gp += imm;
7435 else if (rt == addrreg)
7436 addr += imm;
7437 }
7438 break;
7439
7440 case 0xf: /* LUI */
7441 rt = itype_rt (inst);
7442 imm = ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 16;
7443 if (rt == MIPS_GP_REGNUM)
7444 gp = imm;
7445 else if (rt != MIPS_ZERO_REGNUM)
7446 {
7447 addrreg = rt;
7448 addr = imm;
7449 }
7450 break;
7451
7452 case 0x23: /* LW */
7453 rt = itype_rt (inst);
7454 rs = itype_rs (inst);
7455 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7456 if (gp != 0 && rs == MIPS_GP_REGNUM)
7457 {
7458 gdb_byte buf[4];
7459
7460 memset (buf, 0, sizeof (buf));
7461 status = target_read_memory (gp + imm, buf, sizeof (buf));
7462 addrreg = rt;
7463 addr = extract_signed_integer (buf, sizeof (buf), byte_order);
7464 }
7465 break;
7466 }
7467 }
7468
7469 return target_pc;
7470 }
7471
7472 /* If PC is in a MIPS16 call or return stub, return the address of the
7473 target PC, which is either the callee or the caller. There are several
7474 cases which must be handled:
7475
7476 * If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7477 and the target PC is in $31 ($ra).
7478 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7479 and the target PC is in $2.
7480 * If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7481 i.e. before the JALR instruction, this is effectively a call stub
7482 and the target PC is in $2. Otherwise this is effectively
7483 a return stub and the target PC is in $18.
7484 * If the PC is at the start of __call_stub_fp_*, i.e. before the
7485 JAL or JALR instruction, this is effectively a call stub and the
7486 target PC is buried in the instruction stream. Otherwise this
7487 is effectively a return stub and the target PC is in $18.
7488 * If the PC is in __call_stub_* or in __fn_stub_*, this is a call
7489 stub and the target PC is buried in the instruction stream.
7490
7491 See the source code for the stubs in gcc/config/mips/mips16.S, or the
7492 stub builder in gcc/config/mips/mips.c (mips16_build_call_stub) for the
7493 gory details. */
7494
7495 static CORE_ADDR
7496 mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7497 {
7498 struct gdbarch *gdbarch = get_frame_arch (frame);
7499 CORE_ADDR start_addr;
7500 const char *name;
7501 size_t prefixlen;
7502
7503 /* Find the starting address and name of the function containing the PC. */
7504 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
7505 return 0;
7506
7507 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7508 and the target PC is in $31 ($ra). */
7509 prefixlen = strlen (mips_str_mips16_ret_stub);
7510 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7511 && mips_is_stub_mode (name + prefixlen)
7512 && name[prefixlen + 2] == '\0')
7513 return get_frame_register_signed
7514 (frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
7515
7516 /* If the PC is in __mips16_call_stub_*, this is one of the call
7517 call/return stubs. */
7518 prefixlen = strlen (mips_str_mips16_call_stub);
7519 if (strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0)
7520 {
7521 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7522 and the target PC is in $2. */
7523 if (mips_is_stub_suffix (name + prefixlen, 0))
7524 return get_frame_register_signed
7525 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7526
7527 /* If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7528 i.e. before the JALR instruction, this is effectively a call stub
7529 and the target PC is in $2. Otherwise this is effectively
7530 a return stub and the target PC is in $18. */
7531 else if (mips_is_stub_mode (name + prefixlen)
7532 && name[prefixlen + 2] == '_'
7533 && mips_is_stub_suffix (name + prefixlen + 3, 0))
7534 {
7535 if (pc == start_addr)
7536 /* This is the 'call' part of a call stub. The return
7537 address is in $2. */
7538 return get_frame_register_signed
7539 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7540 else
7541 /* This is the 'return' part of a call stub. The return
7542 address is in $18. */
7543 return get_frame_register_signed
7544 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7545 }
7546 else
7547 return 0; /* Not a stub. */
7548 }
7549
7550 /* If the PC is in __call_stub_* or __fn_stub*, this is one of the
7551 compiler-generated call or call/return stubs. */
7552 if (strncmp (name, mips_str_fn_stub, strlen (mips_str_fn_stub)) == 0
7553 || strncmp (name, mips_str_call_stub, strlen (mips_str_call_stub)) == 0)
7554 {
7555 if (pc == start_addr)
7556 /* This is the 'call' part of a call stub. Call this helper
7557 to scan through this code for interesting instructions
7558 and determine the final PC. */
7559 return mips_get_mips16_fn_stub_pc (frame, pc);
7560 else
7561 /* This is the 'return' part of a call stub. The return address
7562 is in $18. */
7563 return get_frame_register_signed
7564 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7565 }
7566
7567 return 0; /* Not a stub. */
7568 }
7569
7570 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
7571 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
7572
7573 static int
7574 mips_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name)
7575 {
7576 CORE_ADDR start_addr;
7577 size_t prefixlen;
7578
7579 /* Find the starting address of the function containing the PC. */
7580 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
7581 return 0;
7582
7583 /* If the PC is in __mips16_call_stub_{s,d}{f,c}_{0..10} but not at
7584 the start, i.e. after the JALR instruction, this is effectively
7585 a return stub. */
7586 prefixlen = strlen (mips_str_mips16_call_stub);
7587 if (pc != start_addr
7588 && strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0
7589 && mips_is_stub_mode (name + prefixlen)
7590 && name[prefixlen + 2] == '_'
7591 && mips_is_stub_suffix (name + prefixlen + 3, 1))
7592 return 1;
7593
7594 /* If the PC is in __call_stub_fp_* but not at the start, i.e. after
7595 the JAL or JALR instruction, this is effectively a return stub. */
7596 prefixlen = strlen (mips_str_call_fp_stub);
7597 if (pc != start_addr
7598 && strncmp (name, mips_str_call_fp_stub, prefixlen) == 0)
7599 return 1;
7600
7601 /* Consume the .pic. prefix of any PIC stub, this function must return
7602 true when the PC is in a PIC stub of a __mips16_ret_{d,s}{f,c} stub
7603 or the call stub path will trigger in handle_inferior_event causing
7604 it to go astray. */
7605 prefixlen = strlen (mips_str_pic);
7606 if (strncmp (name, mips_str_pic, prefixlen) == 0)
7607 name += prefixlen;
7608
7609 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub. */
