*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "value.h"
32 #include "gdbcmd.h"
33 #include "language.h"
34 #include "gdbcore.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdbtypes.h"
38 #include "target.h"
39 #include "arch-utils.h"
40 #include "regcache.h"
41
42 #include "opcode/mips.h"
43 #include "elf/mips.h"
44 #include "elf-bfd.h"
45 #include "symcat.h"
46
47 /* The sizes of floating point registers. */
48
49 enum
50 {
51 MIPS_FPU_SINGLE_REGSIZE = 4,
52 MIPS_FPU_DOUBLE_REGSIZE = 8
53 };
54
55 /* All the possible MIPS ABIs. */
56
57 enum mips_abi
58 {
59 MIPS_ABI_UNKNOWN,
60 MIPS_ABI_N32,
61 MIPS_ABI_O32,
62 MIPS_ABI_O64,
63 MIPS_ABI_EABI32,
64 MIPS_ABI_EABI64
65 };
66
67 struct frame_extra_info
68 {
69 mips_extra_func_info_t proc_desc;
70 int num_args;
71 };
72
73 /* Various MIPS ISA options (related to stack analysis) can be
74 overridden dynamically. Establish an enum/array for managing
75 them. */
76
77 static const char size_auto[] = "auto";
78 static const char size_32[] = "32";
79 static const char size_64[] = "64";
80
81 static const char *size_enums[] = {
82 size_auto,
83 size_32,
84 size_64,
85 0
86 };
87
88 /* Some MIPS boards don't support floating point while others only
89 support single-precision floating-point operations. See also
90 FP_REGISTER_DOUBLE. */
91
92 enum mips_fpu_type
93 {
94 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
95 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
96 MIPS_FPU_NONE /* No floating point. */
97 };
98
99 #ifndef MIPS_DEFAULT_FPU_TYPE
100 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
101 #endif
102 static int mips_fpu_type_auto = 1;
103 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
104 #define MIPS_FPU_TYPE mips_fpu_type
105
106 /* Do not use "TARGET_IS_MIPS64" to test the size of floating point registers */
107 #ifndef FP_REGISTER_DOUBLE
108 #define FP_REGISTER_DOUBLE (REGISTER_VIRTUAL_SIZE(FP0_REGNUM) == 8)
109 #endif
110
111 static int mips_debug = 0;
112
113 /* MIPS specific per-architecture information */
114 struct gdbarch_tdep
115 {
116 /* from the elf header */
117 int elf_flags;
118 /* mips options */
119 enum mips_abi mips_abi;
120 const char *mips_abi_string;
121 enum mips_fpu_type mips_fpu_type;
122 int mips_last_arg_regnum;
123 int mips_last_fp_arg_regnum;
124 int mips_default_saved_regsize;
125 int mips_fp_register_double;
126 int mips_regs_have_home_p;
127 int mips_default_stack_argsize;
128 int gdb_target_is_mips64;
129 int default_mask_address_p;
130 };
131
132 #if GDB_MULTI_ARCH
133 #undef MIPS_EABI
134 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
135 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
136 #endif
137
138 #if GDB_MULTI_ARCH
139 #undef MIPS_LAST_FP_ARG_REGNUM
140 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
141 #endif
142
143 #if GDB_MULTI_ARCH
144 #undef MIPS_LAST_ARG_REGNUM
145 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
146 #endif
147
148 #if GDB_MULTI_ARCH
149 #undef MIPS_FPU_TYPE
150 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
151 #endif
152
153 /* Return the currently configured (or set) saved register size. */
154
155 #if GDB_MULTI_ARCH
156 #undef MIPS_DEFAULT_SAVED_REGSIZE
157 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
158 #elif !defined (MIPS_DEFAULT_SAVED_REGSIZE)
159 #define MIPS_DEFAULT_SAVED_REGSIZE MIPS_REGSIZE
160 #endif
161
162 static const char *mips_saved_regsize_string = size_auto;
163
164 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
165
166 static unsigned int
167 mips_saved_regsize (void)
168 {
169 if (mips_saved_regsize_string == size_auto)
170 return MIPS_DEFAULT_SAVED_REGSIZE;
171 else if (mips_saved_regsize_string == size_64)
172 return 8;
173 else /* if (mips_saved_regsize_string == size_32) */
174 return 4;
175 }
176
177 /* Indicate that the ABI makes use of double-precision registers
178 provided by the FPU (rather than combining pairs of registers to
179 form double-precision values). Do not use "TARGET_IS_MIPS64" to
180 determine if the ABI is using double-precision registers. See also
181 MIPS_FPU_TYPE. */
182 #if GDB_MULTI_ARCH
183 #undef FP_REGISTER_DOUBLE
184 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
185 #endif
186
187 /* Does the caller allocate a ``home'' for each register used in the
188 function call? The N32 ABI and MIPS_EABI do not, the others do. */
189
190 #if GDB_MULTI_ARCH
191 #undef MIPS_REGS_HAVE_HOME_P
192 #define MIPS_REGS_HAVE_HOME_P (gdbarch_tdep (current_gdbarch)->mips_regs_have_home_p)
193 #elif !defined (MIPS_REGS_HAVE_HOME_P)
194 #define MIPS_REGS_HAVE_HOME_P (!MIPS_EABI)
195 #endif
196
197 /* The amount of space reserved on the stack for registers. This is
198 different to MIPS_SAVED_REGSIZE as it determines the alignment of
199 data allocated after the registers have run out. */
200
201 #if GDB_MULTI_ARCH
202 #undef MIPS_DEFAULT_STACK_ARGSIZE
203 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
204 #elif !defined (MIPS_DEFAULT_STACK_ARGSIZE)
205 #define MIPS_DEFAULT_STACK_ARGSIZE (MIPS_DEFAULT_SAVED_REGSIZE)
206 #endif
207
208 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
209
210 static const char *mips_stack_argsize_string = size_auto;
211
212 static unsigned int
213 mips_stack_argsize (void)
214 {
215 if (mips_stack_argsize_string == size_auto)
216 return MIPS_DEFAULT_STACK_ARGSIZE;
217 else if (mips_stack_argsize_string == size_64)
218 return 8;
219 else /* if (mips_stack_argsize_string == size_32) */
220 return 4;
221 }
222
223 #if GDB_MULTI_ARCH
224 #undef GDB_TARGET_IS_MIPS64
225 #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
226 #endif
227
228 #if GDB_MULTI_ARCH
229 #undef MIPS_DEFAULT_MASK_ADDRESS_P
230 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
231 #elif !defined (MIPS_DEFAULT_MASK_ADDRESS_P)
232 #define MIPS_DEFAULT_MASK_ADDRESS_P (0)
233 #endif
234
235 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
236
237 int gdb_print_insn_mips (bfd_vma, disassemble_info *);
238
239 static void mips_print_register (int, int);
240
241 static mips_extra_func_info_t
242 heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *);
243
244 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
245
246 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
247
248 int mips_set_processor_type (char *);
249
250 static void mips_show_processor_type_command (char *, int);
251
252 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
253
254 static mips_extra_func_info_t
255 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame);
256
257 static CORE_ADDR after_prologue (CORE_ADDR pc,
258 mips_extra_func_info_t proc_desc);
259
260 /* This value is the model of MIPS in use. It is derived from the value
261 of the PrID register. */
262
263 char *mips_processor_type;
264
265 char *tmp_mips_processor_type;
266
267 /* The list of available "set mips " and "show mips " commands */
268
269 static struct cmd_list_element *setmipscmdlist = NULL;
270 static struct cmd_list_element *showmipscmdlist = NULL;
271
272 /* A set of original names, to be used when restoring back to generic
273 registers from a specific set. */
274
275 char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
276 char **mips_processor_reg_names = mips_generic_reg_names;
277
278 char *
279 mips_register_name (int i)
280 {
281 return mips_processor_reg_names[i];
282 }
283 /* *INDENT-OFF* */
284 /* Names of IDT R3041 registers. */
285
286 char *mips_r3041_reg_names[] = {
287 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
288 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
289 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
290 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
291 "sr", "lo", "hi", "bad", "cause","pc",
292 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
293 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
294 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
295 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
296 "fsr", "fir", "fp", "",
297 "", "", "bus", "ccfg", "", "", "", "",
298 "", "", "port", "cmp", "", "", "epc", "prid",
299 };
300
301 /* Names of IDT R3051 registers. */
302
303 char *mips_r3051_reg_names[] = {
304 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
305 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
306 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
307 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
308 "sr", "lo", "hi", "bad", "cause","pc",
309 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
310 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
311 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
312 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
313 "fsr", "fir", "fp", "",
314 "inx", "rand", "elo", "", "ctxt", "", "", "",
315 "", "", "ehi", "", "", "", "epc", "prid",
316 };
317
318 /* Names of IDT R3081 registers. */
319
320 char *mips_r3081_reg_names[] = {
321 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
322 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
323 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
324 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
325 "sr", "lo", "hi", "bad", "cause","pc",
326 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
327 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
328 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
329 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
330 "fsr", "fir", "fp", "",
331 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
332 "", "", "ehi", "", "", "", "epc", "prid",
333 };
334
335 /* Names of LSI 33k registers. */
336
337 char *mips_lsi33k_reg_names[] = {
338 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
339 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
340 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
341 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
342 "epc", "hi", "lo", "sr", "cause","badvaddr",
343 "dcic", "bpc", "bda", "", "", "", "", "",
344 "", "", "", "", "", "", "", "",
345 "", "", "", "", "", "", "", "",
346 "", "", "", "", "", "", "", "",
347 "", "", "", "",
348 "", "", "", "", "", "", "", "",
349 "", "", "", "", "", "", "", "",
350 };
351
352 struct {
353 char *name;
354 char **regnames;
355 } mips_processor_type_table[] = {
356 { "generic", mips_generic_reg_names },
357 { "r3041", mips_r3041_reg_names },
358 { "r3051", mips_r3051_reg_names },
359 { "r3071", mips_r3081_reg_names },
360 { "r3081", mips_r3081_reg_names },
361 { "lsi33k", mips_lsi33k_reg_names },
362 { NULL, NULL }
363 };
364 /* *INDENT-ON* */
365
366
367
368
369 /* Table to translate MIPS16 register field to actual register number. */
370 static int mips16_to_32_reg[8] =
371 {16, 17, 2, 3, 4, 5, 6, 7};
372
373 /* Heuristic_proc_start may hunt through the text section for a long
374 time across a 2400 baud serial line. Allows the user to limit this
375 search. */
376
377 static unsigned int heuristic_fence_post = 0;
378
379 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
380 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
381 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
382 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
383 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
384 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
385 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
386 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
387 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
388 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
389 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
390 #define _PROC_MAGIC_ 0x0F0F0F0F
391 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
392 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
393
394 struct linked_proc_info
395 {
396 struct mips_extra_func_info info;
397 struct linked_proc_info *next;
398 }
399 *linked_proc_desc_table = NULL;
400
401 void
402 mips_print_extra_frame_info (struct frame_info *fi)
403 {
404 if (fi
405 && fi->extra_info
406 && fi->extra_info->proc_desc
407 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
408 printf_filtered (" frame pointer is at %s+%s\n",
409 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
410 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
411 }
412
413 /* Convert between RAW and VIRTUAL registers. The RAW register size
414 defines the remote-gdb packet. */
415
416 static int mips64_transfers_32bit_regs_p = 0;
417
418 int
419 mips_register_raw_size (int reg_nr)
420 {
421 if (mips64_transfers_32bit_regs_p)
422 return REGISTER_VIRTUAL_SIZE (reg_nr);
423 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
424 && FP_REGISTER_DOUBLE)
425 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
426 registers. */
427 return 8;
428 else
429 return MIPS_REGSIZE;
430 }
431
432 int
433 mips_register_convertible (int reg_nr)
434 {
435 if (mips64_transfers_32bit_regs_p)
436 return 0;
437 else
438 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
439 }
440
441 void
442 mips_register_convert_to_virtual (int n, struct type *virtual_type,
443 char *raw_buf, char *virt_buf)
444 {
445 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
446 memcpy (virt_buf,
447 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
448 TYPE_LENGTH (virtual_type));
449 else
450 memcpy (virt_buf,
451 raw_buf,
452 TYPE_LENGTH (virtual_type));
453 }
454
455 void
456 mips_register_convert_to_raw (struct type *virtual_type, int n,
457 char *virt_buf, char *raw_buf)
458 {
459 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
460 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
461 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
462 virt_buf,
463 TYPE_LENGTH (virtual_type));
464 else
465 memcpy (raw_buf,
466 virt_buf,
467 TYPE_LENGTH (virtual_type));
468 }
469
470 /* Should the upper word of 64-bit addresses be zeroed? */
471 enum cmd_auto_boolean mask_address_var = CMD_AUTO_BOOLEAN_AUTO;
472
473 static int
474 mips_mask_address_p (void)
475 {
476 switch (mask_address_var)
477 {
478 case CMD_AUTO_BOOLEAN_TRUE:
479 return 1;
480 case CMD_AUTO_BOOLEAN_FALSE:
481 return 0;
482 break;
483 case CMD_AUTO_BOOLEAN_AUTO:
484 return MIPS_DEFAULT_MASK_ADDRESS_P;
485 default:
486 internal_error (__FILE__, __LINE__,
487 "mips_mask_address_p: bad switch");
488 return -1;
489 }
490 }
491
492 static void
493 show_mask_address (char *cmd, int from_tty)
494 {
495 switch (mask_address_var)
496 {
497 case CMD_AUTO_BOOLEAN_TRUE:
498 printf_filtered ("The 32 bit mips address mask is enabled\n");
499 break;
500 case CMD_AUTO_BOOLEAN_FALSE:
501 printf_filtered ("The 32 bit mips address mask is disabled\n");
502 break;
503 case CMD_AUTO_BOOLEAN_AUTO:
504 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
505 mips_mask_address_p () ? "enabled" : "disabled");
506 break;
507 default:
508 internal_error (__FILE__, __LINE__,
509 "show_mask_address: bad switch");
510 break;
511 }
512 }
513
514 /* Should call_function allocate stack space for a struct return? */
515 int
516 mips_use_struct_convention (int gcc_p, struct type *type)
517 {
518 if (MIPS_EABI)
519 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
520 else
521 return 1; /* Structures are returned by ref in extra arg0 */
522 }
523
524 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
525
526 static int
527 pc_is_mips16 (bfd_vma memaddr)
528 {
529 struct minimal_symbol *sym;
530
531 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
532 if (IS_MIPS16_ADDR (memaddr))
533 return 1;
534
535 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
536 the high bit of the info field. Use this to decide if the function is
537 MIPS16 or normal MIPS. */
538 sym = lookup_minimal_symbol_by_pc (memaddr);
539 if (sym)
540 return MSYMBOL_IS_SPECIAL (sym);
541 else
542 return 0;
543 }
544
545 /* MIPS believes that the PC has a sign extended value. Perhaphs the
546 all registers should be sign extended for simplicity? */
547
548 static CORE_ADDR
549 mips_read_pc (ptid_t ptid)
550 {
551 return read_signed_register_pid (PC_REGNUM, ptid);
552 }
553
554 /* This returns the PC of the first inst after the prologue. If we can't
555 find the prologue, then return 0. */
556
557 static CORE_ADDR
558 after_prologue (CORE_ADDR pc,
559 mips_extra_func_info_t proc_desc)
560 {
561 struct symtab_and_line sal;
562 CORE_ADDR func_addr, func_end;
563
564 if (!proc_desc)
565 proc_desc = find_proc_desc (pc, NULL);
566
567 if (proc_desc)
568 {
569 /* If function is frameless, then we need to do it the hard way. I
570 strongly suspect that frameless always means prologueless... */
571 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
572 && PROC_FRAME_OFFSET (proc_desc) == 0)
573 return 0;
574 }
575
576 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
577 return 0; /* Unknown */
578
579 sal = find_pc_line (func_addr, 0);
580
581 if (sal.end < func_end)
582 return sal.end;
583
584 /* The line after the prologue is after the end of the function. In this
585 case, tell the caller to find the prologue the hard way. */
586
587 return 0;
588 }
589
590 /* Decode a MIPS32 instruction that saves a register in the stack, and
591 set the appropriate bit in the general register mask or float register mask
592 to indicate which register is saved. This is a helper function
593 for mips_find_saved_regs. */
594
595 static void
596 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
597 unsigned long *float_mask)
598 {
599 int reg;
600
601 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
602 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
603 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
604 {
605 /* It might be possible to use the instruction to
606 find the offset, rather than the code below which
607 is based on things being in a certain order in the
608 frame, but figuring out what the instruction's offset
609 is relative to might be a little tricky. */
610 reg = (inst & 0x001f0000) >> 16;
611 *gen_mask |= (1 << reg);
612 }
613 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
614 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
615 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
616
617 {
618 reg = ((inst & 0x001f0000) >> 16);
619 *float_mask |= (1 << reg);
620 }
621 }
622
623 /* Decode a MIPS16 instruction that saves a register in the stack, and
624 set the appropriate bit in the general register or float register mask
625 to indicate which register is saved. This is a helper function
626 for mips_find_saved_regs. */
627
628 static void
629 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
630 {
631 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
632 {
633 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
634 *gen_mask |= (1 << reg);
635 }
636 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
637 {
638 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
639 *gen_mask |= (1 << reg);
640 }
641 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
642 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
643 *gen_mask |= (1 << RA_REGNUM);
644 }
645
646
647 /* Fetch and return instruction from the specified location. If the PC
648 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
649
650 static t_inst
651 mips_fetch_instruction (CORE_ADDR addr)
652 {
653 char buf[MIPS_INSTLEN];
654 int instlen;
655 int status;
656
657 if (pc_is_mips16 (addr))
658 {
659 instlen = MIPS16_INSTLEN;
660 addr = UNMAKE_MIPS16_ADDR (addr);
661 }
662 else
663 instlen = MIPS_INSTLEN;
664 status = read_memory_nobpt (addr, buf, instlen);
665 if (status)
666 memory_error (status, addr);
667 return extract_unsigned_integer (buf, instlen);
668 }
669
670
671 /* These the fields of 32 bit mips instructions */
672 #define mips32_op(x) (x >> 26)
673 #define itype_op(x) (x >> 26)
674 #define itype_rs(x) ((x >> 21) & 0x1f)
675 #define itype_rt(x) ((x >> 16) & 0x1f)
676 #define itype_immediate(x) (x & 0xffff)
677
678 #define jtype_op(x) (x >> 26)
679 #define jtype_target(x) (x & 0x03ffffff)
680
681 #define rtype_op(x) (x >> 26)
682 #define rtype_rs(x) ((x >> 21) & 0x1f)
683 #define rtype_rt(x) ((x >> 16) & 0x1f)
684 #define rtype_rd(x) ((x >> 11) & 0x1f)
685 #define rtype_shamt(x) ((x >> 6) & 0x1f)
686 #define rtype_funct(x) (x & 0x3f)
687
688 static CORE_ADDR
689 mips32_relative_offset (unsigned long inst)
690 {
691 long x;
692 x = itype_immediate (inst);
693 if (x & 0x8000) /* sign bit set */
694 {
695 x |= 0xffff0000; /* sign extension */
696 }
697 x = x << 2;
698 return x;
699 }
700
701 /* Determine whate to set a single step breakpoint while considering
702 branch prediction */
703 CORE_ADDR
704 mips32_next_pc (CORE_ADDR pc)
705 {
706 unsigned long inst;
707 int op;
708 inst = mips_fetch_instruction (pc);
709 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
710 {
711 if (itype_op (inst) >> 2 == 5)
712 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
713 {
714 op = (itype_op (inst) & 0x03);
715 switch (op)
716 {
717 case 0: /* BEQL */
718 goto equal_branch;
719 case 1: /* BNEL */
720 goto neq_branch;
721 case 2: /* BLEZL */
722 goto less_branch;
723 case 3: /* BGTZ */
724 goto greater_branch;
725 default:
726 pc += 4;
727 }
728 }
729 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
730 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
731 {
732 int tf = itype_rt (inst) & 0x01;
733 int cnum = itype_rt (inst) >> 2;
734 int fcrcs = read_signed_register (FCRCS_REGNUM);
735 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
736
737 if (((cond >> cnum) & 0x01) == tf)
738 pc += mips32_relative_offset (inst) + 4;
739 else
740 pc += 8;
741 }
742 else
743 pc += 4; /* Not a branch, next instruction is easy */
744 }
745 else
746 { /* This gets way messy */
747
748 /* Further subdivide into SPECIAL, REGIMM and other */
749 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
750 {
751 case 0: /* SPECIAL */
752 op = rtype_funct (inst);
753 switch (op)
754 {
755 case 8: /* JR */
756 case 9: /* JALR */
757 /* Set PC to that address */
758 pc = read_signed_register (rtype_rs (inst));
759 break;
760 default:
761 pc += 4;
762 }
763
764 break; /* end SPECIAL */
765 case 1: /* REGIMM */
766 {
767 op = itype_rt (inst); /* branch condition */
768 switch (op)
769 {
770 case 0: /* BLTZ */
771 case 2: /* BLTZL */
772 case 16: /* BLTZAL */
773 case 18: /* BLTZALL */
774 less_branch:
775 if (read_signed_register (itype_rs (inst)) < 0)
776 pc += mips32_relative_offset (inst) + 4;
777 else
778 pc += 8; /* after the delay slot */
779 break;
780 case 1: /* BGEZ */
781 case 3: /* BGEZL */
782 case 17: /* BGEZAL */
783 case 19: /* BGEZALL */
784 greater_equal_branch:
785 if (read_signed_register (itype_rs (inst)) >= 0)
786 pc += mips32_relative_offset (inst) + 4;
787 else
788 pc += 8; /* after the delay slot */
789 break;
790 /* All of the other instructions in the REGIMM category */
791 default:
792 pc += 4;
793 }
794 }
795 break; /* end REGIMM */
796 case 2: /* J */
797 case 3: /* JAL */
798 {
799 unsigned long reg;
800 reg = jtype_target (inst) << 2;
801 /* Upper four bits get never changed... */
802 pc = reg + ((pc + 4) & 0xf0000000);
803 }
804 break;
805 /* FIXME case JALX : */
806 {
807 unsigned long reg;
808 reg = jtype_target (inst) << 2;
809 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
810 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
811 }
812 break; /* The new PC will be alternate mode */
813 case 4: /* BEQ, BEQL */
814 equal_branch:
815 if (read_signed_register (itype_rs (inst)) ==
816 read_signed_register (itype_rt (inst)))
817 pc += mips32_relative_offset (inst) + 4;
818 else
819 pc += 8;
820 break;
821 case 5: /* BNE, BNEL */
822 neq_branch:
823 if (read_signed_register (itype_rs (inst)) !=
824 read_signed_register (itype_rt (inst)))
825 pc += mips32_relative_offset (inst) + 4;
826 else
827 pc += 8;
828 break;
829 case 6: /* BLEZ, BLEZL */
830 less_zero_branch:
831 if (read_signed_register (itype_rs (inst) <= 0))
832 pc += mips32_relative_offset (inst) + 4;
833 else
834 pc += 8;
835 break;
836 case 7:
837 default:
838 greater_branch: /* BGTZ, BGTZL */
839 if (read_signed_register (itype_rs (inst) > 0))
840 pc += mips32_relative_offset (inst) + 4;
841 else
842 pc += 8;
843 break;
844 } /* switch */
845 } /* else */
846 return pc;
847 } /* mips32_next_pc */
848
849 /* Decoding the next place to set a breakpoint is irregular for the
850 mips 16 variant, but fortunately, there fewer instructions. We have to cope
851 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
852 We dont want to set a single step instruction on the extend instruction
853 either.
