*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "value.h"
32 #include "gdbcmd.h"
33 #include "language.h"
34 #include "gdbcore.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdbtypes.h"
38 #include "target.h"
39 #include "arch-utils.h"
40 #include "regcache.h"
41 #include "osabi.h"
42 #include "mips-tdep.h"
43
44 #include "opcode/mips.h"
45 #include "elf/mips.h"
46 #include "elf-bfd.h"
47 #include "symcat.h"
48
49 /* A useful bit in the CP0 status register (PS_REGNUM). */
50 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
51 #define ST0_FR (1 << 26)
52
53 /* The sizes of floating point registers. */
54
55 enum
56 {
57 MIPS_FPU_SINGLE_REGSIZE = 4,
58 MIPS_FPU_DOUBLE_REGSIZE = 8
59 };
60
61
62 static const char *mips_abi_string;
63
64 static const char *mips_abi_strings[] = {
65 "auto",
66 "n32",
67 "o32",
68 "n64",
69 "o64",
70 "eabi32",
71 "eabi64",
72 NULL
73 };
74
75 struct frame_extra_info
76 {
77 mips_extra_func_info_t proc_desc;
78 int num_args;
79 };
80
81 /* Various MIPS ISA options (related to stack analysis) can be
82 overridden dynamically. Establish an enum/array for managing
83 them. */
84
85 static const char size_auto[] = "auto";
86 static const char size_32[] = "32";
87 static const char size_64[] = "64";
88
89 static const char *size_enums[] = {
90 size_auto,
91 size_32,
92 size_64,
93 0
94 };
95
96 /* Some MIPS boards don't support floating point while others only
97 support single-precision floating-point operations. See also
98 FP_REGISTER_DOUBLE. */
99
100 enum mips_fpu_type
101 {
102 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
103 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
104 MIPS_FPU_NONE /* No floating point. */
105 };
106
107 #ifndef MIPS_DEFAULT_FPU_TYPE
108 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
109 #endif
110 static int mips_fpu_type_auto = 1;
111 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
112
113 static int mips_debug = 0;
114
115 /* MIPS specific per-architecture information */
116 struct gdbarch_tdep
117 {
118 /* from the elf header */
119 int elf_flags;
120
121 /* mips options */
122 enum mips_abi mips_abi;
123 enum mips_abi found_abi;
124 enum mips_fpu_type mips_fpu_type;
125 int mips_last_arg_regnum;
126 int mips_last_fp_arg_regnum;
127 int mips_default_saved_regsize;
128 int mips_fp_register_double;
129 int mips_default_stack_argsize;
130 int gdb_target_is_mips64;
131 int default_mask_address_p;
132
133 enum gdb_osabi osabi;
134 };
135
136 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
137 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
138
139 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
140
141 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
142
143 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
144
145 /* Return the currently configured (or set) saved register size. */
146
147 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
148
149 static const char *mips_saved_regsize_string = size_auto;
150
151 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
152
153 /* Return the MIPS ABI associated with GDBARCH. */
154 enum mips_abi
155 mips_abi (struct gdbarch *gdbarch)
156 {
157 return gdbarch_tdep (gdbarch)->mips_abi;
158 }
159
160 static unsigned int
161 mips_saved_regsize (void)
162 {
163 if (mips_saved_regsize_string == size_auto)
164 return MIPS_DEFAULT_SAVED_REGSIZE;
165 else if (mips_saved_regsize_string == size_64)
166 return 8;
167 else /* if (mips_saved_regsize_string == size_32) */
168 return 4;
169 }
170
171 /* Functions for setting and testing a bit in a minimal symbol that
172 marks it as 16-bit function. The MSB of the minimal symbol's
173 "info" field is used for this purpose. This field is already
174 being used to store the symbol size, so the assumption is
175 that the symbol size cannot exceed 2^31.
176
177 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
178 i.e. refers to a 16-bit function, and sets a "special" bit in a
179 minimal symbol to mark it as a 16-bit function
180
181 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
182 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
183 the "info" field with the "special" bit masked out */
184
185 static void
186 mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
187 {
188 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
189 {
190 MSYMBOL_INFO (msym) = (char *)
191 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
192 SYMBOL_VALUE_ADDRESS (msym) |= 1;
193 }
194 }
195
196 static int
197 msymbol_is_special (struct minimal_symbol *msym)
198 {
199 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
200 }
201
202 static long
203 msymbol_size (struct minimal_symbol *msym)
204 {
205 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
206 }
207
208 /* XFER a value from the big/little/left end of the register.
209 Depending on the size of the value it might occupy the entire
210 register or just part of it. Make an allowance for this, aligning
211 things accordingly. */
212
213 static void
214 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
215 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
216 int buf_offset)
217 {
218 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
219 int reg_offset = 0;
220 /* Need to transfer the left or right part of the register, based on
221 the targets byte order. */
222 switch (endian)
223 {
224 case BFD_ENDIAN_BIG:
225 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
226 break;
227 case BFD_ENDIAN_LITTLE:
228 reg_offset = 0;
229 break;
230 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
231 reg_offset = 0;
232 break;
233 default:
234 internal_error (__FILE__, __LINE__, "bad switch");
235 }
236 if (mips_debug)
237 fprintf_unfiltered (gdb_stderr,
238 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
239 reg_num, reg_offset, buf_offset, length);
240 if (mips_debug && out != NULL)
241 {
242 int i;
243 fprintf_unfiltered (gdb_stdlog, "out ");
244 for (i = 0; i < length; i++)
245 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
246 }
247 if (in != NULL)
248 regcache_raw_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
249 if (out != NULL)
250 regcache_raw_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
251 if (mips_debug && in != NULL)
252 {
253 int i;
254 fprintf_unfiltered (gdb_stdlog, "in ");
255 for (i = 0; i < length; i++)
256 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
257 }
258 if (mips_debug)
259 fprintf_unfiltered (gdb_stdlog, "\n");
260 }
261
262 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
263 compatiblity mode. A return value of 1 means that we have
264 physical 64-bit registers, but should treat them as 32-bit registers. */
265
266 static int
267 mips2_fp_compat (void)
268 {
269 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
270 meaningful. */
271 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
272 return 0;
273
274 #if 0
275 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
276 in all the places we deal with FP registers. PR gdb/413. */
277 /* Otherwise check the FR bit in the status register - it controls
278 the FP compatiblity mode. If it is clear we are in compatibility
279 mode. */
280 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
281 return 1;
282 #endif
283
284 return 0;
285 }
286
287 /* Indicate that the ABI makes use of double-precision registers
288 provided by the FPU (rather than combining pairs of registers to
289 form double-precision values). Do not use "TARGET_IS_MIPS64" to
290 determine if the ABI is using double-precision registers. See also
291 MIPS_FPU_TYPE. */
292 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
293
294 /* The amount of space reserved on the stack for registers. This is
295 different to MIPS_SAVED_REGSIZE as it determines the alignment of
296 data allocated after the registers have run out. */
297
298 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
299
300 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
301
302 static const char *mips_stack_argsize_string = size_auto;
303
304 static unsigned int
305 mips_stack_argsize (void)
306 {
307 if (mips_stack_argsize_string == size_auto)
308 return MIPS_DEFAULT_STACK_ARGSIZE;
309 else if (mips_stack_argsize_string == size_64)
310 return 8;
311 else /* if (mips_stack_argsize_string == size_32) */
312 return 4;
313 }
314
315 #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
316
317 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
318
319 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
320
321 int gdb_print_insn_mips (bfd_vma, disassemble_info *);
322
323 static void mips_print_register (int, int);
324
325 static mips_extra_func_info_t
326 heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *, int);
327
328 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
329
330 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
331
332 static int mips_set_processor_type (char *);
333
334 static void mips_show_processor_type_command (char *, int);
335
336 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
337
338 static mips_extra_func_info_t
339 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame);
340
341 static CORE_ADDR after_prologue (CORE_ADDR pc,
342 mips_extra_func_info_t proc_desc);
343
344 static void mips_read_fp_register_single (int regno, char *rare_buffer);
345 static void mips_read_fp_register_double (int regno, char *rare_buffer);
346
347 static struct type *mips_float_register_type (void);
348 static struct type *mips_double_register_type (void);
349
350 /* This value is the model of MIPS in use. It is derived from the value
351 of the PrID register. */
352
353 char *mips_processor_type;
354
355 char *tmp_mips_processor_type;
356
357 /* The list of available "set mips " and "show mips " commands */
358
359 static struct cmd_list_element *setmipscmdlist = NULL;
360 static struct cmd_list_element *showmipscmdlist = NULL;
361
362 /* A set of original names, to be used when restoring back to generic
363 registers from a specific set. */
364
365 char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
366 char **mips_processor_reg_names = mips_generic_reg_names;
367
368 static const char *
369 mips_register_name (int i)
370 {
371 return mips_processor_reg_names[i];
372 }
373 /* *INDENT-OFF* */
374 /* Names of IDT R3041 registers. */
375
376 char *mips_r3041_reg_names[] = {
377 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
378 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
379 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
380 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
381 "sr", "lo", "hi", "bad", "cause","pc",
382 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
383 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
384 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
385 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
386 "fsr", "fir", "",/*"fp"*/ "",
387 "", "", "bus", "ccfg", "", "", "", "",
388 "", "", "port", "cmp", "", "", "epc", "prid",
389 };
390
391 /* Names of IDT R3051 registers. */
392
393 char *mips_r3051_reg_names[] = {
394 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
395 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
396 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
397 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
398 "sr", "lo", "hi", "bad", "cause","pc",
399 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
400 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
401 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
402 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
403 "fsr", "fir", ""/*"fp"*/, "",
404 "inx", "rand", "elo", "", "ctxt", "", "", "",
405 "", "", "ehi", "", "", "", "epc", "prid",
406 };
407
408 /* Names of IDT R3081 registers. */
409
410 char *mips_r3081_reg_names[] = {
411 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
412 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
413 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
414 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
415 "sr", "lo", "hi", "bad", "cause","pc",
416 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
417 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
418 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
419 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
420 "fsr", "fir", ""/*"fp"*/, "",
421 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
422 "", "", "ehi", "", "", "", "epc", "prid",
423 };
424
425 /* Names of LSI 33k registers. */
426
427 char *mips_lsi33k_reg_names[] = {
428 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
429 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
430 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
431 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
432 "epc", "hi", "lo", "sr", "cause","badvaddr",
433 "dcic", "bpc", "bda", "", "", "", "", "",
434 "", "", "", "", "", "", "", "",
435 "", "", "", "", "", "", "", "",
436 "", "", "", "", "", "", "", "",
437 "", "", "", "",
438 "", "", "", "", "", "", "", "",
439 "", "", "", "", "", "", "", "",
440 };
441
442 struct {
443 char *name;
444 char **regnames;
445 } mips_processor_type_table[] = {
446 { "generic", mips_generic_reg_names },
447 { "r3041", mips_r3041_reg_names },
448 { "r3051", mips_r3051_reg_names },
449 { "r3071", mips_r3081_reg_names },
450 { "r3081", mips_r3081_reg_names },
451 { "lsi33k", mips_lsi33k_reg_names },
452 { NULL, NULL }
453 };
454 /* *INDENT-ON* */
455
456
457
458
459 /* Table to translate MIPS16 register field to actual register number. */
460 static int mips16_to_32_reg[8] =
461 {16, 17, 2, 3, 4, 5, 6, 7};
462
463 /* Heuristic_proc_start may hunt through the text section for a long
464 time across a 2400 baud serial line. Allows the user to limit this
465 search. */
466
467 static unsigned int heuristic_fence_post = 0;
468
469 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
470 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
471 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
472 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
473 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
474 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
475 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
476 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
477 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
478 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
479 /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
480 this will corrupt pdr.iline. Fortunately we don't use it. */
481 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
482 #define _PROC_MAGIC_ 0x0F0F0F0F
483 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
484 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
485
486 struct linked_proc_info
487 {
488 struct mips_extra_func_info info;
489 struct linked_proc_info *next;
490 }
491 *linked_proc_desc_table = NULL;
492
493 void
494 mips_print_extra_frame_info (struct frame_info *fi)
495 {
496 if (fi
497 && fi->extra_info
498 && fi->extra_info->proc_desc
499 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
500 printf_filtered (" frame pointer is at %s+%s\n",
501 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
502 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
503 }
504
505 /* Number of bytes of storage in the actual machine representation for
506 register N. NOTE: This indirectly defines the register size
507 transfered by the GDB protocol. */
508
509 static int mips64_transfers_32bit_regs_p = 0;
510
511 static int
512 mips_register_raw_size (int reg_nr)
513 {
514 if (mips64_transfers_32bit_regs_p)
515 return REGISTER_VIRTUAL_SIZE (reg_nr);
516 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
517 && FP_REGISTER_DOUBLE)
518 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
519 registers. */
520 return 8;
521 else
522 return MIPS_REGSIZE;
523 }
524
525 /* Convert between RAW and VIRTUAL registers. The RAW register size
526 defines the remote-gdb packet. */
527
528 static int
529 mips_register_convertible (int reg_nr)
530 {
531 if (mips64_transfers_32bit_regs_p)
532 return 0;
533 else
534 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
535 }
536
537 static void
538 mips_register_convert_to_virtual (int n, struct type *virtual_type,
539 char *raw_buf, char *virt_buf)
540 {
541 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
542 memcpy (virt_buf,
543 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
544 TYPE_LENGTH (virtual_type));
545 else
546 memcpy (virt_buf,
547 raw_buf,
548 TYPE_LENGTH (virtual_type));
549 }
550
551 static void
552 mips_register_convert_to_raw (struct type *virtual_type, int n,
553 char *virt_buf, char *raw_buf)
554 {
555 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
556 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
557 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
558 virt_buf,
559 TYPE_LENGTH (virtual_type));
560 else
561 memcpy (raw_buf,
562 virt_buf,
563 TYPE_LENGTH (virtual_type));
564 }
565
566 void
567 mips_register_convert_to_type (int regnum, struct type *type, char *buffer)
568 {
569 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
570 && REGISTER_RAW_SIZE (regnum) == 4
571 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
572 && TYPE_CODE(type) == TYPE_CODE_FLT
573 && TYPE_LENGTH(type) == 8)
574 {
575 char temp[4];
576 memcpy (temp, ((char *)(buffer))+4, 4);
577 memcpy (((char *)(buffer))+4, (buffer), 4);
578 memcpy (((char *)(buffer)), temp, 4);
579 }
580 }
581
582 void
583 mips_register_convert_from_type (int regnum, struct type *type, char *buffer)
584 {
585 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
586 && REGISTER_RAW_SIZE (regnum) == 4
587 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
588 && TYPE_CODE(type) == TYPE_CODE_FLT
589 && TYPE_LENGTH(type) == 8)
590 {
591 char temp[4];
592 memcpy (temp, ((char *)(buffer))+4, 4);
593 memcpy (((char *)(buffer))+4, (buffer), 4);
594 memcpy (((char *)(buffer)), temp, 4);
595 }
596 }
597
598 /* Return the GDB type object for the "standard" data type
599 of data in register REG.
600
601 Note: kevinb/2002-08-01: The definition below should faithfully
602 reproduce the behavior of each of the REGISTER_VIRTUAL_TYPE
603 definitions found in config/mips/tm-*.h. I'm concerned about
604 the ``FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM'' clause
605 though. In some cases FP_REGNUM is in this range, and I doubt
606 that this code is correct for the 64-bit case. */
607
608 static struct type *
609 mips_register_virtual_type (int reg)
610 {
611 if (FP0_REGNUM <= reg && reg < FP0_REGNUM + 32)
612 {
613 /* Floating point registers... */
614 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
615 return builtin_type_ieee_double_big;
616 else
617 return builtin_type_ieee_double_little;
618 }
619 else if (reg == PS_REGNUM /* CR */)
620 return builtin_type_uint32;
621 else if (FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM)
622 return builtin_type_uint32;
623 else
624 {
625 /* Everything else...
626 Return type appropriate for width of register. */
627 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
628 return builtin_type_uint64;
629 else
630 return builtin_type_uint32;
631 }
632 }
633
634 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
635
636 static CORE_ADDR
637 mips_read_sp (void)
638 {
639 return ADDR_BITS_REMOVE (read_register (SP_REGNUM));
640 }
641
642 /* Should the upper word of 64-bit addresses be zeroed? */
643 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
644
645 static int
646 mips_mask_address_p (void)
647 {
648 switch (mask_address_var)
649 {
650 case AUTO_BOOLEAN_TRUE:
651 return 1;
652 case AUTO_BOOLEAN_FALSE:
653 return 0;
654 break;
655 case AUTO_BOOLEAN_AUTO:
656 return MIPS_DEFAULT_MASK_ADDRESS_P;
657 default:
658 internal_error (__FILE__, __LINE__,
659 "mips_mask_address_p: bad switch");
660 return -1;
661 }
662 }
663
664 static void
665 show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
666 {
667 switch (mask_address_var)
668 {
669 case AUTO_BOOLEAN_TRUE:
670 printf_filtered ("The 32 bit mips address mask is enabled\n");
671 break;
672 case AUTO_BOOLEAN_FALSE:
673 printf_filtered ("The 32 bit mips address mask is disabled\n");
674 break;
675 case AUTO_BOOLEAN_AUTO:
676 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
677 mips_mask_address_p () ? "enabled" : "disabled");
678 break;
679 default:
680 internal_error (__FILE__, __LINE__,
681 "show_mask_address: bad switch");
682 break;
683 }
684 }
685
686 /* Should call_function allocate stack space for a struct return? */
687
688 static int
689 mips_eabi_use_struct_convention (int gcc_p, struct type *type)
690 {
691 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
692 }
693
694 static int
695 mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
696 {
697 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
698 }
699
700 static int
701 mips_o32_use_struct_convention (int gcc_p, struct type *type)
702 {
703 return 1; /* Structures are returned by ref in extra arg0. */
704 }
705
706 /* Should call_function pass struct by reference?