7610 prefixlen = strlen (mips_str_mips16_ret_stub);
7611 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7612 && mips_is_stub_mode (name + prefixlen)
7613 && name[prefixlen + 2] == '\0')
7614 return 1;
7615
7616 return 0; /* Not a stub. */
7617 }
7618
7619 /* If the current PC is the start of a non-PIC-to-PIC stub, return the
7620 PC of the stub target. The stub just loads $t9 and jumps to it,
7621 so that $t9 has the correct value at function entry. */
7622
7623 static CORE_ADDR
7624 mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7625 {
7626 struct gdbarch *gdbarch = get_frame_arch (frame);
7627 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7628 struct minimal_symbol *msym;
7629 int i;
7630 gdb_byte stub_code[16];
7631 int32_t stub_words[4];
7632
7633 /* The stub for foo is named ".pic.foo", and is either two
7634 instructions inserted before foo or a three instruction sequence
7635 which jumps to foo. */
7636 msym = lookup_minimal_symbol_by_pc (pc);
7637 if (msym == NULL
7638 || SYMBOL_VALUE_ADDRESS (msym) != pc
7639 || SYMBOL_LINKAGE_NAME (msym) == NULL
7640 || strncmp (SYMBOL_LINKAGE_NAME (msym), ".pic.", 5) != 0)
7641 return 0;
7642
7643 /* A two-instruction header. */
7644 if (MSYMBOL_SIZE (msym) == 8)
7645 return pc + 8;
7646
7647 /* A three-instruction (plus delay slot) trampoline. */
7648 if (MSYMBOL_SIZE (msym) == 16)
7649 {
7650 if (target_read_memory (pc, stub_code, 16) != 0)
7651 return 0;
7652 for (i = 0; i < 4; i++)
7653 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
7654 4, byte_order);
7655
7656 /* A stub contains these instructions:
7657 lui t9, %hi(target)
7658 j target
7659 addiu t9, t9, %lo(target)
7660 nop
7661
7662 This works even for N64, since stubs are only generated with
7663 -msym32. */
7664 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
7665 && (stub_words[1] & 0xfc000000U) == 0x08000000
7666 && (stub_words[2] & 0xffff0000U) == 0x27390000
7667 && stub_words[3] == 0x00000000)
7668 return ((((stub_words[0] & 0x0000ffff) << 16)
7669 + (stub_words[2] & 0x0000ffff)) ^ 0x8000) - 0x8000;
7670 }
7671
7672 /* Not a recognized stub. */
7673 return 0;
7674 }
7675
7676 static CORE_ADDR
7677 mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7678 {
7679 CORE_ADDR requested_pc = pc;
7680 CORE_ADDR target_pc;
7681 CORE_ADDR new_pc;
7682
7683 do
7684 {
7685 target_pc = pc;
7686
7687 new_pc = mips_skip_mips16_trampoline_code (frame, pc);
7688 if (new_pc)
7689 {
7690 pc = new_pc;
7691 if (is_compact_addr (pc))
7692 pc = unmake_compact_addr (pc);
7693 }
7694
7695 new_pc = find_solib_trampoline_target (frame, pc);
7696 if (new_pc)
7697 {
7698 pc = new_pc;
7699 if (is_compact_addr (pc))
7700 pc = unmake_compact_addr (pc);
7701 }
7702
7703 new_pc = mips_skip_pic_trampoline_code (frame, pc);
7704 if (new_pc)
7705 {
7706 pc = new_pc;
7707 if (is_compact_addr (pc))
7708 pc = unmake_compact_addr (pc);
7709 }
7710 }
7711 while (pc != target_pc);
7712
7713 return pc != requested_pc ? pc : 0;
7714 }
7715
7716 /* Convert a dbx stab register number (from `r' declaration) to a GDB
7717 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7718
7719 static int
7720 mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
7721 {
7722 int regnum;
7723 if (num >= 0 && num < 32)
7724 regnum = num;
7725 else if (num >= 38 && num < 70)
7726 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
7727 else if (num == 70)
7728 regnum = mips_regnum (gdbarch)->hi;
7729 else if (num == 71)
7730 regnum = mips_regnum (gdbarch)->lo;
7731 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 72 && num < 78)
7732 regnum = num + mips_regnum (gdbarch)->dspacc - 72;
7733 else
7734 /* This will hopefully (eventually) provoke a warning. Should
7735 we be calling complaint() here? */
7736 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
7737 return gdbarch_num_regs (gdbarch) + regnum;
7738 }
7739
7740
7741 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
7742 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7743
7744 static int
7745 mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
7746 {
7747 int regnum;
7748 if (num >= 0 && num < 32)
7749 regnum = num;
7750 else if (num >= 32 && num < 64)
7751 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
7752 else if (num == 64)
7753 regnum = mips_regnum (gdbarch)->hi;
7754 else if (num == 65)
7755 regnum = mips_regnum (gdbarch)->lo;
7756 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 66 && num < 72)
7757 regnum = num + mips_regnum (gdbarch)->dspacc - 66;
7758 else
7759 /* This will hopefully (eventually) provoke a warning. Should we
7760 be calling complaint() here? */
7761 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
7762 return gdbarch_num_regs (gdbarch) + regnum;
7763 }
7764
7765 static int
7766 mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
7767 {
7768 /* Only makes sense to supply raw registers. */
7769 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
7770 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
7771 decide if it is valid. Should instead define a standard sim/gdb
7772 register numbering scheme. */
7773 if (gdbarch_register_name (gdbarch,
7774 gdbarch_num_regs (gdbarch) + regnum) != NULL
7775 && gdbarch_register_name (gdbarch,
7776 gdbarch_num_regs (gdbarch)
7777 + regnum)[0] != '\0')
7778 return regnum;
7779 else
7780 return LEGACY_SIM_REGNO_IGNORE;
7781 }
7782
7783
7784 /* Convert an integer into an address. Extracting the value signed
7785 guarantees a correctly sign extended address. */
7786
7787 static CORE_ADDR
7788 mips_integer_to_address (struct gdbarch *gdbarch,
7789 struct type *type, const gdb_byte *buf)
7790 {
7791 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7792 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
7793 }
7794
7795 /* Dummy virtual frame pointer method. This is no more or less accurate
7796 than most other architectures; we just need to be explicit about it,
7797 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
7798 an assertion failure. */
7799
7800 static void
7801 mips_virtual_frame_pointer (struct gdbarch *gdbarch,
7802 CORE_ADDR pc, int *reg, LONGEST *offset)
7803 {
7804 *reg = MIPS_SP_REGNUM;
7805 *offset = 0;
7806 }
7807
7808 static void
7809 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
7810 {
7811 enum mips_abi *abip = (enum mips_abi *) obj;
7812 const char *name = bfd_get_section_name (abfd, sect);
7813
7814 if (*abip != MIPS_ABI_UNKNOWN)
7815 return;
7816
7817 if (strncmp (name, ".mdebug.", 8) != 0)
7818 return;
7819
7820 if (strcmp (name, ".mdebug.abi32") == 0)