854 */
855
856 /* Lots of mips16 instruction formats */
857 /* Predicting jumps requires itype,ritype,i8type
858 and their extensions extItype,extritype,extI8type
859 */
860 enum mips16_inst_fmts
861 {
862 itype, /* 0 immediate 5,10 */
863 ritype, /* 1 5,3,8 */
864 rrtype, /* 2 5,3,3,5 */
865 rritype, /* 3 5,3,3,5 */
866 rrrtype, /* 4 5,3,3,3,2 */
867 rriatype, /* 5 5,3,3,1,4 */
868 shifttype, /* 6 5,3,3,3,2 */
869 i8type, /* 7 5,3,8 */
870 i8movtype, /* 8 5,3,3,5 */
871 i8mov32rtype, /* 9 5,3,5,3 */
872 i64type, /* 10 5,3,8 */
873 ri64type, /* 11 5,3,3,5 */
874 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
875 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
876 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
877 extRRItype, /* 15 5,5,5,5,3,3,5 */
878 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
879 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
880 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
881 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
882 extRi64type, /* 20 5,6,5,5,3,3,5 */
883 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
884 };
885 /* I am heaping all the fields of the formats into one structure and
886 then, only the fields which are involved in instruction extension */
887 struct upk_mips16
888 {
889 CORE_ADDR offset;
890 unsigned int regx; /* Function in i8 type */
891 unsigned int regy;
892 };
893
894
895 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
896 for the bits which make up the immediatate extension. */
897
898 static CORE_ADDR
899 extended_offset (unsigned int extension)
900 {
901 CORE_ADDR value;
902 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
903 value = value << 6;
904 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
905 value = value << 5;
906 value |= extension & 0x01f; /* extract 4:0 */
907 return value;
908 }
909
910 /* Only call this function if you know that this is an extendable
911 instruction, It wont malfunction, but why make excess remote memory references?
912 If the immediate operands get sign extended or somthing, do it after
913 the extension is performed.
914 */
915 /* FIXME: Every one of these cases needs to worry about sign extension
916 when the offset is to be used in relative addressing */
917
918
919 static unsigned int
920 fetch_mips_16 (CORE_ADDR pc)
921 {
922 char buf[8];
923 pc &= 0xfffffffe; /* clear the low order bit */
924 target_read_memory (pc, buf, 2);
925 return extract_unsigned_integer (buf, 2);
926 }
927
928 static void
929 unpack_mips16 (CORE_ADDR pc,
930 unsigned int extension,
931 unsigned int inst,
932 enum mips16_inst_fmts insn_format,
933 struct upk_mips16 *upk)
934 {
935 CORE_ADDR offset;
936 int regx;
937 int regy;
938 switch (insn_format)
939 {
940 case itype:
941 {
942 CORE_ADDR value;
943 if (extension)
944 {
945 value = extended_offset (extension);
946 value = value << 11; /* rom for the original value */
947 value |= inst & 0x7ff; /* eleven bits from instruction */
948 }
949 else
950 {
951 value = inst & 0x7ff;
952 /* FIXME : Consider sign extension */
953 }
954 offset = value;
955 regx = -1;
956 regy = -1;
957 }
958 break;
959 case ritype:
960 case i8type:
961 { /* A register identifier and an offset */
962 /* Most of the fields are the same as I type but the
963 immediate value is of a different length */
964 CORE_ADDR value;
965 if (extension)
966 {
967 value = extended_offset (extension);
968 value = value << 8; /* from the original instruction */
969 value |= inst & 0xff; /* eleven bits from instruction */
970 regx = (extension >> 8) & 0x07; /* or i8 funct */
971 if (value & 0x4000) /* test the sign bit , bit 26 */
972 {
973 value &= ~0x3fff; /* remove the sign bit */
974 value = -value;
975 }
976 }
977 else
978 {
979 value = inst & 0xff; /* 8 bits */
980 regx = (inst >> 8) & 0x07; /* or i8 funct */
981 /* FIXME: Do sign extension , this format needs it */
982 if (value & 0x80) /* THIS CONFUSES ME */
983 {
984 value &= 0xef; /* remove the sign bit */
985 value = -value;
986 }
987 }
988 offset = value;
989 regy = -1;
990 break;
991 }
992 case jalxtype:
993 {
994 unsigned long value;
995 unsigned int nexthalf;
996 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
997 value = value << 16;
998 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
999 value |= nexthalf;
1000 offset = value;
1001 regx = -1;
1002 regy = -1;
1003 break;
1004 }
1005 default:
1006 internal_error (__FILE__, __LINE__,
1007 "bad switch");
1008 }
1009 upk->offset = offset;
1010 upk->regx = regx;
1011 upk->regy = regy;
1012 }
1013
1014
1015 static CORE_ADDR
1016 add_offset_16 (CORE_ADDR pc, int offset)
1017 {
1018 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1019
1020 }
1021
1022 static CORE_ADDR
1023 extended_mips16_next_pc (CORE_ADDR pc,
1024 unsigned int extension,
1025 unsigned int insn)
1026 {
1027 int op = (insn >> 11);
1028 switch (op)
1029 {
1030 case 2: /* Branch */
1031 {
1032 CORE_ADDR offset;
1033 struct upk_mips16 upk;
1034 unpack_mips16 (pc, extension, insn, itype, &upk);
1035 offset = upk.offset;
1036 if (offset & 0x800)
1037 {
1038 offset &= 0xeff;
1039 offset = -offset;
1040 }
1041 pc += (offset << 1) + 2;
1042 break;
1043 }
1044 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1045 {
1046 struct upk_mips16 upk;
1047 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1048 pc = add_offset_16 (pc, upk.offset);
1049 if ((insn >> 10) & 0x01) /* Exchange mode */
1050 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1051 else
1052 pc |= 0x01;
1053 break;
1054 }
1055 case 4: /* beqz */
1056 {
1057 struct upk_mips16 upk;
1058 int reg;
1059 unpack_mips16 (pc, extension, insn, ritype, &upk);
1060 reg = read_signed_register (upk.regx);
1061 if (reg == 0)
1062 pc += (upk.offset << 1) + 2;
1063 else
1064 pc += 2;
1065 break;
1066 }
1067 case 5: /* bnez */
1068 {
1069 struct upk_mips16 upk;
1070 int reg;
1071 unpack_mips16 (pc, extension, insn, ritype, &upk);
1072 reg = read_signed_register (upk.regx);
1073 if (reg != 0)
1074 pc += (upk.offset << 1) + 2;
1075 else
1076 pc += 2;
1077 break;
1078 }
1079 case 12: /* I8 Formats btez btnez */
1080 {
1081 struct upk_mips16 upk;
1082 int reg;
1083 unpack_mips16 (pc, extension, insn, i8type, &upk);
1084 /* upk.regx contains the opcode */
1085 reg = read_signed_register (24); /* Test register is 24 */
1086 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1087 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1088 /* pc = add_offset_16(pc,upk.offset) ; */
1089 pc += (upk.offset << 1) + 2;
1090 else
1091 pc += 2;
1092 break;
1093 }
1094 case 29: /* RR Formats JR, JALR, JALR-RA */
1095 {
1096 struct upk_mips16 upk;
1097 /* upk.fmt = rrtype; */
1098 op = insn & 0x1f;
1099 if (op == 0)
1100 {
1101 int reg;
1102 upk.regx = (insn >> 8) & 0x07;
1103 upk.regy = (insn >> 5) & 0x07;
1104 switch (upk.regy)
1105 {
1106 case 0:
1107 reg = upk.regx;
1108 break;
1109 case 1:
1110 reg = 31;
1111 break; /* Function return instruction */
1112 case 2:
1113 reg = upk.regx;
1114 break;
1115 default:
1116 reg = 31;
1117 break; /* BOGUS Guess */
1118 }
1119 pc = read_signed_register (reg);
1120 }
1121 else
1122 pc += 2;
1123 break;
1124 }
1125 case 30:
1126 /* This is an instruction extension. Fetch the real instruction
1127 (which follows the extension) and decode things based on
1128 that. */
1129 {
1130 pc += 2;
1131 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1132 break;
1133 }
1134 default:
1135 {
1136 pc += 2;
1137 break;
1138 }
1139 }
1140 return pc;
1141 }
1142
1143 CORE_ADDR
1144 mips16_next_pc (CORE_ADDR pc)
1145 {
1146 unsigned int insn = fetch_mips_16 (pc);
1147 return extended_mips16_next_pc (pc, 0, insn);
1148 }
1149
1150 /* The mips_next_pc function supports single_step when the remote
1151 target monitor or stub is not developed enough to do a single_step.
1152 It works by decoding the current instruction and predicting where a
1153 branch will go. This isnt hard because all the data is available.
1154 The MIPS32 and MIPS16 variants are quite different */
1155 CORE_ADDR
1156 mips_next_pc (CORE_ADDR pc)
1157 {
1158 if (pc & 0x01)
1159 return mips16_next_pc (pc);
1160 else
1161 return mips32_next_pc (pc);
1162 }
1163
1164 /* Guaranteed to set fci->saved_regs to some values (it never leaves it
1165 NULL). */
1166
1167 void
1168 mips_find_saved_regs (struct frame_info *fci)
1169 {
1170 int ireg;
1171 CORE_ADDR reg_position;
1172 /* r0 bit means kernel trap */
1173 int kernel_trap;
1174 /* What registers have been saved? Bitmasks. */
1175 unsigned long gen_mask, float_mask;
1176 mips_extra_func_info_t proc_desc;
1177 t_inst inst;
1178
1179 frame_saved_regs_zalloc (fci);
1180
1181 /* If it is the frame for sigtramp, the saved registers are located
1182 in a sigcontext structure somewhere on the stack.
1183 If the stack layout for sigtramp changes we might have to change these
1184 constants and the companion fixup_sigtramp in mdebugread.c */
1185 #ifndef SIGFRAME_BASE
1186 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1187 above the sigtramp frame. */
1188 #define SIGFRAME_BASE MIPS_REGSIZE
1189 /* FIXME! Are these correct?? */
1190 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1191 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1192 #define SIGFRAME_FPREGSAVE_OFF \
1193 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1194 #endif
1195 #ifndef SIGFRAME_REG_SIZE
1196 /* FIXME! Is this correct?? */
1197 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
1198 #endif
1199 if (fci->signal_handler_caller)
1200 {
1201 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1202 {
1203 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1204 + ireg * SIGFRAME_REG_SIZE;
1205 fci->saved_regs[ireg] = reg_position;
1206 }
1207 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1208 {
1209 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1210 + ireg * SIGFRAME_REG_SIZE;
1211 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1212 }
1213 fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1214 return;
1215 }
1216
1217 proc_desc = fci->extra_info->proc_desc;
1218 if (proc_desc == NULL)
1219 /* I'm not sure how/whether this can happen. Normally when we can't
1220 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1221 and set the saved_regs right away. */
1222 return;
1223
1224 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1225 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1226 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1227
1228 if ( /* In any frame other than the innermost or a frame interrupted by
1229 a signal, we assume that all registers have been saved.
1230 This assumes that all register saves in a function happen before
1231 the first function call. */
1232 (fci->next == NULL || fci->next->signal_handler_caller)
1233
1234 /* In a dummy frame we know exactly where things are saved. */
1235 && !PROC_DESC_IS_DUMMY (proc_desc)
1236
1237 /* Don't bother unless we are inside a function prologue. Outside the
1238 prologue, we know where everything is. */
1239
1240 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
1241
1242 /* Not sure exactly what kernel_trap means, but if it means
1243 the kernel saves the registers without a prologue doing it,
1244 we better not examine the prologue to see whether registers
1245 have been saved yet. */
1246 && !kernel_trap)
1247 {
1248 /* We need to figure out whether the registers that the proc_desc
1249 claims are saved have been saved yet. */
1250
1251 CORE_ADDR addr;
1252
1253 /* Bitmasks; set if we have found a save for the register. */
1254 unsigned long gen_save_found = 0;
1255 unsigned long float_save_found = 0;
1256 int instlen;
1257
1258 /* If the address is odd, assume this is MIPS16 code. */
1259 addr = PROC_LOW_ADDR (proc_desc);
1260 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1261
1262 /* Scan through this function's instructions preceding the current
1263 PC, and look for those that save registers. */
1264 while (addr < fci->pc)
1265 {
1266 inst = mips_fetch_instruction (addr);
1267 if (pc_is_mips16 (addr))
1268 mips16_decode_reg_save (inst, &gen_save_found);
1269 else
1270 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1271 addr += instlen;
1272 }
1273 gen_mask = gen_save_found;
1274 float_mask = float_save_found;
1275 }
1276
1277 /* Fill in the offsets for the registers which gen_mask says
1278 were saved. */
1279 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1280 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1281 if (gen_mask & 0x80000000)
1282 {
1283 fci->saved_regs[ireg] = reg_position;
1284 reg_position -= MIPS_SAVED_REGSIZE;
1285 }
1286
1287 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1288 of that normally used by gcc. Therefore, we have to fetch the first
1289 instruction of the function, and if it's an entry instruction that
1290 saves $s0 or $s1, correct their saved addresses. */
1291 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1292 {
1293 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1294 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1295 {
1296 int reg;
1297 int sreg_count = (inst >> 6) & 3;
1298
1299 /* Check if the ra register was pushed on the stack. */
1300 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1301 if (inst & 0x20)
1302 reg_position -= MIPS_SAVED_REGSIZE;
1303
1304 /* Check if the s0 and s1 registers were pushed on the stack. */
1305 for (reg = 16; reg < sreg_count + 16; reg++)
1306 {
1307 fci->saved_regs[reg] = reg_position;
1308 reg_position -= MIPS_SAVED_REGSIZE;
1309 }
1310 }
1311 }
1312
1313 /* Fill in the offsets for the registers which float_mask says
1314 were saved. */
1315 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1316
1317 /* The freg_offset points to where the first *double* register
1318 is saved. So skip to the high-order word. */
1319 if (!GDB_TARGET_IS_MIPS64)
1320 reg_position += MIPS_SAVED_REGSIZE;
1321
1322 /* Fill in the offsets for the float registers which float_mask says
1323 were saved. */
1324 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1325 if (float_mask & 0x80000000)
1326 {
1327 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1328 reg_position -= MIPS_SAVED_REGSIZE;
1329 }
1330
1331 fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
1332 }
1333
1334 static CORE_ADDR
1335 read_next_frame_reg (struct frame_info *fi, int regno)
1336 {
1337 for (; fi; fi = fi->next)
1338 {
1339 /* We have to get the saved sp from the sigcontext
1340 if it is a signal handler frame. */
1341 if (regno == SP_REGNUM && !fi->signal_handler_caller)
1342 return fi->frame;
1343 else
1344 {
1345 if (fi->saved_regs == NULL)
1346 mips_find_saved_regs (fi);
1347 if (fi->saved_regs[regno])
1348 return read_memory_integer (ADDR_BITS_REMOVE (fi->saved_regs[regno]), MIPS_SAVED_REGSIZE);
1349 }
1350 }
1351 return read_signed_register (regno);
1352 }
1353
1354 /* mips_addr_bits_remove - remove useless address bits */
1355
1356 static CORE_ADDR
1357 mips_addr_bits_remove (CORE_ADDR addr)
1358 {
1359 if (GDB_TARGET_IS_MIPS64)
1360 {
1361 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
1362 {
1363 /* This hack is a work-around for existing boards using
1364 PMON, the simulator, and any other 64-bit targets that
1365 doesn't have true 64-bit addressing. On these targets,
1366 the upper 32 bits of addresses are ignored by the
1367 hardware. Thus, the PC or SP are likely to have been
1368 sign extended to all 1s by instruction sequences that
1369 load 32-bit addresses. For example, a typical piece of
1370 code that loads an address is this:
1371 lui $r2, <upper 16 bits>
1372 ori $r2, <lower 16 bits>
1373 But the lui sign-extends the value such that the upper 32
1374 bits may be all 1s. The workaround is simply to mask off
1375 these bits. In the future, gcc may be changed to support
1376 true 64-bit addressing, and this masking will have to be
1377 disabled. */
1378 addr &= (CORE_ADDR) 0xffffffff;
1379 }
1380 }
1381 else if (mips_mask_address_p ())
1382 {
1383 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1384 masking off bits, instead, the actual target should be asking
1385 for the address to be converted to a valid pointer. */
1386 /* Even when GDB is configured for some 32-bit targets
1387 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1388 so CORE_ADDR is 64 bits. So we still have to mask off
1389 useless bits from addresses. */
1390 addr &= (CORE_ADDR) 0xffffffff;
1391 }
1392 return addr;
1393 }
1394
1395 /* mips_software_single_step() is called just before we want to resume
1396 the inferior, if we want to single-step it but there is no hardware
1397 or kernel single-step support (MIPS on Linux for example). We find
1398 the target of the coming instruction and breakpoint it.