707 For each architecture, structs are passed either by
708 value or by reference, depending on their size. */
709
710 static int
711 mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
712 {
713 enum type_code typecode = TYPE_CODE (check_typedef (type));
714 int len = TYPE_LENGTH (check_typedef (type));
715
716 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
717 return (len > MIPS_SAVED_REGSIZE);
718
719 return 0;
720 }
721
722 static int
723 mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
724 {
725 return 0; /* Assumption: N32/N64 never passes struct by ref. */
726 }
727
728 static int
729 mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
730 {
731 return 0; /* Assumption: O32/O64 never passes struct by ref. */
732 }
733
734 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
735
736 static int
737 pc_is_mips16 (bfd_vma memaddr)
738 {
739 struct minimal_symbol *sym;
740
741 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
742 if (IS_MIPS16_ADDR (memaddr))
743 return 1;
744
745 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
746 the high bit of the info field. Use this to decide if the function is
747 MIPS16 or normal MIPS. */
748 sym = lookup_minimal_symbol_by_pc (memaddr);
749 if (sym)
750 return msymbol_is_special (sym);
751 else
752 return 0;
753 }
754
755 /* MIPS believes that the PC has a sign extended value. Perhaphs the
756 all registers should be sign extended for simplicity? */
757
758 static CORE_ADDR
759 mips_read_pc (ptid_t ptid)
760 {
761 return read_signed_register_pid (PC_REGNUM, ptid);
762 }
763
764 /* This returns the PC of the first inst after the prologue. If we can't
765 find the prologue, then return 0. */
766
767 static CORE_ADDR
768 after_prologue (CORE_ADDR pc,
769 mips_extra_func_info_t proc_desc)
770 {
771 struct symtab_and_line sal;
772 CORE_ADDR func_addr, func_end;
773
774 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
775 to read the stack pointer from the current machine state, because
776 the current machine state has nothing to do with the information
777 we need from the proc_desc; and the process may or may not exist
778 right now. */
779 if (!proc_desc)
780 proc_desc = find_proc_desc (pc, NULL, 0);
781
782 if (proc_desc)
783 {
784 /* If function is frameless, then we need to do it the hard way. I
785 strongly suspect that frameless always means prologueless... */
786 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
787 && PROC_FRAME_OFFSET (proc_desc) == 0)
788 return 0;
789 }
790
791 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
792 return 0; /* Unknown */
793
794 sal = find_pc_line (func_addr, 0);
795
796 if (sal.end < func_end)
797 return sal.end;
798
799 /* The line after the prologue is after the end of the function. In this
800 case, tell the caller to find the prologue the hard way. */
801
802 return 0;
803 }
804
805 /* Decode a MIPS32 instruction that saves a register in the stack, and
806 set the appropriate bit in the general register mask or float register mask
807 to indicate which register is saved. This is a helper function
808 for mips_find_saved_regs. */
809
810 static void
811 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
812 unsigned long *float_mask)
813 {
814 int reg;
815
816 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
817 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
818 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
819 {
820 /* It might be possible to use the instruction to
821 find the offset, rather than the code below which
822 is based on things being in a certain order in the
823 frame, but figuring out what the instruction's offset
824 is relative to might be a little tricky. */
825 reg = (inst & 0x001f0000) >> 16;
826 *gen_mask |= (1 << reg);
827 }
828 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
829 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
830 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
831
832 {
833 reg = ((inst & 0x001f0000) >> 16);
834 *float_mask |= (1 << reg);
835 }
836 }
837
838 /* Decode a MIPS16 instruction that saves a register in the stack, and
839 set the appropriate bit in the general register or float register mask
840 to indicate which register is saved. This is a helper function
841 for mips_find_saved_regs. */
842
843 static void
844 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
845 {
846 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
847 {
848 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
849 *gen_mask |= (1 << reg);
850 }
851 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
852 {
853 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
854 *gen_mask |= (1 << reg);
855 }
856 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
857 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
858 *gen_mask |= (1 << RA_REGNUM);
859 }
860
861
862 /* Fetch and return instruction from the specified location. If the PC
863 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
864
865 static t_inst
866 mips_fetch_instruction (CORE_ADDR addr)
867 {
868 char buf[MIPS_INSTLEN];
869 int instlen;
870 int status;
871
872 if (pc_is_mips16 (addr))
873 {
874 instlen = MIPS16_INSTLEN;
875 addr = UNMAKE_MIPS16_ADDR (addr);
876 }
877 else
878 instlen = MIPS_INSTLEN;
879 status = read_memory_nobpt (addr, buf, instlen);
880 if (status)
881 memory_error (status, addr);
882 return extract_unsigned_integer (buf, instlen);
883 }
884
885
886 /* These the fields of 32 bit mips instructions */
887 #define mips32_op(x) (x >> 26)
888 #define itype_op(x) (x >> 26)
889 #define itype_rs(x) ((x >> 21) & 0x1f)
890 #define itype_rt(x) ((x >> 16) & 0x1f)
891 #define itype_immediate(x) (x & 0xffff)
892
893 #define jtype_op(x) (x >> 26)
894 #define jtype_target(x) (x & 0x03ffffff)
895
896 #define rtype_op(x) (x >> 26)
897 #define rtype_rs(x) ((x >> 21) & 0x1f)
898 #define rtype_rt(x) ((x >> 16) & 0x1f)
899 #define rtype_rd(x) ((x >> 11) & 0x1f)
900 #define rtype_shamt(x) ((x >> 6) & 0x1f)
901 #define rtype_funct(x) (x & 0x3f)
902
903 static CORE_ADDR
904 mips32_relative_offset (unsigned long inst)
905 {
906 long x;
907 x = itype_immediate (inst);
908 if (x & 0x8000) /* sign bit set */
909 {
910 x |= 0xffff0000; /* sign extension */
911 }
912 x = x << 2;
913 return x;
914 }
915
916 /* Determine whate to set a single step breakpoint while considering
917 branch prediction */
918 static CORE_ADDR
919 mips32_next_pc (CORE_ADDR pc)
920 {
921 unsigned long inst;
922 int op;
923 inst = mips_fetch_instruction (pc);
924 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
925 {
926 if (itype_op (inst) >> 2 == 5)
927 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
928 {
929 op = (itype_op (inst) & 0x03);
930 switch (op)
931 {
932 case 0: /* BEQL */
933 goto equal_branch;
934 case 1: /* BNEL */
935 goto neq_branch;
936 case 2: /* BLEZL */
937 goto less_branch;
938 case 3: /* BGTZ */
939 goto greater_branch;
940 default:
941 pc += 4;
942 }
943 }
944 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
945 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
946 {
947 int tf = itype_rt (inst) & 0x01;
948 int cnum = itype_rt (inst) >> 2;
949 int fcrcs = read_signed_register (FCRCS_REGNUM);
950 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
951
952 if (((cond >> cnum) & 0x01) == tf)
953 pc += mips32_relative_offset (inst) + 4;
954 else
955 pc += 8;
956 }
957 else
958 pc += 4; /* Not a branch, next instruction is easy */
959 }
960 else
961 { /* This gets way messy */
962
963 /* Further subdivide into SPECIAL, REGIMM and other */
964 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
965 {
966 case 0: /* SPECIAL */
967 op = rtype_funct (inst);
968 switch (op)
969 {
970 case 8: /* JR */
971 case 9: /* JALR */
972 /* Set PC to that address */
973 pc = read_signed_register (rtype_rs (inst));
974 break;
975 default:
976 pc += 4;
977 }
978
979 break; /* end SPECIAL */
980 case 1: /* REGIMM */
981 {
982 op = itype_rt (inst); /* branch condition */
983 switch (op)
984 {
985 case 0: /* BLTZ */
986 case 2: /* BLTZL */
987 case 16: /* BLTZAL */
988 case 18: /* BLTZALL */
989 less_branch:
990 if (read_signed_register (itype_rs (inst)) < 0)
991 pc += mips32_relative_offset (inst) + 4;
992 else
993 pc += 8; /* after the delay slot */
994 break;
995 case 1: /* BGEZ */
996 case 3: /* BGEZL */
997 case 17: /* BGEZAL */
998 case 19: /* BGEZALL */
999 greater_equal_branch:
1000 if (read_signed_register (itype_rs (inst)) >= 0)
1001 pc += mips32_relative_offset (inst) + 4;
1002 else
1003 pc += 8; /* after the delay slot */
1004 break;
1005 /* All of the other instructions in the REGIMM category */
1006 default:
1007 pc += 4;
1008 }
1009 }
1010 break; /* end REGIMM */
1011 case 2: /* J */
1012 case 3: /* JAL */
1013 {
1014 unsigned long reg;
1015 reg = jtype_target (inst) << 2;
1016 /* Upper four bits get never changed... */
1017 pc = reg + ((pc + 4) & 0xf0000000);
1018 }
1019 break;
1020 /* FIXME case JALX : */
1021 {
1022 unsigned long reg;
1023 reg = jtype_target (inst) << 2;
1024 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
1025 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1026 }
1027 break; /* The new PC will be alternate mode */
1028 case 4: /* BEQ, BEQL */
1029 equal_branch:
1030 if (read_signed_register (itype_rs (inst)) ==
1031 read_signed_register (itype_rt (inst)))
1032 pc += mips32_relative_offset (inst) + 4;
1033 else
1034 pc += 8;
1035 break;
1036 case 5: /* BNE, BNEL */
1037 neq_branch:
1038 if (read_signed_register (itype_rs (inst)) !=
1039 read_signed_register (itype_rt (inst)))
1040 pc += mips32_relative_offset (inst) + 4;
1041 else
1042 pc += 8;
1043 break;
1044 case 6: /* BLEZ, BLEZL */
1045 less_zero_branch:
1046 if (read_signed_register (itype_rs (inst) <= 0))
1047 pc += mips32_relative_offset (inst) + 4;
1048 else
1049 pc += 8;
1050 break;
1051 case 7:
1052 default:
1053 greater_branch: /* BGTZ, BGTZL */
1054 if (read_signed_register (itype_rs (inst) > 0))
1055 pc += mips32_relative_offset (inst) + 4;
1056 else
1057 pc += 8;
1058 break;
1059 } /* switch */
1060 } /* else */
1061 return pc;
1062 } /* mips32_next_pc */
1063
1064 /* Decoding the next place to set a breakpoint is irregular for the
1065 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1066 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1067 We dont want to set a single step instruction on the extend instruction
1068 either.
1069 */
1070
1071 /* Lots of mips16 instruction formats */
1072 /* Predicting jumps requires itype,ritype,i8type
1073 and their extensions extItype,extritype,extI8type
1074 */
1075 enum mips16_inst_fmts
1076 {
1077 itype, /* 0 immediate 5,10 */
1078 ritype, /* 1 5,3,8 */
1079 rrtype, /* 2 5,3,3,5 */
1080 rritype, /* 3 5,3,3,5 */
1081 rrrtype, /* 4 5,3,3,3,2 */
1082 rriatype, /* 5 5,3,3,1,4 */
1083 shifttype, /* 6 5,3,3,3,2 */
1084 i8type, /* 7 5,3,8 */
1085 i8movtype, /* 8 5,3,3,5 */
1086 i8mov32rtype, /* 9 5,3,5,3 */
1087 i64type, /* 10 5,3,8 */
1088 ri64type, /* 11 5,3,3,5 */
1089 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1090 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1091 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1092 extRRItype, /* 15 5,5,5,5,3,3,5 */
1093 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1094 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1095 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1096 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1097 extRi64type, /* 20 5,6,5,5,3,3,5 */
1098 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1099 };
1100 /* I am heaping all the fields of the formats into one structure and
1101 then, only the fields which are involved in instruction extension */
1102 struct upk_mips16
1103 {
1104 CORE_ADDR offset;
1105 unsigned int regx; /* Function in i8 type */
1106 unsigned int regy;
1107 };
1108
1109
1110 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1111 for the bits which make up the immediatate extension. */
1112
1113 static CORE_ADDR
1114 extended_offset (unsigned int extension)
1115 {
1116 CORE_ADDR value;
1117 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1118 value = value << 6;
1119 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1120 value = value << 5;
1121 value |= extension & 0x01f; /* extract 4:0 */
1122 return value;
1123 }
1124
1125 /* Only call this function if you know that this is an extendable
1126 instruction, It wont malfunction, but why make excess remote memory references?
1127 If the immediate operands get sign extended or somthing, do it after
1128 the extension is performed.
1129 */
1130 /* FIXME: Every one of these cases needs to worry about sign extension
1131 when the offset is to be used in relative addressing */
1132
1133
1134 static unsigned int
1135 fetch_mips_16 (CORE_ADDR pc)
1136 {
1137 char buf[8];
1138 pc &= 0xfffffffe; /* clear the low order bit */
1139 target_read_memory (pc, buf, 2);
1140 return extract_unsigned_integer (buf, 2);
1141 }
1142
1143 static void
1144 unpack_mips16 (CORE_ADDR pc,
1145 unsigned int extension,
1146 unsigned int inst,
1147 enum mips16_inst_fmts insn_format,
1148 struct upk_mips16 *upk)
1149 {
1150 CORE_ADDR offset;
1151 int regx;
1152 int regy;
1153 switch (insn_format)
1154 {
1155 case itype:
1156 {
1157 CORE_ADDR value;
1158 if (extension)
1159 {
1160 value = extended_offset (extension);
1161 value = value << 11; /* rom for the original value */
1162 value |= inst & 0x7ff; /* eleven bits from instruction */
1163 }
1164 else
1165 {
1166 value = inst & 0x7ff;
1167 /* FIXME : Consider sign extension */
1168 }
1169 offset = value;
1170 regx = -1;
1171 regy = -1;
1172 }
1173 break;
1174 case ritype:
1175 case i8type:
1176 { /* A register identifier and an offset */
1177 /* Most of the fields are the same as I type but the
1178 immediate value is of a different length */
1179 CORE_ADDR value;
1180 if (extension)
1181 {
1182 value = extended_offset (extension);
1183 value = value << 8; /* from the original instruction */
1184 value |= inst & 0xff; /* eleven bits from instruction */
1185 regx = (extension >> 8) & 0x07; /* or i8 funct */
1186 if (value & 0x4000) /* test the sign bit , bit 26 */
1187 {
1188 value &= ~0x3fff; /* remove the sign bit */
1189 value = -value;
1190 }
1191 }
1192 else
1193 {
1194 value = inst & 0xff; /* 8 bits */
1195 regx = (inst >> 8) & 0x07; /* or i8 funct */
1196 /* FIXME: Do sign extension , this format needs it */
1197 if (value & 0x80) /* THIS CONFUSES ME */
1198 {
1199 value &= 0xef; /* remove the sign bit */
1200 value = -value;
1201 }
1202 }
1203 offset = value;
1204 regy = -1;
1205 break;
1206 }
1207 case jalxtype:
1208 {
1209 unsigned long value;
1210 unsigned int nexthalf;
1211 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1212 value = value << 16;
1213 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1214 value |= nexthalf;
1215 offset = value;
1216 regx = -1;
1217 regy = -1;
1218 break;
1219 }
1220 default:
1221 internal_error (__FILE__, __LINE__,
1222 "bad switch");
1223 }
1224 upk->offset = offset;
1225 upk->regx = regx;
1226 upk->regy = regy;
1227 }
1228
1229
1230 static CORE_ADDR
1231 add_offset_16 (CORE_ADDR pc, int offset)
1232 {
1233 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1234 }
1235
1236 static CORE_ADDR
1237 extended_mips16_next_pc (CORE_ADDR pc,
1238 unsigned int extension,
1239 unsigned int insn)
1240 {
1241 int op = (insn >> 11);
1242 switch (op)
1243 {
1244 case 2: /* Branch */
1245 {
1246 CORE_ADDR offset;
1247 struct upk_mips16 upk;
1248 unpack_mips16 (pc, extension, insn, itype, &upk);
1249 offset = upk.offset;
1250 if (offset & 0x800)
1251 {
1252 offset &= 0xeff;
1253 offset = -offset;
1254 }
1255 pc += (offset << 1) + 2;
1256 break;
1257 }
1258 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1259 {
1260 struct upk_mips16 upk;
1261 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1262 pc = add_offset_16 (pc, upk.offset);
1263 if ((insn >> 10) & 0x01) /* Exchange mode */
1264 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1265 else
1266 pc |= 0x01;
1267 break;
1268 }
1269 case 4: /* beqz */
1270 {
1271 struct upk_mips16 upk;
1272 int reg;
1273 unpack_mips16 (pc, extension, insn, ritype, &upk);
1274 reg = read_signed_register (upk.regx);
1275 if (reg == 0)
1276 pc += (upk.offset << 1) + 2;
1277 else
1278 pc += 2;
1279 break;
1280 }
1281 case 5: /* bnez */
1282 {
1283 struct upk_mips16 upk;
1284 int reg;
1285 unpack_mips16 (pc, extension, insn, ritype, &upk);
1286 reg = read_signed_register (upk.regx);
1287 if (reg != 0)
1288 pc += (upk.offset << 1) + 2;
1289 else
1290 pc += 2;
1291 break;
1292 }
1293 case 12: /* I8 Formats btez btnez */
1294 {
1295 struct upk_mips16 upk;
1296 int reg;
1297 unpack_mips16 (pc, extension, insn, i8type, &upk);
1298 /* upk.regx contains the opcode */
1299 reg = read_signed_register (24); /* Test register is 24 */
1300 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1301 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1302 /* pc = add_offset_16(pc,upk.offset) ; */
1303 pc += (upk.offset << 1) + 2;
1304 else
1305 pc += 2;
1306 break;
1307 }
1308 case 29: /* RR Formats JR, JALR, JALR-RA */
1309 {
1310 struct upk_mips16 upk;
1311 /* upk.fmt = rrtype; */
1312 op = insn & 0x1f;
1313 if (op == 0)
1314 {
1315 int reg;
1316 upk.regx = (insn >> 8) & 0x07;
1317 upk.regy = (insn >> 5) & 0x07;
1318 switch (upk.regy)
1319 {
1320 case 0:
1321 reg = upk.regx;
1322 break;
1323 case 1:
1324 reg = 31;
1325 break; /* Function return instruction */
1326 case 2:
1327 reg = upk.regx;
1328 break;
1329 default:
1330 reg = 31;
1331 break; /* BOGUS Guess */
1332 }
1333 pc = read_signed_register (reg);
1334 }
1335 else
1336 pc += 2;
1337 break;
1338 }
1339 case 30:
1340 /* This is an instruction extension. Fetch the real instruction
1341 (which follows the extension) and decode things based on
1342 that. */
1343 {
1344 pc += 2;
1345 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1346 break;
1347 }
1348 default:
1349 {
1350 pc += 2;
1351 break;
1352 }
1353 }
1354 return pc;
1355 }
1356
1357 static CORE_ADDR
1358 mips16_next_pc (CORE_ADDR pc)
1359 {
1360 unsigned int insn = fetch_mips_16 (pc);
1361 return extended_mips16_next_pc (pc, 0, insn);
1362 }
1363
1364 /* The mips_next_pc function supports single_step when the remote
1365 target monitor or stub is not developed enough to do a single_step.
1366 It works by decoding the current instruction and predicting where a
1367 branch will go. This isnt hard because all the data is available.
1368 The MIPS32 and MIPS16 variants are quite different */
1369 CORE_ADDR
1370 mips_next_pc (CORE_ADDR pc)
1371 {
1372 if (pc & 0x01)
1373 return mips16_next_pc (pc);
1374 else
1375 return mips32_next_pc (pc);
1376 }
1377
1378 /* Guaranteed to set fci->saved_regs to some values (it never leaves it
1379 NULL).
1380
1381 Note: kevinb/2002-08-09: The only caller of this function is (and
1382 should remain) mips_frame_init_saved_regs(). In fact,
1383 aside from calling mips_find_saved_regs(), mips_frame_init_saved_regs()
1384 does nothing more than set frame->saved_regs[SP_REGNUM]. These two
1385 functions should really be combined and now that there is only one
1386 caller, it should be straightforward. (Watch out for multiple returns
1387 though.) */
1388
1389 static void
1390 mips_find_saved_regs (struct frame_info *fci)
1391 {
1392 int ireg;
1393 CORE_ADDR reg_position;
1394 /* r0 bit means kernel trap */
1395 int kernel_trap;
1396 /* What registers have been saved? Bitmasks. */
1397 unsigned long gen_mask, float_mask;
1398 mips_extra_func_info_t proc_desc;
1399 t_inst inst;
1400
1401 frame_saved_regs_zalloc (fci);
1402
1403 /* If it is the frame for sigtramp, the saved registers are located
1404 in a sigcontext structure somewhere on the stack.
1405 If the stack layout for sigtramp changes we might have to change these
1406 constants and the companion fixup_sigtramp in mdebugread.c */
1407 #ifndef SIGFRAME_BASE
1408 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1409 above the sigtramp frame. */
1410 #define SIGFRAME_BASE MIPS_REGSIZE
1411 /* FIXME! Are these correct?? */
1412 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1413 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1414 #define SIGFRAME_FPREGSAVE_OFF \
1415 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1416 #endif
1417 #ifndef SIGFRAME_REG_SIZE
1418 /* FIXME! Is this correct?? */
1419 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
1420 #endif
1421 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
1422 {
1423 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1424 {
1425 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1426 + ireg * SIGFRAME_REG_SIZE;
1427 fci->saved_regs[ireg] = reg_position;
1428 }
1429 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1430 {
1431 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1432 + ireg * SIGFRAME_REG_SIZE;
1433 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1434 }
1435 fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1436 return;
1437 }
1438
1439 proc_desc = fci->extra_info->proc_desc;
1440 if (proc_desc == NULL)
1441 /* I'm not sure how/whether this can happen. Normally when we can't
1442 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1443 and set the saved_regs right away. */
1444 return;
1445
1446 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1447 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1448 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1449
1450 if ( /* In any frame other than the innermost or a frame interrupted by
1451 a signal, we assume that all registers have been saved.