7821 *abip = MIPS_ABI_O32;
7822 else if (strcmp (name, ".mdebug.abiN32") == 0)
7823 *abip = MIPS_ABI_N32;
7824 else if (strcmp (name, ".mdebug.abi64") == 0)
7825 *abip = MIPS_ABI_N64;
7826 else if (strcmp (name, ".mdebug.abiO64") == 0)
7827 *abip = MIPS_ABI_O64;
7828 else if (strcmp (name, ".mdebug.eabi32") == 0)
7829 *abip = MIPS_ABI_EABI32;
7830 else if (strcmp (name, ".mdebug.eabi64") == 0)
7831 *abip = MIPS_ABI_EABI64;
7832 else
7833 warning (_("unsupported ABI %s."), name + 8);
7834 }
7835
7836 static void
7837 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
7838 {
7839 int *lbp = (int *) obj;
7840 const char *name = bfd_get_section_name (abfd, sect);
7841
7842 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
7843 *lbp = 32;
7844 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
7845 *lbp = 64;
7846 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
7847 warning (_("unrecognized .gcc_compiled_longXX"));
7848 }
7849
7850 static enum mips_abi
7851 global_mips_abi (void)
7852 {
7853 int i;
7854
7855 for (i = 0; mips_abi_strings[i] != NULL; i++)
7856 if (mips_abi_strings[i] == mips_abi_string)
7857 return (enum mips_abi) i;
7858
7859 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
7860 }
7861
7862 /* Return the default compressed instruction set, either of MIPS16
7863 or microMIPS, selected when none could have been determined from
7864 the ELF header of the binary being executed (or no binary has been
7865 selected. */
7866
7867 static enum mips_isa
7868 global_mips_compression (void)
7869 {
7870 int i;
7871
7872 for (i = 0; mips_compression_strings[i] != NULL; i++)
7873 if (mips_compression_strings[i] == mips_compression_string)
7874 return (enum mips_isa) i;
7875
7876 internal_error (__FILE__, __LINE__, _("unknown compressed ISA string"));
7877 }
7878
7879 static void
7880 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
7881 {
7882 /* If the size matches the set of 32-bit or 64-bit integer registers,
7883 assume that's what we've got. */
7884 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
7885 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
7886
7887 /* If the size matches the full set of registers GDB traditionally
7888 knows about, including floating point, for either 32-bit or
7889 64-bit, assume that's what we've got. */
7890 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
7891 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
7892
7893 /* Otherwise we don't have a useful guess. */
7894 }
7895
7896 static struct value *
7897 value_of_mips_user_reg (struct frame_info *frame, const void *baton)
7898 {
7899 const int *reg_p = baton;
7900 return value_of_register (*reg_p, frame);
7901 }
7902
7903 static struct gdbarch *
7904 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7905 {
7906 struct gdbarch *gdbarch;
7907 struct gdbarch_tdep *tdep;
7908 int elf_flags;
7909 enum mips_abi mips_abi, found_abi, wanted_abi;
7910 int i, num_regs;
7911 enum mips_fpu_type fpu_type;
7912 struct tdesc_arch_data *tdesc_data = NULL;
7913 int elf_fpu_type = 0;
7914 const char **reg_names;
7915 struct mips_regnum mips_regnum, *regnum;
7916 enum mips_isa mips_isa;
7917 int dspacc;
7918 int dspctl;
7919
7920 /* Fill in the OS dependent register numbers and names. */
7921 if (info.osabi == GDB_OSABI_IRIX)
7922 {
7923 mips_regnum.fp0 = 32;
7924 mips_regnum.pc = 64;
7925 mips_regnum.cause = 65;
7926 mips_regnum.badvaddr = 66;
7927 mips_regnum.hi = 67;
7928 mips_regnum.lo = 68;
7929 mips_regnum.fp_control_status = 69;
7930 mips_regnum.fp_implementation_revision = 70;
7931 mips_regnum.dspacc = dspacc = -1;
7932 mips_regnum.dspctl = dspctl = -1;
7933 num_regs = 71;
7934 reg_names = mips_irix_reg_names;
7935 }
7936 else if (info.osabi == GDB_OSABI_LINUX)
7937 {
7938 mips_regnum.fp0 = 38;
7939 mips_regnum.pc = 37;
7940 mips_regnum.cause = 36;
7941 mips_regnum.badvaddr = 35;
7942 mips_regnum.hi = 34;
7943 mips_regnum.lo = 33;
7944 mips_regnum.fp_control_status = 70;
7945 mips_regnum.fp_implementation_revision = 71;
7946 mips_regnum.dspacc = -1;
7947 mips_regnum.dspctl = -1;
7948 dspacc = 72;
7949 dspctl = 78;
7950 num_regs = 79;
7951 reg_names = mips_linux_reg_names;
7952 }
7953 else
7954 {
7955 mips_regnum.lo = MIPS_EMBED_LO_REGNUM;
7956 mips_regnum.hi = MIPS_EMBED_HI_REGNUM;
7957 mips_regnum.badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
7958 mips_regnum.cause = MIPS_EMBED_CAUSE_REGNUM;
7959 mips_regnum.pc = MIPS_EMBED_PC_REGNUM;
7960 mips_regnum.fp0 = MIPS_EMBED_FP0_REGNUM;
7961 mips_regnum.fp_control_status = 70;
7962 mips_regnum.fp_implementation_revision = 71;
7963 mips_regnum.dspacc = dspacc = -1;
7964 mips_regnum.dspctl = dspctl = -1;
7965 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
7966 if (info.bfd_arch_info != NULL
7967 && info.bfd_arch_info->mach == bfd_mach_mips3900)
7968 reg_names = mips_tx39_reg_names;
7969 else
7970 reg_names = mips_generic_reg_names;
7971 }
7972
7973 /* Check any target description for validity. */
7974 if (tdesc_has_registers (info.target_desc))
7975 {
7976 static const char *const mips_gprs[] = {
7977 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
7978 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
7979 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
7980 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
7981 };
7982 static const char *const mips_fprs[] = {
7983 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
7984 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
7985 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
7986 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
7987 };
7988
7989 const struct tdesc_feature *feature;
7990 int valid_p;
7991
7992 feature = tdesc_find_feature (info.target_desc,
7993 "org.gnu.gdb.mips.cpu");
7994 if (feature == NULL)
7995 return NULL;
7996
7997 tdesc_data = tdesc_data_alloc ();
7998
7999 valid_p = 1;
8000 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
8001 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8002 mips_gprs[i]);
8003
8004
8005 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8006 mips_regnum.lo, "lo");
8007 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8008 mips_regnum.hi, "hi");
8009 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8010 mips_regnum.pc, "pc");
8011
8012 if (!valid_p)
8013 {
8014 tdesc_data_cleanup (tdesc_data);
8015 return NULL;
8016 }
8017
8018 feature = tdesc_find_feature (info.target_desc,
8019 "org.gnu.gdb.mips.cp0");
8020 if (feature == NULL)
8021 {
8022 tdesc_data_cleanup (tdesc_data);
8023 return NULL;
8024 }
8025