1399
1400 single_step is also called just after the inferior stops. If we had
1401 set up a simulated single-step, we undo our damage. */
1402
1403 void
1404 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1405 {
1406 static CORE_ADDR next_pc;
1407 typedef char binsn_quantum[BREAKPOINT_MAX];
1408 static binsn_quantum break_mem;
1409 CORE_ADDR pc;
1410
1411 if (insert_breakpoints_p)
1412 {
1413 pc = read_register (PC_REGNUM);
1414 next_pc = mips_next_pc (pc);
1415
1416 target_insert_breakpoint (next_pc, break_mem);
1417 }
1418 else
1419 target_remove_breakpoint (next_pc, break_mem);
1420 }
1421
1422 static void
1423 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1424 {
1425 CORE_ADDR pc, tmp;
1426
1427 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
1428 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
1429 tmp = mips_skip_stub (pc);
1430 prev->pc = tmp ? tmp : pc;
1431 }
1432
1433
1434 CORE_ADDR
1435 mips_frame_saved_pc (struct frame_info *frame)
1436 {
1437 CORE_ADDR saved_pc;
1438 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
1439 /* We have to get the saved pc from the sigcontext
1440 if it is a signal handler frame. */
1441 int pcreg = frame->signal_handler_caller ? PC_REGNUM
1442 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1443
1444 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1445 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1446 else
1447 saved_pc = read_next_frame_reg (frame, pcreg);
1448
1449 return ADDR_BITS_REMOVE (saved_pc);
1450 }
1451
1452 static struct mips_extra_func_info temp_proc_desc;
1453 static CORE_ADDR temp_saved_regs[NUM_REGS];
1454
1455 /* Set a register's saved stack address in temp_saved_regs. If an address
1456 has already been set for this register, do nothing; this way we will
1457 only recognize the first save of a given register in a function prologue.
1458 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1459
1460 static void
1461 set_reg_offset (int regno, CORE_ADDR offset)
1462 {
1463 if (temp_saved_regs[regno] == 0)
1464 temp_saved_regs[regno] = offset;
1465 }
1466
1467
1468 /* Test whether the PC points to the return instruction at the
1469 end of a function. */
1470
1471 static int
1472 mips_about_to_return (CORE_ADDR pc)
1473 {
1474 if (pc_is_mips16 (pc))
1475 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1476 generates a "jr $ra"; other times it generates code to load
1477 the return address from the stack to an accessible register (such
1478 as $a3), then a "jr" using that register. This second case
1479 is almost impossible to distinguish from an indirect jump
1480 used for switch statements, so we don't even try. */
1481 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1482 else
1483 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1484 }
1485
1486
1487 /* This fencepost looks highly suspicious to me. Removing it also
1488 seems suspicious as it could affect remote debugging across serial
1489 lines. */
1490
1491 static CORE_ADDR
1492 heuristic_proc_start (CORE_ADDR pc)
1493 {
1494 CORE_ADDR start_pc;
1495 CORE_ADDR fence;
1496 int instlen;
1497 int seen_adjsp = 0;
1498
1499 pc = ADDR_BITS_REMOVE (pc);
1500 start_pc = pc;
1501 fence = start_pc - heuristic_fence_post;
1502 if (start_pc == 0)
1503 return 0;
1504
1505 if (heuristic_fence_post == UINT_MAX
1506 || fence < VM_MIN_ADDRESS)
1507 fence = VM_MIN_ADDRESS;
1508
1509 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1510
1511 /* search back for previous return */
1512 for (start_pc -= instlen;; start_pc -= instlen)
1513 if (start_pc < fence)
1514 {
1515 /* It's not clear to me why we reach this point when
1516 stop_soon_quietly, but with this test, at least we
1517 don't print out warnings for every child forked (eg, on
1518 decstation). 22apr93 rich@cygnus.com. */
1519 if (!stop_soon_quietly)
1520 {
1521 static int blurb_printed = 0;
1522
1523 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1524 paddr_nz (pc));
1525
1526 if (!blurb_printed)
1527 {
1528 /* This actually happens frequently in embedded
1529 development, when you first connect to a board
1530 and your stack pointer and pc are nowhere in
1531 particular. This message needs to give people
1532 in that situation enough information to
1533 determine that it's no big deal. */
1534 printf_filtered ("\n\
1535 GDB is unable to find the start of the function at 0x%s\n\
1536 and thus can't determine the size of that function's stack frame.\n\
1537 This means that GDB may be unable to access that stack frame, or\n\
1538 the frames below it.\n\
1539 This problem is most likely caused by an invalid program counter or\n\
1540 stack pointer.\n\
1541 However, if you think GDB should simply search farther back\n\
1542 from 0x%s for code which looks like the beginning of a\n\
1543 function, you can increase the range of the search using the `set\n\
1544 heuristic-fence-post' command.\n",
1545 paddr_nz (pc), paddr_nz (pc));
1546 blurb_printed = 1;
1547 }
1548 }
1549
1550 return 0;
1551 }
1552 else if (pc_is_mips16 (start_pc))
1553 {
1554 unsigned short inst;
1555
1556 /* On MIPS16, any one of the following is likely to be the
1557 start of a function:
1558 entry
1559 addiu sp,-n
1560 daddiu sp,-n
1561 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1562 inst = mips_fetch_instruction (start_pc);
1563 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1564 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1565 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1566 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1567 break;
1568 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1569 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1570 seen_adjsp = 1;
1571 else
1572 seen_adjsp = 0;
1573 }
1574 else if (mips_about_to_return (start_pc))
1575 {
1576 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1577 break;
1578 }
1579
1580 return start_pc;
1581 }
1582
1583 /* Fetch the immediate value from a MIPS16 instruction.
1584 If the previous instruction was an EXTEND, use it to extend
1585 the upper bits of the immediate value. This is a helper function
1586 for mips16_heuristic_proc_desc. */
1587
1588 static int
1589 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1590 unsigned short inst, /* current instruction */
1591 int nbits, /* number of bits in imm field */
1592 int scale, /* scale factor to be applied to imm */
1593 int is_signed) /* is the imm field signed? */
1594 {
1595 int offset;
1596
1597 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1598 {
1599 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1600 if (offset & 0x8000) /* check for negative extend */
1601 offset = 0 - (0x10000 - (offset & 0xffff));
1602 return offset | (inst & 0x1f);
1603 }
1604 else
1605 {
1606 int max_imm = 1 << nbits;
1607 int mask = max_imm - 1;
1608 int sign_bit = max_imm >> 1;
1609
1610 offset = inst & mask;
1611 if (is_signed && (offset & sign_bit))
1612 offset = 0 - (max_imm - offset);
1613 return offset * scale;
1614 }
1615 }
1616
1617
1618 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
1619 stream from start_pc to limit_pc. */
1620
1621 static void
1622 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1623 struct frame_info *next_frame, CORE_ADDR sp)
1624 {
1625 CORE_ADDR cur_pc;
1626 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1627 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1628 unsigned inst = 0; /* current instruction */
1629 unsigned entry_inst = 0; /* the entry instruction */
1630 int reg, offset;
1631
1632 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1633 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1634
1635 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1636 {
1637 /* Save the previous instruction. If it's an EXTEND, we'll extract
1638 the immediate offset extension from it in mips16_get_imm. */
1639 prev_inst = inst;
1640
1641 /* Fetch and decode the instruction. */
1642 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1643 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1644 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1645 {
1646 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1647 if (offset < 0) /* negative stack adjustment? */
1648 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
1649 else
1650 /* Exit loop if a positive stack adjustment is found, which
1651 usually means that the stack cleanup code in the function
1652 epilogue is reached. */
1653 break;
1654 }
1655 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1656 {
1657 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1658 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1659 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1660 set_reg_offset (reg, sp + offset);
1661 }
1662 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1663 {
1664 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1665 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1666 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1667 set_reg_offset (reg, sp + offset);
1668 }
1669 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1670 {
1671 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1672 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1673 set_reg_offset (RA_REGNUM, sp + offset);
1674 }
1675 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1676 {
1677 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1678 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1679 set_reg_offset (RA_REGNUM, sp + offset);
1680 }
1681 else if (inst == 0x673d) /* move $s1, $sp */
1682 {
1683 frame_addr = sp;
1684 PROC_FRAME_REG (&temp_proc_desc) = 17;
1685 }
1686 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1687 {
1688 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1689 frame_addr = sp + offset;
1690 PROC_FRAME_REG (&temp_proc_desc) = 17;
1691 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1692 }
1693 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1694 {
1695 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1696 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1697 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1698 set_reg_offset (reg, frame_addr + offset);
1699 }
1700 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1701 {
1702 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1703 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1704 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1705 set_reg_offset (reg, frame_addr + offset);
1706 }
1707 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1708 entry_inst = inst; /* save for later processing */
1709 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1710 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
1711 }
1712
1713 /* The entry instruction is typically the first instruction in a function,
1714 and it stores registers at offsets relative to the value of the old SP
1715 (before the prologue). But the value of the sp parameter to this
1716 function is the new SP (after the prologue has been executed). So we
1717 can't calculate those offsets until we've seen the entire prologue,
1718 and can calculate what the old SP must have been. */
1719 if (entry_inst != 0)
1720 {
1721 int areg_count = (entry_inst >> 8) & 7;
1722 int sreg_count = (entry_inst >> 6) & 3;
1723
1724 /* The entry instruction always subtracts 32 from the SP. */
1725 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
1726
1727 /* Now we can calculate what the SP must have been at the
1728 start of the function prologue. */
1729 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
1730
1731 /* Check if a0-a3 were saved in the caller's argument save area. */
1732 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1733 {
1734 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1735 set_reg_offset (reg, sp + offset);
1736 offset += MIPS_SAVED_REGSIZE;
1737 }
1738
1739 /* Check if the ra register was pushed on the stack. */
1740 offset = -4;
1741 if (entry_inst & 0x20)
1742 {
1743 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
1744 set_reg_offset (RA_REGNUM, sp + offset);
1745 offset -= MIPS_SAVED_REGSIZE;
1746 }
1747
1748 /* Check if the s0 and s1 registers were pushed on the stack. */
1749 for (reg = 16; reg < sreg_count + 16; reg++)
1750 {
1751 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1752 set_reg_offset (reg, sp + offset);
1753 offset -= MIPS_SAVED_REGSIZE;
1754 }
1755 }
1756 }
1757
1758 static void
1759 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1760 struct frame_info *next_frame, CORE_ADDR sp)
1761 {
1762 CORE_ADDR cur_pc;
1763 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1764 restart:
1765 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
1766 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
1767 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1768 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
1769 {
1770 unsigned long inst, high_word, low_word;
1771 int reg;
1772
1773 /* Fetch the instruction. */
1774 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1775
1776 /* Save some code by pre-extracting some useful fields. */
1777 high_word = (inst >> 16) & 0xffff;
1778 low_word = inst & 0xffff;
1779 reg = high_word & 0x1f;
1780
1781 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1782 || high_word == 0x23bd /* addi $sp,$sp,-i */
1783 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1784 {
1785 if (low_word & 0x8000) /* negative stack adjustment? */
1786 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
1787 else
1788 /* Exit loop if a positive stack adjustment is found, which
1789 usually means that the stack cleanup code in the function
1790 epilogue is reached. */
1791 break;
1792 }
1793 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1794 {
1795 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1796 set_reg_offset (reg, sp + low_word);
1797 }
1798 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1799 {
1800 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
1801 but the register size used is only 32 bits. Make the address
1802 for the saved register point to the lower 32 bits. */
1803 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1804 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
1805 }
1806 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1807 {
1808 /* Old gcc frame, r30 is virtual frame pointer. */
1809 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
1810 frame_addr = sp + low_word;
1811 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1812 {
1813 unsigned alloca_adjust;
1814 PROC_FRAME_REG (&temp_proc_desc) = 30;
1815 frame_addr = read_next_frame_reg (next_frame, 30);
1816 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1817 if (alloca_adjust > 0)
1818 {
1819 /* FP > SP + frame_size. This may be because
1820 * of an alloca or somethings similar.
1821 * Fix sp to "pre-alloca" value, and try again.
1822 */
1823 sp += alloca_adjust;
1824 goto restart;
1825 }
1826 }
1827 }
1828 /* move $30,$sp. With different versions of gas this will be either
1829 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1830 Accept any one of these. */
1831 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1832 {
1833 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1834 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1835 {
1836 unsigned alloca_adjust;
1837 PROC_FRAME_REG (&temp_proc_desc) = 30;
1838 frame_addr = read_next_frame_reg (next_frame, 30);
1839 alloca_adjust = (unsigned) (frame_addr - sp);
1840 if (alloca_adjust > 0)
1841 {
1842 /* FP > SP + frame_size. This may be because
1843 * of an alloca or somethings similar.
1844 * Fix sp to "pre-alloca" value, and try again.
1845 */
1846 sp += alloca_adjust;
1847 goto restart;
1848 }
1849 }
1850 }
1851 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1852 {
1853 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1854 set_reg_offset (reg, frame_addr + low_word);
1855 }
1856 }
1857 }
1858
1859 static mips_extra_func_info_t
1860 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1861 struct frame_info *next_frame)
1862 {
1863 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
1864
1865 if (start_pc == 0)
1866 return NULL;
1867 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
1868 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
1869 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
1870 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
1871 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
1872
1873 if (start_pc + 200 < limit_pc)
1874 limit_pc = start_pc + 200;
1875 if (pc_is_mips16 (start_pc))
1876 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1877 else
1878 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1879 return &temp_proc_desc;
1880 }
1881
1882 static mips_extra_func_info_t
1883 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
1884 {
1885 CORE_ADDR startaddr;
1886 mips_extra_func_info_t proc_desc;
1887 struct block *b = block_for_pc (pc);
1888 struct symbol *sym;
1889
1890 find_pc_partial_function (pc, NULL, &startaddr, NULL);
1891 if (addrptr)
1892 *addrptr = startaddr;
1893 if (b == NULL || PC_IN_CALL_DUMMY (pc, 0, 0))
1894 sym = NULL;
1895 else
1896 {
1897 if (startaddr > BLOCK_START (b))
1898 /* This is the "pathological" case referred to in a comment in
1899 print_frame_info. It might be better to move this check into
1900 symbol reading. */
1901 sym = NULL;
1902 else
1903 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
1904 }
1905
1906 /* If we never found a PDR for this function in symbol reading, then
1907 examine prologues to find the information. */
1908 if (sym)
1909 {
1910 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
1911 if (PROC_FRAME_REG (proc_desc) == -1)
1912 return NULL;
1913 else
1914 return proc_desc;
1915 }
1916 else
1917 return NULL;
1918 }
1919
1920
1921 static mips_extra_func_info_t
1922 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame)
1923 {
1924 mips_extra_func_info_t proc_desc;
1925 CORE_ADDR startaddr;
1926
1927 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
1928
1929 if (proc_desc)
1930 {
1931 /* IF this is the topmost frame AND
1932 * (this proc does not have debugging information OR
1933 * the PC is in the procedure prologue)
1934 * THEN create a "heuristic" proc_desc (by analyzing
1935 * the actual code) to replace the "official" proc_desc.