1452 This assumes that all register saves in a function happen before
1453 the first function call. */
1454 (fci->next == NULL || (get_frame_type (fci->next) == SIGTRAMP_FRAME))
1455
1456 /* In a dummy frame we know exactly where things are saved. */
1457 && !PROC_DESC_IS_DUMMY (proc_desc)
1458
1459 /* Don't bother unless we are inside a function prologue. Outside the
1460 prologue, we know where everything is. */
1461
1462 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
1463
1464 /* Not sure exactly what kernel_trap means, but if it means
1465 the kernel saves the registers without a prologue doing it,
1466 we better not examine the prologue to see whether registers
1467 have been saved yet. */
1468 && !kernel_trap)
1469 {
1470 /* We need to figure out whether the registers that the proc_desc
1471 claims are saved have been saved yet. */
1472
1473 CORE_ADDR addr;
1474
1475 /* Bitmasks; set if we have found a save for the register. */
1476 unsigned long gen_save_found = 0;
1477 unsigned long float_save_found = 0;
1478 int instlen;
1479
1480 /* If the address is odd, assume this is MIPS16 code. */
1481 addr = PROC_LOW_ADDR (proc_desc);
1482 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1483
1484 /* Scan through this function's instructions preceding the current
1485 PC, and look for those that save registers. */
1486 while (addr < fci->pc)
1487 {
1488 inst = mips_fetch_instruction (addr);
1489 if (pc_is_mips16 (addr))
1490 mips16_decode_reg_save (inst, &gen_save_found);
1491 else
1492 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1493 addr += instlen;
1494 }
1495 gen_mask = gen_save_found;
1496 float_mask = float_save_found;
1497 }
1498
1499 /* Fill in the offsets for the registers which gen_mask says
1500 were saved. */
1501 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1502 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1503 if (gen_mask & 0x80000000)
1504 {
1505 fci->saved_regs[ireg] = reg_position;
1506 reg_position -= MIPS_SAVED_REGSIZE;
1507 }
1508
1509 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1510 of that normally used by gcc. Therefore, we have to fetch the first
1511 instruction of the function, and if it's an entry instruction that
1512 saves $s0 or $s1, correct their saved addresses. */
1513 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1514 {
1515 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1516 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1517 {
1518 int reg;
1519 int sreg_count = (inst >> 6) & 3;
1520
1521 /* Check if the ra register was pushed on the stack. */
1522 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1523 if (inst & 0x20)
1524 reg_position -= MIPS_SAVED_REGSIZE;
1525
1526 /* Check if the s0 and s1 registers were pushed on the stack. */
1527 for (reg = 16; reg < sreg_count + 16; reg++)
1528 {
1529 fci->saved_regs[reg] = reg_position;
1530 reg_position -= MIPS_SAVED_REGSIZE;
1531 }
1532 }
1533 }
1534
1535 /* Fill in the offsets for the registers which float_mask says
1536 were saved. */
1537 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1538
1539 /* Apparently, the freg_offset gives the offset to the first 64 bit
1540 saved.
1541
1542 When the ABI specifies 64 bit saved registers, the FREG_OFFSET
1543 designates the first saved 64 bit register.
1544
1545 When the ABI specifies 32 bit saved registers, the ``64 bit saved
1546 DOUBLE'' consists of two adjacent 32 bit registers, Hence
1547 FREG_OFFSET, designates the address of the lower register of the
1548 register pair. Adjust the offset so that it designates the upper
1549 register of the pair -- i.e., the address of the first saved 32
1550 bit register. */
1551
1552 if (MIPS_SAVED_REGSIZE == 4)
1553 reg_position += MIPS_SAVED_REGSIZE;
1554
1555 /* Fill in the offsets for the float registers which float_mask says
1556 were saved. */
1557 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1558 if (float_mask & 0x80000000)
1559 {
1560 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1561 reg_position -= MIPS_SAVED_REGSIZE;
1562 }
1563
1564 fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
1565 }
1566
1567 /* Set up the 'saved_regs' array. This is a data structure containing
1568 the addresses on the stack where each register has been saved, for
1569 each stack frame. Registers that have not been saved will have
1570 zero here. The stack pointer register is special: rather than the
1571 address where the stack register has been saved, saved_regs[SP_REGNUM]
1572 will have the actual value of the previous frame's stack register. */
1573
1574 static void
1575 mips_frame_init_saved_regs (struct frame_info *frame)
1576 {
1577 if (frame->saved_regs == NULL)
1578 {
1579 mips_find_saved_regs (frame);
1580 }
1581 frame->saved_regs[SP_REGNUM] = frame->frame;
1582 }
1583
1584 static CORE_ADDR
1585 read_next_frame_reg (struct frame_info *fi, int regno)
1586 {
1587 int optimized;
1588 CORE_ADDR addr;
1589 int realnum;
1590 enum lval_type lval;
1591 void *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
1592 frame_register_unwind (fi, regno, &optimized, &lval, &addr, &realnum,
1593 raw_buffer);
1594 /* FIXME: cagney/2002-09-13: This is just soooo bad. The MIPS
1595 should have a pseudo register range that correspons to the ABI's,
1596 rather than the ISA's, view of registers. These registers would
1597 then implicitly describe their size and hence could be used
1598 without the below munging. */
1599 if (lval == lval_memory)
1600 {
1601 if (regno < 32)
1602 {
1603 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
1604 saved. */
1605 return read_memory_integer (addr, MIPS_SAVED_REGSIZE);
1606 }
1607 }
1608
1609 return extract_signed_integer (raw_buffer, REGISTER_VIRTUAL_SIZE (regno));
1610 }
1611
1612 /* mips_addr_bits_remove - remove useless address bits */
1613
1614 static CORE_ADDR
1615 mips_addr_bits_remove (CORE_ADDR addr)
1616 {
1617 if (GDB_TARGET_IS_MIPS64)
1618 {
1619 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
1620 {
1621 /* This hack is a work-around for existing boards using
1622 PMON, the simulator, and any other 64-bit targets that
1623 doesn't have true 64-bit addressing. On these targets,
1624 the upper 32 bits of addresses are ignored by the
1625 hardware. Thus, the PC or SP are likely to have been
1626 sign extended to all 1s by instruction sequences that
1627 load 32-bit addresses. For example, a typical piece of
1628 code that loads an address is this:
1629 lui $r2, <upper 16 bits>
1630 ori $r2, <lower 16 bits>
1631 But the lui sign-extends the value such that the upper 32
1632 bits may be all 1s. The workaround is simply to mask off
1633 these bits. In the future, gcc may be changed to support
1634 true 64-bit addressing, and this masking will have to be
1635 disabled. */
1636 addr &= (CORE_ADDR) 0xffffffff;
1637 }
1638 }
1639 else if (mips_mask_address_p ())
1640 {
1641 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1642 masking off bits, instead, the actual target should be asking
1643 for the address to be converted to a valid pointer. */
1644 /* Even when GDB is configured for some 32-bit targets
1645 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1646 so CORE_ADDR is 64 bits. So we still have to mask off
1647 useless bits from addresses. */
1648 addr &= (CORE_ADDR) 0xffffffff;
1649 }
1650 return addr;
1651 }
1652
1653 /* mips_software_single_step() is called just before we want to resume
1654 the inferior, if we want to single-step it but there is no hardware
1655 or kernel single-step support (MIPS on GNU/Linux for example). We find
1656 the target of the coming instruction and breakpoint it.
1657
1658 single_step is also called just after the inferior stops. If we had
1659 set up a simulated single-step, we undo our damage. */
1660
1661 void
1662 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1663 {
1664 static CORE_ADDR next_pc;
1665 typedef char binsn_quantum[BREAKPOINT_MAX];
1666 static binsn_quantum break_mem;
1667 CORE_ADDR pc;
1668
1669 if (insert_breakpoints_p)
1670 {
1671 pc = read_register (PC_REGNUM);
1672 next_pc = mips_next_pc (pc);
1673
1674 target_insert_breakpoint (next_pc, break_mem);
1675 }
1676 else
1677 target_remove_breakpoint (next_pc, break_mem);
1678 }
1679
1680 static CORE_ADDR
1681 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1682 {
1683 CORE_ADDR pc, tmp;
1684
1685 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
1686 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
1687 tmp = SKIP_TRAMPOLINE_CODE (pc);
1688 return tmp ? tmp : pc;
1689 }
1690
1691
1692 static CORE_ADDR
1693 mips_frame_saved_pc (struct frame_info *frame)
1694 {
1695 CORE_ADDR saved_pc;
1696 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
1697 /* We have to get the saved pc from the sigcontext
1698 if it is a signal handler frame. */
1699 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME) ? PC_REGNUM
1700 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1701
1702 if (DEPRECATED_PC_IN_CALL_DUMMY (frame->pc, 0, 0))
1703 {
1704 LONGEST tmp;
1705 frame_unwind_signed_register (frame, PC_REGNUM, &tmp);
1706 saved_pc = tmp;
1707 }
1708 else if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1709 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1710 else
1711 saved_pc = read_next_frame_reg (frame, pcreg);
1712
1713 return ADDR_BITS_REMOVE (saved_pc);
1714 }
1715
1716 static struct mips_extra_func_info temp_proc_desc;
1717 static CORE_ADDR temp_saved_regs[NUM_REGS];
1718
1719 /* Set a register's saved stack address in temp_saved_regs. If an address
1720 has already been set for this register, do nothing; this way we will
1721 only recognize the first save of a given register in a function prologue.
1722 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1723
1724 static void
1725 set_reg_offset (int regno, CORE_ADDR offset)
1726 {
1727 if (temp_saved_regs[regno] == 0)
1728 temp_saved_regs[regno] = offset;
1729 }
1730
1731
1732 /* Test whether the PC points to the return instruction at the
1733 end of a function. */
1734
1735 static int
1736 mips_about_to_return (CORE_ADDR pc)
1737 {
1738 if (pc_is_mips16 (pc))
1739 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1740 generates a "jr $ra"; other times it generates code to load
1741 the return address from the stack to an accessible register (such
1742 as $a3), then a "jr" using that register. This second case
1743 is almost impossible to distinguish from an indirect jump
1744 used for switch statements, so we don't even try. */
1745 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1746 else
1747 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1748 }
1749
1750
1751 /* This fencepost looks highly suspicious to me. Removing it also
1752 seems suspicious as it could affect remote debugging across serial
1753 lines. */
1754
1755 static CORE_ADDR
1756 heuristic_proc_start (CORE_ADDR pc)
1757 {
1758 CORE_ADDR start_pc;
1759 CORE_ADDR fence;
1760 int instlen;
1761 int seen_adjsp = 0;
1762
1763 pc = ADDR_BITS_REMOVE (pc);
1764 start_pc = pc;
1765 fence = start_pc - heuristic_fence_post;
1766 if (start_pc == 0)
1767 return 0;
1768
1769 if (heuristic_fence_post == UINT_MAX
1770 || fence < VM_MIN_ADDRESS)
1771 fence = VM_MIN_ADDRESS;
1772
1773 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1774
1775 /* search back for previous return */
1776 for (start_pc -= instlen;; start_pc -= instlen)
1777 if (start_pc < fence)
1778 {
1779 /* It's not clear to me why we reach this point when
1780 stop_soon_quietly, but with this test, at least we
1781 don't print out warnings for every child forked (eg, on
1782 decstation). 22apr93 rich@cygnus.com. */
1783 if (!stop_soon_quietly)
1784 {
1785 static int blurb_printed = 0;
1786
1787 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1788 paddr_nz (pc));
1789
1790 if (!blurb_printed)
1791 {
1792 /* This actually happens frequently in embedded
1793 development, when you first connect to a board
1794 and your stack pointer and pc are nowhere in
1795 particular. This message needs to give people
1796 in that situation enough information to
1797 determine that it's no big deal. */
1798 printf_filtered ("\n\
1799 GDB is unable to find the start of the function at 0x%s\n\
1800 and thus can't determine the size of that function's stack frame.\n\
1801 This means that GDB may be unable to access that stack frame, or\n\
1802 the frames below it.\n\
1803 This problem is most likely caused by an invalid program counter or\n\
1804 stack pointer.\n\
1805 However, if you think GDB should simply search farther back\n\
1806 from 0x%s for code which looks like the beginning of a\n\
1807 function, you can increase the range of the search using the `set\n\
1808 heuristic-fence-post' command.\n",
1809 paddr_nz (pc), paddr_nz (pc));
1810 blurb_printed = 1;
1811 }
1812 }
1813
1814 return 0;
1815 }
1816 else if (pc_is_mips16 (start_pc))
1817 {
1818 unsigned short inst;
1819
1820 /* On MIPS16, any one of the following is likely to be the
1821 start of a function:
1822 entry
1823 addiu sp,-n
1824 daddiu sp,-n
1825 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1826 inst = mips_fetch_instruction (start_pc);
1827 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1828 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1829 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1830 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1831 break;
1832 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1833 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1834 seen_adjsp = 1;
1835 else
1836 seen_adjsp = 0;
1837 }
1838 else if (mips_about_to_return (start_pc))
1839 {
1840 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1841 break;
1842 }
1843
1844 return start_pc;
1845 }
1846
1847 /* Fetch the immediate value from a MIPS16 instruction.
1848 If the previous instruction was an EXTEND, use it to extend
1849 the upper bits of the immediate value. This is a helper function
1850 for mips16_heuristic_proc_desc. */
1851
1852 static int
1853 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1854 unsigned short inst, /* current instruction */
1855 int nbits, /* number of bits in imm field */
1856 int scale, /* scale factor to be applied to imm */
1857 int is_signed) /* is the imm field signed? */
1858 {
1859 int offset;
1860
1861 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1862 {
1863 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1864 if (offset & 0x8000) /* check for negative extend */
1865 offset = 0 - (0x10000 - (offset & 0xffff));
1866 return offset | (inst & 0x1f);
1867 }
1868 else
1869 {
1870 int max_imm = 1 << nbits;
1871 int mask = max_imm - 1;
1872 int sign_bit = max_imm >> 1;
1873
1874 offset = inst & mask;
1875 if (is_signed && (offset & sign_bit))
1876 offset = 0 - (max_imm - offset);
1877 return offset * scale;
1878 }
1879 }
1880
1881
1882 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
1883 stream from start_pc to limit_pc. */
1884
1885 static void
1886 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1887 struct frame_info *next_frame, CORE_ADDR sp)
1888 {
1889 CORE_ADDR cur_pc;
1890 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1891 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1892 unsigned inst = 0; /* current instruction */
1893 unsigned entry_inst = 0; /* the entry instruction */
1894 int reg, offset;
1895
1896 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1897 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1898
1899 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1900 {
1901 /* Save the previous instruction. If it's an EXTEND, we'll extract
1902 the immediate offset extension from it in mips16_get_imm. */
1903 prev_inst = inst;
1904
1905 /* Fetch and decode the instruction. */
1906 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1907 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1908 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1909 {
1910 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1911 if (offset < 0) /* negative stack adjustment? */
1912 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
1913 else
1914 /* Exit loop if a positive stack adjustment is found, which
1915 usually means that the stack cleanup code in the function
1916 epilogue is reached. */
1917 break;
1918 }
1919 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1920 {
1921 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1922 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1923 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1924 set_reg_offset (reg, sp + offset);
1925 }
1926 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1927 {
1928 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1929 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1930 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1931 set_reg_offset (reg, sp + offset);
1932 }
1933 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1934 {
1935 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1936 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1937 set_reg_offset (RA_REGNUM, sp + offset);
1938 }
1939 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1940 {
1941 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1942 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1943 set_reg_offset (RA_REGNUM, sp + offset);
1944 }
1945 else if (inst == 0x673d) /* move $s1, $sp */
1946 {
1947 frame_addr = sp;
1948 PROC_FRAME_REG (&temp_proc_desc) = 17;
1949 }
1950 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1951 {
1952 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1953 frame_addr = sp + offset;
1954 PROC_FRAME_REG (&temp_proc_desc) = 17;
1955 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1956 }
1957 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1958 {
1959 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1960 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1961 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1962 set_reg_offset (reg, frame_addr + offset);
1963 }
1964 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1965 {
1966 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1967 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1968 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1969 set_reg_offset (reg, frame_addr + offset);
1970 }
1971 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1972 entry_inst = inst; /* save for later processing */
1973 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1974 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
1975 }
1976
1977 /* The entry instruction is typically the first instruction in a function,
1978 and it stores registers at offsets relative to the value of the old SP
1979 (before the prologue). But the value of the sp parameter to this
1980 function is the new SP (after the prologue has been executed). So we
1981 can't calculate those offsets until we've seen the entire prologue,
1982 and can calculate what the old SP must have been. */
1983 if (entry_inst != 0)
1984 {
1985 int areg_count = (entry_inst >> 8) & 7;
1986 int sreg_count = (entry_inst >> 6) & 3;
1987
1988 /* The entry instruction always subtracts 32 from the SP. */
1989 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
1990
1991 /* Now we can calculate what the SP must have been at the
1992 start of the function prologue. */
1993 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
1994
1995 /* Check if a0-a3 were saved in the caller's argument save area. */
1996 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1997 {
1998 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1999 set_reg_offset (reg, sp + offset);
2000 offset += MIPS_SAVED_REGSIZE;
2001 }
2002
2003 /* Check if the ra register was pushed on the stack. */
2004 offset = -4;
2005 if (entry_inst & 0x20)
2006 {
2007 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
2008 set_reg_offset (RA_REGNUM, sp + offset);
2009 offset -= MIPS_SAVED_REGSIZE;
2010 }
2011
2012 /* Check if the s0 and s1 registers were pushed on the stack. */
2013 for (reg = 16; reg < sreg_count + 16; reg++)
2014 {
2015 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2016 set_reg_offset (reg, sp + offset);
2017 offset -= MIPS_SAVED_REGSIZE;
2018 }
2019 }
2020 }
2021
2022 static void
2023 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2024 struct frame_info *next_frame, CORE_ADDR sp)
2025 {
2026 CORE_ADDR cur_pc;
2027 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
2028 restart:
2029 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2030 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
2031 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2032 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2033 {
2034 unsigned long inst, high_word, low_word;
2035 int reg;
2036
2037 /* Fetch the instruction. */
2038 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2039
2040 /* Save some code by pre-extracting some useful fields. */
2041 high_word = (inst >> 16) & 0xffff;
2042 low_word = inst & 0xffff;
2043 reg = high_word & 0x1f;
2044
2045 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
2046 || high_word == 0x23bd /* addi $sp,$sp,-i */
2047 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2048 {
2049 if (low_word & 0x8000) /* negative stack adjustment? */
2050 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
2051 else
2052 /* Exit loop if a positive stack adjustment is found, which
2053 usually means that the stack cleanup code in the function
2054 epilogue is reached. */
2055 break;
2056 }
2057 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2058 {
2059 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2060 set_reg_offset (reg, sp + low_word);
2061 }
2062 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2063 {
2064 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2065 but the register size used is only 32 bits. Make the address
2066 for the saved register point to the lower 32 bits. */
2067 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2068 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
2069 }
2070 else if (high_word == 0x27be) /* addiu $30,$sp,size */
2071 {
2072 /* Old gcc frame, r30 is virtual frame pointer. */
2073 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2074 frame_addr = sp + low_word;
2075 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2076 {
2077 unsigned alloca_adjust;
2078 PROC_FRAME_REG (&temp_proc_desc) = 30;
2079 frame_addr = read_next_frame_reg (next_frame, 30);
2080 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
2081 if (alloca_adjust > 0)
2082 {
2083 /* FP > SP + frame_size. This may be because
2084 * of an alloca or somethings similar.
2085 * Fix sp to "pre-alloca" value, and try again.