8026 valid_p = 1;
8027 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8028 mips_regnum.badvaddr, "badvaddr");
8029 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8030 MIPS_PS_REGNUM, "status");
8031 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8032 mips_regnum.cause, "cause");
8033
8034 if (!valid_p)
8035 {
8036 tdesc_data_cleanup (tdesc_data);
8037 return NULL;
8038 }
8039
8040 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
8041 backend is not prepared for that, though. */
8042 feature = tdesc_find_feature (info.target_desc,
8043 "org.gnu.gdb.mips.fpu");
8044 if (feature == NULL)
8045 {
8046 tdesc_data_cleanup (tdesc_data);
8047 return NULL;
8048 }
8049
8050 valid_p = 1;
8051 for (i = 0; i < 32; i++)
8052 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8053 i + mips_regnum.fp0, mips_fprs[i]);
8054
8055 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8056 mips_regnum.fp_control_status,
8057 "fcsr");
8058 valid_p
8059 &= tdesc_numbered_register (feature, tdesc_data,
8060 mips_regnum.fp_implementation_revision,
8061 "fir");
8062
8063 if (!valid_p)
8064 {
8065 tdesc_data_cleanup (tdesc_data);
8066 return NULL;
8067 }
8068
8069 if (dspacc >= 0)
8070 {
8071 feature = tdesc_find_feature (info.target_desc,
8072 "org.gnu.gdb.mips.dsp");
8073 /* The DSP registers are optional; it's OK if they are absent. */
8074 if (feature != NULL)
8075 {
8076 i = 0;
8077 valid_p = 1;
8078 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8079 dspacc + i++, "hi1");
8080 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8081 dspacc + i++, "lo1");
8082 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8083 dspacc + i++, "hi2");
8084 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8085 dspacc + i++, "lo2");
8086 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8087 dspacc + i++, "hi3");
8088 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8089 dspacc + i++, "lo3");
8090
8091 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8092 dspctl, "dspctl");
8093
8094 if (!valid_p)
8095 {
8096 tdesc_data_cleanup (tdesc_data);
8097 return NULL;
8098 }
8099
8100 mips_regnum.dspacc = dspacc;
8101 mips_regnum.dspctl = dspctl;
8102 }
8103 }
8104
8105 /* It would be nice to detect an attempt to use a 64-bit ABI
8106 when only 32-bit registers are provided. */
8107 reg_names = NULL;
8108 }
8109
8110 /* First of all, extract the elf_flags, if available. */
8111 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8112 elf_flags = elf_elfheader (info.abfd)->e_flags;
8113 else if (arches != NULL)
8114 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
8115 else
8116 elf_flags = 0;
8117 if (gdbarch_debug)
8118 fprintf_unfiltered (gdb_stdlog,
8119 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
8120
8121 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
8122 switch ((elf_flags & EF_MIPS_ABI))
8123 {
8124 case E_MIPS_ABI_O32:
8125 found_abi = MIPS_ABI_O32;
8126 break;
8127 case E_MIPS_ABI_O64:
8128 found_abi = MIPS_ABI_O64;
8129 break;
8130 case E_MIPS_ABI_EABI32:
8131 found_abi = MIPS_ABI_EABI32;
8132 break;
8133 case E_MIPS_ABI_EABI64:
8134 found_abi = MIPS_ABI_EABI64;
8135 break;
8136 default:
8137 if ((elf_flags & EF_MIPS_ABI2))
8138 found_abi = MIPS_ABI_N32;
8139 else
8140 found_abi = MIPS_ABI_UNKNOWN;
8141 break;
8142 }
8143
8144 /* GCC creates a pseudo-section whose name describes the ABI. */
8145 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
8146 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
8147
8148 /* If we have no useful BFD information, use the ABI from the last
8149 MIPS architecture (if there is one). */
8150 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
8151 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
8152
8153 /* Try the architecture for any hint of the correct ABI. */
8154 if (found_abi == MIPS_ABI_UNKNOWN
8155 && info.bfd_arch_info != NULL
8156 && info.bfd_arch_info->arch == bfd_arch_mips)
8157 {
8158 switch (info.bfd_arch_info->mach)
8159 {
8160 case bfd_mach_mips3900:
8161 found_abi = MIPS_ABI_EABI32;
8162 break;
8163 case bfd_mach_mips4100:
8164 case bfd_mach_mips5000:
8165 found_abi = MIPS_ABI_EABI64;
8166 break;
8167 case bfd_mach_mips8000:
8168 case bfd_mach_mips10000:
8169 /* On Irix, ELF64 executables use the N64 ABI. The
8170 pseudo-sections which describe the ABI aren't present
8171 on IRIX. (Even for executables created by gcc.) */
8172 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8173 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8174 found_abi = MIPS_ABI_N64;
8175 else
8176 found_abi = MIPS_ABI_N32;
8177 break;
8178 }
8179 }
8180
8181 /* Default 64-bit objects to N64 instead of O32. */
8182 if (found_abi == MIPS_ABI_UNKNOWN
8183 && info.abfd != NULL
8184 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8185 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8186 found_abi = MIPS_ABI_N64;
8187
8188 if (gdbarch_debug)
8189 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
8190 found_abi);
8191
8192 /* What has the user specified from the command line? */
8193 wanted_abi = global_mips_abi ();
8194 if (gdbarch_debug)
8195 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
8196 wanted_abi);
8197
8198 /* Now that we have found what the ABI for this binary would be,
8199 check whether the user is overriding it. */
8200 if (wanted_abi != MIPS_ABI_UNKNOWN)
8201 mips_abi = wanted_abi;
8202 else if (found_abi != MIPS_ABI_UNKNOWN)
8203 mips_abi = found_abi;
8204 else
8205 mips_abi = MIPS_ABI_O32;
8206 if (gdbarch_debug)
8207 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
8208 mips_abi);
8209
8210 /* Determine the default compressed ISA. */
8211 if ((elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0
8212 && (elf_flags & EF_MIPS_ARCH_ASE_M16) == 0)
8213 mips_isa = ISA_MICROMIPS;
8214 else if ((elf_flags & EF_MIPS_ARCH_ASE_M16) != 0
8215 && (elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) == 0)
8216 mips_isa = ISA_MIPS16;
8217 else
8218 mips_isa = global_mips_compression ();
8219 mips_compression_string = mips_compression_strings[mips_isa];
8220
8221 /* Also used when doing an architecture lookup. */
8222 if (gdbarch_debug)
8223 fprintf_unfiltered (gdb_stdlog,
8224 "mips_gdbarch_init: "
8225 "mips64_transfers_32bit_regs_p = %d\n",
8226 mips64_transfers_32bit_regs_p);
8227
8228 /* Determine the MIPS FPU type. */
8229 #ifdef HAVE_ELF
8230 if (info.abfd
8231 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8232 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8233 Tag_GNU_MIPS_ABI_FP);
8234 #endif /* HAVE_ELF */