1936 */
1937 if (next_frame == NULL)
1938 {
1939 struct symtab_and_line val;
1940 struct symbol *proc_symbol =
1941 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
1942
1943 if (proc_symbol)
1944 {
1945 val = find_pc_line (BLOCK_START
1946 (SYMBOL_BLOCK_VALUE (proc_symbol)),
1947 0);
1948 val.pc = val.end ? val.end : pc;
1949 }
1950 if (!proc_symbol || pc < val.pc)
1951 {
1952 mips_extra_func_info_t found_heuristic =
1953 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
1954 pc, next_frame);
1955 if (found_heuristic)
1956 proc_desc = found_heuristic;
1957 }
1958 }
1959 }
1960 else
1961 {
1962 /* Is linked_proc_desc_table really necessary? It only seems to be used
1963 by procedure call dummys. However, the procedures being called ought
1964 to have their own proc_descs, and even if they don't,
1965 heuristic_proc_desc knows how to create them! */
1966
1967 register struct linked_proc_info *link;
1968
1969 for (link = linked_proc_desc_table; link; link = link->next)
1970 if (PROC_LOW_ADDR (&link->info) <= pc
1971 && PROC_HIGH_ADDR (&link->info) > pc)
1972 return &link->info;
1973
1974 if (startaddr == 0)
1975 startaddr = heuristic_proc_start (pc);
1976
1977 proc_desc =
1978 heuristic_proc_desc (startaddr, pc, next_frame);
1979 }
1980 return proc_desc;
1981 }
1982
1983 static CORE_ADDR
1984 get_frame_pointer (struct frame_info *frame,
1985 mips_extra_func_info_t proc_desc)
1986 {
1987 return ADDR_BITS_REMOVE (
1988 read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc)) +
1989 PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc));
1990 }
1991
1992 mips_extra_func_info_t cached_proc_desc;
1993
1994 CORE_ADDR
1995 mips_frame_chain (struct frame_info *frame)
1996 {
1997 mips_extra_func_info_t proc_desc;
1998 CORE_ADDR tmp;
1999 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
2000
2001 if (saved_pc == 0 || inside_entry_file (saved_pc))
2002 return 0;
2003
2004 /* Check if the PC is inside a call stub. If it is, fetch the
2005 PC of the caller of that stub. */
2006 if ((tmp = mips_skip_stub (saved_pc)) != 0)
2007 saved_pc = tmp;
2008
2009 /* Look up the procedure descriptor for this PC. */
2010 proc_desc = find_proc_desc (saved_pc, frame);
2011 if (!proc_desc)
2012 return 0;
2013
2014 cached_proc_desc = proc_desc;
2015
2016 /* If no frame pointer and frame size is zero, we must be at end
2017 of stack (or otherwise hosed). If we don't check frame size,
2018 we loop forever if we see a zero size frame. */
2019 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2020 && PROC_FRAME_OFFSET (proc_desc) == 0
2021 /* The previous frame from a sigtramp frame might be frameless
2022 and have frame size zero. */
2023 && !frame->signal_handler_caller)
2024 return 0;
2025 else
2026 return get_frame_pointer (frame, proc_desc);
2027 }
2028
2029 void
2030 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
2031 {
2032 int regnum;
2033
2034 /* Use proc_desc calculated in frame_chain */
2035 mips_extra_func_info_t proc_desc =
2036 fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next);
2037
2038 fci->extra_info = (struct frame_extra_info *)
2039 frame_obstack_alloc (sizeof (struct frame_extra_info));
2040
2041 fci->saved_regs = NULL;
2042 fci->extra_info->proc_desc =
2043 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2044 if (proc_desc)
2045 {
2046 /* Fixup frame-pointer - only needed for top frame */
2047 /* This may not be quite right, if proc has a real frame register.
2048 Get the value of the frame relative sp, procedure might have been
2049 interrupted by a signal at it's very start. */
2050 if (fci->pc == PROC_LOW_ADDR (proc_desc)
2051 && !PROC_DESC_IS_DUMMY (proc_desc))
2052 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
2053 else
2054 fci->frame = get_frame_pointer (fci->next, proc_desc);
2055
2056 if (proc_desc == &temp_proc_desc)
2057 {
2058 char *name;
2059
2060 /* Do not set the saved registers for a sigtramp frame,
2061 mips_find_saved_registers will do that for us.
2062 We can't use fci->signal_handler_caller, it is not yet set. */
2063 find_pc_partial_function (fci->pc, &name,
2064 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2065 if (!IN_SIGTRAMP (fci->pc, name))
2066 {
2067 frame_saved_regs_zalloc (fci);
2068 memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2069 fci->saved_regs[PC_REGNUM]
2070 = fci->saved_regs[RA_REGNUM];
2071 }
2072 }
2073
2074 /* hack: if argument regs are saved, guess these contain args */
2075 /* assume we can't tell how many args for now */
2076 fci->extra_info->num_args = -1;
2077 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2078 {
2079 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2080 {
2081 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
2082 break;
2083 }
2084 }
2085 }
2086 }
2087
2088 /* MIPS stack frames are almost impenetrable. When execution stops,
2089 we basically have to look at symbol information for the function
2090 that we stopped in, which tells us *which* register (if any) is
2091 the base of the frame pointer, and what offset from that register
2092 the frame itself is at.
2093
2094 This presents a problem when trying to examine a stack in memory
2095 (that isn't executing at the moment), using the "frame" command. We
2096 don't have a PC, nor do we have any registers except SP.
2097
2098 This routine takes two arguments, SP and PC, and tries to make the
2099 cached frames look as if these two arguments defined a frame on the
2100 cache. This allows the rest of info frame to extract the important
2101 arguments without difficulty. */
2102
2103 struct frame_info *
2104 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2105 {
2106 if (argc != 2)
2107 error ("MIPS frame specifications require two arguments: sp and pc");
2108
2109 return create_new_frame (argv[0], argv[1]);
2110 }
2111
2112 /* According to the current ABI, should the type be passed in a
2113 floating-point register (assuming that there is space)? When there
2114 is no FPU, FP are not even considered as possibile candidates for
2115 FP registers and, consequently this returns false - forces FP
2116 arguments into integer registers. */
2117
2118 static int
2119 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2120 {
2121 return ((typecode == TYPE_CODE_FLT
2122 || (MIPS_EABI
2123 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2124 && TYPE_NFIELDS (arg_type) == 1
2125 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2126 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2127 }
2128
2129 /* On o32, argument passing in GPRs depends on the alignment of the type being
2130 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2131
2132 static int
2133 mips_type_needs_double_align (struct type *type)
2134 {
2135 enum type_code typecode = TYPE_CODE (type);
2136
2137 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2138 return 1;
2139 else if (typecode == TYPE_CODE_STRUCT)
2140 {
2141 if (TYPE_NFIELDS (type) < 1)
2142 return 0;
2143 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2144 }
2145 else if (typecode == TYPE_CODE_UNION)
2146 {
2147 int i, n;
2148
2149 n = TYPE_NFIELDS (type);
2150 for (i = 0; i < n; i++)
2151 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2152 return 1;
2153 return 0;
2154 }
2155 return 0;
2156 }
2157
2158 CORE_ADDR
2159 mips_push_arguments (int nargs,
2160 struct value **args,
2161 CORE_ADDR sp,
2162 int struct_return,
2163 CORE_ADDR struct_addr)
2164 {
2165 int argreg;
2166 int float_argreg;
2167 int argnum;
2168 int len = 0;
2169 int stack_offset = 0;
2170
2171 /* Macros to round N up or down to the next A boundary; A must be
2172 a power of two. */
2173 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2174 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2175
2176 /* First ensure that the stack and structure return address (if any)
2177 are properly aligned. The stack has to be at least 64-bit aligned
2178 even on 32-bit machines, because doubles must be 64-bit aligned.
2179 On at least one MIPS variant, stack frames need to be 128-bit
2180 aligned, so we round to this widest known alignment. */
2181 sp = ROUND_DOWN (sp, 16);
2182 struct_addr = ROUND_DOWN (struct_addr, 16);
2183
2184 /* Now make space on the stack for the args. We allocate more
2185 than necessary for EABI, because the first few arguments are
2186 passed in registers, but that's OK. */
2187 for (argnum = 0; argnum < nargs; argnum++)
2188 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), MIPS_STACK_ARGSIZE);
2189 sp -= ROUND_UP (len, 16);
2190
2191 if (mips_debug)
2192 fprintf_unfiltered (gdb_stdlog, "mips_push_arguments: sp=0x%lx allocated %d\n",
2193 (long) sp, ROUND_UP (len, 16));
2194
2195 /* Initialize the integer and float register pointers. */
2196 argreg = A0_REGNUM;
2197 float_argreg = FPA0_REGNUM;
2198
2199 /* the struct_return pointer occupies the first parameter-passing reg */
2200 if (struct_return)
2201 {
2202 if (mips_debug)
2203 fprintf_unfiltered (gdb_stdlog,
2204 "mips_push_arguments: struct_return reg=%d 0x%lx\n",
2205 argreg, (long) struct_addr);
2206 write_register (argreg++, struct_addr);
2207 if (MIPS_REGS_HAVE_HOME_P)
2208 stack_offset += MIPS_STACK_ARGSIZE;
2209 }
2210
2211 /* Now load as many as possible of the first arguments into
2212 registers, and push the rest onto the stack. Loop thru args
2213 from first to last. */
2214 for (argnum = 0; argnum < nargs; argnum++)
2215 {
2216 char *val;
2217 char valbuf[MAX_REGISTER_RAW_SIZE];
2218 struct value *arg = args[argnum];
2219 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2220 int len = TYPE_LENGTH (arg_type);
2221 enum type_code typecode = TYPE_CODE (arg_type);
2222
2223 if (mips_debug)
2224 fprintf_unfiltered (gdb_stdlog,
2225 "mips_push_arguments: %d len=%d type=%d",
2226 argnum + 1, len, (int) typecode);
2227
2228 /* The EABI passes structures that do not fit in a register by
2229 reference. In all other cases, pass the structure by value. */
2230 if (MIPS_EABI
2231 && len > MIPS_SAVED_REGSIZE
2232 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2233 {
2234 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2235 typecode = TYPE_CODE_PTR;
2236 len = MIPS_SAVED_REGSIZE;
2237 val = valbuf;
2238 if (mips_debug)
2239 fprintf_unfiltered (gdb_stdlog, " push");
2240 }
2241 else
2242 val = (char *) VALUE_CONTENTS (arg);
2243
2244 /* 32-bit ABIs always start floating point arguments in an
2245 even-numbered floating point register. Round the FP register
2246 up before the check to see if there are any FP registers
2247 left. Non MIPS_EABI targets also pass the FP in the integer
2248 registers so also round up normal registers. */
2249 if (!FP_REGISTER_DOUBLE
2250 && fp_register_arg_p (typecode, arg_type))
2251 {
2252 if ((float_argreg & 1))
2253 float_argreg++;
2254 }
2255
2256 /* Floating point arguments passed in registers have to be
2257 treated specially. On 32-bit architectures, doubles
2258 are passed in register pairs; the even register gets
2259 the low word, and the odd register gets the high word.
2260 On non-EABI processors, the first two floating point arguments are
2261 also copied to general registers, because MIPS16 functions
2262 don't use float registers for arguments. This duplication of
2263 arguments in general registers can't hurt non-MIPS16 functions
2264 because those registers are normally skipped. */
2265 /* MIPS_EABI squeezes a struct that contains a single floating
2266 point value into an FP register instead of pushing it onto the
2267 stack. */
2268 if (fp_register_arg_p (typecode, arg_type)
2269 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2270 {
2271 if (!FP_REGISTER_DOUBLE && len == 8)
2272 {
2273 int low_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
2274 unsigned long regval;
2275
2276 /* Write the low word of the double to the even register(s). */
2277 regval = extract_unsigned_integer (val + low_offset, 4);
2278 if (mips_debug)
2279 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2280 float_argreg, phex (regval, 4));
2281 write_register (float_argreg++, regval);
2282 if (!MIPS_EABI)
2283 {
2284 if (mips_debug)
2285 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2286 argreg, phex (regval, 4));
2287 write_register (argreg++, regval);
2288 }
2289
2290 /* Write the high word of the double to the odd register(s). */
2291 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2292 if (mips_debug)
2293 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2294 float_argreg, phex (regval, 4));
2295 write_register (float_argreg++, regval);
2296 if (!MIPS_EABI)
2297 {
2298 if (mips_debug)
2299 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2300 argreg, phex (regval, 4));
2301 write_register (argreg++, regval);
2302 }
2303
2304 }
2305 else
2306 {
2307 /* This is a floating point value that fits entirely
2308 in a single register. */
2309 /* On 32 bit ABI's the float_argreg is further adjusted
2310 above to ensure that it is even register aligned. */
2311 LONGEST regval = extract_unsigned_integer (val, len);
2312 if (mips_debug)
2313 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2314 float_argreg, phex (regval, len));
2315 write_register (float_argreg++, regval);
2316 if (!MIPS_EABI)
2317 {
2318 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
2319 registers for each argument. The below is (my
2320 guess) to ensure that the corresponding integer
2321 register has reserved the same space. */
2322 if (mips_debug)
2323 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2324 argreg, phex (regval, len));
2325 write_register (argreg, regval);
2326 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
2327 }
2328 }
2329 /* Reserve space for the FP register. */
2330 if (MIPS_REGS_HAVE_HOME_P)
2331 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
2332 }
2333 else
2334 {
2335 /* Copy the argument to general registers or the stack in
2336 register-sized pieces. Large arguments are split between
2337 registers and stack. */
2338 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2339 are treated specially: Irix cc passes them in registers
2340 where gcc sometimes puts them on the stack. For maximum
2341 compatibility, we will put them in both places. */
2342 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2343 (len % MIPS_SAVED_REGSIZE != 0));
2344 /* Structures should be aligned to eight bytes (even arg registers)
2345 on MIPS_ABI_O32 if their first member has double precision. */
2346 if (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_O32
2347 && mips_type_needs_double_align (arg_type))
2348 {
2349 if ((argreg & 1))
2350 argreg++;
2351 }
2352 /* Note: Floating-point values that didn't fit into an FP
2353 register are only written to memory. */
2354 while (len > 0)
2355 {
2356 /* Rememer if the argument was written to the stack. */
2357 int stack_used_p = 0;
2358 int partial_len = len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
2359
2360 if (mips_debug)
2361 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2362 partial_len);
2363
2364 /* Write this portion of the argument to the stack. */
2365 if (argreg > MIPS_LAST_ARG_REGNUM
2366 || odd_sized_struct
2367 || fp_register_arg_p (typecode, arg_type))
2368 {
2369 /* Should shorter than int integer values be
2370 promoted to int before being stored? */
2371 int longword_offset = 0;
2372 CORE_ADDR addr;
2373 stack_used_p = 1;
2374 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2375 {
2376 if (MIPS_STACK_ARGSIZE == 8 &&
2377 (typecode == TYPE_CODE_INT ||
2378 typecode == TYPE_CODE_PTR ||
2379 typecode == TYPE_CODE_FLT) && len <= 4)
2380 longword_offset = MIPS_STACK_ARGSIZE - len;
2381 else if ((typecode == TYPE_CODE_STRUCT ||
2382 typecode == TYPE_CODE_UNION) &&
2383 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2384 longword_offset = MIPS_STACK_ARGSIZE - len;
2385 }
2386
2387 if (mips_debug)
2388 {
2389 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%lx",
2390 (long) stack_offset);
2391 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%lx",
2392 (long) longword_offset);
2393 }
2394
2395 addr = sp + stack_offset + longword_offset;
2396
2397 if (mips_debug)
2398 {
2399 int i;
2400 fprintf_unfiltered (gdb_stdlog, " @0x%lx ", (long) addr);
2401 for (i = 0; i < partial_len; i++)
2402 {
2403 fprintf_unfiltered (gdb_stdlog, "%02x", val[i] & 0xff);
2404 }
2405 }
2406 write_memory (addr, val, partial_len);
2407 }
2408
2409 /* Note!!! This is NOT an else clause. Odd sized
2410 structs may go thru BOTH paths. Floating point
2411 arguments will not. */
2412 /* Write this portion of the argument to a general
2413 purpose register. */
2414 if (argreg <= MIPS_LAST_ARG_REGNUM
2415 && !fp_register_arg_p (typecode, arg_type))
2416 {
2417 LONGEST regval = extract_unsigned_integer (val, partial_len);
2418
2419 /* A non-floating-point argument being passed in a
2420 general register. If a struct or union, and if
2421 the remaining length is smaller than the register
2422 size, we have to adjust the register value on
2423 big endian targets.
2424
2425 It does not seem to be necessary to do the
2426 same for integral types.
2427
2428 Also don't do this adjustment on EABI and O64
2429 binaries.
2430
2431 cagney/2001-07-23: gdb/179: Also, GCC, when
2432 outputting LE O32 with sizeof (struct) <
2433 MIPS_SAVED_REGSIZE, generates a left shift as
2434 part of storing the argument in a register a
2435 register (the left shift isn't generated when
2436 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
2437 is quite possible that this is GCC contradicting
2438 the LE/O32 ABI, GDB has not been adjusted to
2439 accommodate this. Either someone needs to
2440 demonstrate that the LE/O32 ABI specifies such a
2441 left shift OR this new ABI gets identified as
2442 such and GDB gets tweaked accordingly. */
2443
2444 if (!MIPS_EABI
2445 && MIPS_SAVED_REGSIZE < 8
2446 && TARGET_BYTE_ORDER == BIG_ENDIAN
2447 && partial_len < MIPS_SAVED_REGSIZE
2448 && (typecode == TYPE_CODE_STRUCT ||
2449 typecode == TYPE_CODE_UNION))
2450 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
2451 TARGET_CHAR_BIT);
2452
2453 if (mips_debug)
2454 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2455 argreg,
2456 phex (regval, MIPS_SAVED_REGSIZE));
2457 write_register (argreg, regval);
2458 argreg++;
2459
2460 /* If this is the old ABI, prevent subsequent floating
2461 point arguments from being passed in floating point
2462 registers. */
2463 if (!MIPS_EABI)
2464 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
2465 }
2466
2467 len -= partial_len;
2468 val += partial_len;
2469
2470 /* Compute the the offset into the stack at which we
2471 will copy the next parameter.
2472
2473 In older ABIs, the caller reserved space for
2474 registers that contained arguments. This was loosely
2475 refered to as their "home". Consequently, space is
2476 always allocated.
2477
2478 In the new EABI (and the NABI32), the stack_offset
2479 only needs to be adjusted when it has been used.. */
2480
2481 if (MIPS_REGS_HAVE_HOME_P || stack_used_p)
2482 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
2483 }
2484 }
2485 if (mips_debug)
2486 fprintf_unfiltered (gdb_stdlog, "\n");
2487 }
2488
2489 /* Return adjusted stack pointer. */
2490 return sp;
2491 }
2492
2493 CORE_ADDR
2494 mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
2495 {
2496 /* Set the return address register to point to the entry
2497 point of the program, where a breakpoint lies in wait. */
2498 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
2499 return sp;
2500 }
2501
2502 static void
2503 mips_push_register (CORE_ADDR * sp, int regno)
2504 {
2505 char buffer[MAX_REGISTER_RAW_SIZE];
2506 int regsize;
2507 int offset;
2508 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
2509 {
2510 regsize = MIPS_SAVED_REGSIZE;
2511 offset = (TARGET_BYTE_ORDER == BIG_ENDIAN
2512 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
2513 : 0);
2514 }
2515 else
2516 {
2517 regsize = REGISTER_RAW_SIZE (regno);
2518 offset = 0;
2519 }
2520 *sp -= regsize;
2521 read_register_gen (regno, buffer);
2522 write_memory (*sp, buffer + offset, regsize);
2523 }
2524
2525 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
2526 #define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
2527
2528 void
2529 mips_push_dummy_frame (void)
2530 {
2531 int ireg;
2532 struct linked_proc_info *link = (struct linked_proc_info *)
2533 xmalloc (sizeof (struct linked_proc_info));
2534 mips_extra_func_info_t proc_desc = &link->info;
2535 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
2536 CORE_ADDR old_sp = sp;
2537 link->next = linked_proc_desc_table;
2538 linked_proc_desc_table = link;
2539
2540 /* FIXME! are these correct ? */
2541 #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
2542 #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
2543 #define FLOAT_REG_SAVE_MASK MASK(0,19)
2544 #define FLOAT_SINGLE_REG_SAVE_MASK \
2545 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
2546 /*
2547 * The registers we must save are all those not preserved across
2548 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
2549 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
2550 * and FP Control/Status registers.