2086 */
2087 sp += alloca_adjust;
2088 goto restart;
2089 }
2090 }
2091 }
2092 /* move $30,$sp. With different versions of gas this will be either
2093 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2094 Accept any one of these. */
2095 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2096 {
2097 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2098 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2099 {
2100 unsigned alloca_adjust;
2101 PROC_FRAME_REG (&temp_proc_desc) = 30;
2102 frame_addr = read_next_frame_reg (next_frame, 30);
2103 alloca_adjust = (unsigned) (frame_addr - sp);
2104 if (alloca_adjust > 0)
2105 {
2106 /* FP > SP + frame_size. This may be because
2107 * of an alloca or somethings similar.
2108 * Fix sp to "pre-alloca" value, and try again.
2109 */
2110 sp += alloca_adjust;
2111 goto restart;
2112 }
2113 }
2114 }
2115 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
2116 {
2117 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2118 set_reg_offset (reg, frame_addr + low_word);
2119 }
2120 }
2121 }
2122
2123 static mips_extra_func_info_t
2124 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2125 struct frame_info *next_frame, int cur_frame)
2126 {
2127 CORE_ADDR sp;
2128
2129 if (cur_frame)
2130 sp = read_next_frame_reg (next_frame, SP_REGNUM);
2131 else
2132 sp = 0;
2133
2134 if (start_pc == 0)
2135 return NULL;
2136 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
2137 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2138 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2139 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2140 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2141
2142 if (start_pc + 200 < limit_pc)
2143 limit_pc = start_pc + 200;
2144 if (pc_is_mips16 (start_pc))
2145 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2146 else
2147 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2148 return &temp_proc_desc;
2149 }
2150
2151 struct mips_objfile_private
2152 {
2153 bfd_size_type size;
2154 char *contents;
2155 };
2156
2157 /* Global used to communicate between non_heuristic_proc_desc and
2158 compare_pdr_entries within qsort (). */
2159 static bfd *the_bfd;
2160
2161 static int
2162 compare_pdr_entries (const void *a, const void *b)
2163 {
2164 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2165 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2166
2167 if (lhs < rhs)
2168 return -1;
2169 else if (lhs == rhs)
2170 return 0;
2171 else
2172 return 1;
2173 }
2174
2175 static mips_extra_func_info_t
2176 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
2177 {
2178 CORE_ADDR startaddr;
2179 mips_extra_func_info_t proc_desc;
2180 struct block *b = block_for_pc (pc);
2181 struct symbol *sym;
2182 struct obj_section *sec;
2183 struct mips_objfile_private *priv;
2184
2185 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
2186 return NULL;
2187
2188 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2189 if (addrptr)
2190 *addrptr = startaddr;
2191
2192 priv = NULL;
2193
2194 sec = find_pc_section (pc);
2195 if (sec != NULL)
2196 {
2197 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2198
2199 /* Search the ".pdr" section generated by GAS. This includes most of
2200 the information normally found in ECOFF PDRs. */
2201
2202 the_bfd = sec->objfile->obfd;
2203 if (priv == NULL
2204 && (the_bfd->format == bfd_object
2205 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2206 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2207 {
2208 /* Right now GAS only outputs the address as a four-byte sequence.
2209 This means that we should not bother with this method on 64-bit
2210 targets (until that is fixed). */
2211
2212 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2213 sizeof (struct mips_objfile_private));
2214 priv->size = 0;
2215 sec->objfile->obj_private = priv;
2216 }
2217 else if (priv == NULL)
2218 {
2219 asection *bfdsec;
2220
2221 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2222 sizeof (struct mips_objfile_private));
2223
2224 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2225 if (bfdsec != NULL)
2226 {
2227 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2228 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2229 priv->size);
2230 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2231 priv->contents, 0, priv->size);
2232
2233 /* In general, the .pdr section is sorted. However, in the
2234 presence of multiple code sections (and other corner cases)
2235 it can become unsorted. Sort it so that we can use a faster
2236 binary search. */
2237 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2238 }
2239 else
2240 priv->size = 0;
2241
2242 sec->objfile->obj_private = priv;
2243 }
2244 the_bfd = NULL;
2245
2246 if (priv->size != 0)
2247 {
2248 int low, mid, high;
2249 char *ptr;
2250
2251 low = 0;
2252 high = priv->size / 32;
2253
2254 do
2255 {
2256 CORE_ADDR pdr_pc;
2257
2258 mid = (low + high) / 2;
2259
2260 ptr = priv->contents + mid * 32;
2261 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2262 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2263 SECT_OFF_TEXT (sec->objfile));
2264 if (pdr_pc == startaddr)
2265 break;
2266 if (pdr_pc > startaddr)
2267 high = mid;
2268 else
2269 low = mid + 1;
2270 }
2271 while (low != high);
2272
2273 if (low != high)
2274 {
2275 struct symbol *sym = find_pc_function (pc);
2276
2277 /* Fill in what we need of the proc_desc. */
2278 proc_desc = (mips_extra_func_info_t)
2279 obstack_alloc (&sec->objfile->psymbol_obstack,
2280 sizeof (struct mips_extra_func_info));
2281 PROC_LOW_ADDR (proc_desc) = startaddr;
2282
2283 /* Only used for dummy frames. */
2284 PROC_HIGH_ADDR (proc_desc) = 0;
2285
2286 PROC_FRAME_OFFSET (proc_desc)
2287 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2288 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2289 ptr + 24);
2290 PROC_FRAME_ADJUST (proc_desc) = 0;
2291 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2292 ptr + 4);
2293 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2294 ptr + 12);
2295 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2296 ptr + 8);
2297 PROC_FREG_OFFSET (proc_desc)
2298 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2299 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2300 ptr + 28);
2301 proc_desc->pdr.isym = (long) sym;
2302
2303 return proc_desc;
2304 }
2305 }
2306 }
2307
2308 if (b == NULL)
2309 return NULL;
2310
2311 if (startaddr > BLOCK_START (b))
2312 {
2313 /* This is the "pathological" case referred to in a comment in
2314 print_frame_info. It might be better to move this check into
2315 symbol reading. */
2316 return NULL;
2317 }
2318
2319 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
2320
2321 /* If we never found a PDR for this function in symbol reading, then
2322 examine prologues to find the information. */
2323 if (sym)
2324 {
2325 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2326 if (PROC_FRAME_REG (proc_desc) == -1)
2327 return NULL;
2328 else
2329 return proc_desc;
2330 }
2331 else
2332 return NULL;
2333 }
2334
2335
2336 static mips_extra_func_info_t
2337 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
2338 {
2339 mips_extra_func_info_t proc_desc;
2340 CORE_ADDR startaddr = 0;
2341
2342 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2343
2344 if (proc_desc)
2345 {
2346 /* IF this is the topmost frame AND
2347 * (this proc does not have debugging information OR
2348 * the PC is in the procedure prologue)
2349 * THEN create a "heuristic" proc_desc (by analyzing
2350 * the actual code) to replace the "official" proc_desc.
2351 */
2352 if (next_frame == NULL)
2353 {
2354 struct symtab_and_line val;
2355 struct symbol *proc_symbol =
2356 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
2357
2358 if (proc_symbol)
2359 {
2360 val = find_pc_line (BLOCK_START
2361 (SYMBOL_BLOCK_VALUE (proc_symbol)),
2362 0);
2363 val.pc = val.end ? val.end : pc;
2364 }
2365 if (!proc_symbol || pc < val.pc)
2366 {
2367 mips_extra_func_info_t found_heuristic =
2368 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2369 pc, next_frame, cur_frame);
2370 if (found_heuristic)
2371 proc_desc = found_heuristic;
2372 }
2373 }
2374 }
2375 else
2376 {
2377 /* Is linked_proc_desc_table really necessary? It only seems to be used
2378 by procedure call dummys. However, the procedures being called ought
2379 to have their own proc_descs, and even if they don't,
2380 heuristic_proc_desc knows how to create them! */
2381
2382 register struct linked_proc_info *link;
2383
2384 for (link = linked_proc_desc_table; link; link = link->next)
2385 if (PROC_LOW_ADDR (&link->info) <= pc
2386 && PROC_HIGH_ADDR (&link->info) > pc)
2387 return &link->info;
2388
2389 if (startaddr == 0)
2390 startaddr = heuristic_proc_start (pc);
2391
2392 proc_desc =
2393 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
2394 }
2395 return proc_desc;
2396 }
2397
2398 static CORE_ADDR
2399 get_frame_pointer (struct frame_info *frame,
2400 mips_extra_func_info_t proc_desc)
2401 {
2402 return ADDR_BITS_REMOVE (read_next_frame_reg (frame,
2403 PROC_FRAME_REG (proc_desc)) +
2404 PROC_FRAME_OFFSET (proc_desc) -
2405 PROC_FRAME_ADJUST (proc_desc));
2406 }
2407
2408 static mips_extra_func_info_t cached_proc_desc;
2409
2410 static CORE_ADDR
2411 mips_frame_chain (struct frame_info *frame)
2412 {
2413 mips_extra_func_info_t proc_desc;
2414 CORE_ADDR tmp;
2415 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
2416
2417 if (saved_pc == 0 || inside_entry_file (saved_pc))
2418 return 0;
2419
2420 /* Check if the PC is inside a call stub. If it is, fetch the
2421 PC of the caller of that stub. */
2422 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
2423 saved_pc = tmp;
2424
2425 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
2426 {
2427 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2428 is well, frame->frame the bottom of the current frame will
2429 contain that value. */
2430 return frame->frame;
2431 }
2432
2433 /* Look up the procedure descriptor for this PC. */
2434 proc_desc = find_proc_desc (saved_pc, frame, 1);
2435 if (!proc_desc)
2436 return 0;
2437
2438 cached_proc_desc = proc_desc;
2439
2440 /* If no frame pointer and frame size is zero, we must be at end
2441 of stack (or otherwise hosed). If we don't check frame size,
2442 we loop forever if we see a zero size frame. */
2443 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2444 && PROC_FRAME_OFFSET (proc_desc) == 0
2445 /* The previous frame from a sigtramp frame might be frameless
2446 and have frame size zero. */
2447 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
2448 /* For a generic dummy frame, let get_frame_pointer() unwind a
2449 register value saved as part of the dummy frame call. */
2450 && !(DEPRECATED_PC_IN_CALL_DUMMY (frame->pc, 0, 0)))
2451 return 0;
2452 else
2453 return get_frame_pointer (frame, proc_desc);
2454 }
2455
2456 static void
2457 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
2458 {
2459 int regnum;
2460
2461 /* Use proc_desc calculated in frame_chain */
2462 mips_extra_func_info_t proc_desc =
2463 fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next, 1);
2464
2465 fci->extra_info = (struct frame_extra_info *)
2466 frame_obstack_alloc (sizeof (struct frame_extra_info));
2467
2468 fci->saved_regs = NULL;
2469 fci->extra_info->proc_desc =
2470 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2471 if (proc_desc)
2472 {
2473 /* Fixup frame-pointer - only needed for top frame */
2474 /* This may not be quite right, if proc has a real frame register.
2475 Get the value of the frame relative sp, procedure might have been
2476 interrupted by a signal at it's very start. */
2477 if (fci->pc == PROC_LOW_ADDR (proc_desc)
2478 && !PROC_DESC_IS_DUMMY (proc_desc))
2479 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
2480 else if (DEPRECATED_PC_IN_CALL_DUMMY (fci->pc, 0, 0))
2481 /* Do not ``fix'' fci->frame. It will have the value of the
2482 generic dummy frame's top-of-stack (since the draft
2483 fci->frame is obtained by returning the unwound stack
2484 pointer) and that is what we want. That way the fci->frame
2485 value will match the top-of-stack value that was saved as
2486 part of the dummy frames data. */
2487 /* Do nothing. */;
2488 else
2489 fci->frame = get_frame_pointer (fci->next, proc_desc);
2490
2491 if (proc_desc == &temp_proc_desc)
2492 {
2493 char *name;
2494
2495 /* Do not set the saved registers for a sigtramp frame,
2496 mips_find_saved_registers will do that for us. We can't
2497 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2498 yet set. */
2499 /* FIXME: cagney/2002-11-18: This problem will go away once
2500 frame.c:get_prev_frame() is modified to set the frame's
2501 type before calling functions like this. */
2502 find_pc_partial_function (fci->pc, &name,
2503 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2504 if (!PC_IN_SIGTRAMP (fci->pc, name))
2505 {
2506 frame_saved_regs_zalloc (fci);
2507 memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2508 fci->saved_regs[PC_REGNUM]
2509 = fci->saved_regs[RA_REGNUM];
2510 /* Set value of previous frame's stack pointer. Remember that
2511 saved_regs[SP_REGNUM] is special in that it contains the
2512 value of the stack pointer register. The other saved_regs
2513 values are addresses (in the inferior) at which a given
2514 register's value may be found. */
2515 fci->saved_regs[SP_REGNUM] = fci->frame;
2516 }
2517 }
2518
2519 /* hack: if argument regs are saved, guess these contain args */
2520 /* assume we can't tell how many args for now */
2521 fci->extra_info->num_args = -1;
2522 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2523 {
2524 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2525 {
2526 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
2527 break;
2528 }
2529 }
2530 }
2531 }
2532
2533 /* MIPS stack frames are almost impenetrable. When execution stops,
2534 we basically have to look at symbol information for the function
2535 that we stopped in, which tells us *which* register (if any) is
2536 the base of the frame pointer, and what offset from that register
2537 the frame itself is at.
2538
2539 This presents a problem when trying to examine a stack in memory
2540 (that isn't executing at the moment), using the "frame" command. We
2541 don't have a PC, nor do we have any registers except SP.
2542
2543 This routine takes two arguments, SP and PC, and tries to make the
2544 cached frames look as if these two arguments defined a frame on the
2545 cache. This allows the rest of info frame to extract the important
2546 arguments without difficulty. */
2547
2548 struct frame_info *
2549 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2550 {
2551 if (argc != 2)
2552 error ("MIPS frame specifications require two arguments: sp and pc");
2553
2554 return create_new_frame (argv[0], argv[1]);
2555 }
2556
2557 /* According to the current ABI, should the type be passed in a
2558 floating-point register (assuming that there is space)? When there
2559 is no FPU, FP are not even considered as possibile candidates for
2560 FP registers and, consequently this returns false - forces FP
2561 arguments into integer registers. */
2562
2563 static int
2564 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2565 {
2566 return ((typecode == TYPE_CODE_FLT
2567 || (MIPS_EABI
2568 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2569 && TYPE_NFIELDS (arg_type) == 1
2570 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2571 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2572 }
2573
2574 /* On o32, argument passing in GPRs depends on the alignment of the type being
2575 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2576
2577 static int
2578 mips_type_needs_double_align (struct type *type)
2579 {
2580 enum type_code typecode = TYPE_CODE (type);
2581
2582 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2583 return 1;
2584 else if (typecode == TYPE_CODE_STRUCT)
2585 {
2586 if (TYPE_NFIELDS (type) < 1)
2587 return 0;
2588 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2589 }
2590 else if (typecode == TYPE_CODE_UNION)
2591 {
2592 int i, n;
2593
2594 n = TYPE_NFIELDS (type);
2595 for (i = 0; i < n; i++)
2596 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2597 return 1;
2598 return 0;
2599 }
2600 return 0;
2601 }
2602
2603 /* Macros to round N up or down to the next A boundary;
2604 A must be a power of two. */
2605
2606 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2607 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2608
2609 /* Adjust the address downward (direction of stack growth) so that it
2610 is correctly aligned for a new stack frame. */
2611 static CORE_ADDR
2612 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2613 {
2614 return ROUND_DOWN (addr, 16);
2615 }
2616
2617 static CORE_ADDR
2618 mips_eabi_push_arguments (int nargs,
2619 struct value **args,
2620 CORE_ADDR sp,
2621 int struct_return,
2622 CORE_ADDR struct_addr)
2623 {
2624 int argreg;
2625 int float_argreg;
2626 int argnum;
2627 int len = 0;
2628 int stack_offset = 0;
2629
2630 /* First ensure that the stack and structure return address (if any)
2631 are properly aligned. The stack has to be at least 64-bit
2632 aligned even on 32-bit machines, because doubles must be 64-bit
2633 aligned. For n32 and n64, stack frames need to be 128-bit
2634 aligned, so we round to this widest known alignment. */
2635
2636 sp = ROUND_DOWN (sp, 16);
2637 struct_addr = ROUND_DOWN (struct_addr, 16);
2638
2639 /* Now make space on the stack for the args. We allocate more
2640 than necessary for EABI, because the first few arguments are
2641 passed in registers, but that's OK. */
2642 for (argnum = 0; argnum < nargs; argnum++)
2643 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2644 MIPS_STACK_ARGSIZE);
2645 sp -= ROUND_UP (len, 16);
2646
2647 if (mips_debug)
2648 fprintf_unfiltered (gdb_stdlog,
2649 "mips_eabi_push_arguments: sp=0x%s allocated %d\n",
2650 paddr_nz (sp), ROUND_UP (len, 16));
2651
2652 /* Initialize the integer and float register pointers. */
2653 argreg = A0_REGNUM;
2654 float_argreg = FPA0_REGNUM;
2655
2656 /* The struct_return pointer occupies the first parameter-passing reg. */
2657 if (struct_return)
2658 {
2659 if (mips_debug)
2660 fprintf_unfiltered (gdb_stdlog,
2661 "mips_eabi_push_arguments: struct_return reg=%d 0x%s\n",
2662 argreg, paddr_nz (struct_addr));
2663 write_register (argreg++, struct_addr);
2664 }
2665
2666 /* Now load as many as possible of the first arguments into
2667 registers, and push the rest onto the stack. Loop thru args
2668 from first to last. */
2669 for (argnum = 0; argnum < nargs; argnum++)
2670 {
2671 char *val;
2672 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2673 struct value *arg = args[argnum];
2674 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2675 int len = TYPE_LENGTH (arg_type);
2676 enum type_code typecode = TYPE_CODE (arg_type);
2677
2678 if (mips_debug)
2679 fprintf_unfiltered (gdb_stdlog,
2680 "mips_eabi_push_arguments: %d len=%d type=%d",
2681 argnum + 1, len, (int) typecode);
2682
2683 /* The EABI passes structures that do not fit in a register by
2684 reference. */
2685 if (len > MIPS_SAVED_REGSIZE
2686 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2687 {
2688 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2689 typecode = TYPE_CODE_PTR;
2690 len = MIPS_SAVED_REGSIZE;
2691 val = valbuf;
2692 if (mips_debug)
2693 fprintf_unfiltered (gdb_stdlog, " push");
2694 }
2695 else
2696 val = (char *) VALUE_CONTENTS (arg);
2697
2698 /* 32-bit ABIs always start floating point arguments in an
2699 even-numbered floating point register. Round the FP register
2700 up before the check to see if there are any FP registers
2701 left. Non MIPS_EABI targets also pass the FP in the integer
2702 registers so also round up normal registers. */
2703 if (!FP_REGISTER_DOUBLE
2704 && fp_register_arg_p (typecode, arg_type))
2705 {
2706 if ((float_argreg & 1))
2707 float_argreg++;
2708 }
2709
2710 /* Floating point arguments passed in registers have to be
2711 treated specially. On 32-bit architectures, doubles
2712 are passed in register pairs; the even register gets
2713 the low word, and the odd register gets the high word.