8235
8236 if (!mips_fpu_type_auto)
8237 fpu_type = mips_fpu_type;
8238 else if (elf_fpu_type != 0)
8239 {
8240 switch (elf_fpu_type)
8241 {
8242 case 1:
8243 fpu_type = MIPS_FPU_DOUBLE;
8244 break;
8245 case 2:
8246 fpu_type = MIPS_FPU_SINGLE;
8247 break;
8248 case 3:
8249 default:
8250 /* Soft float or unknown. */
8251 fpu_type = MIPS_FPU_NONE;
8252 break;
8253 }
8254 }
8255 else if (info.bfd_arch_info != NULL
8256 && info.bfd_arch_info->arch == bfd_arch_mips)
8257 switch (info.bfd_arch_info->mach)
8258 {
8259 case bfd_mach_mips3900:
8260 case bfd_mach_mips4100:
8261 case bfd_mach_mips4111:
8262 case bfd_mach_mips4120:
8263 fpu_type = MIPS_FPU_NONE;
8264 break;
8265 case bfd_mach_mips4650:
8266 fpu_type = MIPS_FPU_SINGLE;
8267 break;
8268 default:
8269 fpu_type = MIPS_FPU_DOUBLE;
8270 break;
8271 }
8272 else if (arches != NULL)
8273 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
8274 else
8275 fpu_type = MIPS_FPU_DOUBLE;
8276 if (gdbarch_debug)
8277 fprintf_unfiltered (gdb_stdlog,
8278 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8279
8280 /* Check for blatant incompatibilities. */
8281
8282 /* If we have only 32-bit registers, then we can't debug a 64-bit
8283 ABI. */
8284 if (info.target_desc
8285 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
8286 && mips_abi != MIPS_ABI_EABI32
8287 && mips_abi != MIPS_ABI_O32)
8288 {
8289 if (tdesc_data != NULL)
8290 tdesc_data_cleanup (tdesc_data);
8291 return NULL;
8292 }
8293
8294 /* Try to find a pre-existing architecture. */
8295 for (arches = gdbarch_list_lookup_by_info (arches, &info);
8296 arches != NULL;
8297 arches = gdbarch_list_lookup_by_info (arches->next, &info))
8298 {
8299 /* MIPS needs to be pedantic about which ABI the object is
8300 using. */
8301 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
8302 continue;
8303 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
8304 continue;
8305 /* Need to be pedantic about which register virtual size is
8306 used. */
8307 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
8308 != mips64_transfers_32bit_regs_p)
8309 continue;
8310 /* Be pedantic about which FPU is selected. */
8311 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
8312 continue;
8313
8314 if (tdesc_data != NULL)
8315 tdesc_data_cleanup (tdesc_data);
8316 return arches->gdbarch;
8317 }
8318
8319 /* Need a new architecture. Fill in a target specific vector. */
8320 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
8321 gdbarch = gdbarch_alloc (&info, tdep);
8322 tdep->elf_flags = elf_flags;
8323 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
8324 tdep->found_abi = found_abi;
8325 tdep->mips_abi = mips_abi;
8326 tdep->mips_isa = mips_isa;
8327 tdep->mips_fpu_type = fpu_type;
8328 tdep->register_size_valid_p = 0;
8329 tdep->register_size = 0;
8330 tdep->gregset = NULL;
8331 tdep->gregset64 = NULL;
8332 tdep->fpregset = NULL;
8333 tdep->fpregset64 = NULL;
8334
8335 if (info.target_desc)
8336 {
8337 /* Some useful properties can be inferred from the target. */
8338 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
8339 {
8340 tdep->register_size_valid_p = 1;
8341 tdep->register_size = 4;
8342 }
8343 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
8344 {
8345 tdep->register_size_valid_p = 1;
8346 tdep->register_size = 8;
8347 }
8348 }
8349
8350 /* Initially set everything according to the default ABI/ISA. */
8351 set_gdbarch_short_bit (gdbarch, 16);
8352 set_gdbarch_int_bit (gdbarch, 32);
8353 set_gdbarch_float_bit (gdbarch, 32);
8354 set_gdbarch_double_bit (gdbarch, 64);
8355 set_gdbarch_long_double_bit (gdbarch, 64);
8356 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
8357 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
8358 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
8359
8360 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8361 mips_ax_pseudo_register_collect);
8362 set_gdbarch_ax_pseudo_register_push_stack
8363 (gdbarch, mips_ax_pseudo_register_push_stack);
8364
8365 set_gdbarch_elf_make_msymbol_special (gdbarch,
8366 mips_elf_make_msymbol_special);
8367
8368 regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct mips_regnum);
8369 *regnum = mips_regnum;
8370 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
8371 set_gdbarch_num_regs (gdbarch, num_regs);
8372 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8373 set_gdbarch_register_name (gdbarch, mips_register_name);
8374 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
8375 tdep->mips_processor_reg_names = reg_names;
8376 tdep->regnum = regnum;
8377
8378 switch (mips_abi)
8379 {
8380 case MIPS_ABI_O32:
8381 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
8382 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
8383 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8384 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8385 tdep->default_mask_address_p = 0;
8386 set_gdbarch_long_bit (gdbarch, 32);
8387 set_gdbarch_ptr_bit (gdbarch, 32);
8388 set_gdbarch_long_long_bit (gdbarch, 64);
8389 break;
8390 case MIPS_ABI_O64:
8391 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
8392 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
8393 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8394 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8395 tdep->default_mask_address_p = 0;
8396 set_gdbarch_long_bit (gdbarch, 32);
8397 set_gdbarch_ptr_bit (gdbarch, 32);
8398 set_gdbarch_long_long_bit (gdbarch, 64);
8399 break;
8400 case MIPS_ABI_EABI32:
8401 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8402 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8403 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8404 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8405 tdep->default_mask_address_p = 0;
8406 set_gdbarch_long_bit (gdbarch, 32);
8407 set_gdbarch_ptr_bit (gdbarch, 32);
8408 set_gdbarch_long_long_bit (gdbarch, 64);
8409 break;
8410 case MIPS_ABI_EABI64:
8411 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8412 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8413 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8414 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8415 tdep->default_mask_address_p = 0;
8416 set_gdbarch_long_bit (gdbarch, 64);
8417 set_gdbarch_ptr_bit (gdbarch, 64);
8418 set_gdbarch_long_long_bit (gdbarch, 64);
8419 break;
8420 case MIPS_ABI_N32:
8421 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8422 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8423 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8424 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8425 tdep->default_mask_address_p = 0;