2551 *
2552 *
2553 * Dummy frame layout:
2554 * (high memory)
2555 * Saved PC
2556 * Saved MMHI, MMLO, FPC_CSR
2557 * Saved R31
2558 * Saved R28
2559 * ...
2560 * Saved R1
2561 * Saved D18 (i.e. F19, F18)
2562 * ...
2563 * Saved D0 (i.e. F1, F0)
2564 * Argument build area and stack arguments written via mips_push_arguments
2565 * (low memory)
2566 */
2567
2568 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
2569 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
2570 PROC_FRAME_OFFSET (proc_desc) = 0;
2571 PROC_FRAME_ADJUST (proc_desc) = 0;
2572 mips_push_register (&sp, PC_REGNUM);
2573 mips_push_register (&sp, HI_REGNUM);
2574 mips_push_register (&sp, LO_REGNUM);
2575 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
2576
2577 /* Save general CPU registers */
2578 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
2579 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
2580 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
2581 for (ireg = 32; --ireg >= 0;)
2582 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
2583 mips_push_register (&sp, ireg);
2584
2585 /* Save floating point registers starting with high order word */
2586 PROC_FREG_MASK (proc_desc) =
2587 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
2588 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
2589 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
2590 from FP. */
2591 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
2592 for (ireg = 32; --ireg >= 0;)
2593 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
2594 mips_push_register (&sp, ireg + FP0_REGNUM);
2595
2596 /* Update the frame pointer for the call dummy and the stack pointer.
2597 Set the procedure's starting and ending addresses to point to the
2598 call dummy address at the entry point. */
2599 write_register (PUSH_FP_REGNUM, old_sp);
2600 write_register (SP_REGNUM, sp);
2601 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
2602 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
2603 SET_PROC_DESC_IS_DUMMY (proc_desc);
2604 PROC_PC_REG (proc_desc) = RA_REGNUM;
2605 }
2606
2607 void
2608 mips_pop_frame (void)
2609 {
2610 register int regnum;
2611 struct frame_info *frame = get_current_frame ();
2612 CORE_ADDR new_sp = FRAME_FP (frame);
2613
2614 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
2615
2616 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
2617 if (frame->saved_regs == NULL)
2618 mips_find_saved_regs (frame);
2619 for (regnum = 0; regnum < NUM_REGS; regnum++)
2620 {
2621 if (regnum != SP_REGNUM && regnum != PC_REGNUM
2622 && frame->saved_regs[regnum])
2623 write_register (regnum,
2624 read_memory_integer (frame->saved_regs[regnum],
2625 MIPS_SAVED_REGSIZE));
2626 }
2627 write_register (SP_REGNUM, new_sp);
2628 flush_cached_frames ();
2629
2630 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
2631 {
2632 struct linked_proc_info *pi_ptr, *prev_ptr;
2633
2634 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
2635 pi_ptr != NULL;
2636 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
2637 {
2638 if (&pi_ptr->info == proc_desc)
2639 break;
2640 }
2641
2642 if (pi_ptr == NULL)
2643 error ("Can't locate dummy extra frame info\n");
2644
2645 if (prev_ptr != NULL)
2646 prev_ptr->next = pi_ptr->next;
2647 else
2648 linked_proc_desc_table = pi_ptr->next;
2649
2650 xfree (pi_ptr);
2651
2652 write_register (HI_REGNUM,
2653 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
2654 MIPS_SAVED_REGSIZE));
2655 write_register (LO_REGNUM,
2656 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
2657 MIPS_SAVED_REGSIZE));
2658 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
2659 write_register (FCRCS_REGNUM,
2660 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
2661 MIPS_SAVED_REGSIZE));
2662 }
2663 }
2664
2665 static void
2666 mips_print_register (int regnum, int all)
2667 {
2668 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2669
2670 /* Get the data in raw format. */
2671 if (read_relative_register_raw_bytes (regnum, raw_buffer))
2672 {
2673 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
2674 return;
2675 }
2676
2677 /* If an even floating point register, also print as double. */
2678 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
2679 && !((regnum - FP0_REGNUM) & 1))
2680 if (REGISTER_RAW_SIZE (regnum) == 4) /* this would be silly on MIPS64 or N32 (Irix 6) */
2681 {
2682 char dbuffer[2 * MAX_REGISTER_RAW_SIZE];
2683
2684 read_relative_register_raw_bytes (regnum, dbuffer);
2685 read_relative_register_raw_bytes (regnum + 1, dbuffer + MIPS_REGSIZE);
2686 REGISTER_CONVERT_TO_TYPE (regnum, builtin_type_double, dbuffer);
2687
2688 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
2689 val_print (builtin_type_double, dbuffer, 0, 0,
2690 gdb_stdout, 0, 1, 0, Val_pretty_default);
2691 printf_filtered ("); ");
2692 }
2693 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
2694
2695 /* The problem with printing numeric register names (r26, etc.) is that
2696 the user can't use them on input. Probably the best solution is to
2697 fix it so that either the numeric or the funky (a2, etc.) names
2698 are accepted on input. */
2699 if (regnum < MIPS_NUMREGS)
2700 printf_filtered ("(r%d): ", regnum);
2701 else
2702 printf_filtered (": ");
2703
2704 /* If virtual format is floating, print it that way. */
2705 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2706 if (FP_REGISTER_DOUBLE)
2707 { /* show 8-byte floats as float AND double: */
2708 int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
2709
2710 printf_filtered (" (float) ");
2711 val_print (builtin_type_float, raw_buffer + offset, 0, 0,
2712 gdb_stdout, 0, 1, 0, Val_pretty_default);
2713 printf_filtered (", (double) ");
2714 val_print (builtin_type_double, raw_buffer, 0, 0,
2715 gdb_stdout, 0, 1, 0, Val_pretty_default);
2716 }
2717 else
2718 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
2719 gdb_stdout, 0, 1, 0, Val_pretty_default);
2720 /* Else print as integer in hex. */
2721 else
2722 {
2723 int offset;
2724
2725 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2726 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
2727 else
2728 offset = 0;
2729
2730 print_scalar_formatted (raw_buffer + offset,
2731 REGISTER_VIRTUAL_TYPE (regnum),
2732 'x', 0, gdb_stdout);
2733 }
2734 }
2735
2736 /* Replacement for generic do_registers_info.
2737 Print regs in pretty columns. */
2738
2739 static int
2740 do_fp_register_row (int regnum)
2741 { /* do values for FP (float) regs */
2742 char *raw_buffer[2];
2743 char *dbl_buffer;
2744 /* use HI and LO to control the order of combining two flt regs */
2745 int HI = (TARGET_BYTE_ORDER == BIG_ENDIAN);
2746 int LO = (TARGET_BYTE_ORDER != BIG_ENDIAN);
2747 double doub, flt1, flt2; /* doubles extracted from raw hex data */
2748 int inv1, inv2, inv3;
2749
2750 raw_buffer[0] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
2751 raw_buffer[1] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
2752 dbl_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
2753
2754 /* Get the data in raw format. */
2755 if (read_relative_register_raw_bytes (regnum, raw_buffer[HI]))
2756 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
2757 if (REGISTER_RAW_SIZE (regnum) == 4)
2758 {
2759 /* 4-byte registers: we can fit two registers per row. */
2760 /* Also print every pair of 4-byte regs as an 8-byte double. */
2761 if (read_relative_register_raw_bytes (regnum + 1, raw_buffer[LO]))
2762 error ("can't read register %d (%s)",
2763 regnum + 1, REGISTER_NAME (regnum + 1));
2764
2765 /* copy the two floats into one double, and unpack both */
2766 memcpy (dbl_buffer, raw_buffer, 2 * REGISTER_RAW_SIZE (FP0_REGNUM));
2767 flt1 = unpack_double (builtin_type_float, raw_buffer[HI], &inv1);
2768 flt2 = unpack_double (builtin_type_float, raw_buffer[LO], &inv2);
2769 doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
2770
2771 printf_filtered (" %-5s", REGISTER_NAME (regnum));
2772 if (inv1)
2773 printf_filtered (": <invalid float>");
2774 else
2775 printf_filtered ("%-17.9g", flt1);
2776
2777 printf_filtered (" %-5s", REGISTER_NAME (regnum + 1));
2778 if (inv2)
2779 printf_filtered (": <invalid float>");
2780 else
2781 printf_filtered ("%-17.9g", flt2);
2782
2783 printf_filtered (" dbl: ");
2784 if (inv3)
2785 printf_filtered ("<invalid double>");
2786 else
2787 printf_filtered ("%-24.17g", doub);
2788 printf_filtered ("\n");
2789
2790 /* may want to do hex display here (future enhancement) */
2791 regnum += 2;
2792 }
2793 else
2794 { /* eight byte registers: print each one as float AND as double. */
2795 int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
2796
2797 memcpy (dbl_buffer, raw_buffer[HI], 2 * REGISTER_RAW_SIZE (FP0_REGNUM));
2798 flt1 = unpack_double (builtin_type_float,
2799 &raw_buffer[HI][offset], &inv1);
2800 doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
2801
2802 printf_filtered (" %-5s: ", REGISTER_NAME (regnum));
2803 if (inv1)
2804 printf_filtered ("<invalid float>");
2805 else
2806 printf_filtered ("flt: %-17.9g", flt1);
2807
2808 printf_filtered (" dbl: ");
2809 if (inv3)
2810 printf_filtered ("<invalid double>");
2811 else
2812 printf_filtered ("%-24.17g", doub);
2813
2814 printf_filtered ("\n");
2815 /* may want to do hex display here (future enhancement) */
2816 regnum++;
2817 }
2818 return regnum;
2819 }
2820
2821 /* Print a row's worth of GP (int) registers, with name labels above */
2822
2823 static int
2824 do_gp_register_row (int regnum)
2825 {
2826 /* do values for GP (int) regs */
2827 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2828 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
2829 int col, byte;
2830 int start_regnum = regnum;
2831 int numregs = NUM_REGS;
2832
2833
2834 /* For GP registers, we print a separate row of names above the vals */
2835 printf_filtered (" ");
2836 for (col = 0; col < ncols && regnum < numregs; regnum++)
2837 {
2838 if (*REGISTER_NAME (regnum) == '\0')
2839 continue; /* unused register */
2840 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2841 break; /* end the row: reached FP register */
2842 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
2843 REGISTER_NAME (regnum));
2844 col++;
2845 }
2846 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
2847 start_regnum); /* print the R0 to R31 names */
2848
2849 regnum = start_regnum; /* go back to start of row */
2850 /* now print the values in hex, 4 or 8 to the row */
2851 for (col = 0; col < ncols && regnum < numregs; regnum++)
2852 {
2853 if (*REGISTER_NAME (regnum) == '\0')
2854 continue; /* unused register */
2855 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2856 break; /* end row: reached FP register */
2857 /* OK: get the data in raw format. */
2858 if (read_relative_register_raw_bytes (regnum, raw_buffer))
2859 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
2860 /* pad small registers */
2861 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
2862 printf_filtered (" ");
2863 /* Now print the register value in hex, endian order. */
2864 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2865 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
2866 byte < REGISTER_RAW_SIZE (regnum);
2867 byte++)
2868 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
2869 else
2870 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
2871 byte >= 0;
2872 byte--)
2873 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
2874 printf_filtered (" ");
2875 col++;
2876 }
2877 if (col > 0) /* ie. if we actually printed anything... */
2878 printf_filtered ("\n");
2879
2880 return regnum;
2881 }
2882
2883 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
2884
2885 void
2886 mips_do_registers_info (int regnum, int fpregs)
2887 {
2888 if (regnum != -1) /* do one specified register */
2889 {
2890 if (*(REGISTER_NAME (regnum)) == '\0')
2891 error ("Not a valid register for the current processor type");
2892
2893 mips_print_register (regnum, 0);
2894 printf_filtered ("\n");
2895 }
2896 else
2897 /* do all (or most) registers */
2898 {
2899 regnum = 0;
2900 while (regnum < NUM_REGS)
2901 {
2902 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2903 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
2904 regnum = do_fp_register_row (regnum); /* FP regs */
2905 else
2906 regnum += MIPS_NUMREGS; /* skip floating point regs */
2907 else
2908 regnum = do_gp_register_row (regnum); /* GP (int) regs */
2909 }
2910 }
2911 }
2912
2913 /* Return number of args passed to a frame. described by FIP.
2914 Can return -1, meaning no way to tell. */
2915
2916 int
2917 mips_frame_num_args (struct frame_info *frame)
2918 {
2919 return -1;
2920 }
2921
2922 /* Is this a branch with a delay slot? */
2923
2924 static int is_delayed (unsigned long);
2925
2926 static int
2927 is_delayed (unsigned long insn)
2928 {
2929 int i;
2930 for (i = 0; i < NUMOPCODES; ++i)
2931 if (mips_opcodes[i].pinfo != INSN_MACRO
2932 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
2933 break;
2934 return (i < NUMOPCODES
2935 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
2936 | INSN_COND_BRANCH_DELAY
2937 | INSN_COND_BRANCH_LIKELY)));
2938 }
2939
2940 int
2941 mips_step_skips_delay (CORE_ADDR pc)
2942 {
2943 char buf[MIPS_INSTLEN];
2944
2945 /* There is no branch delay slot on MIPS16. */
2946 if (pc_is_mips16 (pc))
2947 return 0;
2948
2949 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
2950 /* If error reading memory, guess that it is not a delayed branch. */
2951 return 0;
2952 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
2953 }
2954
2955
2956 /* Skip the PC past function prologue instructions (32-bit version).
2957 This is a helper function for mips_skip_prologue. */
2958
2959 static CORE_ADDR
2960 mips32_skip_prologue (CORE_ADDR pc)
2961 {
2962 t_inst inst;
2963 CORE_ADDR end_pc;
2964 int seen_sp_adjust = 0;
2965 int load_immediate_bytes = 0;
2966
2967 /* Skip the typical prologue instructions. These are the stack adjustment
2968 instruction and the instructions that save registers on the stack
2969 or in the gcc frame. */
2970 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
2971 {
2972 unsigned long high_word;
2973
2974 inst = mips_fetch_instruction (pc);
2975 high_word = (inst >> 16) & 0xffff;
2976
2977 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
2978 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
2979 seen_sp_adjust = 1;
2980 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
2981 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
2982 seen_sp_adjust = 1;
2983 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
2984 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
2985 && (inst & 0x001F0000)) /* reg != $zero */
2986 continue;
2987
2988 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
2989 continue;
2990 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
2991 /* sx reg,n($s8) */
2992 continue; /* reg != $zero */
2993
2994 /* move $s8,$sp. With different versions of gas this will be either
2995 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
2996 Accept any one of these. */
2997 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2998 continue;
2999
3000 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
3001 continue;
3002 else if (high_word == 0x3c1c) /* lui $gp,n */
3003 continue;
3004 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
3005 continue;
3006 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3007 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
3008 continue;
3009 /* The following instructions load $at or $t0 with an immediate
3010 value in preparation for a stack adjustment via
3011 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
3012 a local variable, so we accept them only before a stack adjustment
3013 instruction was seen. */
3014 else if (!seen_sp_adjust)
3015 {
3016 if (high_word == 0x3c01 || /* lui $at,n */
3017 high_word == 0x3c08) /* lui $t0,n */
3018 {
3019 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
3020 continue;
3021 }
3022 else if (high_word == 0x3421 || /* ori $at,$at,n */
3023 high_word == 0x3508 || /* ori $t0,$t0,n */
3024 high_word == 0x3401 || /* ori $at,$zero,n */
3025 high_word == 0x3408) /* ori $t0,$zero,n */
3026 {
3027 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
3028 continue;
3029 }
3030 else
3031 break;
3032 }
3033 else
3034 break;
3035 }
3036
3037 /* In a frameless function, we might have incorrectly
3038 skipped some load immediate instructions. Undo the skipping
3039 if the load immediate was not followed by a stack adjustment. */
3040 if (load_immediate_bytes && !seen_sp_adjust)
3041 pc -= load_immediate_bytes;
3042 return pc;
3043 }
3044
3045 /* Skip the PC past function prologue instructions (16-bit version).
3046 This is a helper function for mips_skip_prologue. */
3047
3048 static CORE_ADDR
3049 mips16_skip_prologue (CORE_ADDR pc)
3050 {
3051 CORE_ADDR end_pc;
3052 int extend_bytes = 0;
3053 int prev_extend_bytes;
3054
3055 /* Table of instructions likely to be found in a function prologue. */
3056 static struct
3057 {
3058 unsigned short inst;
3059 unsigned short mask;
3060 }
3061 table[] =
3062 {
3063 {
3064 0x6300, 0xff00
3065 }
3066 , /* addiu $sp,offset */
3067 {
3068 0xfb00, 0xff00
3069 }
3070 , /* daddiu $sp,offset */
3071 {
3072 0xd000, 0xf800
3073 }
3074 , /* sw reg,n($sp) */
3075 {
3076 0xf900, 0xff00
3077 }
3078 , /* sd reg,n($sp) */
3079 {
3080 0x6200, 0xff00
3081 }
3082 , /* sw $ra,n($sp) */
3083 {
3084 0xfa00, 0xff00
3085 }
3086 , /* sd $ra,n($sp) */
3087 {
3088 0x673d, 0xffff
3089 }
3090 , /* move $s1,sp */
3091 {
3092 0xd980, 0xff80
3093 }
3094 , /* sw $a0-$a3,n($s1) */
3095 {
3096 0x6704, 0xff1c
3097 }
3098 , /* move reg,$a0-$a3 */
3099 {
3100 0xe809, 0xf81f
3101 }
3102 , /* entry pseudo-op */
3103 {
3104 0x0100, 0xff00
3105 }
3106 , /* addiu $s1,$sp,n */
3107 {
3108 0, 0
3109 } /* end of table marker */
3110 };
3111
3112 /* Skip the typical prologue instructions. These are the stack adjustment
3113 instruction and the instructions that save registers on the stack
3114 or in the gcc frame. */
3115 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
3116 {
3117 unsigned short inst;
3118 int i;
3119
3120 inst = mips_fetch_instruction (pc);
3121
3122 /* Normally we ignore an extend instruction. However, if it is
3123 not followed by a valid prologue instruction, we must adjust
3124 the pc back over the extend so that it won't be considered
3125 part of the prologue. */
3126 if ((inst & 0xf800) == 0xf000) /* extend */
3127 {
3128 extend_bytes = MIPS16_INSTLEN;
3129 continue;
3130 }
3131 prev_extend_bytes = extend_bytes;
3132 extend_bytes = 0;
3133
3134 /* Check for other valid prologue instructions besides extend. */
3135 for (i = 0; table[i].mask != 0; i++)
3136 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
3137 break;
3138 if (table[i].mask != 0) /* it was in table? */
3139 continue; /* ignore it */
3140 else
3141 /* non-prologue */
3142 {
3143 /* Return the current pc, adjusted backwards by 2 if
3144 the previous instruction was an extend. */
3145 return pc - prev_extend_bytes;
3146 }
3147 }
3148 return pc;
3149 }
3150
3151 /* To skip prologues, I use this predicate. Returns either PC itself
3152 if the code at PC does not look like a function prologue; otherwise
3153 returns an address that (if we're lucky) follows the prologue. If
3154 LENIENT, then we must skip everything which is involved in setting
3155 up the frame (it's OK to skip more, just so long as we don't skip
3156 anything which might clobber the registers which are being saved.