2714 On non-EABI processors, the first two floating point arguments are
2715 also copied to general registers, because MIPS16 functions
2716 don't use float registers for arguments. This duplication of
2717 arguments in general registers can't hurt non-MIPS16 functions
2718 because those registers are normally skipped. */
2719 /* MIPS_EABI squeezes a struct that contains a single floating
2720 point value into an FP register instead of pushing it onto the
2721 stack. */
2722 if (fp_register_arg_p (typecode, arg_type)
2723 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2724 {
2725 if (!FP_REGISTER_DOUBLE && len == 8)
2726 {
2727 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2728 unsigned long regval;
2729
2730 /* Write the low word of the double to the even register(s). */
2731 regval = extract_unsigned_integer (val + low_offset, 4);
2732 if (mips_debug)
2733 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2734 float_argreg, phex (regval, 4));
2735 write_register (float_argreg++, regval);
2736
2737 /* Write the high word of the double to the odd register(s). */
2738 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2739 if (mips_debug)
2740 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2741 float_argreg, phex (regval, 4));
2742 write_register (float_argreg++, regval);
2743 }
2744 else
2745 {
2746 /* This is a floating point value that fits entirely
2747 in a single register. */
2748 /* On 32 bit ABI's the float_argreg is further adjusted
2749 above to ensure that it is even register aligned. */
2750 LONGEST regval = extract_unsigned_integer (val, len);
2751 if (mips_debug)
2752 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2753 float_argreg, phex (regval, len));
2754 write_register (float_argreg++, regval);
2755 }
2756 }
2757 else
2758 {
2759 /* Copy the argument to general registers or the stack in
2760 register-sized pieces. Large arguments are split between
2761 registers and stack. */
2762 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2763 are treated specially: Irix cc passes them in registers
2764 where gcc sometimes puts them on the stack. For maximum
2765 compatibility, we will put them in both places. */
2766 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2767 (len % MIPS_SAVED_REGSIZE != 0));
2768
2769 /* Note: Floating-point values that didn't fit into an FP
2770 register are only written to memory. */
2771 while (len > 0)
2772 {
2773 /* Remember if the argument was written to the stack. */
2774 int stack_used_p = 0;
2775 int partial_len =
2776 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
2777
2778 if (mips_debug)
2779 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2780 partial_len);
2781
2782 /* Write this portion of the argument to the stack. */
2783 if (argreg > MIPS_LAST_ARG_REGNUM
2784 || odd_sized_struct
2785 || fp_register_arg_p (typecode, arg_type))
2786 {
2787 /* Should shorter than int integer values be
2788 promoted to int before being stored? */
2789 int longword_offset = 0;
2790 CORE_ADDR addr;
2791 stack_used_p = 1;
2792 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2793 {
2794 if (MIPS_STACK_ARGSIZE == 8 &&
2795 (typecode == TYPE_CODE_INT ||
2796 typecode == TYPE_CODE_PTR ||
2797 typecode == TYPE_CODE_FLT) && len <= 4)
2798 longword_offset = MIPS_STACK_ARGSIZE - len;
2799 else if ((typecode == TYPE_CODE_STRUCT ||
2800 typecode == TYPE_CODE_UNION) &&
2801 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2802 longword_offset = MIPS_STACK_ARGSIZE - len;
2803 }
2804
2805 if (mips_debug)
2806 {
2807 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2808 paddr_nz (stack_offset));
2809 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2810 paddr_nz (longword_offset));
2811 }
2812
2813 addr = sp + stack_offset + longword_offset;
2814
2815 if (mips_debug)
2816 {
2817 int i;
2818 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2819 paddr_nz (addr));
2820 for (i = 0; i < partial_len; i++)
2821 {
2822 fprintf_unfiltered (gdb_stdlog, "%02x",
2823 val[i] & 0xff);
2824 }
2825 }
2826 write_memory (addr, val, partial_len);
2827 }
2828
2829 /* Note!!! This is NOT an else clause. Odd sized
2830 structs may go thru BOTH paths. Floating point
2831 arguments will not. */
2832 /* Write this portion of the argument to a general
2833 purpose register. */
2834 if (argreg <= MIPS_LAST_ARG_REGNUM
2835 && !fp_register_arg_p (typecode, arg_type))
2836 {
2837 LONGEST regval = extract_unsigned_integer (val, partial_len);
2838
2839 if (mips_debug)
2840 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2841 argreg,
2842 phex (regval, MIPS_SAVED_REGSIZE));
2843 write_register (argreg, regval);
2844 argreg++;
2845 }
2846
2847 len -= partial_len;
2848 val += partial_len;
2849
2850 /* Compute the the offset into the stack at which we
2851 will copy the next parameter.
2852
2853 In the new EABI (and the NABI32), the stack_offset
2854 only needs to be adjusted when it has been used. */
2855
2856 if (stack_used_p)
2857 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
2858 }
2859 }
2860 if (mips_debug)
2861 fprintf_unfiltered (gdb_stdlog, "\n");
2862 }
2863
2864 /* Return adjusted stack pointer. */
2865 return sp;
2866 }
2867
2868 /* N32/N64 version of push_arguments. */
2869
2870 static CORE_ADDR
2871 mips_n32n64_push_arguments (int nargs,
2872 struct value **args,
2873 CORE_ADDR sp,
2874 int struct_return,
2875 CORE_ADDR struct_addr)
2876 {
2877 int argreg;
2878 int float_argreg;
2879 int argnum;
2880 int len = 0;
2881 int stack_offset = 0;
2882
2883 /* First ensure that the stack and structure return address (if any)
2884 are properly aligned. The stack has to be at least 64-bit
2885 aligned even on 32-bit machines, because doubles must be 64-bit
2886 aligned. For n32 and n64, stack frames need to be 128-bit
2887 aligned, so we round to this widest known alignment. */
2888
2889 sp = ROUND_DOWN (sp, 16);
2890 struct_addr = ROUND_DOWN (struct_addr, 16);
2891
2892 /* Now make space on the stack for the args. */
2893 for (argnum = 0; argnum < nargs; argnum++)
2894 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2895 MIPS_STACK_ARGSIZE);
2896 sp -= ROUND_UP (len, 16);
2897
2898 if (mips_debug)
2899 fprintf_unfiltered (gdb_stdlog,
2900 "mips_n32n64_push_arguments: sp=0x%s allocated %d\n",
2901 paddr_nz (sp), ROUND_UP (len, 16));
2902
2903 /* Initialize the integer and float register pointers. */
2904 argreg = A0_REGNUM;
2905 float_argreg = FPA0_REGNUM;
2906
2907 /* The struct_return pointer occupies the first parameter-passing reg. */
2908 if (struct_return)
2909 {
2910 if (mips_debug)
2911 fprintf_unfiltered (gdb_stdlog,
2912 "mips_n32n64_push_arguments: struct_return reg=%d 0x%s\n",
2913 argreg, paddr_nz (struct_addr));
2914 write_register (argreg++, struct_addr);
2915 }
2916
2917 /* Now load as many as possible of the first arguments into
2918 registers, and push the rest onto the stack. Loop thru args
2919 from first to last. */
2920 for (argnum = 0; argnum < nargs; argnum++)
2921 {
2922 char *val;
2923 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2924 struct value *arg = args[argnum];
2925 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2926 int len = TYPE_LENGTH (arg_type);
2927 enum type_code typecode = TYPE_CODE (arg_type);
2928
2929 if (mips_debug)
2930 fprintf_unfiltered (gdb_stdlog,
2931 "mips_n32n64_push_arguments: %d len=%d type=%d",
2932 argnum + 1, len, (int) typecode);
2933
2934 val = (char *) VALUE_CONTENTS (arg);
2935
2936 if (fp_register_arg_p (typecode, arg_type)
2937 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2938 {
2939 /* This is a floating point value that fits entirely
2940 in a single register. */
2941 /* On 32 bit ABI's the float_argreg is further adjusted
2942 above to ensure that it is even register aligned. */
2943 LONGEST regval = extract_unsigned_integer (val, len);
2944 if (mips_debug)
2945 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2946 float_argreg, phex (regval, len));
2947 write_register (float_argreg++, regval);
2948
2949 if (mips_debug)
2950 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2951 argreg, phex (regval, len));
2952 write_register (argreg, regval);
2953 argreg += 1;
2954 }
2955 else
2956 {
2957 /* Copy the argument to general registers or the stack in
2958 register-sized pieces. Large arguments are split between
2959 registers and stack. */
2960 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2961 are treated specially: Irix cc passes them in registers
2962 where gcc sometimes puts them on the stack. For maximum
2963 compatibility, we will put them in both places. */
2964 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2965 (len % MIPS_SAVED_REGSIZE != 0));
2966 /* Note: Floating-point values that didn't fit into an FP
2967 register are only written to memory. */
2968 while (len > 0)
2969 {
2970 /* Rememer if the argument was written to the stack. */
2971 int stack_used_p = 0;
2972 int partial_len = len < MIPS_SAVED_REGSIZE ?
2973 len : MIPS_SAVED_REGSIZE;
2974
2975 if (mips_debug)
2976 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2977 partial_len);
2978
2979 /* Write this portion of the argument to the stack. */
2980 if (argreg > MIPS_LAST_ARG_REGNUM
2981 || odd_sized_struct
2982 || fp_register_arg_p (typecode, arg_type))
2983 {
2984 /* Should shorter than int integer values be
2985 promoted to int before being stored? */
2986 int longword_offset = 0;
2987 CORE_ADDR addr;
2988 stack_used_p = 1;
2989 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2990 {
2991 if (MIPS_STACK_ARGSIZE == 8 &&
2992 (typecode == TYPE_CODE_INT ||
2993 typecode == TYPE_CODE_PTR ||
2994 typecode == TYPE_CODE_FLT) && len <= 4)
2995 longword_offset = MIPS_STACK_ARGSIZE - len;
2996 }
2997
2998 if (mips_debug)
2999 {
3000 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3001 paddr_nz (stack_offset));
3002 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3003 paddr_nz (longword_offset));
3004 }
3005
3006 addr = sp + stack_offset + longword_offset;
3007
3008 if (mips_debug)
3009 {
3010 int i;
3011 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3012 paddr_nz (addr));
3013 for (i = 0; i < partial_len; i++)
3014 {
3015 fprintf_unfiltered (gdb_stdlog, "%02x",
3016 val[i] & 0xff);
3017 }
3018 }
3019 write_memory (addr, val, partial_len);
3020 }
3021
3022 /* Note!!! This is NOT an else clause. Odd sized
3023 structs may go thru BOTH paths. Floating point
3024 arguments will not. */
3025 /* Write this portion of the argument to a general
3026 purpose register. */
3027 if (argreg <= MIPS_LAST_ARG_REGNUM
3028 && !fp_register_arg_p (typecode, arg_type))
3029 {
3030 LONGEST regval = extract_unsigned_integer (val, partial_len);
3031
3032 /* A non-floating-point argument being passed in a
3033 general register. If a struct or union, and if
3034 the remaining length is smaller than the register
3035 size, we have to adjust the register value on
3036 big endian targets.
3037
3038 It does not seem to be necessary to do the
3039 same for integral types.
3040
3041 cagney/2001-07-23: gdb/179: Also, GCC, when
3042 outputting LE O32 with sizeof (struct) <
3043 MIPS_SAVED_REGSIZE, generates a left shift as
3044 part of storing the argument in a register a
3045 register (the left shift isn't generated when
3046 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3047 is quite possible that this is GCC contradicting
3048 the LE/O32 ABI, GDB has not been adjusted to
3049 accommodate this. Either someone needs to
3050 demonstrate that the LE/O32 ABI specifies such a
3051 left shift OR this new ABI gets identified as
3052 such and GDB gets tweaked accordingly. */
3053
3054 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3055 && partial_len < MIPS_SAVED_REGSIZE
3056 && (typecode == TYPE_CODE_STRUCT ||
3057 typecode == TYPE_CODE_UNION))
3058 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3059 TARGET_CHAR_BIT);
3060
3061 if (mips_debug)
3062 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3063 argreg,
3064 phex (regval, MIPS_SAVED_REGSIZE));
3065 write_register (argreg, regval);
3066 argreg++;
3067 }
3068
3069 len -= partial_len;
3070 val += partial_len;
3071
3072 /* Compute the the offset into the stack at which we
3073 will copy the next parameter.
3074
3075 In N32 (N64?), the stack_offset only needs to be
3076 adjusted when it has been used. */
3077
3078 if (stack_used_p)
3079 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3080 }
3081 }
3082 if (mips_debug)
3083 fprintf_unfiltered (gdb_stdlog, "\n");
3084 }
3085
3086 /* Return adjusted stack pointer. */
3087 return sp;
3088 }
3089
3090 /* O32 version of push_arguments. */
3091
3092 static CORE_ADDR
3093 mips_o32_push_arguments (int nargs,
3094 struct value **args,
3095 CORE_ADDR sp,
3096 int struct_return,
3097 CORE_ADDR struct_addr)
3098 {
3099 int argreg;
3100 int float_argreg;
3101 int argnum;
3102 int len = 0;
3103 int stack_offset = 0;
3104
3105 /* First ensure that the stack and structure return address (if any)
3106 are properly aligned. The stack has to be at least 64-bit
3107 aligned even on 32-bit machines, because doubles must be 64-bit
3108 aligned. For n32 and n64, stack frames need to be 128-bit
3109 aligned, so we round to this widest known alignment. */
3110
3111 sp = ROUND_DOWN (sp, 16);
3112 struct_addr = ROUND_DOWN (struct_addr, 16);
3113
3114 /* Now make space on the stack for the args. */
3115 for (argnum = 0; argnum < nargs; argnum++)
3116 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3117 MIPS_STACK_ARGSIZE);
3118 sp -= ROUND_UP (len, 16);
3119
3120 if (mips_debug)
3121 fprintf_unfiltered (gdb_stdlog,
3122 "mips_o32_push_arguments: sp=0x%s allocated %d\n",
3123 paddr_nz (sp), ROUND_UP (len, 16));
3124
3125 /* Initialize the integer and float register pointers. */
3126 argreg = A0_REGNUM;
3127 float_argreg = FPA0_REGNUM;
3128
3129 /* The struct_return pointer occupies the first parameter-passing reg. */
3130 if (struct_return)
3131 {
3132 if (mips_debug)
3133 fprintf_unfiltered (gdb_stdlog,
3134 "mips_o32_push_arguments: struct_return reg=%d 0x%s\n",
3135 argreg, paddr_nz (struct_addr));
3136 write_register (argreg++, struct_addr);
3137 stack_offset += MIPS_STACK_ARGSIZE;
3138 }
3139
3140 /* Now load as many as possible of the first arguments into
3141 registers, and push the rest onto the stack. Loop thru args
3142 from first to last. */
3143 for (argnum = 0; argnum < nargs; argnum++)
3144 {
3145 char *val;
3146 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3147 struct value *arg = args[argnum];
3148 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3149 int len = TYPE_LENGTH (arg_type);
3150 enum type_code typecode = TYPE_CODE (arg_type);
3151
3152 if (mips_debug)
3153 fprintf_unfiltered (gdb_stdlog,
3154 "mips_o32_push_arguments: %d len=%d type=%d",
3155 argnum + 1, len, (int) typecode);
3156
3157 val = (char *) VALUE_CONTENTS (arg);
3158
3159 /* 32-bit ABIs always start floating point arguments in an
3160 even-numbered floating point register. Round the FP register
3161 up before the check to see if there are any FP registers
3162 left. O32/O64 targets also pass the FP in the integer
3163 registers so also round up normal registers. */
3164 if (!FP_REGISTER_DOUBLE
3165 && fp_register_arg_p (typecode, arg_type))
3166 {
3167 if ((float_argreg & 1))
3168 float_argreg++;
3169 }
3170
3171 /* Floating point arguments passed in registers have to be
3172 treated specially. On 32-bit architectures, doubles
3173 are passed in register pairs; the even register gets
3174 the low word, and the odd register gets the high word.
3175 On O32/O64, the first two floating point arguments are
3176 also copied to general registers, because MIPS16 functions
3177 don't use float registers for arguments. This duplication of
3178 arguments in general registers can't hurt non-MIPS16 functions
3179 because those registers are normally skipped. */
3180
3181 if (fp_register_arg_p (typecode, arg_type)
3182 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3183 {
3184 if (!FP_REGISTER_DOUBLE && len == 8)
3185 {
3186 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3187 unsigned long regval;
3188
3189 /* Write the low word of the double to the even register(s). */
3190 regval = extract_unsigned_integer (val + low_offset, 4);
3191 if (mips_debug)
3192 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3193 float_argreg, phex (regval, 4));
3194 write_register (float_argreg++, regval);
3195 if (mips_debug)
3196 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3197 argreg, phex (regval, 4));
3198 write_register (argreg++, regval);
3199
3200 /* Write the high word of the double to the odd register(s). */
3201 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3202 if (mips_debug)
3203 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3204 float_argreg, phex (regval, 4));
3205 write_register (float_argreg++, regval);
3206
3207 if (mips_debug)
3208 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3209 argreg, phex (regval, 4));
3210 write_register (argreg++, regval);
3211 }
3212 else
3213 {
3214 /* This is a floating point value that fits entirely
3215 in a single register. */
3216 /* On 32 bit ABI's the float_argreg is further adjusted
3217 above to ensure that it is even register aligned. */
3218 LONGEST regval = extract_unsigned_integer (val, len);
3219 if (mips_debug)
3220 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3221 float_argreg, phex (regval, len));
3222 write_register (float_argreg++, regval);
3223 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3224 registers for each argument. The below is (my
3225 guess) to ensure that the corresponding integer
3226 register has reserved the same space. */
3227 if (mips_debug)
3228 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3229 argreg, phex (regval, len));
3230 write_register (argreg, regval);
3231 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3232 }
3233 /* Reserve space for the FP register. */
3234 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3235 }
3236 else
3237 {
3238 /* Copy the argument to general registers or the stack in
3239 register-sized pieces. Large arguments are split between
3240 registers and stack. */
3241 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3242 are treated specially: Irix cc passes them in registers
3243 where gcc sometimes puts them on the stack. For maximum
3244 compatibility, we will put them in both places. */
3245 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3246 (len % MIPS_SAVED_REGSIZE != 0));
3247 /* Structures should be aligned to eight bytes (even arg registers)
3248 on MIPS_ABI_O32, if their first member has double precision. */
3249 if (MIPS_SAVED_REGSIZE < 8
3250 && mips_type_needs_double_align (arg_type))
3251 {
3252 if ((argreg & 1))
3253 argreg++;
3254 }
3255 /* Note: Floating-point values that didn't fit into an FP
3256 register are only written to memory. */
3257 while (len > 0)
3258 {
3259 /* Remember if the argument was written to the stack. */
3260 int stack_used_p = 0;
3261 int partial_len =
3262 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3263
3264 if (mips_debug)
3265 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3266 partial_len);
3267
3268 /* Write this portion of the argument to the stack. */
3269 if (argreg > MIPS_LAST_ARG_REGNUM
3270 || odd_sized_struct
3271 || fp_register_arg_p (typecode, arg_type))
3272 {
3273 /* Should shorter than int integer values be
3274 promoted to int before being stored? */
3275 int longword_offset = 0;
3276 CORE_ADDR addr;
3277 stack_used_p = 1;
3278 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3279 {
3280 if (MIPS_STACK_ARGSIZE == 8 &&
3281 (typecode == TYPE_CODE_INT ||
3282 typecode == TYPE_CODE_PTR ||
3283 typecode == TYPE_CODE_FLT) && len <= 4)
3284 longword_offset = MIPS_STACK_ARGSIZE - len;
3285 }
3286
3287 if (mips_debug)
3288 {
3289 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3290 paddr_nz (stack_offset));
3291 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3292 paddr_nz (longword_offset));
3293 }
3294
3295 addr = sp + stack_offset + longword_offset;
3296
3297 if (mips_debug)
3298 {
3299 int i;
3300 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3301 paddr_nz (addr));
3302 for (i = 0; i < partial_len; i++)
3303 {
3304 fprintf_unfiltered (gdb_stdlog, "%02x",
3305 val[i] & 0xff);
3306 }
3307 }
3308 write_memory (addr, val, partial_len);
3309 }
3310
3311 /* Note!!! This is NOT an else clause. Odd sized
3312 structs may go thru BOTH paths. Floating point
3313 arguments will not. */
3314 /* Write this portion of the argument to a general
3315 purpose register. */
3316 if (argreg <= MIPS_LAST_ARG_REGNUM
3317 && !fp_register_arg_p (typecode, arg_type))
3318 {
3319 LONGEST regval = extract_signed_integer (val, partial_len);
3320 /* Value may need to be sign extended, because
3321 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3322
3323 /* A non-floating-point argument being passed in a
3324 general register. If a struct or union, and if
3325 the remaining length is smaller than the register
3326 size, we have to adjust the register value on
3327 big endian targets.