8426 set_gdbarch_long_bit (gdbarch, 32);
8427 set_gdbarch_ptr_bit (gdbarch, 32);
8428 set_gdbarch_long_long_bit (gdbarch, 64);
8429 set_gdbarch_long_double_bit (gdbarch, 128);
8430 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8431 break;
8432 case MIPS_ABI_N64:
8433 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8434 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8435 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8436 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8437 tdep->default_mask_address_p = 0;
8438 set_gdbarch_long_bit (gdbarch, 64);
8439 set_gdbarch_ptr_bit (gdbarch, 64);
8440 set_gdbarch_long_long_bit (gdbarch, 64);
8441 set_gdbarch_long_double_bit (gdbarch, 128);
8442 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8443 break;
8444 default:
8445 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8446 }
8447
8448 /* GCC creates a pseudo-section whose name specifies the size of
8449 longs, since -mlong32 or -mlong64 may be used independent of
8450 other options. How those options affect pointer sizes is ABI and
8451 architecture dependent, so use them to override the default sizes
8452 set by the ABI. This table shows the relationship between ABI,
8453 -mlongXX, and size of pointers:
8454
8455 ABI -mlongXX ptr bits
8456 --- -------- --------
8457 o32 32 32
8458 o32 64 32
8459 n32 32 32
8460 n32 64 64
8461 o64 32 32
8462 o64 64 64
8463 n64 32 32
8464 n64 64 64
8465 eabi32 32 32
8466 eabi32 64 32
8467 eabi64 32 32
8468 eabi64 64 64
8469
8470 Note that for o32 and eabi32, pointers are always 32 bits
8471 regardless of any -mlongXX option. For all others, pointers and
8472 longs are the same, as set by -mlongXX or set by defaults. */
8473
8474 if (info.abfd != NULL)
8475 {
8476 int long_bit = 0;
8477
8478 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
8479 if (long_bit)
8480 {
8481 set_gdbarch_long_bit (gdbarch, long_bit);
8482 switch (mips_abi)
8483 {
8484 case MIPS_ABI_O32:
8485 case MIPS_ABI_EABI32:
8486 break;
8487 case MIPS_ABI_N32:
8488 case MIPS_ABI_O64:
8489 case MIPS_ABI_N64:
8490 case MIPS_ABI_EABI64:
8491 set_gdbarch_ptr_bit (gdbarch, long_bit);
8492 break;
8493 default:
8494 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8495 }
8496 }
8497 }
8498
8499 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
8500 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
8501 comment:
8502
8503 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
8504 flag in object files because to do so would make it impossible to
8505 link with libraries compiled without "-gp32". This is
8506 unnecessarily restrictive.
8507
8508 We could solve this problem by adding "-gp32" multilibs to gcc,
8509 but to set this flag before gcc is built with such multilibs will
8510 break too many systems.''
8511
8512 But even more unhelpfully, the default linker output target for
8513 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
8514 for 64-bit programs - you need to change the ABI to change this,
8515 and not all gcc targets support that currently. Therefore using
8516 this flag to detect 32-bit mode would do the wrong thing given
8517 the current gcc - it would make GDB treat these 64-bit programs
8518 as 32-bit programs by default. */
8519
8520 set_gdbarch_read_pc (gdbarch, mips_read_pc);
8521 set_gdbarch_write_pc (gdbarch, mips_write_pc);
8522
8523 /* Add/remove bits from an address. The MIPS needs be careful to
8524 ensure that all 32 bit addresses are sign extended to 64 bits. */
8525 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
8526
8527 /* Unwind the frame. */
8528 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
8529 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
8530 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
8531
8532 /* Map debug register numbers onto internal register numbers. */
8533 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
8534 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
8535 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8536 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
8537 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8538 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
8539
8540 /* MIPS version of CALL_DUMMY. */
8541
8542 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8543 set_gdbarch_push_dummy_code (gdbarch, mips_push_dummy_code);
8544 set_gdbarch_frame_align (gdbarch, mips_frame_align);
8545
8546 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
8547 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
8548 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
8549
8550 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8551 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
8552 set_gdbarch_remote_breakpoint_from_pc (gdbarch,
8553 mips_remote_breakpoint_from_pc);
8554 set_gdbarch_adjust_breakpoint_address (gdbarch,
8555 mips_adjust_breakpoint_address);
8556
8557 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
8558
8559 set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
8560
8561 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
8562 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
8563 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
8564
8565 set_gdbarch_register_type (gdbarch, mips_register_type);
8566
8567 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
8568
8569 if (mips_abi == MIPS_ABI_N32)
8570 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
8571 else if (mips_abi == MIPS_ABI_N64)
8572 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
8573 else
8574 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
8575
8576 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
8577 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
8578 need to all be folded into the target vector. Since they are
8579 being used as guards for target_stopped_by_watchpoint, why not have
8580 target_stopped_by_watchpoint return the type of watchpoint that the code
8581 is sitting on? */
8582 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8583
8584 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
8585
8586 /* NOTE drow/2012-04-25: We overload the core solib trampoline code
8587 to support MIPS16. This is a bad thing. Make sure not to do it
8588 if we have an OS ABI that actually supports shared libraries, since
8589 shared library support is more important. If we have an OS someday
8590 that supports both shared libraries and MIPS16, we'll have to find
8591 a better place for these.