3157 We must skip more in the case where part of the prologue is in the
3158 delay slot of a non-prologue instruction). */
3159
3160 CORE_ADDR
3161 mips_skip_prologue (CORE_ADDR pc)
3162 {
3163 /* See if we can determine the end of the prologue via the symbol table.
3164 If so, then return either PC, or the PC after the prologue, whichever
3165 is greater. */
3166
3167 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
3168
3169 if (post_prologue_pc != 0)
3170 return max (pc, post_prologue_pc);
3171
3172 /* Can't determine prologue from the symbol table, need to examine
3173 instructions. */
3174
3175 if (pc_is_mips16 (pc))
3176 return mips16_skip_prologue (pc);
3177 else
3178 return mips32_skip_prologue (pc);
3179 }
3180
3181 /* Determine how a return value is stored within the MIPS register
3182 file, given the return type `valtype'. */
3183
3184 struct return_value_word
3185 {
3186 int len;
3187 int reg;
3188 int reg_offset;
3189 int buf_offset;
3190 };
3191
3192 static void
3193 return_value_location (struct type *valtype,
3194 struct return_value_word *hi,
3195 struct return_value_word *lo)
3196 {
3197 int len = TYPE_LENGTH (valtype);
3198
3199 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
3200 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
3201 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
3202 {
3203 if (!FP_REGISTER_DOUBLE && len == 8)
3204 {
3205 /* We need to break a 64bit float in two 32 bit halves and
3206 spread them across a floating-point register pair. */
3207 lo->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
3208 hi->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 0 : 4;
3209 lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN
3210 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
3211 ? 4 : 0);
3212 hi->reg_offset = lo->reg_offset;
3213 lo->reg = FP0_REGNUM + 0;
3214 hi->reg = FP0_REGNUM + 1;
3215 lo->len = 4;
3216 hi->len = 4;
3217 }
3218 else
3219 {
3220 /* The floating point value fits in a single floating-point
3221 register. */
3222 lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN
3223 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
3224 && len == 4)
3225 ? 4 : 0);
3226 lo->reg = FP0_REGNUM;
3227 lo->len = len;
3228 lo->buf_offset = 0;
3229 hi->len = 0;
3230 hi->reg_offset = 0;
3231 hi->buf_offset = 0;
3232 hi->reg = 0;
3233 }
3234 }
3235 else
3236 {
3237 /* Locate a result possibly spread across two registers. */
3238 int regnum = 2;
3239 lo->reg = regnum + 0;
3240 hi->reg = regnum + 1;
3241 if (TARGET_BYTE_ORDER == BIG_ENDIAN
3242 && len < MIPS_SAVED_REGSIZE)
3243 {
3244 /* "un-left-justify" the value in the low register */
3245 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
3246 lo->len = len;
3247 hi->reg_offset = 0;
3248 hi->len = 0;
3249 }
3250 else if (TARGET_BYTE_ORDER == BIG_ENDIAN
3251 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
3252 && len < MIPS_SAVED_REGSIZE * 2
3253 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
3254 TYPE_CODE (valtype) == TYPE_CODE_UNION))
3255 {
3256 /* "un-left-justify" the value spread across two registers. */
3257 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
3258 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
3259 hi->reg_offset = 0;
3260 hi->len = len - lo->len;
3261 }
3262 else
3263 {
3264 /* Only perform a partial copy of the second register. */
3265 lo->reg_offset = 0;
3266 hi->reg_offset = 0;
3267 if (len > MIPS_SAVED_REGSIZE)
3268 {
3269 lo->len = MIPS_SAVED_REGSIZE;
3270 hi->len = len - MIPS_SAVED_REGSIZE;
3271 }
3272 else
3273 {
3274 lo->len = len;
3275 hi->len = 0;
3276 }
3277 }
3278 if (TARGET_BYTE_ORDER == BIG_ENDIAN
3279 && REGISTER_RAW_SIZE (regnum) == 8
3280 && MIPS_SAVED_REGSIZE == 4)
3281 {
3282 /* Account for the fact that only the least-signficant part
3283 of the register is being used */
3284 lo->reg_offset += 4;
3285 hi->reg_offset += 4;
3286 }
3287 lo->buf_offset = 0;
3288 hi->buf_offset = lo->len;
3289 }
3290 }
3291
3292 /* Given a return value in `regbuf' with a type `valtype', extract and
3293 copy its value into `valbuf'. */
3294
3295 void
3296 mips_extract_return_value (struct type *valtype,
3297 char regbuf[REGISTER_BYTES],
3298 char *valbuf)
3299 {
3300 struct return_value_word lo;
3301 struct return_value_word hi;
3302 return_value_location (valtype, &hi, &lo);
3303
3304 memcpy (valbuf + lo.buf_offset,
3305 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
3306 lo.len);
3307
3308 if (hi.len > 0)
3309 memcpy (valbuf + hi.buf_offset,
3310 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
3311 hi.len);
3312 }
3313
3314 /* Given a return value in `valbuf' with a type `valtype', write it's
3315 value into the appropriate register. */
3316
3317 void
3318 mips_store_return_value (struct type *valtype, char *valbuf)
3319 {
3320 char raw_buffer[MAX_REGISTER_RAW_SIZE];
3321 struct return_value_word lo;
3322 struct return_value_word hi;
3323 return_value_location (valtype, &hi, &lo);
3324
3325 memset (raw_buffer, 0, sizeof (raw_buffer));
3326 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
3327 write_register_bytes (REGISTER_BYTE (lo.reg),
3328 raw_buffer,
3329 REGISTER_RAW_SIZE (lo.reg));
3330
3331 if (hi.len > 0)
3332 {
3333 memset (raw_buffer, 0, sizeof (raw_buffer));
3334 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
3335 write_register_bytes (REGISTER_BYTE (hi.reg),
3336 raw_buffer,
3337 REGISTER_RAW_SIZE (hi.reg));
3338 }
3339 }
3340
3341 /* Exported procedure: Is PC in the signal trampoline code */
3342
3343 int
3344 in_sigtramp (CORE_ADDR pc, char *ignore)
3345 {
3346 if (sigtramp_address == 0)
3347 fixup_sigtramp ();
3348 return (pc >= sigtramp_address && pc < sigtramp_end);
3349 }
3350
3351 /* Root of all "set mips "/"show mips " commands. This will eventually be
3352 used for all MIPS-specific commands. */
3353
3354 static void
3355 show_mips_command (char *args, int from_tty)
3356 {
3357 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
3358 }
3359
3360 static void
3361 set_mips_command (char *args, int from_tty)
3362 {
3363 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
3364 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
3365 }
3366
3367 /* Commands to show/set the MIPS FPU type. */
3368
3369 static void
3370 show_mipsfpu_command (char *args, int from_tty)
3371 {
3372 char *fpu;
3373 switch (MIPS_FPU_TYPE)
3374 {
3375 case MIPS_FPU_SINGLE:
3376 fpu = "single-precision";
3377 break;
3378 case MIPS_FPU_DOUBLE:
3379 fpu = "double-precision";
3380 break;
3381 case MIPS_FPU_NONE:
3382 fpu = "absent (none)";
3383 break;
3384 default:
3385 internal_error (__FILE__, __LINE__, "bad switch");
3386 }
3387 if (mips_fpu_type_auto)
3388 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
3389 fpu);
3390 else
3391 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
3392 fpu);
3393 }
3394
3395
3396 static void
3397 set_mipsfpu_command (char *args, int from_tty)
3398 {
3399 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
3400 show_mipsfpu_command (args, from_tty);
3401 }
3402
3403 static void
3404 set_mipsfpu_single_command (char *args, int from_tty)
3405 {
3406 mips_fpu_type = MIPS_FPU_SINGLE;
3407 mips_fpu_type_auto = 0;
3408 if (GDB_MULTI_ARCH)
3409 {
3410 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
3411 }
3412 }
3413
3414 static void
3415 set_mipsfpu_double_command (char *args, int from_tty)
3416 {
3417 mips_fpu_type = MIPS_FPU_DOUBLE;
3418 mips_fpu_type_auto = 0;
3419 if (GDB_MULTI_ARCH)
3420 {
3421 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
3422 }
3423 }
3424
3425 static void
3426 set_mipsfpu_none_command (char *args, int from_tty)
3427 {
3428 mips_fpu_type = MIPS_FPU_NONE;
3429 mips_fpu_type_auto = 0;
3430 if (GDB_MULTI_ARCH)
3431 {
3432 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
3433 }
3434 }
3435
3436 static void
3437 set_mipsfpu_auto_command (char *args, int from_tty)
3438 {
3439 mips_fpu_type_auto = 1;
3440 }
3441
3442 /* Command to set the processor type. */
3443
3444 void
3445 mips_set_processor_type_command (char *args, int from_tty)
3446 {
3447 int i;
3448
3449 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
3450 {
3451 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
3452 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3453 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
3454
3455 /* Restore the value. */
3456 tmp_mips_processor_type = xstrdup (mips_processor_type);
3457
3458 return;
3459 }
3460
3461 if (!mips_set_processor_type (tmp_mips_processor_type))
3462 {
3463 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
3464 /* Restore its value. */
3465 tmp_mips_processor_type = xstrdup (mips_processor_type);
3466 }
3467 }
3468
3469 static void
3470 mips_show_processor_type_command (char *args, int from_tty)
3471 {
3472 }
3473
3474 /* Modify the actual processor type. */
3475
3476 int
3477 mips_set_processor_type (char *str)
3478 {
3479 int i;
3480
3481 if (str == NULL)
3482 return 0;
3483
3484 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3485 {
3486 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
3487 {
3488 mips_processor_type = str;
3489 mips_processor_reg_names = mips_processor_type_table[i].regnames;
3490 return 1;
3491 /* FIXME tweak fpu flag too */
3492 }
3493 }
3494
3495 return 0;
3496 }
3497
3498 /* Attempt to identify the particular processor model by reading the
3499 processor id. */
3500
3501 char *
3502 mips_read_processor_type (void)
3503 {
3504 CORE_ADDR prid;
3505
3506 prid = read_register (PRID_REGNUM);
3507
3508 if ((prid & ~0xf) == 0x700)
3509 return savestring ("r3041", strlen ("r3041"));
3510
3511 return NULL;
3512 }
3513
3514 /* Just like reinit_frame_cache, but with the right arguments to be
3515 callable as an sfunc. */
3516
3517 static void
3518 reinit_frame_cache_sfunc (char *args, int from_tty,
3519 struct cmd_list_element *c)
3520 {
3521 reinit_frame_cache ();
3522 }
3523
3524 int
3525 gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
3526 {
3527 mips_extra_func_info_t proc_desc;
3528
3529 /* Search for the function containing this address. Set the low bit
3530 of the address when searching, in case we were given an even address
3531 that is the start of a 16-bit function. If we didn't do this,
3532 the search would fail because the symbol table says the function
3533 starts at an odd address, i.e. 1 byte past the given address. */
3534 memaddr = ADDR_BITS_REMOVE (memaddr);
3535 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
3536
3537 /* Make an attempt to determine if this is a 16-bit function. If
3538 the procedure descriptor exists and the address therein is odd,
3539 it's definitely a 16-bit function. Otherwise, we have to just
3540 guess that if the address passed in is odd, it's 16-bits. */
3541 if (proc_desc)
3542 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
3543 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
3544 else
3545 info->mach = pc_is_mips16 (memaddr) ?
3546 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
3547
3548 /* Round down the instruction address to the appropriate boundary. */
3549 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
3550
3551 /* Call the appropriate disassembler based on the target endian-ness. */
3552 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
3553 return print_insn_big_mips (memaddr, info);
3554 else
3555 return print_insn_little_mips (memaddr, info);
3556 }
3557
3558 /* Old-style breakpoint macros.
3559 The IDT board uses an unusual breakpoint value, and sometimes gets
3560 confused when it sees the usual MIPS breakpoint instruction. */
3561
3562 #define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
3563 #define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
3564 #define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
3565 #define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
3566 #define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
3567 #define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
3568 #define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
3569 #define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
3570
3571 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
3572 counter value to determine whether a 16- or 32-bit breakpoint should be
3573 used. It returns a pointer to a string of bytes that encode a breakpoint
3574 instruction, stores the length of the string to *lenptr, and adjusts pc
3575 (if necessary) to point to the actual memory location where the
3576 breakpoint should be inserted. */
3577
3578 unsigned char *
3579 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
3580 {
3581 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
3582 {
3583 if (pc_is_mips16 (*pcptr))
3584 {
3585 static unsigned char mips16_big_breakpoint[] =
3586 MIPS16_BIG_BREAKPOINT;
3587 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
3588 *lenptr = sizeof (mips16_big_breakpoint);
3589 return mips16_big_breakpoint;
3590 }
3591 else
3592 {
3593 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
3594 static unsigned char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
3595 static unsigned char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
3596
3597 *lenptr = sizeof (big_breakpoint);
3598
3599 if (strcmp (target_shortname, "mips") == 0)
3600 return idt_big_breakpoint;
3601 else if (strcmp (target_shortname, "ddb") == 0
3602 || strcmp (target_shortname, "pmon") == 0
3603 || strcmp (target_shortname, "lsi") == 0)
3604 return pmon_big_breakpoint;
3605 else
3606 return big_breakpoint;
3607 }
3608 }
3609 else
3610 {
3611 if (pc_is_mips16 (*pcptr))
3612 {
3613 static unsigned char mips16_little_breakpoint[] =
3614 MIPS16_LITTLE_BREAKPOINT;
3615 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
3616 *lenptr = sizeof (mips16_little_breakpoint);
3617 return mips16_little_breakpoint;
3618 }
3619 else
3620 {
3621 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
3622 static unsigned char pmon_little_breakpoint[] =
3623 PMON_LITTLE_BREAKPOINT;
3624 static unsigned char idt_little_breakpoint[] =
3625 IDT_LITTLE_BREAKPOINT;
3626
3627 *lenptr = sizeof (little_breakpoint);
3628
3629 if (strcmp (target_shortname, "mips") == 0)
3630 return idt_little_breakpoint;
3631 else if (strcmp (target_shortname, "ddb") == 0
3632 || strcmp (target_shortname, "pmon") == 0
3633 || strcmp (target_shortname, "lsi") == 0)
3634 return pmon_little_breakpoint;
3635 else
3636 return little_breakpoint;
3637 }
3638 }
3639 }
3640
3641 /* If PC is in a mips16 call or return stub, return the address of the target
3642 PC, which is either the callee or the caller. There are several
3643 cases which must be handled:
3644
3645 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
3646 target PC is in $31 ($ra).
3647 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
3648 and the target PC is in $2.
3649 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
3650 before the jal instruction, this is effectively a call stub
3651 and the the target PC is in $2. Otherwise this is effectively
3652 a return stub and the target PC is in $18.
3653
3654 See the source code for the stubs in gcc/config/mips/mips16.S for
3655 gory details.
3656
3657 This function implements the SKIP_TRAMPOLINE_CODE macro.
3658 */
3659
3660 CORE_ADDR
3661 mips_skip_stub (CORE_ADDR pc)
3662 {
3663 char *name;
3664 CORE_ADDR start_addr;
3665
3666 /* Find the starting address and name of the function containing the PC. */
3667 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
3668 return 0;
3669
3670 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
3671 target PC is in $31 ($ra). */
3672 if (strcmp (name, "__mips16_ret_sf") == 0
3673 || strcmp (name, "__mips16_ret_df") == 0)
3674 return read_signed_register (RA_REGNUM);
3675
3676 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
3677 {
3678 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
3679 and the target PC is in $2. */
3680 if (name[19] >= '0' && name[19] <= '9')
3681 return read_signed_register (2);
3682
3683 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
3684 before the jal instruction, this is effectively a call stub
3685 and the the target PC is in $2. Otherwise this is effectively
3686 a return stub and the target PC is in $18. */
3687 else if (name[19] == 's' || name[19] == 'd')
3688 {
3689 if (pc == start_addr)
3690 {
3691 /* Check if the target of the stub is a compiler-generated
3692 stub. Such a stub for a function bar might have a name
3693 like __fn_stub_bar, and might look like this:
3694 mfc1 $4,$f13
3695 mfc1 $5,$f12
3696 mfc1 $6,$f15
3697 mfc1 $7,$f14
3698 la $1,bar (becomes a lui/addiu pair)
3699 jr $1
3700 So scan down to the lui/addi and extract the target
3701 address from those two instructions. */
3702
3703 CORE_ADDR target_pc = read_signed_register (2);
3704 t_inst inst;
3705 int i;
3706
3707 /* See if the name of the target function is __fn_stub_*. */
3708 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
3709 return target_pc;
3710 if (strncmp (name, "__fn_stub_", 10) != 0
3711 && strcmp (name, "etext") != 0
3712 && strcmp (name, "_etext") != 0)
3713 return target_pc;
3714
3715 /* Scan through this _fn_stub_ code for the lui/addiu pair.