3328
3329 It does not seem to be necessary to do the
3330 same for integral types.
3331
3332 Also don't do this adjustment on O64 binaries.
3333
3334 cagney/2001-07-23: gdb/179: Also, GCC, when
3335 outputting LE O32 with sizeof (struct) <
3336 MIPS_SAVED_REGSIZE, generates a left shift as
3337 part of storing the argument in a register a
3338 register (the left shift isn't generated when
3339 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3340 is quite possible that this is GCC contradicting
3341 the LE/O32 ABI, GDB has not been adjusted to
3342 accommodate this. Either someone needs to
3343 demonstrate that the LE/O32 ABI specifies such a
3344 left shift OR this new ABI gets identified as
3345 such and GDB gets tweaked accordingly. */
3346
3347 if (MIPS_SAVED_REGSIZE < 8
3348 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3349 && partial_len < MIPS_SAVED_REGSIZE
3350 && (typecode == TYPE_CODE_STRUCT ||
3351 typecode == TYPE_CODE_UNION))
3352 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3353 TARGET_CHAR_BIT);
3354
3355 if (mips_debug)
3356 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3357 argreg,
3358 phex (regval, MIPS_SAVED_REGSIZE));
3359 write_register (argreg, regval);
3360 argreg++;
3361
3362 /* Prevent subsequent floating point arguments from
3363 being passed in floating point registers. */
3364 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3365 }
3366
3367 len -= partial_len;
3368 val += partial_len;
3369
3370 /* Compute the the offset into the stack at which we
3371 will copy the next parameter.
3372
3373 In older ABIs, the caller reserved space for
3374 registers that contained arguments. This was loosely
3375 refered to as their "home". Consequently, space is
3376 always allocated. */
3377
3378 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3379 }
3380 }
3381 if (mips_debug)
3382 fprintf_unfiltered (gdb_stdlog, "\n");
3383 }
3384
3385 /* Return adjusted stack pointer. */
3386 return sp;
3387 }
3388
3389 /* O64 version of push_arguments. */
3390
3391 static CORE_ADDR
3392 mips_o64_push_arguments (int nargs,
3393 struct value **args,
3394 CORE_ADDR sp,
3395 int struct_return,
3396 CORE_ADDR struct_addr)
3397 {
3398 int argreg;
3399 int float_argreg;
3400 int argnum;
3401 int len = 0;
3402 int stack_offset = 0;
3403
3404 /* First ensure that the stack and structure return address (if any)
3405 are properly aligned. The stack has to be at least 64-bit
3406 aligned even on 32-bit machines, because doubles must be 64-bit
3407 aligned. For n32 and n64, stack frames need to be 128-bit
3408 aligned, so we round to this widest known alignment. */
3409
3410 sp = ROUND_DOWN (sp, 16);
3411 struct_addr = ROUND_DOWN (struct_addr, 16);
3412
3413 /* Now make space on the stack for the args. */
3414 for (argnum = 0; argnum < nargs; argnum++)
3415 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3416 MIPS_STACK_ARGSIZE);
3417 sp -= ROUND_UP (len, 16);
3418
3419 if (mips_debug)
3420 fprintf_unfiltered (gdb_stdlog,
3421 "mips_o64_push_arguments: sp=0x%s allocated %d\n",
3422 paddr_nz (sp), ROUND_UP (len, 16));
3423
3424 /* Initialize the integer and float register pointers. */
3425 argreg = A0_REGNUM;
3426 float_argreg = FPA0_REGNUM;
3427
3428 /* The struct_return pointer occupies the first parameter-passing reg. */
3429 if (struct_return)
3430 {
3431 if (mips_debug)
3432 fprintf_unfiltered (gdb_stdlog,
3433 "mips_o64_push_arguments: struct_return reg=%d 0x%s\n",
3434 argreg, paddr_nz (struct_addr));
3435 write_register (argreg++, struct_addr);
3436 stack_offset += MIPS_STACK_ARGSIZE;
3437 }
3438
3439 /* Now load as many as possible of the first arguments into
3440 registers, and push the rest onto the stack. Loop thru args
3441 from first to last. */
3442 for (argnum = 0; argnum < nargs; argnum++)
3443 {
3444 char *val;
3445 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3446 struct value *arg = args[argnum];
3447 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3448 int len = TYPE_LENGTH (arg_type);
3449 enum type_code typecode = TYPE_CODE (arg_type);
3450
3451 if (mips_debug)
3452 fprintf_unfiltered (gdb_stdlog,
3453 "mips_o64_push_arguments: %d len=%d type=%d",
3454 argnum + 1, len, (int) typecode);
3455
3456 val = (char *) VALUE_CONTENTS (arg);
3457
3458 /* 32-bit ABIs always start floating point arguments in an
3459 even-numbered floating point register. Round the FP register
3460 up before the check to see if there are any FP registers
3461 left. O32/O64 targets also pass the FP in the integer
3462 registers so also round up normal registers. */
3463 if (!FP_REGISTER_DOUBLE
3464 && fp_register_arg_p (typecode, arg_type))
3465 {
3466 if ((float_argreg & 1))
3467 float_argreg++;
3468 }
3469
3470 /* Floating point arguments passed in registers have to be
3471 treated specially. On 32-bit architectures, doubles
3472 are passed in register pairs; the even register gets
3473 the low word, and the odd register gets the high word.
3474 On O32/O64, the first two floating point arguments are
3475 also copied to general registers, because MIPS16 functions
3476 don't use float registers for arguments. This duplication of
3477 arguments in general registers can't hurt non-MIPS16 functions
3478 because those registers are normally skipped. */
3479
3480 if (fp_register_arg_p (typecode, arg_type)
3481 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3482 {
3483 if (!FP_REGISTER_DOUBLE && len == 8)
3484 {
3485 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3486 unsigned long regval;
3487
3488 /* Write the low word of the double to the even register(s). */
3489 regval = extract_unsigned_integer (val + low_offset, 4);
3490 if (mips_debug)
3491 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3492 float_argreg, phex (regval, 4));
3493 write_register (float_argreg++, regval);
3494 if (mips_debug)
3495 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3496 argreg, phex (regval, 4));
3497 write_register (argreg++, regval);
3498
3499 /* Write the high word of the double to the odd register(s). */
3500 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3501 if (mips_debug)
3502 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3503 float_argreg, phex (regval, 4));
3504 write_register (float_argreg++, regval);
3505
3506 if (mips_debug)
3507 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3508 argreg, phex (regval, 4));
3509 write_register (argreg++, regval);
3510 }
3511 else
3512 {
3513 /* This is a floating point value that fits entirely
3514 in a single register. */
3515 /* On 32 bit ABI's the float_argreg is further adjusted
3516 above to ensure that it is even register aligned. */
3517 LONGEST regval = extract_unsigned_integer (val, len);
3518 if (mips_debug)
3519 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3520 float_argreg, phex (regval, len));
3521 write_register (float_argreg++, regval);
3522 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3523 registers for each argument. The below is (my
3524 guess) to ensure that the corresponding integer
3525 register has reserved the same space. */
3526 if (mips_debug)
3527 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3528 argreg, phex (regval, len));
3529 write_register (argreg, regval);
3530 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3531 }
3532 /* Reserve space for the FP register. */
3533 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3534 }
3535 else
3536 {
3537 /* Copy the argument to general registers or the stack in
3538 register-sized pieces. Large arguments are split between
3539 registers and stack. */
3540 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3541 are treated specially: Irix cc passes them in registers
3542 where gcc sometimes puts them on the stack. For maximum
3543 compatibility, we will put them in both places. */
3544 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3545 (len % MIPS_SAVED_REGSIZE != 0));
3546 /* Structures should be aligned to eight bytes (even arg registers)
3547 on MIPS_ABI_O32, if their first member has double precision. */
3548 if (MIPS_SAVED_REGSIZE < 8
3549 && mips_type_needs_double_align (arg_type))
3550 {
3551 if ((argreg & 1))
3552 argreg++;
3553 }
3554 /* Note: Floating-point values that didn't fit into an FP
3555 register are only written to memory. */
3556 while (len > 0)
3557 {
3558 /* Remember if the argument was written to the stack. */
3559 int stack_used_p = 0;
3560 int partial_len =
3561 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3562
3563 if (mips_debug)
3564 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3565 partial_len);
3566
3567 /* Write this portion of the argument to the stack. */
3568 if (argreg > MIPS_LAST_ARG_REGNUM
3569 || odd_sized_struct
3570 || fp_register_arg_p (typecode, arg_type))
3571 {
3572 /* Should shorter than int integer values be
3573 promoted to int before being stored? */
3574 int longword_offset = 0;
3575 CORE_ADDR addr;
3576 stack_used_p = 1;
3577 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3578 {
3579 if (MIPS_STACK_ARGSIZE == 8 &&
3580 (typecode == TYPE_CODE_INT ||
3581 typecode == TYPE_CODE_PTR ||
3582 typecode == TYPE_CODE_FLT) && len <= 4)
3583 longword_offset = MIPS_STACK_ARGSIZE - len;
3584 }
3585
3586 if (mips_debug)
3587 {
3588 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3589 paddr_nz (stack_offset));
3590 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3591 paddr_nz (longword_offset));
3592 }
3593
3594 addr = sp + stack_offset + longword_offset;
3595
3596 if (mips_debug)
3597 {
3598 int i;
3599 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3600 paddr_nz (addr));
3601 for (i = 0; i < partial_len; i++)
3602 {
3603 fprintf_unfiltered (gdb_stdlog, "%02x",
3604 val[i] & 0xff);
3605 }
3606 }
3607 write_memory (addr, val, partial_len);
3608 }
3609
3610 /* Note!!! This is NOT an else clause. Odd sized
3611 structs may go thru BOTH paths. Floating point
3612 arguments will not. */
3613 /* Write this portion of the argument to a general
3614 purpose register. */
3615 if (argreg <= MIPS_LAST_ARG_REGNUM
3616 && !fp_register_arg_p (typecode, arg_type))
3617 {
3618 LONGEST regval = extract_signed_integer (val, partial_len);
3619 /* Value may need to be sign extended, because
3620 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3621
3622 /* A non-floating-point argument being passed in a
3623 general register. If a struct or union, and if
3624 the remaining length is smaller than the register
3625 size, we have to adjust the register value on
3626 big endian targets.
3627
3628 It does not seem to be necessary to do the
3629 same for integral types.
3630
3631 Also don't do this adjustment on O64 binaries.
3632
3633 cagney/2001-07-23: gdb/179: Also, GCC, when
3634 outputting LE O32 with sizeof (struct) <
3635 MIPS_SAVED_REGSIZE, generates a left shift as
3636 part of storing the argument in a register a
3637 register (the left shift isn't generated when
3638 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3639 is quite possible that this is GCC contradicting
3640 the LE/O32 ABI, GDB has not been adjusted to
3641 accommodate this. Either someone needs to
3642 demonstrate that the LE/O32 ABI specifies such a
3643 left shift OR this new ABI gets identified as
3644 such and GDB gets tweaked accordingly. */
3645
3646 if (MIPS_SAVED_REGSIZE < 8
3647 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3648 && partial_len < MIPS_SAVED_REGSIZE
3649 && (typecode == TYPE_CODE_STRUCT ||
3650 typecode == TYPE_CODE_UNION))
3651 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3652 TARGET_CHAR_BIT);
3653
3654 if (mips_debug)
3655 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3656 argreg,
3657 phex (regval, MIPS_SAVED_REGSIZE));
3658 write_register (argreg, regval);
3659 argreg++;
3660
3661 /* Prevent subsequent floating point arguments from
3662 being passed in floating point registers. */
3663 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3664 }
3665
3666 len -= partial_len;
3667 val += partial_len;
3668
3669 /* Compute the the offset into the stack at which we
3670 will copy the next parameter.
3671
3672 In older ABIs, the caller reserved space for
3673 registers that contained arguments. This was loosely
3674 refered to as their "home". Consequently, space is
3675 always allocated. */
3676
3677 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3678 }
3679 }
3680 if (mips_debug)
3681 fprintf_unfiltered (gdb_stdlog, "\n");
3682 }
3683
3684 /* Return adjusted stack pointer. */
3685 return sp;
3686 }
3687
3688 static CORE_ADDR
3689 mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
3690 {
3691 /* Set the return address register to point to the entry
3692 point of the program, where a breakpoint lies in wait. */
3693 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
3694 return sp;
3695 }
3696
3697 static void
3698 mips_push_register (CORE_ADDR * sp, int regno)
3699 {
3700 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
3701 int regsize;
3702 int offset;
3703 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
3704 {
3705 regsize = MIPS_SAVED_REGSIZE;
3706 offset = (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3707 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
3708 : 0);
3709 }
3710 else
3711 {
3712 regsize = REGISTER_RAW_SIZE (regno);
3713 offset = 0;
3714 }
3715 *sp -= regsize;
3716 deprecated_read_register_gen (regno, buffer);
3717 write_memory (*sp, buffer + offset, regsize);
3718 }
3719
3720 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
3721 #define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
3722
3723 static void
3724 mips_push_dummy_frame (void)
3725 {
3726 int ireg;
3727 struct linked_proc_info *link = (struct linked_proc_info *)
3728 xmalloc (sizeof (struct linked_proc_info));
3729 mips_extra_func_info_t proc_desc = &link->info;
3730 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
3731 CORE_ADDR old_sp = sp;
3732 link->next = linked_proc_desc_table;
3733 linked_proc_desc_table = link;
3734
3735 /* FIXME! are these correct ? */
3736 #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
3737 #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
3738 #define FLOAT_REG_SAVE_MASK MASK(0,19)
3739 #define FLOAT_SINGLE_REG_SAVE_MASK \
3740 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
3741 /*
3742 * The registers we must save are all those not preserved across
3743 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
3744 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
3745 * and FP Control/Status registers.
3746 *
3747 *
3748 * Dummy frame layout:
3749 * (high memory)
3750 * Saved PC
3751 * Saved MMHI, MMLO, FPC_CSR
3752 * Saved R31
3753 * Saved R28
3754 * ...
3755 * Saved R1
3756 * Saved D18 (i.e. F19, F18)
3757 * ...
3758 * Saved D0 (i.e. F1, F0)
3759 * Argument build area and stack arguments written via mips_push_arguments
3760 * (low memory)
3761 */
3762
3763 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
3764 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
3765 PROC_FRAME_OFFSET (proc_desc) = 0;
3766 PROC_FRAME_ADJUST (proc_desc) = 0;
3767 mips_push_register (&sp, PC_REGNUM);
3768 mips_push_register (&sp, HI_REGNUM);
3769 mips_push_register (&sp, LO_REGNUM);
3770 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
3771
3772 /* Save general CPU registers */
3773 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
3774 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
3775 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
3776 for (ireg = 32; --ireg >= 0;)
3777 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
3778 mips_push_register (&sp, ireg);
3779
3780 /* Save floating point registers starting with high order word */
3781 PROC_FREG_MASK (proc_desc) =
3782 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
3783 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
3784 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
3785 from FP. */
3786 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
3787 for (ireg = 32; --ireg >= 0;)
3788 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
3789 mips_push_register (&sp, ireg + FP0_REGNUM);
3790
3791 /* Update the frame pointer for the call dummy and the stack pointer.
3792 Set the procedure's starting and ending addresses to point to the
3793 call dummy address at the entry point. */
3794 write_register (PUSH_FP_REGNUM, old_sp);
3795 write_register (SP_REGNUM, sp);
3796 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
3797 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
3798 SET_PROC_DESC_IS_DUMMY (proc_desc);
3799 PROC_PC_REG (proc_desc) = RA_REGNUM;
3800 }
3801
3802 static void
3803 mips_pop_frame (void)
3804 {
3805 register int regnum;
3806 struct frame_info *frame = get_current_frame ();
3807 CORE_ADDR new_sp = get_frame_base (frame);
3808 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
3809
3810 if (DEPRECATED_PC_IN_CALL_DUMMY (frame->pc, 0, 0))
3811 {
3812 generic_pop_dummy_frame ();
3813 flush_cached_frames ();
3814 return;
3815 }
3816
3817 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
3818 if (frame->saved_regs == NULL)
3819 FRAME_INIT_SAVED_REGS (frame);
3820 for (regnum = 0; regnum < NUM_REGS; regnum++)
3821 if (regnum != SP_REGNUM && regnum != PC_REGNUM
3822 && frame->saved_regs[regnum])
3823 {
3824 /* Floating point registers must not be sign extended,
3825 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3826
3827 if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32)
3828 write_register (regnum,
3829 read_memory_unsigned_integer (frame->saved_regs[regnum],
3830 MIPS_SAVED_REGSIZE));
3831 else
3832 write_register (regnum,
3833 read_memory_integer (frame->saved_regs[regnum],
3834 MIPS_SAVED_REGSIZE));
3835 }
3836
3837 write_register (SP_REGNUM, new_sp);
3838 flush_cached_frames ();
3839
3840 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
3841 {
3842 struct linked_proc_info *pi_ptr, *prev_ptr;
3843
3844 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3845 pi_ptr != NULL;
3846 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3847 {
3848 if (&pi_ptr->info == proc_desc)
3849 break;
3850 }
3851
3852 if (pi_ptr == NULL)
3853 error ("Can't locate dummy extra frame info\n");
3854
3855 if (prev_ptr != NULL)
3856 prev_ptr->next = pi_ptr->next;
3857 else
3858 linked_proc_desc_table = pi_ptr->next;
3859
3860 xfree (pi_ptr);
3861
3862 write_register (HI_REGNUM,
3863 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
3864 MIPS_SAVED_REGSIZE));
3865 write_register (LO_REGNUM,
3866 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
3867 MIPS_SAVED_REGSIZE));
3868 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3869 write_register (FCRCS_REGNUM,
3870 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
3871 MIPS_SAVED_REGSIZE));
3872 }
3873 }
3874
3875 static void
3876 mips_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
3877 struct value **args, struct type *type, int gcc_p)
3878 {
3879 write_register(T9_REGNUM, fun);
3880 }
3881
3882 /* Floating point register management.
3883
3884 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3885 64bit operations, these early MIPS cpus treat fp register pairs
3886 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3887 registers and offer a compatibility mode that emulates the MIPS2 fp
3888 model. When operating in MIPS2 fp compat mode, later cpu's split
3889 double precision floats into two 32-bit chunks and store them in
3890 consecutive fp regs. To display 64-bit floats stored in this
3891 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3892 Throw in user-configurable endianness and you have a real mess.
3893
3894 The way this works is:
3895 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3896 double-precision value will be split across two logical registers.
3897 The lower-numbered logical register will hold the low-order bits,
3898 regardless of the processor's endianness.
3899 - If we are on a 64-bit processor, and we are looking for a
3900 single-precision value, it will be in the low ordered bits
3901 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3902 save slot in memory.
3903 - If we are in 64-bit mode, everything is straightforward.