8592 macro/2012-04-25: But that applies to return trampolines only and
8593 currently no MIPS OS ABI uses shared libraries that have them. */
8594 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
8595
8596 set_gdbarch_single_step_through_delay (gdbarch,
8597 mips_single_step_through_delay);
8598
8599 /* Virtual tables. */
8600 set_gdbarch_vbit_in_delta (gdbarch, 1);
8601
8602 mips_register_g_packet_guesses (gdbarch);
8603
8604 /* Hook in OS ABI-specific overrides, if they have been registered. */
8605 info.tdep_info = (void *) tdesc_data;
8606 gdbarch_init_osabi (info, gdbarch);
8607
8608 /* The hook may have adjusted num_regs, fetch the final value and
8609 set pc_regnum and sp_regnum now that it has been fixed. */
8610 num_regs = gdbarch_num_regs (gdbarch);
8611 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
8612 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8613
8614 /* Unwind the frame. */
8615 dwarf2_append_unwinders (gdbarch);
8616 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
8617 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
8618 frame_unwind_append_unwinder (gdbarch, &mips_micro_frame_unwind);
8619 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
8620 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
8621 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
8622 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
8623 frame_base_append_sniffer (gdbarch, mips_micro_frame_base_sniffer);
8624 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
8625
8626 if (tdesc_data)
8627 {
8628 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
8629 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
8630
8631 /* Override the normal target description methods to handle our
8632 dual real and pseudo registers. */
8633 set_gdbarch_register_name (gdbarch, mips_register_name);
8634 set_gdbarch_register_reggroup_p (gdbarch,
8635 mips_tdesc_register_reggroup_p);
8636
8637 num_regs = gdbarch_num_regs (gdbarch);
8638 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8639 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
8640 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8641 }
8642
8643 /* Add ABI-specific aliases for the registers. */
8644 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
8645 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
8646 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
8647 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
8648 else
8649 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
8650 user_reg_add (gdbarch, mips_o32_aliases[i].name,
8651 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
8652
8653 /* Add some other standard aliases. */
8654 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
8655 user_reg_add (gdbarch, mips_register_aliases[i].name,
8656 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
8657
8658 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
8659 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
8660 value_of_mips_user_reg,
8661 &mips_numeric_register_aliases[i].regnum);
8662
8663 return gdbarch;
8664 }
8665
8666 static void
8667 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
8668 {
8669 struct gdbarch_info info;
8670
8671 /* Force the architecture to update, and (if it's a MIPS architecture)
8672 mips_gdbarch_init will take care of the rest. */
8673 gdbarch_info_init (&info);
8674 gdbarch_update_p (info);
8675 }
8676
8677 /* Print out which MIPS ABI is in use. */
8678
8679 static void
8680 show_mips_abi (struct ui_file *file,
8681 int from_tty,
8682 struct cmd_list_element *ignored_cmd,
8683 const char *ignored_value)
8684 {
8685 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
8686 fprintf_filtered
8687 (file,
8688 "The MIPS ABI is unknown because the current architecture "
8689 "is not MIPS.\n");
8690 else
8691 {
8692 enum mips_abi global_abi = global_mips_abi ();
8693 enum mips_abi actual_abi = mips_abi (target_gdbarch ());
8694 const char *actual_abi_str = mips_abi_strings[actual_abi];
8695
8696 if (global_abi == MIPS_ABI_UNKNOWN)
8697 fprintf_filtered
8698 (file,
8699 "The MIPS ABI is set automatically (currently \"%s\").\n",
8700 actual_abi_str);
8701 else if (global_abi == actual_abi)
8702 fprintf_filtered
8703 (file,
8704 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
8705 actual_abi_str);
8706 else
8707 {
8708 /* Probably shouldn't happen... */
8709 fprintf_filtered (file,
8710 "The (auto detected) MIPS ABI \"%s\" is in use "
8711 "even though the user setting was \"%s\".\n",
8712 actual_abi_str, mips_abi_strings[global_abi]);
8713 }
8714 }
8715 }
8716
8717 /* Print out which MIPS compressed ISA encoding is used. */
8718
8719 static void
8720 show_mips_compression (struct ui_file *file, int from_tty,
8721 struct cmd_list_element *c, const char *value)
8722 {
8723 fprintf_filtered (file, _("The compressed ISA encoding used is %s.\n"),
8724 value);
8725 }
8726
8727 static void
8728 mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
8729 {
8730 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8731 if (tdep != NULL)
8732 {
8733 int ef_mips_arch;
8734 int ef_mips_32bitmode;
8735 /* Determine the ISA. */
8736 switch (tdep->elf_flags & EF_MIPS_ARCH)
8737 {
8738 case E_MIPS_ARCH_1:
8739 ef_mips_arch = 1;
8740 break;
8741 case E_MIPS_ARCH_2:
8742 ef_mips_arch = 2;
8743 break;
8744 case E_MIPS_ARCH_3:
8745 ef_mips_arch = 3;
8746 break;
8747 case E_MIPS_ARCH_4:
8748 ef_mips_arch = 4;
8749 break;
8750 default:
8751 ef_mips_arch = 0;
8752 break;
8753 }
8754 /* Determine the size of a pointer. */
8755 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
8756 fprintf_unfiltered (file,
8757 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
8758 tdep->elf_flags);
8759 fprintf_unfiltered (file,
8760 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
8761 ef_mips_32bitmode);
8762 fprintf_unfiltered (file,
8763 "mips_dump_tdep: ef_mips_arch = %d\n",
8764 ef_mips_arch);
8765 fprintf_unfiltered (file,
8766 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
8767 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
8768 fprintf_unfiltered (file,
8769 "mips_dump_tdep: "
8770 "mips_mask_address_p() %d (default %d)\n",
8771 mips_mask_address_p (tdep),
8772 tdep->default_mask_address_p);
8773 }
8774 fprintf_unfiltered (file,
8775 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
8776 MIPS_DEFAULT_FPU_TYPE,
8777 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
8778 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
8779 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
8780 : "???"));
8781 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
8782 MIPS_EABI (gdbarch));
8783 fprintf_unfiltered (file,
8784 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