3716 The limit on the search is arbitrarily set to 20
3717 instructions. FIXME. */
3718 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
3719 {
3720 inst = mips_fetch_instruction (target_pc);
3721 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
3722 pc = (inst << 16) & 0xffff0000; /* high word */
3723 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
3724 return pc | (inst & 0xffff); /* low word */
3725 }
3726
3727 /* Couldn't find the lui/addui pair, so return stub address. */
3728 return target_pc;
3729 }
3730 else
3731 /* This is the 'return' part of a call stub. The return
3732 address is in $r18. */
3733 return read_signed_register (18);
3734 }
3735 }
3736 return 0; /* not a stub */
3737 }
3738
3739
3740 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
3741 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
3742
3743 int
3744 mips_in_call_stub (CORE_ADDR pc, char *name)
3745 {
3746 CORE_ADDR start_addr;
3747
3748 /* Find the starting address of the function containing the PC. If the
3749 caller didn't give us a name, look it up at the same time. */
3750 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
3751 return 0;
3752
3753 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
3754 {
3755 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
3756 if (name[19] >= '0' && name[19] <= '9')
3757 return 1;
3758 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
3759 before the jal instruction, this is effectively a call stub. */
3760 else if (name[19] == 's' || name[19] == 'd')
3761 return pc == start_addr;
3762 }
3763
3764 return 0; /* not a stub */
3765 }
3766
3767
3768 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
3769 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
3770
3771 int
3772 mips_in_return_stub (CORE_ADDR pc, char *name)
3773 {
3774 CORE_ADDR start_addr;
3775
3776 /* Find the starting address of the function containing the PC. */
3777 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
3778 return 0;
3779
3780 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
3781 if (strcmp (name, "__mips16_ret_sf") == 0
3782 || strcmp (name, "__mips16_ret_df") == 0)
3783 return 1;
3784
3785 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
3786 i.e. after the jal instruction, this is effectively a return stub. */
3787 if (strncmp (name, "__mips16_call_stub_", 19) == 0
3788 && (name[19] == 's' || name[19] == 'd')
3789 && pc != start_addr)
3790 return 1;
3791
3792 return 0; /* not a stub */
3793 }
3794
3795
3796 /* Return non-zero if the PC is in a library helper function that should
3797 be ignored. This implements the IGNORE_HELPER_CALL macro. */
3798
3799 int
3800 mips_ignore_helper (CORE_ADDR pc)
3801 {
3802 char *name;
3803
3804 /* Find the starting address and name of the function containing the PC. */
3805 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
3806 return 0;
3807
3808 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
3809 that we want to ignore. */
3810 return (strcmp (name, "__mips16_ret_sf") == 0
3811 || strcmp (name, "__mips16_ret_df") == 0);
3812 }
3813
3814
3815 /* Return a location where we can set a breakpoint that will be hit
3816 when an inferior function call returns. This is normally the
3817 program's entry point. Executables that don't have an entry
3818 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
3819 whose address is the location where the breakpoint should be placed. */
3820
3821 CORE_ADDR
3822 mips_call_dummy_address (void)
3823 {
3824 struct minimal_symbol *sym;
3825
3826 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
3827 if (sym)
3828 return SYMBOL_VALUE_ADDRESS (sym);
3829 else
3830 return entry_point_address ();
3831 }
3832
3833
3834 /* If the current gcc for this target does not produce correct debugging
3835 information for float parameters, both prototyped and unprototyped, then
3836 define this macro. This forces gdb to always assume that floats are
3837 passed as doubles and then converted in the callee.
3838
3839 For the mips chip, it appears that the debug info marks the parameters as
3840 floats regardless of whether the function is prototyped, but the actual
3841 values are passed as doubles for the non-prototyped case and floats for
3842 the prototyped case. Thus we choose to make the non-prototyped case work
3843 for C and break the prototyped case, since the non-prototyped case is
3844 probably much more common. (FIXME). */
3845
3846 static int
3847 mips_coerce_float_to_double (struct type *formal, struct type *actual)
3848 {
3849 return current_language->la_language == language_c;
3850 }
3851
3852 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
3853 the register stored on the stack (32) is different to its real raw
3854 size (64). The below ensures that registers are fetched from the
3855 stack using their ABI size and then stored into the RAW_BUFFER
3856 using their raw size.
3857
3858 The alternative to adding this function would be to add an ABI
3859 macro - REGISTER_STACK_SIZE(). */
3860
3861 static void
3862 mips_get_saved_register (char *raw_buffer,
3863 int *optimized,
3864 CORE_ADDR *addrp,
3865 struct frame_info *frame,
3866 int regnum,
3867 enum lval_type *lval)
3868 {
3869 CORE_ADDR addr;
3870
3871 if (!target_has_registers)
3872 error ("No registers.");
3873
3874 /* Normal systems don't optimize out things with register numbers. */
3875 if (optimized != NULL)
3876 *optimized = 0;
3877 addr = find_saved_register (frame, regnum);
3878 if (addr != 0)
3879 {
3880 if (lval != NULL)
3881 *lval = lval_memory;
3882 if (regnum == SP_REGNUM)
3883 {
3884 if (raw_buffer != NULL)
3885 {
3886 /* Put it back in target format. */
3887 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
3888 (LONGEST) addr);
3889 }
3890 if (addrp != NULL)
3891 *addrp = 0;
3892 return;
3893 }
3894 if (raw_buffer != NULL)
3895 {
3896 LONGEST val;
3897 if (regnum < 32)
3898 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
3899 saved. */
3900 val = read_memory_integer (addr, MIPS_SAVED_REGSIZE);
3901 else
3902 val = read_memory_integer (addr, REGISTER_RAW_SIZE (regnum));
3903 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
3904 }
3905 }
3906 else
3907 {
3908 if (lval != NULL)
3909 *lval = lval_register;
3910 addr = REGISTER_BYTE (regnum);
3911 if (raw_buffer != NULL)
3912 read_register_gen (regnum, raw_buffer);
3913 }
3914 if (addrp != NULL)
3915 *addrp = addr;
3916 }
3917
3918 /* Immediately after a function call, return the saved pc.
3919 Can't always go through the frames for this because on some machines
3920 the new frame is not set up until the new function executes
3921 some instructions. */
3922
3923 static CORE_ADDR
3924 mips_saved_pc_after_call (struct frame_info *frame)
3925 {
3926 return read_signed_register (RA_REGNUM);
3927 }
3928
3929
3930 /* Convert a dbx stab register number (from `r' declaration) to a gdb
3931 REGNUM */
3932
3933 static int
3934 mips_stab_reg_to_regnum (int num)
3935 {
3936 if (num < 32)
3937 return num;
3938 else
3939 return num + FP0_REGNUM - 38;
3940 }
3941
3942 /* Convert a ecoff register number to a gdb REGNUM */
3943
3944 static int
3945 mips_ecoff_reg_to_regnum (int num)
3946 {
3947 if (num < 32)
3948 return num;
3949 else
3950 return num + FP0_REGNUM - 32;
3951 }
3952
3953 /* Convert an integer into an address. By first converting the value
3954 into a pointer and then extracting it signed, the address is
3955 guarenteed to be correctly sign extended. */
3956
3957 static CORE_ADDR
3958 mips_integer_to_address (struct type *type, void *buf)
3959 {
3960 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
3961 LONGEST val = unpack_long (type, buf);
3962 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
3963 return extract_signed_integer (tmp,
3964 TYPE_LENGTH (builtin_type_void_data_ptr));
3965 }
3966
3967 static struct gdbarch *
3968 mips_gdbarch_init (struct gdbarch_info info,
3969 struct gdbarch_list *arches)
3970 {
3971 static LONGEST mips_call_dummy_words[] =
3972 {0};
3973 struct gdbarch *gdbarch;
3974 struct gdbarch_tdep *tdep;
3975 int elf_flags;
3976 enum mips_abi mips_abi;
3977
3978 /* Reset the disassembly info, in case it was set to something
3979 non-default. */
3980 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
3981 tm_print_insn_info.arch = bfd_arch_unknown;
3982 tm_print_insn_info.mach = 0;
3983
3984 /* Extract the elf_flags if available */
3985 if (info.abfd != NULL
3986 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
3987 elf_flags = elf_elfheader (info.abfd)->e_flags;
3988 else
3989 elf_flags = 0;
3990
3991 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
3992 switch ((elf_flags & EF_MIPS_ABI))
3993 {
3994 case E_MIPS_ABI_O32:
3995 mips_abi = MIPS_ABI_O32;
3996 break;
3997 case E_MIPS_ABI_O64:
3998 mips_abi = MIPS_ABI_O64;
3999 break;
4000 case E_MIPS_ABI_EABI32:
4001 mips_abi = MIPS_ABI_EABI32;
4002 break;
4003 case E_MIPS_ABI_EABI64:
4004 mips_abi = MIPS_ABI_EABI64;
4005 break;
4006 default:
4007 if ((elf_flags & EF_MIPS_ABI2))
4008 mips_abi = MIPS_ABI_N32;
4009 else
4010 mips_abi = MIPS_ABI_UNKNOWN;
4011 break;
4012 }
4013
4014 /* Try the architecture for any hint of the corect ABI */
4015 if (mips_abi == MIPS_ABI_UNKNOWN
4016 && info.bfd_arch_info != NULL
4017 && info.bfd_arch_info->arch == bfd_arch_mips)
4018 {
4019 switch (info.bfd_arch_info->mach)
4020 {
4021 case bfd_mach_mips3900:
4022 mips_abi = MIPS_ABI_EABI32;
4023 break;
4024 case bfd_mach_mips4100:
4025 case bfd_mach_mips5000:
4026 mips_abi = MIPS_ABI_EABI64;
4027 break;
4028 case bfd_mach_mips8000:
4029 case bfd_mach_mips10000:
4030 mips_abi = MIPS_ABI_N32;
4031 break;
4032 }
4033 }
4034 #ifdef MIPS_DEFAULT_ABI
4035 if (mips_abi == MIPS_ABI_UNKNOWN)
4036 mips_abi = MIPS_DEFAULT_ABI;
4037 #endif
4038
4039 if (gdbarch_debug)
4040 {
4041 fprintf_unfiltered (gdb_stdlog,
4042 "mips_gdbarch_init: elf_flags = 0x%08x\n",
4043 elf_flags);
4044 fprintf_unfiltered (gdb_stdlog,
4045 "mips_gdbarch_init: mips_abi = %d\n",
4046 mips_abi);
4047 }
4048
4049 /* try to find a pre-existing architecture */
4050 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4051 arches != NULL;
4052 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4053 {
4054 /* MIPS needs to be pedantic about which ABI the object is
4055 using. */
4056 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
4057 continue;
4058 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
4059 continue;
4060 return arches->gdbarch;
4061 }
4062
4063 /* Need a new architecture. Fill in a target specific vector. */
4064 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4065 gdbarch = gdbarch_alloc (&info, tdep);
4066 tdep->elf_flags = elf_flags;
4067
4068 /* Initially set everything according to the ABI. */
4069 set_gdbarch_short_bit (gdbarch, 16);
4070 set_gdbarch_int_bit (gdbarch, 32);
4071 set_gdbarch_float_bit (gdbarch, 32);
4072 set_gdbarch_double_bit (gdbarch, 64);
4073 set_gdbarch_long_double_bit (gdbarch, 64);
4074 tdep->mips_abi = mips_abi;
4075
4076 switch (mips_abi)
4077 {
4078 case MIPS_ABI_O32:
4079 tdep->mips_abi_string = "o32";
4080 tdep->mips_default_saved_regsize = 4;
4081 tdep->mips_default_stack_argsize = 4;
4082 tdep->mips_fp_register_double = 0;
4083 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
4084 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
4085 tdep->mips_regs_have_home_p = 1;
4086 tdep->gdb_target_is_mips64 = 0;
4087 tdep->default_mask_address_p = 0;
4088 set_gdbarch_long_bit (gdbarch, 32);
4089 set_gdbarch_ptr_bit (gdbarch, 32);
4090 set_gdbarch_long_long_bit (gdbarch, 64);
4091 break;
4092 case MIPS_ABI_O64:
4093 tdep->mips_abi_string = "o64";
4094 tdep->mips_default_saved_regsize = 8;
4095 tdep->mips_default_stack_argsize = 8;
4096 tdep->mips_fp_register_double = 1;
4097 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
4098 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
4099 tdep->mips_regs_have_home_p = 1;
4100 tdep->gdb_target_is_mips64 = 1;
4101 tdep->default_mask_address_p = 0;
4102 set_gdbarch_long_bit (gdbarch, 32);
4103 set_gdbarch_ptr_bit (gdbarch, 32);
4104 set_gdbarch_long_long_bit (gdbarch, 64);
4105 break;
4106 case MIPS_ABI_EABI32:
4107 tdep->mips_abi_string = "eabi32";
4108 tdep->mips_default_saved_regsize = 4;
4109 tdep->mips_default_stack_argsize = 4;
4110 tdep->mips_fp_register_double = 0;
4111 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4112 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
4113 tdep->mips_regs_have_home_p = 0;
4114 tdep->gdb_target_is_mips64 = 0;
4115 tdep->default_mask_address_p = 0;
4116 set_gdbarch_long_bit (gdbarch, 32);
4117 set_gdbarch_ptr_bit (gdbarch, 32);
4118 set_gdbarch_long_long_bit (gdbarch, 64);
4119 break;
4120 case MIPS_ABI_EABI64:
4121 tdep->mips_abi_string = "eabi64";
4122 tdep->mips_default_saved_regsize = 8;
4123 tdep->mips_default_stack_argsize = 8;
4124 tdep->mips_fp_register_double = 1;
4125 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4126 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
4127 tdep->mips_regs_have_home_p = 0;
4128 tdep->gdb_target_is_mips64 = 1;
4129 tdep->default_mask_address_p = 0;
4130 set_gdbarch_long_bit (gdbarch, 64);
4131 set_gdbarch_ptr_bit (gdbarch, 64);
4132 set_gdbarch_long_long_bit (gdbarch, 64);
4133 break;
4134 case MIPS_ABI_N32:
4135 tdep->mips_abi_string = "n32";
4136 tdep->mips_default_saved_regsize = 4;
4137 tdep->mips_default_stack_argsize = 8;
4138 tdep->mips_fp_register_double = 1;
4139 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4140 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
4141 tdep->mips_regs_have_home_p = 0;
4142 tdep->gdb_target_is_mips64 = 0;
4143 tdep->default_mask_address_p = 0;
4144 set_gdbarch_long_bit (gdbarch, 32);
4145 set_gdbarch_ptr_bit (gdbarch, 32);
4146 set_gdbarch_long_long_bit (gdbarch, 64);
4147
4148 /* Set up the disassembler info, so that we get the right
4149 register names from libopcodes. */
4150 tm_print_insn_info.flavour = bfd_target_elf_flavour;
4151 tm_print_insn_info.arch = bfd_arch_mips;
4152 if (info.bfd_arch_info != NULL
4153 && info.bfd_arch_info->arch == bfd_arch_mips
4154 && info.bfd_arch_info->mach)
4155 tm_print_insn_info.mach = info.bfd_arch_info->mach;
4156 else
4157 tm_print_insn_info.mach = bfd_mach_mips8000;
4158 break;
4159 default:
4160 tdep->mips_abi_string = "default";
4161 tdep->mips_default_saved_regsize = MIPS_REGSIZE;
4162 tdep->mips_default_stack_argsize = MIPS_REGSIZE;
4163 tdep->mips_fp_register_double = (REGISTER_VIRTUAL_SIZE (FP0_REGNUM) == 8);
4164 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4165 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
4166 tdep->mips_regs_have_home_p = 1;
4167 tdep->gdb_target_is_mips64 = 0;
4168 tdep->default_mask_address_p = 0;
4169 set_gdbarch_long_bit (gdbarch, 32);
4170 set_gdbarch_ptr_bit (gdbarch, 32);
4171 set_gdbarch_long_long_bit (gdbarch, 64);
4172 break;
4173 }
4174
4175 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
4176 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
4177 comment:
4178
4179 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
4180 flag in object files because to do so would make it impossible to
4181 link with libraries compiled without "-gp32". This is
4182 unnecessarily restrictive.
4183
4184 We could solve this problem by adding "-gp32" multilibs to gcc,
4185 but to set this flag before gcc is built with such multilibs will
4186 break too many systems.''