3904
3905 Note that this code only deals with "live" registers at the top of the
3906 stack. We will attempt to deal with saved registers later, when
3907 the raw/cooked register interface is in place. (We need a general
3908 interface that can deal with dynamic saved register sizes -- fp
3909 regs could be 32 bits wide in one frame and 64 on the frame above
3910 and below). */
3911
3912 static struct type *
3913 mips_float_register_type (void)
3914 {
3915 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3916 return builtin_type_ieee_single_big;
3917 else
3918 return builtin_type_ieee_single_little;
3919 }
3920
3921 static struct type *
3922 mips_double_register_type (void)
3923 {
3924 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3925 return builtin_type_ieee_double_big;
3926 else
3927 return builtin_type_ieee_double_little;
3928 }
3929
3930 /* Copy a 32-bit single-precision value from the current frame
3931 into rare_buffer. */
3932
3933 static void
3934 mips_read_fp_register_single (int regno, char *rare_buffer)
3935 {
3936 int raw_size = REGISTER_RAW_SIZE (regno);
3937 char *raw_buffer = alloca (raw_size);
3938
3939 if (!frame_register_read (deprecated_selected_frame, regno, raw_buffer))
3940 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3941 if (raw_size == 8)
3942 {
3943 /* We have a 64-bit value for this register. Find the low-order
3944 32 bits. */
3945 int offset;
3946
3947 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3948 offset = 4;
3949 else
3950 offset = 0;
3951
3952 memcpy (rare_buffer, raw_buffer + offset, 4);
3953 }
3954 else
3955 {
3956 memcpy (rare_buffer, raw_buffer, 4);
3957 }
3958 }
3959
3960 /* Copy a 64-bit double-precision value from the current frame into
3961 rare_buffer. This may include getting half of it from the next
3962 register. */
3963
3964 static void
3965 mips_read_fp_register_double (int regno, char *rare_buffer)
3966 {
3967 int raw_size = REGISTER_RAW_SIZE (regno);
3968
3969 if (raw_size == 8 && !mips2_fp_compat ())
3970 {
3971 /* We have a 64-bit value for this register, and we should use
3972 all 64 bits. */
3973 if (!frame_register_read (deprecated_selected_frame, regno, rare_buffer))
3974 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3975 }
3976 else
3977 {
3978 if ((regno - FP0_REGNUM) & 1)
3979 internal_error (__FILE__, __LINE__,
3980 "mips_read_fp_register_double: bad access to "
3981 "odd-numbered FP register");
3982
3983 /* mips_read_fp_register_single will find the correct 32 bits from
3984 each register. */
3985 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3986 {
3987 mips_read_fp_register_single (regno, rare_buffer + 4);
3988 mips_read_fp_register_single (regno + 1, rare_buffer);
3989 }
3990 else
3991 {
3992 mips_read_fp_register_single (regno, rare_buffer);
3993 mips_read_fp_register_single (regno + 1, rare_buffer + 4);
3994 }
3995 }
3996 }
3997
3998 static void
3999 mips_print_register (int regnum, int all)
4000 {
4001 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4002
4003 /* Get the data in raw format. */
4004 if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
4005 {
4006 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
4007 return;
4008 }
4009
4010 /* If we have a actual 32-bit floating point register (or we are in
4011 32-bit compatibility mode), and the register is even-numbered,
4012 also print it as a double (spanning two registers). */
4013 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
4014 && (REGISTER_RAW_SIZE (regnum) == 4
4015 || mips2_fp_compat ())
4016 && !((regnum - FP0_REGNUM) & 1))
4017 {
4018 char *dbuffer = alloca (2 * MAX_REGISTER_RAW_SIZE);
4019
4020 mips_read_fp_register_double (regnum, dbuffer);
4021
4022 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
4023 val_print (mips_double_register_type (), dbuffer, 0, 0,
4024 gdb_stdout, 0, 1, 0, Val_pretty_default);
4025 printf_filtered ("); ");
4026 }
4027 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
4028
4029 /* The problem with printing numeric register names (r26, etc.) is that
4030 the user can't use them on input. Probably the best solution is to
4031 fix it so that either the numeric or the funky (a2, etc.) names
4032 are accepted on input. */
4033 if (regnum < MIPS_NUMREGS)
4034 printf_filtered ("(r%d): ", regnum);
4035 else
4036 printf_filtered (": ");
4037
4038 /* If virtual format is floating, print it that way. */
4039 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4040 if (REGISTER_RAW_SIZE (regnum) == 8 && !mips2_fp_compat ())
4041 {
4042 /* We have a meaningful 64-bit value in this register. Show
4043 it as a 32-bit float and a 64-bit double. */
4044 int offset = 4 * (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG);
4045
4046 printf_filtered (" (float) ");
4047 val_print (mips_float_register_type (), raw_buffer + offset, 0, 0,
4048 gdb_stdout, 0, 1, 0, Val_pretty_default);
4049 printf_filtered (", (double) ");
4050 val_print (mips_double_register_type (), raw_buffer, 0, 0,
4051 gdb_stdout, 0, 1, 0, Val_pretty_default);
4052 }
4053 else
4054 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
4055 gdb_stdout, 0, 1, 0, Val_pretty_default);
4056 /* Else print as integer in hex. */
4057 else
4058 {
4059 int offset;
4060
4061 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4062 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4063 else
4064 offset = 0;
4065
4066 print_scalar_formatted (raw_buffer + offset,
4067 REGISTER_VIRTUAL_TYPE (regnum),
4068 'x', 0, gdb_stdout);
4069 }
4070 }
4071
4072 /* Replacement for generic do_registers_info.
4073 Print regs in pretty columns. */
4074
4075 static int
4076 do_fp_register_row (int regnum)
4077 { /* do values for FP (float) regs */
4078 char *raw_buffer;
4079 double doub, flt1, flt2; /* doubles extracted from raw hex data */
4080 int inv1, inv2, inv3;
4081
4082 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
4083
4084 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
4085 {
4086 /* 4-byte registers: we can fit two registers per row. */
4087 /* Also print every pair of 4-byte regs as an 8-byte double. */
4088 mips_read_fp_register_single (regnum, raw_buffer);
4089 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4090
4091 mips_read_fp_register_single (regnum + 1, raw_buffer);
4092 flt2 = unpack_double (mips_float_register_type (), raw_buffer, &inv2);
4093
4094 mips_read_fp_register_double (regnum, raw_buffer);
4095 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
4096
4097 printf_filtered (" %-5s", REGISTER_NAME (regnum));
4098 if (inv1)
4099 printf_filtered (": <invalid float>");
4100 else
4101 printf_filtered ("%-17.9g", flt1);
4102
4103 printf_filtered (" %-5s", REGISTER_NAME (regnum + 1));
4104 if (inv2)
4105 printf_filtered (": <invalid float>");
4106 else
4107 printf_filtered ("%-17.9g", flt2);
4108
4109 printf_filtered (" dbl: ");
4110 if (inv3)
4111 printf_filtered ("<invalid double>");
4112 else
4113 printf_filtered ("%-24.17g", doub);
4114 printf_filtered ("\n");
4115
4116 /* may want to do hex display here (future enhancement) */
4117 regnum += 2;
4118 }
4119 else
4120 {
4121 /* Eight byte registers: print each one as float AND as double. */
4122 mips_read_fp_register_single (regnum, raw_buffer);
4123 flt1 = unpack_double (mips_double_register_type (), raw_buffer, &inv1);
4124
4125 mips_read_fp_register_double (regnum, raw_buffer);
4126 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
4127
4128 printf_filtered (" %-5s: ", REGISTER_NAME (regnum));
4129 if (inv1)
4130 printf_filtered ("<invalid float>");
4131 else
4132 printf_filtered ("flt: %-17.9g", flt1);
4133
4134 printf_filtered (" dbl: ");
4135 if (inv3)
4136 printf_filtered ("<invalid double>");
4137 else
4138 printf_filtered ("%-24.17g", doub);
4139
4140 printf_filtered ("\n");
4141 /* may want to do hex display here (future enhancement) */
4142 regnum++;
4143 }
4144 return regnum;
4145 }
4146
4147 /* Print a row's worth of GP (int) registers, with name labels above */
4148
4149 static int
4150 do_gp_register_row (int regnum)
4151 {
4152 /* do values for GP (int) regs */
4153 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4154 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4155 int col, byte;
4156 int start_regnum = regnum;
4157 int numregs = NUM_REGS;
4158
4159
4160 /* For GP registers, we print a separate row of names above the vals */
4161 printf_filtered (" ");
4162 for (col = 0; col < ncols && regnum < numregs; regnum++)
4163 {
4164 if (*REGISTER_NAME (regnum) == '\0')
4165 continue; /* unused register */
4166 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4167 break; /* end the row: reached FP register */
4168 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
4169 REGISTER_NAME (regnum));
4170 col++;
4171 }
4172 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
4173 start_regnum); /* print the R0 to R31 names */
4174
4175 regnum = start_regnum; /* go back to start of row */
4176 /* now print the values in hex, 4 or 8 to the row */
4177 for (col = 0; col < ncols && regnum < numregs; regnum++)
4178 {
4179 if (*REGISTER_NAME (regnum) == '\0')
4180 continue; /* unused register */
4181 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4182 break; /* end row: reached FP register */
4183 /* OK: get the data in raw format. */
4184 if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
4185 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4186 /* pad small registers */
4187 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
4188 printf_filtered (" ");
4189 /* Now print the register value in hex, endian order. */
4190 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4191 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4192 byte < REGISTER_RAW_SIZE (regnum);
4193 byte++)
4194 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4195 else
4196 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4197 byte >= 0;
4198 byte--)
4199 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4200 printf_filtered (" ");
4201 col++;
4202 }
4203 if (col > 0) /* ie. if we actually printed anything... */
4204 printf_filtered ("\n");
4205
4206 return regnum;
4207 }
4208
4209 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4210
4211 static void
4212 mips_do_registers_info (int regnum, int fpregs)
4213 {
4214 if (regnum != -1) /* do one specified register */
4215 {
4216 if (*(REGISTER_NAME (regnum)) == '\0')
4217 error ("Not a valid register for the current processor type");
4218
4219 mips_print_register (regnum, 0);
4220 printf_filtered ("\n");
4221 }
4222 else
4223 /* do all (or most) registers */
4224 {
4225 regnum = 0;
4226 while (regnum < NUM_REGS)
4227 {
4228 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4229 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
4230 regnum = do_fp_register_row (regnum); /* FP regs */
4231 else
4232 regnum += MIPS_NUMREGS; /* skip floating point regs */
4233 else
4234 regnum = do_gp_register_row (regnum); /* GP (int) regs */
4235 }
4236 }
4237 }
4238
4239 /* Is this a branch with a delay slot? */
4240
4241 static int is_delayed (unsigned long);
4242
4243 static int
4244 is_delayed (unsigned long insn)
4245 {
4246 int i;
4247 for (i = 0; i < NUMOPCODES; ++i)
4248 if (mips_opcodes[i].pinfo != INSN_MACRO
4249 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4250 break;
4251 return (i < NUMOPCODES
4252 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4253 | INSN_COND_BRANCH_DELAY
4254 | INSN_COND_BRANCH_LIKELY)));
4255 }
4256
4257 int
4258 mips_step_skips_delay (CORE_ADDR pc)
4259 {
4260 char buf[MIPS_INSTLEN];
4261
4262 /* There is no branch delay slot on MIPS16. */
4263 if (pc_is_mips16 (pc))
4264 return 0;
4265
4266 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4267 /* If error reading memory, guess that it is not a delayed branch. */
4268 return 0;
4269 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
4270 }
4271
4272
4273 /* Skip the PC past function prologue instructions (32-bit version).
4274 This is a helper function for mips_skip_prologue. */
4275
4276 static CORE_ADDR
4277 mips32_skip_prologue (CORE_ADDR pc)
4278 {
4279 t_inst inst;
4280 CORE_ADDR end_pc;
4281 int seen_sp_adjust = 0;
4282 int load_immediate_bytes = 0;
4283
4284 /* Skip the typical prologue instructions. These are the stack adjustment
4285 instruction and the instructions that save registers on the stack
4286 or in the gcc frame. */
4287 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4288 {
4289 unsigned long high_word;
4290
4291 inst = mips_fetch_instruction (pc);
4292 high_word = (inst >> 16) & 0xffff;
4293
4294 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4295 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4296 seen_sp_adjust = 1;
4297 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4298 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4299 seen_sp_adjust = 1;
4300 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4301 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4302 && (inst & 0x001F0000)) /* reg != $zero */
4303 continue;
4304
4305 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4306 continue;
4307 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4308 /* sx reg,n($s8) */
4309 continue; /* reg != $zero */
4310
4311 /* move $s8,$sp. With different versions of gas this will be either
4312 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4313 Accept any one of these. */
4314 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4315 continue;
4316
4317 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4318 continue;
4319 else if (high_word == 0x3c1c) /* lui $gp,n */
4320 continue;
4321 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4322 continue;
4323 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4324 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4325 continue;
4326 /* The following instructions load $at or $t0 with an immediate
4327 value in preparation for a stack adjustment via
4328 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4329 a local variable, so we accept them only before a stack adjustment
4330 instruction was seen. */
4331 else if (!seen_sp_adjust)
4332 {
4333 if (high_word == 0x3c01 || /* lui $at,n */
4334 high_word == 0x3c08) /* lui $t0,n */
4335 {
4336 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4337 continue;
4338 }
4339 else if (high_word == 0x3421 || /* ori $at,$at,n */
4340 high_word == 0x3508 || /* ori $t0,$t0,n */
4341 high_word == 0x3401 || /* ori $at,$zero,n */
4342 high_word == 0x3408) /* ori $t0,$zero,n */
4343 {
4344 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4345 continue;
4346 }
4347 else
4348 break;
4349 }
4350 else
4351 break;
4352 }
4353
4354 /* In a frameless function, we might have incorrectly
4355 skipped some load immediate instructions. Undo the skipping
4356 if the load immediate was not followed by a stack adjustment. */
4357 if (load_immediate_bytes && !seen_sp_adjust)
4358 pc -= load_immediate_bytes;
4359 return pc;
4360 }
4361
4362 /* Skip the PC past function prologue instructions (16-bit version).
4363 This is a helper function for mips_skip_prologue. */
4364
4365 static CORE_ADDR
4366 mips16_skip_prologue (CORE_ADDR pc)
4367 {
4368 CORE_ADDR end_pc;
4369 int extend_bytes = 0;
4370 int prev_extend_bytes;
4371
4372 /* Table of instructions likely to be found in a function prologue. */
4373 static struct
4374 {
4375 unsigned short inst;
4376 unsigned short mask;
4377 }
4378 table[] =
4379 {
4380 {
4381 0x6300, 0xff00
4382 }
4383 , /* addiu $sp,offset */
4384 {
4385 0xfb00, 0xff00
4386 }
4387 , /* daddiu $sp,offset */
4388 {
4389 0xd000, 0xf800
4390 }
4391 , /* sw reg,n($sp) */
4392 {
4393 0xf900, 0xff00
4394 }
4395 , /* sd reg,n($sp) */
4396 {
4397 0x6200, 0xff00
4398 }
4399 , /* sw $ra,n($sp) */
4400 {
4401 0xfa00, 0xff00
4402 }
4403 , /* sd $ra,n($sp) */
4404 {
4405 0x673d, 0xffff
4406 }
4407 , /* move $s1,sp */
4408 {
4409 0xd980, 0xff80
4410 }
4411 , /* sw $a0-$a3,n($s1) */
4412 {
4413 0x6704, 0xff1c
4414 }
4415 , /* move reg,$a0-$a3 */
4416 {
4417 0xe809, 0xf81f
4418 }
4419 , /* entry pseudo-op */
4420 {
4421 0x0100, 0xff00
4422 }
4423 , /* addiu $s1,$sp,n */
4424 {
4425 0, 0
4426 } /* end of table marker */
4427 };
4428
4429 /* Skip the typical prologue instructions. These are the stack adjustment
4430 instruction and the instructions that save registers on the stack
4431 or in the gcc frame. */
4432 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4433 {
4434 unsigned short inst;
4435 int i;
4436
4437 inst = mips_fetch_instruction (pc);
4438
4439 /* Normally we ignore an extend instruction. However, if it is
4440 not followed by a valid prologue instruction, we must adjust
4441 the pc back over the extend so that it won't be considered
4442 part of the prologue. */
4443 if ((inst & 0xf800) == 0xf000) /* extend */
4444 {
4445 extend_bytes = MIPS16_INSTLEN;
4446 continue;
4447 }
4448 prev_extend_bytes = extend_bytes;
4449 extend_bytes = 0;
4450
4451 /* Check for other valid prologue instructions besides extend. */
4452 for (i = 0; table[i].mask != 0; i++)
4453 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4454 break;
4455 if (table[i].mask != 0) /* it was in table? */
4456 continue; /* ignore it */
4457 else
4458 /* non-prologue */
4459 {
4460 /* Return the current pc, adjusted backwards by 2 if
4461 the previous instruction was an extend. */
4462 return pc - prev_extend_bytes;
4463 }
4464 }
4465 return pc;
4466 }
4467
4468 /* To skip prologues, I use this predicate. Returns either PC itself
4469 if the code at PC does not look like a function prologue; otherwise
4470 returns an address that (if we're lucky) follows the prologue. If
4471 LENIENT, then we must skip everything which is involved in setting
4472 up the frame (it's OK to skip more, just so long as we don't skip
4473 anything which might clobber the registers which are being saved.
4474 We must skip more in the case where part of the prologue is in the
4475 delay slot of a non-prologue instruction). */
4476
4477 static CORE_ADDR
4478 mips_skip_prologue (CORE_ADDR pc)
4479 {
4480 /* See if we can determine the end of the prologue via the symbol table.