8785 MIPS_FPU_TYPE (gdbarch),
8786 (MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_NONE ? "none"
8787 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_SINGLE ? "single"
8788 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_DOUBLE ? "double"
8789 : "???"));
8790 }
8791
8792 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
8793
8794 void
8795 _initialize_mips_tdep (void)
8796 {
8797 static struct cmd_list_element *mipsfpulist = NULL;
8798 struct cmd_list_element *c;
8799
8800 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
8801 if (MIPS_ABI_LAST + 1
8802 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
8803 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
8804
8805 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
8806
8807 mips_pdr_data = register_objfile_data ();
8808
8809 /* Create feature sets with the appropriate properties. The values
8810 are not important. */
8811 mips_tdesc_gp32 = allocate_target_description ();
8812 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
8813
8814 mips_tdesc_gp64 = allocate_target_description ();
8815 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
8816
8817 /* Add root prefix command for all "set mips"/"show mips" commands. */
8818 add_prefix_cmd ("mips", no_class, set_mips_command,
8819 _("Various MIPS specific commands."),
8820 &setmipscmdlist, "set mips ", 0, &setlist);
8821
8822 add_prefix_cmd ("mips", no_class, show_mips_command,
8823 _("Various MIPS specific commands."),
8824 &showmipscmdlist, "show mips ", 0, &showlist);
8825
8826 /* Allow the user to override the ABI. */
8827 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
8828 &mips_abi_string, _("\
8829 Set the MIPS ABI used by this program."), _("\
8830 Show the MIPS ABI used by this program."), _("\
8831 This option can be set to one of:\n\
8832 auto - the default ABI associated with the current binary\n\
8833 o32\n\
8834 o64\n\
8835 n32\n\
8836 n64\n\
8837 eabi32\n\
8838 eabi64"),
8839 mips_abi_update,
8840 show_mips_abi,
8841 &setmipscmdlist, &showmipscmdlist);
8842
8843 /* Allow the user to set the ISA to assume for compressed code if ELF
8844 file flags don't tell or there is no program file selected. This
8845 setting is updated whenever unambiguous ELF file flags are interpreted,
8846 and carried over to subsequent sessions. */
8847 add_setshow_enum_cmd ("compression", class_obscure, mips_compression_strings,
8848 &mips_compression_string, _("\
8849 Set the compressed ISA encoding used by MIPS code."), _("\
8850 Show the compressed ISA encoding used by MIPS code."), _("\
8851 Select the compressed ISA encoding used in functions that have no symbol\n\
8852 information available. The encoding can be set to either of:\n\
8853 mips16\n\
8854 micromips\n\
8855 and is updated automatically from ELF file flags if available."),
8856 mips_abi_update,
8857 show_mips_compression,
8858 &setmipscmdlist, &showmipscmdlist);
8859
8860 /* Let the user turn off floating point and set the fence post for
8861 heuristic_proc_start. */
8862
8863 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
8864 _("Set use of MIPS floating-point coprocessor."),
8865 &mipsfpulist, "set mipsfpu ", 0, &setlist);
8866 add_cmd ("single", class_support, set_mipsfpu_single_command,
8867 _("Select single-precision MIPS floating-point coprocessor."),
8868 &mipsfpulist);
8869 add_cmd ("double", class_support, set_mipsfpu_double_command,
8870 _("Select double-precision MIPS floating-point coprocessor."),
8871 &mipsfpulist);
8872 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
8873 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
8874 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
8875 add_cmd ("none", class_support, set_mipsfpu_none_command,
8876 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
8877 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
8878 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
8879 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
8880 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
8881 _("Select MIPS floating-point coprocessor automatically."),
8882 &mipsfpulist);
8883 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
8884 _("Show current use of MIPS floating-point coprocessor target."),
8885 &showlist);
8886
8887 /* We really would like to have both "0" and "unlimited" work, but
8888 command.c doesn't deal with that. So make it a var_zinteger
8889 because the user can always use "999999" or some such for unlimited. */
8890 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
8891 &heuristic_fence_post, _("\
8892 Set the distance searched for the start of a function."), _("\
8893 Show the distance searched for the start of a function."), _("\
8894 If you are debugging a stripped executable, GDB needs to search through the\n\
8895 program for the start of a function. This command sets the distance of the\n\
8896 search. The only need to set it is when debugging a stripped executable."),
8897 reinit_frame_cache_sfunc,
8898 NULL, /* FIXME: i18n: The distance searched for
8899 the start of a function is %s. */
8900 &setlist, &showlist);
8901
8902 /* Allow the user to control whether the upper bits of 64-bit
8903 addresses should be zeroed. */
8904 add_setshow_auto_boolean_cmd ("mask-address", no_class,
8905 &mask_address_var, _("\
8906 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
8907 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
8908 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
8909 allow GDB to determine the correct value."),
8910 NULL, show_mask_address,
8911 &setmipscmdlist, &showmipscmdlist);
8912
8913 /* Allow the user to control the size of 32 bit registers within the
8914 raw remote packet. */
8915 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
8916 &mips64_transfers_32bit_regs_p, _("\
8917 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
8918 _("\
8919 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
8920 _("\
8921 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
8922 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
8923 64 bits for others. Use \"off\" to disable compatibility mode"),
8924 set_mips64_transfers_32bit_regs,
8925 NULL, /* FIXME: i18n: Compatibility with 64-bit
8926 MIPS target that transfers 32-bit
8927 quantities is %s. */
8928 &setlist, &showlist);
8929
8930 /* Debug this files internals. */
8931 add_setshow_zuinteger_cmd ("mips", class_maintenance,
8932 &mips_debug, _("\
8933 Set mips debugging."), _("\
8934 Show mips debugging."), _("\
8935 When non-zero, mips specific debugging is enabled."),
8936 NULL,
8937 NULL, /* FIXME: i18n: Mips debugging is
8938 currently %s. */
8939 &setdebuglist, &showdebuglist);
8940 }
This page took 0.246543 seconds and 4 git commands to generate.