4187
4188 But even more unhelpfully, the default linker output target for
4189 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
4190 for 64-bit programs - you need to change the ABI to change this,
4191 and not all gcc targets support that currently. Therefore using
4192 this flag to detect 32-bit mode would do the wrong thing given
4193 the current gcc - it would make GDB treat these 64-bit programs
4194 as 32-bit programs by default. */
4195
4196 /* enable/disable the MIPS FPU */
4197 if (!mips_fpu_type_auto)
4198 tdep->mips_fpu_type = mips_fpu_type;
4199 else if (info.bfd_arch_info != NULL
4200 && info.bfd_arch_info->arch == bfd_arch_mips)
4201 switch (info.bfd_arch_info->mach)
4202 {
4203 case bfd_mach_mips3900:
4204 case bfd_mach_mips4100:
4205 case bfd_mach_mips4111:
4206 tdep->mips_fpu_type = MIPS_FPU_NONE;
4207 break;
4208 case bfd_mach_mips4650:
4209 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
4210 break;
4211 default:
4212 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
4213 break;
4214 }
4215 else
4216 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
4217
4218 /* MIPS version of register names. NOTE: At present the MIPS
4219 register name management is part way between the old -
4220 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
4221 Further work on it is required. */
4222 set_gdbarch_register_name (gdbarch, mips_register_name);
4223 set_gdbarch_read_pc (gdbarch, mips_read_pc);
4224 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
4225 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
4226 set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
4227 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
4228 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
4229
4230 /* Add/remove bits from an address. The MIPS needs be careful to
4231 ensure that all 32 bit addresses are sign extended to 64 bits. */
4232 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
4233
4234 /* There's a mess in stack frame creation. See comments in
4235 blockframe.c near reference to INIT_FRAME_PC_FIRST. */
4236 set_gdbarch_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
4237 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
4238
4239 /* Map debug register numbers onto internal register numbers. */
4240 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
4241 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_ecoff_reg_to_regnum);
4242
4243 /* Initialize a frame */
4244 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
4245
4246 /* MIPS version of CALL_DUMMY */
4247
4248 set_gdbarch_call_dummy_p (gdbarch, 1);
4249 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
4250 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
4251 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
4252 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
4253 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
4254 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
4255 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
4256 set_gdbarch_call_dummy_length (gdbarch, 0);
4257 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
4258 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
4259 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
4260 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
4261 set_gdbarch_push_arguments (gdbarch, mips_push_arguments);
4262 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
4263 set_gdbarch_coerce_float_to_double (gdbarch, mips_coerce_float_to_double);
4264
4265 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
4266 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
4267
4268 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4269 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
4270 set_gdbarch_decr_pc_after_break (gdbarch, 0);
4271 set_gdbarch_ieee_float (gdbarch, 1);
4272
4273 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
4274 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
4275
4276 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
4277 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
4278 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
4279 return gdbarch;
4280 }
4281
4282 static void
4283 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
4284 {
4285 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4286 if (tdep != NULL)
4287 {
4288 int ef_mips_arch;
4289 int ef_mips_32bitmode;
4290 /* determine the ISA */
4291 switch (tdep->elf_flags & EF_MIPS_ARCH)
4292 {
4293 case E_MIPS_ARCH_1:
4294 ef_mips_arch = 1;
4295 break;
4296 case E_MIPS_ARCH_2:
4297 ef_mips_arch = 2;
4298 break;
4299 case E_MIPS_ARCH_3:
4300 ef_mips_arch = 3;
4301 break;
4302 case E_MIPS_ARCH_4:
4303 ef_mips_arch = 4;
4304 break;
4305 default:
4306 ef_mips_arch = 0;
4307 break;
4308 }
4309 /* determine the size of a pointer */
4310 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4311 fprintf_unfiltered (file,
4312 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
4313 tdep->elf_flags);
4314 fprintf_unfiltered (file,
4315 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
4316 ef_mips_32bitmode);
4317 fprintf_unfiltered (file,
4318 "mips_dump_tdep: ef_mips_arch = %d\n",
4319 ef_mips_arch);
4320 fprintf_unfiltered (file,
4321 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
4322 tdep->mips_abi,
4323 tdep->mips_abi_string);
4324 fprintf_unfiltered (file,
4325 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
4326 mips_mask_address_p (),
4327 tdep->default_mask_address_p);
4328 }
4329 fprintf_unfiltered (file,
4330 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
4331 FP_REGISTER_DOUBLE);
4332 fprintf_unfiltered (file,
4333 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
4334 MIPS_DEFAULT_FPU_TYPE,
4335 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
4336 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
4337 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
4338 : "???"));
4339 fprintf_unfiltered (file,
4340 "mips_dump_tdep: MIPS_EABI = %d\n",
4341 MIPS_EABI);
4342 fprintf_unfiltered (file,
4343 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
4344 MIPS_LAST_FP_ARG_REGNUM,
4345 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
4346 fprintf_unfiltered (file,
4347 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
4348 MIPS_FPU_TYPE,
4349 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
4350 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
4351 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
4352 : "???"));
4353 fprintf_unfiltered (file,
4354 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
4355 MIPS_DEFAULT_SAVED_REGSIZE);
4356 fprintf_unfiltered (file,
4357 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
4358 FP_REGISTER_DOUBLE);
4359 fprintf_unfiltered (file,
4360 "mips_dump_tdep: MIPS_REGS_HAVE_HOME_P = %d\n",
4361 MIPS_REGS_HAVE_HOME_P);
4362 fprintf_unfiltered (file,
4363 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
4364 MIPS_DEFAULT_STACK_ARGSIZE);
4365 fprintf_unfiltered (file,
4366 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
4367 MIPS_STACK_ARGSIZE);
4368 fprintf_unfiltered (file,
4369 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
4370 MIPS_REGSIZE);
4371 fprintf_unfiltered (file,
4372 "mips_dump_tdep: A0_REGNUM = %d\n",
4373 A0_REGNUM);
4374 fprintf_unfiltered (file,
4375 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
4376 XSTRING (ADDR_BITS_REMOVE(ADDR)));
4377 fprintf_unfiltered (file,
4378 "mips_dump_tdep: ATTACH_DETACH # %s\n",
4379 XSTRING (ATTACH_DETACH));
4380 fprintf_unfiltered (file,
4381 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
4382 BADVADDR_REGNUM);
4383 fprintf_unfiltered (file,
4384 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
4385 fprintf_unfiltered (file,
4386 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
4387 CAUSE_REGNUM);
4388 fprintf_unfiltered (file,
4389 "mips_dump_tdep: CPLUS_MARKER = %c\n",
4390 CPLUS_MARKER);
4391 fprintf_unfiltered (file,
4392 "mips_dump_tdep: DEFAULT_MIPS_TYPE = %s\n",
4393 DEFAULT_MIPS_TYPE);
4394 fprintf_unfiltered (file,
4395 "mips_dump_tdep: DO_REGISTERS_INFO # %s\n",
4396 XSTRING (DO_REGISTERS_INFO));
4397 fprintf_unfiltered (file,
4398 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
4399 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
4400 fprintf_unfiltered (file,
4401 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
4402 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
4403 fprintf_unfiltered (file,
4404 "mips_dump_tdep: ELF_MAKE_MSYMBOL_SPECIAL # %s\n",
4405 XSTRING (ELF_MAKE_MSYMBOL_SPECIAL (SYM, MSYM)));
4406 fprintf_unfiltered (file,
4407 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
4408 FCRCS_REGNUM);
4409 fprintf_unfiltered (file,
4410 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
4411 FCRIR_REGNUM);
4412 fprintf_unfiltered (file,
4413 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
4414 FIRST_EMBED_REGNUM);
4415 fprintf_unfiltered (file,
4416 "mips_dump_tdep: FPA0_REGNUM = %d\n",
4417 FPA0_REGNUM);
4418 fprintf_unfiltered (file,
4419 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
4420 GDB_TARGET_IS_MIPS64);
4421 fprintf_unfiltered (file,
4422 "mips_dump_tdep: GDB_TARGET_MASK_DISAS_PC # %s\n",
4423 XSTRING (GDB_TARGET_MASK_DISAS_PC (PC)));
4424 fprintf_unfiltered (file,
4425 "mips_dump_tdep: GDB_TARGET_UNMASK_DISAS_PC # %s\n",
4426 XSTRING (GDB_TARGET_UNMASK_DISAS_PC (PC)));
4427 fprintf_unfiltered (file,
4428 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
4429 GEN_REG_SAVE_MASK);
4430 fprintf_unfiltered (file,
4431 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
4432 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
4433 fprintf_unfiltered (file,
4434 "mips_dump_tdep: HI_REGNUM = %d\n",
4435 HI_REGNUM);
4436 fprintf_unfiltered (file,
4437 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
4438 fprintf_unfiltered (file,
4439 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
4440 fprintf_unfiltered (file,
4441 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
4442 XSTRING (IGNORE_HELPER_CALL (PC)));
4443 fprintf_unfiltered (file,
4444 "mips_dump_tdep: IN_SIGTRAMP # %s\n",
4445 XSTRING (IN_SIGTRAMP (PC, NAME)));
4446 fprintf_unfiltered (file,
4447 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
4448 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
4449 fprintf_unfiltered (file,
4450 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
4451 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
4452 fprintf_unfiltered (file,
4453 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
4454 fprintf_unfiltered (file,
4455 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
4456 LAST_EMBED_REGNUM);
4457 fprintf_unfiltered (file,
4458 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
4459 fprintf_unfiltered (file,
4460 "mips_dump_tdep: LO_REGNUM = %d\n",
4461 LO_REGNUM);
4462 #ifdef MACHINE_CPROC_FP_OFFSET
4463 fprintf_unfiltered (file,
4464 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
4465 MACHINE_CPROC_FP_OFFSET);
4466 #endif
4467 #ifdef MACHINE_CPROC_PC_OFFSET
4468 fprintf_unfiltered (file,
4469 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
4470 MACHINE_CPROC_PC_OFFSET);
4471 #endif
4472 #ifdef MACHINE_CPROC_SP_OFFSET
4473 fprintf_unfiltered (file,
4474 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
4475 MACHINE_CPROC_SP_OFFSET);
4476 #endif
4477 fprintf_unfiltered (file,
4478 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
4479 fprintf_unfiltered (file,
4480 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
4481 fprintf_unfiltered (file,
4482 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
4483 MIPS16_INSTLEN);
4484 fprintf_unfiltered (file,
4485 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
4486 fprintf_unfiltered (file,
4487 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
4488 fprintf_unfiltered (file,
4489 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
4490 fprintf_unfiltered (file,
4491 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
4492 MIPS_INSTLEN);
4493 fprintf_unfiltered (file,
4494 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
4495 MIPS_LAST_ARG_REGNUM,
4496 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
4497 fprintf_unfiltered (file,
4498 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
4499 MIPS_NUMREGS);
4500 fprintf_unfiltered (file,
4501 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
4502 fprintf_unfiltered (file,
4503 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
4504 MIPS_SAVED_REGSIZE);
4505 fprintf_unfiltered (file,
4506 "mips_dump_tdep: MSYMBOL_IS_SPECIAL = function?\n");
4507 fprintf_unfiltered (file,
4508 "mips_dump_tdep: MSYMBOL_SIZE # %s\n",
4509 XSTRING (MSYMBOL_SIZE (MSYM)));
4510 fprintf_unfiltered (file,
4511 "mips_dump_tdep: OP_LDFPR = used?\n");
4512 fprintf_unfiltered (file,
4513 "mips_dump_tdep: OP_LDGPR = used?\n");
4514 fprintf_unfiltered (file,
4515 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
4516 fprintf_unfiltered (file,
4517 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
4518 fprintf_unfiltered (file,
4519 "mips_dump_tdep: PRID_REGNUM = %d\n",
4520 PRID_REGNUM);
4521 fprintf_unfiltered (file,
4522 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
4523 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
4524 fprintf_unfiltered (file,
4525 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
4526 fprintf_unfiltered (file,
4527 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
4528 fprintf_unfiltered (file,
4529 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
4530 fprintf_unfiltered (file,
4531 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
4532 fprintf_unfiltered (file,
4533 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
4534 fprintf_unfiltered (file,
4535 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
4536 fprintf_unfiltered (file,
4537 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
4538 fprintf_unfiltered (file,
4539 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
4540 fprintf_unfiltered (file,
4541 "mips_dump_tdep: PROC_PC_REG = function?\n");
4542 fprintf_unfiltered (file,
4543 "mips_dump_tdep: PROC_REG_MASK = function?\n");
4544 fprintf_unfiltered (file,
4545 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
4546 fprintf_unfiltered (file,
4547 "mips_dump_tdep: PROC_SYMBOL = function?\n");
4548 fprintf_unfiltered (file,
4549 "mips_dump_tdep: PS_REGNUM = %d\n",
4550 PS_REGNUM);
4551 fprintf_unfiltered (file,
4552 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
4553 PUSH_FP_REGNUM);
4554 fprintf_unfiltered (file,
4555 "mips_dump_tdep: RA_REGNUM = %d\n",
4556 RA_REGNUM);
4557 fprintf_unfiltered (file,
4558 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
4559 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
4560 fprintf_unfiltered (file,
4561 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
4562 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
4563 fprintf_unfiltered (file,
4564 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
4565 fprintf_unfiltered (file,
4566 "mips_dump_tdep: ROUND_DOWN = function?\n");
4567 fprintf_unfiltered (file,
4568 "mips_dump_tdep: ROUND_UP = function?\n");
4569 #ifdef SAVED_BYTES
4570 fprintf_unfiltered (file,
4571 "mips_dump_tdep: SAVED_BYTES = %d\n",
4572 SAVED_BYTES);
4573 #endif
4574 #ifdef SAVED_FP
4575 fprintf_unfiltered (file,
4576 "mips_dump_tdep: SAVED_FP = %d\n",
4577 SAVED_FP);
4578 #endif
4579 #ifdef SAVED_PC
4580 fprintf_unfiltered (file,
4581 "mips_dump_tdep: SAVED_PC = %d\n",
4582 SAVED_PC);
4583 #endif
4584 fprintf_unfiltered (file,
4585 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
4586 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
4587 fprintf_unfiltered (file,
4588 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
4589 fprintf_unfiltered (file,
4590 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
4591 SIGFRAME_BASE);
4592 fprintf_unfiltered (file,
4593 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
4594 SIGFRAME_FPREGSAVE_OFF);
4595 fprintf_unfiltered (file,
4596 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
4597 SIGFRAME_PC_OFF);
4598 fprintf_unfiltered (file,
4599 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
4600 SIGFRAME_REGSAVE_OFF);
4601 fprintf_unfiltered (file,
4602 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
4603 SIGFRAME_REG_SIZE);
4604 fprintf_unfiltered (file,
4605 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
4606 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
4607 fprintf_unfiltered (file,
4608 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
4609 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
4610 fprintf_unfiltered (file,
4611 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
4612 SOFTWARE_SINGLE_STEP_P ());
4613 fprintf_unfiltered (file,
4614 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
4615 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
4616 #ifdef STACK_END_ADDR
4617 fprintf_unfiltered (file,
4618 "mips_dump_tdep: STACK_END_ADDR = %d\n",
4619 STACK_END_ADDR);
4620 #endif
4621 fprintf_unfiltered (file,
4622 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
4623 XSTRING (STEP_SKIPS_DELAY (PC)));
4624 fprintf_unfiltered (file,
4625 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
4626 STEP_SKIPS_DELAY_P);
4627 fprintf_unfiltered (file,
4628 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
4629 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
4630 fprintf_unfiltered (file,
4631 "mips_dump_tdep: T9_REGNUM = %d\n",
4632 T9_REGNUM);
4633 fprintf_unfiltered (file,
4634 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
4635 fprintf_unfiltered (file,
4636 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
4637 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
4638 fprintf_unfiltered (file,
4639 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
4640 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
4641 fprintf_unfiltered (file,
4642 "mips_dump_tdep: TARGET_MIPS = used?\n");
4643 fprintf_unfiltered (file,
4644 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
4645 XSTRING (TM_PRINT_INSN_MACH));
4646 #ifdef TRACE_CLEAR
4647 fprintf_unfiltered (file,
4648 "mips_dump_tdep: TRACE_CLEAR # %s\n",
4649 XSTRING (TRACE_CLEAR (THREAD, STATE)));
4650 #endif
4651 #ifdef TRACE_FLAVOR
4652 fprintf_unfiltered (file,
4653 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
4654 TRACE_FLAVOR);
4655 #endif
4656 #ifdef TRACE_FLAVOR_SIZE
4657 fprintf_unfiltered (file,
4658 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
4659 TRACE_FLAVOR_SIZE);
4660 #endif
4661 #ifdef TRACE_SET
4662 fprintf_unfiltered (file,
4663 "mips_dump_tdep: TRACE_SET # %s\n",
4664 XSTRING (TRACE_SET (X,STATE)));
4665 #endif
4666 fprintf_unfiltered (file,
4667 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
4668 #ifdef UNUSED_REGNUM
4669 fprintf_unfiltered (file,
4670 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
4671 UNUSED_REGNUM);
4672 #endif
4673 fprintf_unfiltered (file,
4674 "mips_dump_tdep: V0_REGNUM = %d\n",
4675 V0_REGNUM);
4676 fprintf_unfiltered (file,
4677 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
4678 (long) VM_MIN_ADDRESS);
4679 #ifdef VX_NUM_REGS
4680 fprintf_unfiltered (file,
4681 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
4682 VX_NUM_REGS);
4683 #endif
4684 fprintf_unfiltered (file,
4685 "mips_dump_tdep: ZERO_REGNUM = %d\n",
4686 ZERO_REGNUM);
4687 fprintf_unfiltered (file,
4688 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
4689 _PROC_MAGIC_);
4690 }
4691
4692 void
4693 _initialize_mips_tdep (void)
4694 {
4695 static struct cmd_list_element *mipsfpulist = NULL;
4696 struct cmd_list_element *c;
4697
4698 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
4699 if (!tm_print_insn) /* Someone may have already set it */
4700 tm_print_insn = gdb_print_insn_mips;
4701
4702 /* Add root prefix command for all "set mips"/"show mips" commands */
4703 add_prefix_cmd ("mips", no_class, set_mips_command,
4704 "Various MIPS specific commands.",
4705 &setmipscmdlist, "set mips ", 0, &setlist);
4706
4707 add_prefix_cmd ("mips", no_class, show_mips_command,
4708 "Various MIPS specific commands.",
4709 &showmipscmdlist, "show mips ", 0, &showlist);
4710
4711 /* Allow the user to override the saved register size. */
4712 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
4713 class_obscure,
4714 size_enums,
4715 &mips_saved_regsize_string, "\
4716 Set size of general purpose registers saved on the stack.\n\
4717 This option can be set to one of:\n\
4718 32 - Force GDB to treat saved GP registers as 32-bit\n\
4719 64 - Force GDB to treat saved GP registers as 64-bit\n\
4720 auto - Allow GDB to use the target's default setting or autodetect the\n\
4721 saved GP register size from information contained in the executable.\n\
4722 (default: auto)",
4723 &setmipscmdlist),
4724 &showmipscmdlist);
4725
4726 /* Allow the user to override the argument stack size. */
4727 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
4728 class_obscure,
4729 size_enums,
4730 &mips_stack_argsize_string, "\
4731 Set the amount of stack space reserved for each argument.\n\
4732 This option can be set to one of:\n\
4733 32 - Force GDB to allocate 32-bit chunks per argument\n\
4734 64 - Force GDB to allocate 64-bit chunks per argument\n\
4735 auto - Allow GDB to determine the correct setting from the current\n\
4736 target and executable (default)",
4737 &setmipscmdlist),
4738 &showmipscmdlist);
4739
4740 /* Let the user turn off floating point and set the fence post for
4741 heuristic_proc_start. */
4742
4743 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
4744 "Set use of MIPS floating-point coprocessor.",
4745 &mipsfpulist, "set mipsfpu ", 0, &setlist);
4746 add_cmd ("single", class_support, set_mipsfpu_single_command,
4747 "Select single-precision MIPS floating-point coprocessor.",
4748 &mipsfpulist);
4749 add_cmd ("double", class_support, set_mipsfpu_double_command,
4750 "Select double-precision MIPS floating-point coprocessor.",
4751 &mipsfpulist);
4752 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
4753 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
4754 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
4755 add_cmd ("none", class_support, set_mipsfpu_none_command,
4756 "Select no MIPS floating-point coprocessor.",
4757 &mipsfpulist);
4758 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
4759 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
4760 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
4761 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
4762 "Select MIPS floating-point coprocessor automatically.",
4763 &mipsfpulist);
4764 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
4765 "Show current use of MIPS floating-point coprocessor target.",
4766 &showlist);
4767
4768 #if !GDB_MULTI_ARCH
4769 c = add_set_cmd ("processor", class_support, var_string_noescape,
4770 (char *) &tmp_mips_processor_type,
4771 "Set the type of MIPS processor in use.\n\
4772 Set this to be able to access processor-type-specific registers.\n\
4773 ",
4774 &setlist);
4775 c->function.cfunc = mips_set_processor_type_command;
4776 c = add_show_from_set (c, &showlist);
4777 c->function.cfunc = mips_show_processor_type_command;
4778
4779 tmp_mips_processor_type = xstrdup (DEFAULT_MIPS_TYPE);
4780 mips_set_processor_type_command (xstrdup (DEFAULT_MIPS_TYPE), 0);
4781 #endif
4782
4783 /* We really would like to have both "0" and "unlimited" work, but
4784 command.c doesn't deal with that. So make it a var_zinteger
4785 because the user can always use "999999" or some such for unlimited. */
4786 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
4787 (char *) &heuristic_fence_post,
4788 "\
4789 Set the distance searched for the start of a function.\n\
4790 If you are debugging a stripped executable, GDB needs to search through the\n\
4791 program for the start of a function. This command sets the distance of the\n\
4792 search. The only need to set it is when debugging a stripped executable.",
4793 &setlist);
4794 /* We need to throw away the frame cache when we set this, since it
4795 might change our ability to get backtraces. */
4796 c->function.sfunc = reinit_frame_cache_sfunc;
4797 add_show_from_set (c, &showlist);
4798
4799 /* Allow the user to control whether the upper bits of 64-bit
4800 addresses should be zeroed. */
4801 c = add_set_auto_boolean_cmd ("mask-address", no_class, &mask_address_var,
4802 "Set zeroing of upper 32 bits of 64-bit addresses.\n\
4803 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to allow GDB to determine\n\
4804 the correct value.\n",
4805 &setmipscmdlist);
4806 add_cmd ("mask-address", no_class, show_mask_address,
4807 "Show current mask-address value", &showmipscmdlist);
4808
4809 /* Allow the user to control the size of 32 bit registers within the
4810 raw remote packet. */
4811 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
4812 class_obscure,
4813 var_boolean,
4814 (char *)&mips64_transfers_32bit_regs_p, "\
4815 Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
4816 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
4817 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
4818 64 bits for others. Use \"off\" to disable compatibility mode",
4819 &setlist),
4820 &showlist);
4821
4822 /* Debug this files internals. */
4823 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
4824 &mips_debug, "Set mips debugging.\n\
4825 When non-zero, mips specific debugging is enabled.", &setdebuglist),
4826 &showdebuglist);
4827 }
4828
This page took 0.202128 seconds and 4 git commands to generate.