4481 If so, then return either PC, or the PC after the prologue, whichever
4482 is greater. */
4483
4484 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4485
4486 if (post_prologue_pc != 0)
4487 return max (pc, post_prologue_pc);
4488
4489 /* Can't determine prologue from the symbol table, need to examine
4490 instructions. */
4491
4492 if (pc_is_mips16 (pc))
4493 return mips16_skip_prologue (pc);
4494 else
4495 return mips32_skip_prologue (pc);
4496 }
4497
4498 /* Determine how a return value is stored within the MIPS register
4499 file, given the return type `valtype'. */
4500
4501 struct return_value_word
4502 {
4503 int len;
4504 int reg;
4505 int reg_offset;
4506 int buf_offset;
4507 };
4508
4509 static void
4510 return_value_location (struct type *valtype,
4511 struct return_value_word *hi,
4512 struct return_value_word *lo)
4513 {
4514 int len = TYPE_LENGTH (valtype);
4515
4516 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4517 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4518 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4519 {
4520 if (!FP_REGISTER_DOUBLE && len == 8)
4521 {
4522 /* We need to break a 64bit float in two 32 bit halves and
4523 spread them across a floating-point register pair. */
4524 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4525 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4526 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4527 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4528 ? 4 : 0);
4529 hi->reg_offset = lo->reg_offset;
4530 lo->reg = FP0_REGNUM + 0;
4531 hi->reg = FP0_REGNUM + 1;
4532 lo->len = 4;
4533 hi->len = 4;
4534 }
4535 else
4536 {
4537 /* The floating point value fits in a single floating-point
4538 register. */
4539 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4540 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4541 && len == 4)
4542 ? 4 : 0);
4543 lo->reg = FP0_REGNUM;
4544 lo->len = len;
4545 lo->buf_offset = 0;
4546 hi->len = 0;
4547 hi->reg_offset = 0;
4548 hi->buf_offset = 0;
4549 hi->reg = 0;
4550 }
4551 }
4552 else
4553 {
4554 /* Locate a result possibly spread across two registers. */
4555 int regnum = 2;
4556 lo->reg = regnum + 0;
4557 hi->reg = regnum + 1;
4558 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4559 && len < MIPS_SAVED_REGSIZE)
4560 {
4561 /* "un-left-justify" the value in the low register */
4562 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
4563 lo->len = len;
4564 hi->reg_offset = 0;
4565 hi->len = 0;
4566 }
4567 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4568 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4569 && len < MIPS_SAVED_REGSIZE * 2
4570 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4571 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4572 {
4573 /* "un-left-justify" the value spread across two registers. */
4574 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4575 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4576 hi->reg_offset = 0;
4577 hi->len = len - lo->len;
4578 }
4579 else
4580 {
4581 /* Only perform a partial copy of the second register. */
4582 lo->reg_offset = 0;
4583 hi->reg_offset = 0;
4584 if (len > MIPS_SAVED_REGSIZE)
4585 {
4586 lo->len = MIPS_SAVED_REGSIZE;
4587 hi->len = len - MIPS_SAVED_REGSIZE;
4588 }
4589 else
4590 {
4591 lo->len = len;
4592 hi->len = 0;
4593 }
4594 }
4595 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4596 && REGISTER_RAW_SIZE (regnum) == 8
4597 && MIPS_SAVED_REGSIZE == 4)
4598 {
4599 /* Account for the fact that only the least-signficant part
4600 of the register is being used */
4601 lo->reg_offset += 4;
4602 hi->reg_offset += 4;
4603 }
4604 lo->buf_offset = 0;
4605 hi->buf_offset = lo->len;
4606 }
4607 }
4608
4609 /* Given a return value in `regbuf' with a type `valtype', extract and
4610 copy its value into `valbuf'. */
4611
4612 static void
4613 mips_eabi_extract_return_value (struct type *valtype,
4614 char regbuf[REGISTER_BYTES],
4615 char *valbuf)
4616 {
4617 struct return_value_word lo;
4618 struct return_value_word hi;
4619 return_value_location (valtype, &hi, &lo);
4620
4621 memcpy (valbuf + lo.buf_offset,
4622 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4623 lo.len);
4624
4625 if (hi.len > 0)
4626 memcpy (valbuf + hi.buf_offset,
4627 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4628 hi.len);
4629 }
4630
4631 static void
4632 mips_o64_extract_return_value (struct type *valtype,
4633 char regbuf[REGISTER_BYTES],
4634 char *valbuf)
4635 {
4636 struct return_value_word lo;
4637 struct return_value_word hi;
4638 return_value_location (valtype, &hi, &lo);
4639
4640 memcpy (valbuf + lo.buf_offset,
4641 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4642 lo.len);
4643
4644 if (hi.len > 0)
4645 memcpy (valbuf + hi.buf_offset,
4646 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4647 hi.len);
4648 }
4649
4650 /* Given a return value in `valbuf' with a type `valtype', write it's
4651 value into the appropriate register. */
4652
4653 static void
4654 mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4655 {
4656 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4657 struct return_value_word lo;
4658 struct return_value_word hi;
4659 return_value_location (valtype, &hi, &lo);
4660
4661 memset (raw_buffer, 0, sizeof (raw_buffer));
4662 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4663 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4664 REGISTER_RAW_SIZE (lo.reg));
4665
4666 if (hi.len > 0)
4667 {
4668 memset (raw_buffer, 0, sizeof (raw_buffer));
4669 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4670 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4671 REGISTER_RAW_SIZE (hi.reg));
4672 }
4673 }
4674
4675 static void
4676 mips_o64_store_return_value (struct type *valtype, char *valbuf)
4677 {
4678 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4679 struct return_value_word lo;
4680 struct return_value_word hi;
4681 return_value_location (valtype, &hi, &lo);
4682
4683 memset (raw_buffer, 0, sizeof (raw_buffer));
4684 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4685 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4686 REGISTER_RAW_SIZE (lo.reg));
4687
4688 if (hi.len > 0)
4689 {
4690 memset (raw_buffer, 0, sizeof (raw_buffer));
4691 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4692 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4693 REGISTER_RAW_SIZE (hi.reg));
4694 }
4695 }
4696
4697 /* O32 ABI stuff. */
4698
4699 static void
4700 mips_o32_xfer_return_value (struct type *type,
4701 struct regcache *regcache,
4702 bfd_byte *in, const bfd_byte *out)
4703 {
4704 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4705 if (TYPE_CODE (type) == TYPE_CODE_FLT
4706 && TYPE_LENGTH (type) == 4
4707 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4708 {
4709 /* A single-precision floating-point value. It fits in the
4710 least significant part of FP0. */
4711 if (mips_debug)
4712 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4713 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4714 TARGET_BYTE_ORDER, in, out, 0);
4715 }
4716 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4717 && TYPE_LENGTH (type) == 8
4718 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4719 {
4720 /* A double-precision floating-point value. It fits in the
4721 least significant part of FP0/FP1 but with byte ordering
4722 based on the target (???). */
4723 if (mips_debug)
4724 fprintf_unfiltered (gdb_stderr, "Return float in $fp0/$fp1\n");
4725 switch (TARGET_BYTE_ORDER)
4726 {
4727 case BFD_ENDIAN_LITTLE:
4728 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4729 TARGET_BYTE_ORDER, in, out, 0);
4730 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4731 TARGET_BYTE_ORDER, in, out, 4);
4732 break;
4733 case BFD_ENDIAN_BIG:
4734 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4735 TARGET_BYTE_ORDER, in, out, 0);
4736 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4737 TARGET_BYTE_ORDER, in, out, 4);
4738 break;
4739 default:
4740 internal_error (__FILE__, __LINE__, "bad switch");
4741 }
4742 }
4743 #if 0
4744 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4745 && TYPE_NFIELDS (type) <= 2
4746 && TYPE_NFIELDS (type) >= 1
4747 && ((TYPE_NFIELDS (type) == 1
4748 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4749 == TYPE_CODE_FLT))
4750 || (TYPE_NFIELDS (type) == 2
4751 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4752 == TYPE_CODE_FLT)
4753 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4754 == TYPE_CODE_FLT)))
4755 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4756 {
4757 /* A struct that contains one or two floats. Each value is part
4758 in the least significant part of their floating point
4759 register.. */
4760 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4761 int regnum;
4762 int field;
4763 for (field = 0, regnum = FP0_REGNUM;
4764 field < TYPE_NFIELDS (type);
4765 field++, regnum += 2)
4766 {
4767 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4768 / TARGET_CHAR_BIT);
4769 if (mips_debug)
4770 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4771 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4772 TARGET_BYTE_ORDER, in, out, offset);
4773 }
4774 }
4775 #endif
4776 #if 0
4777 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4778 || TYPE_CODE (type) == TYPE_CODE_UNION)
4779 {
4780 /* A structure or union. Extract the left justified value,
4781 regardless of the byte order. I.e. DO NOT USE
4782 mips_xfer_lower. */
4783 int offset;
4784 int regnum;
4785 for (offset = 0, regnum = V0_REGNUM;
4786 offset < TYPE_LENGTH (type);
4787 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4788 {
4789 int xfer = REGISTER_RAW_SIZE (regnum);
4790 if (offset + xfer > TYPE_LENGTH (type))
4791 xfer = TYPE_LENGTH (type) - offset;
4792 if (mips_debug)
4793 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4794 offset, xfer, regnum);
4795 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4796 in, out, offset);
4797 }
4798 }
4799 #endif
4800 else
4801 {
4802 /* A scalar extract each part but least-significant-byte
4803 justified. o32 thinks registers are 4 byte, regardless of
4804 the ISA. mips_stack_argsize controls this. */
4805 int offset;
4806 int regnum;
4807 for (offset = 0, regnum = V0_REGNUM;
4808 offset < TYPE_LENGTH (type);
4809 offset += mips_stack_argsize (), regnum++)
4810 {
4811 int xfer = mips_stack_argsize ();
4812 int pos = 0;
4813 if (offset + xfer > TYPE_LENGTH (type))
4814 xfer = TYPE_LENGTH (type) - offset;
4815 if (mips_debug)
4816 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4817 offset, xfer, regnum);
4818 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4819 in, out, offset);
4820 }
4821 }
4822 }
4823
4824 static void
4825 mips_o32_extract_return_value (struct type *type,
4826 struct regcache *regcache,
4827 void *valbuf)
4828 {
4829 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4830 }
4831
4832 static void
4833 mips_o32_store_return_value (struct type *type, char *valbuf)
4834 {
4835 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4836 }
4837
4838 /* N32/N44 ABI stuff. */
4839
4840 static void
4841 mips_n32n64_xfer_return_value (struct type *type,
4842 struct regcache *regcache,
4843 bfd_byte *in, const bfd_byte *out)
4844 {
4845 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4846 if (TYPE_CODE (type) == TYPE_CODE_FLT
4847 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4848 {
4849 /* A floating-point value belongs in the least significant part
4850 of FP0. */
4851 if (mips_debug)
4852 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4853 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4854 TARGET_BYTE_ORDER, in, out, 0);
4855 }
4856 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4857 && TYPE_NFIELDS (type) <= 2
4858 && TYPE_NFIELDS (type) >= 1
4859 && ((TYPE_NFIELDS (type) == 1
4860 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4861 == TYPE_CODE_FLT))
4862 || (TYPE_NFIELDS (type) == 2
4863 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4864 == TYPE_CODE_FLT)
4865 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4866 == TYPE_CODE_FLT)))
4867 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4868 {
4869 /* A struct that contains one or two floats. Each value is part
4870 in the least significant part of their floating point
4871 register.. */
4872 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4873 int regnum;
4874 int field;
4875 for (field = 0, regnum = FP0_REGNUM;
4876 field < TYPE_NFIELDS (type);
4877 field++, regnum += 2)
4878 {
4879 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4880 / TARGET_CHAR_BIT);
4881 if (mips_debug)
4882 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4883 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4884 TARGET_BYTE_ORDER, in, out, offset);
4885 }
4886 }
4887 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4888 || TYPE_CODE (type) == TYPE_CODE_UNION)
4889 {
4890 /* A structure or union. Extract the left justified value,
4891 regardless of the byte order. I.e. DO NOT USE
4892 mips_xfer_lower. */
4893 int offset;
4894 int regnum;
4895 for (offset = 0, regnum = V0_REGNUM;
4896 offset < TYPE_LENGTH (type);
4897 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4898 {
4899 int xfer = REGISTER_RAW_SIZE (regnum);
4900 if (offset + xfer > TYPE_LENGTH (type))
4901 xfer = TYPE_LENGTH (type) - offset;
4902 if (mips_debug)
4903 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4904 offset, xfer, regnum);
4905 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4906 in, out, offset);
4907 }
4908 }
4909 else
4910 {
4911 /* A scalar extract each part but least-significant-byte
4912 justified. */
4913 int offset;
4914 int regnum;
4915 for (offset = 0, regnum = V0_REGNUM;
4916 offset < TYPE_LENGTH (type);
4917 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4918 {
4919 int xfer = REGISTER_RAW_SIZE (regnum);
4920 int pos = 0;
4921 if (offset + xfer > TYPE_LENGTH (type))
4922 xfer = TYPE_LENGTH (type) - offset;
4923 if (mips_debug)
4924 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4925 offset, xfer, regnum);
4926 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4927 in, out, offset);
4928 }
4929 }
4930 }
4931
4932 static void
4933 mips_n32n64_extract_return_value (struct type *type,
4934 struct regcache *regcache,
4935 void *valbuf)
4936 {
4937 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
4938 }
4939
4940 static void
4941 mips_n32n64_store_return_value (struct type *type, char *valbuf)
4942 {
4943 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
4944 }
4945
4946 static void
4947 mips_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4948 {
4949 /* Nothing to do -- push_arguments does all the work. */
4950 }
4951
4952 static CORE_ADDR
4953 mips_extract_struct_value_address (struct regcache *regcache)
4954 {
4955 /* FIXME: This will only work at random. The caller passes the
4956 struct_return address in V0, but it is not preserved. It may
4957 still be there, or this may be a random value. */
4958 LONGEST val;
4959
4960 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
4961 return val;
4962 }
4963
4964 /* Exported procedure: Is PC in the signal trampoline code */
4965
4966 static int
4967 mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
4968 {
4969 if (sigtramp_address == 0)
4970 fixup_sigtramp ();
4971 return (pc >= sigtramp_address && pc < sigtramp_end);
4972 }
4973
4974 /* Root of all "set mips "/"show mips " commands. This will eventually be
4975 used for all MIPS-specific commands. */
4976
4977 static void
4978 show_mips_command (char *args, int from_tty)
4979 {
4980 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4981 }
4982
4983 static void
4984 set_mips_command (char *args, int from_tty)
4985 {
4986 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
4987 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4988 }
4989
4990 /* Commands to show/set the MIPS FPU type. */
4991
4992 static void
4993 show_mipsfpu_command (char *args, int from_tty)
4994 {
4995 char *fpu;
4996 switch (MIPS_FPU_TYPE)
4997 {
4998 case MIPS_FPU_SINGLE:
4999 fpu = "single-precision";
5000 break;
5001 case MIPS_FPU_DOUBLE:
5002 fpu = "double-precision";
5003 break;
5004 case MIPS_FPU_NONE:
5005 fpu = "absent (none)";
5006 break;
5007 default:
5008 internal_error (__FILE__, __LINE__, "bad switch");
5009 }
5010 if (mips_fpu_type_auto)
5011 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
5012 fpu);
5013 else
5014 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
5015 fpu);
5016 }
5017
5018
5019 static void
5020 set_mipsfpu_command (char *args, int from_tty)
5021 {
5022 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5023 show_mipsfpu_command (args, from_tty);
5024 }
5025
5026 static void
5027 set_mipsfpu_single_command (char *args, int from_tty)
5028 {
5029 mips_fpu_type = MIPS_FPU_SINGLE;
5030 mips_fpu_type_auto = 0;
5031 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
5032 }
5033
5034 static void
5035 set_mipsfpu_double_command (char *args, int from_tty)
5036 {
5037 mips_fpu_type = MIPS_FPU_DOUBLE;
5038 mips_fpu_type_auto = 0;
5039 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
5040 }
5041
5042 static void
5043 set_mipsfpu_none_command (char *args, int from_tty)
5044 {
5045 mips_fpu_type = MIPS_FPU_NONE;
5046 mips_fpu_type_auto = 0;
5047 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
5048 }
5049
5050 static void
5051 set_mipsfpu_auto_command (char *args, int from_tty)
5052 {
5053 mips_fpu_type_auto = 1;
5054 }
5055
5056 /* Command to set the processor type. */
5057
5058 void
5059 mips_set_processor_type_command (char *args, int from_tty)
5060 {
5061 int i;
5062
5063 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5064 {
5065 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5066 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5067 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5068
5069 /* Restore the value. */
5070 tmp_mips_processor_type = xstrdup (mips_processor_type);
5071
5072 return;
5073 }
5074
5075 if (!mips_set_processor_type (tmp_mips_processor_type))
5076 {
5077 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5078 /* Restore its value. */
5079 tmp_mips_processor_type = xstrdup (mips_processor_type);
5080 }
5081 }
5082
5083 static void
5084 mips_show_processor_type_command (char *args, int from_tty)
5085 {
5086 }
5087
5088 /* Modify the actual processor type. */
5089
5090 static int
5091 mips_set_processor_type (char *str)
5092 {
5093 int i;
5094
5095 if (str == NULL)
5096 return 0;
5097
5098 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5099 {
5100 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5101 {
5102 mips_processor_type = str;
5103 mips_processor_reg_names = mips_processor_type_table[i].regnames;
5104 return 1;
5105 /* FIXME tweak fpu flag too */
5106 }
5107 }
5108
5109 return 0;
5110 }
5111
5112 /* Attempt to identify the particular processor model by reading the
5113 processor id. */
5114
5115 char *
5116 mips_read_processor_type (void)
5117 {
5118 CORE_ADDR prid;
5119
5120 prid = read_register (PRID_REGNUM);
5121
5122 if ((prid & ~0xf) == 0x700)
5123 return savestring ("r3041", strlen ("r3041"));
5124
5125 return NULL;
5126 }
5127
5128 /* Just like reinit_frame_cache, but with the right arguments to be
5129 callable as an sfunc. */
5130
5131 static void
5132 reinit_frame_cache_sfunc (char *args, int from_tty,
5133 struct cmd_list_element *c)
5134 {
5135 reinit_frame_cache ();
5136 }
5137
5138 int
5139 gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
5140 {
5141 mips_extra_func_info_t proc_desc;
5142
5143 /* Search for the function containing this address. Set the low bit
5144 of the address when searching, in case we were given an even address
5145 that is the start of a 16-bit function. If we didn't do this,
5146 the search would fail because the symbol table says the function
5147 starts at an odd address, i.e. 1 byte past the given address. */
5148 memaddr = ADDR_BITS_REMOVE (memaddr);
5149 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
5150
5151 /* Make an attempt to determine if this is a 16-bit function. If
5152 the procedure descriptor exists and the address therein is odd,
5153 it's definitely a 16-bit function. Otherwise, we have to just
5154 guess that if the address passed in is odd, it's 16-bits. */
5155 if (proc_desc)
5156 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
5157 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
5158 else
5159 info->mach = pc_is_mips16 (memaddr) ?
5160 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
5161
5162 /* Round down the instruction address to the appropriate boundary. */
5163 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
5164
5165 /* Call the appropriate disassembler based on the target endian-ness. */
5166 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5167 return print_insn_big_mips (memaddr, info);
5168 else
5169 return print_insn_little_mips (memaddr, info);
5170 }
5171
5172 /* Old-style breakpoint macros.
5173 The IDT board uses an unusual breakpoint value, and sometimes gets
5174 confused when it sees the usual MIPS breakpoint instruction. */
5175
5176 #define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
5177 #define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
5178 #define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
5179 #define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
5180 #define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
5181 #define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
5182 #define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
5183 #define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
5184
5185 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5186 counter value to determine whether a 16- or 32-bit breakpoint should be
5187 used. It returns a pointer to a string of bytes that encode a breakpoint
5188 instruction, stores the length of the string to *lenptr, and adjusts pc
5189 (if necessary) to point to the actual memory location where the
5190 breakpoint should be inserted. */
5191
5192 static const unsigned char *
5193 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
5194 {
5195 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5196 {
5197 if (pc_is_mips16 (*pcptr))
5198 {
5199 static unsigned char mips16_big_breakpoint[] =
5200 MIPS16_BIG_BREAKPOINT;
5201 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
5202 *lenptr = sizeof (mips16_big_breakpoint);
5203 return mips16_big_breakpoint;
5204 }
5205 else
5206 {
5207 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
5208 static unsigned char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
5209 static unsigned char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
5210
5211 *lenptr = sizeof (big_breakpoint);
5212
5213 if (strcmp (target_shortname, "mips") == 0)
5214 return idt_big_breakpoint;
5215 else if (strcmp (target_shortname, "ddb") == 0
5216 || strcmp (target_shortname, "pmon") == 0
5217 || strcmp (target_shortname, "lsi") == 0)
5218 return pmon_big_breakpoint;
5219 else
5220 return big_breakpoint;
5221 }
5222 }
5223 else
5224 {
5225 if (pc_is_mips16 (*pcptr))
5226 {
5227 static unsigned char mips16_little_breakpoint[] =
5228 MIPS16_LITTLE_BREAKPOINT;
5229 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
5230 *lenptr = sizeof (mips16_little_breakpoint);
5231 return mips16_little_breakpoint;
5232 }
5233 else
5234 {
5235 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
5236 static unsigned char pmon_little_breakpoint[] =
5237 PMON_LITTLE_BREAKPOINT;
5238 static unsigned char idt_little_breakpoint[] =
5239 IDT_LITTLE_BREAKPOINT;
5240
5241 *lenptr = sizeof (little_breakpoint);
5242
5243 if (strcmp (target_shortname, "mips") == 0)
5244 return idt_little_breakpoint;
5245 else if (strcmp (target_shortname, "ddb") == 0
5246 || strcmp (target_shortname, "pmon") == 0
5247 || strcmp (target_shortname, "lsi") == 0)
5248 return pmon_little_breakpoint;
5249 else
5250 return little_breakpoint;
5251 }
5252 }
5253 }
5254
5255 /* If PC is in a mips16 call or return stub, return the address of the target
5256 PC, which is either the callee or the caller. There are several
5257 cases which must be handled:
5258
5259 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5260 target PC is in $31 ($ra).
5261 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5262 and the target PC is in $2.
5263 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5264 before the jal instruction, this is effectively a call stub
5265 and the the target PC is in $2. Otherwise this is effectively
5266 a return stub and the target PC is in $18.
5267
5268 See the source code for the stubs in gcc/config/mips/mips16.S for
5269 gory details.
5270
5271 This function implements the SKIP_TRAMPOLINE_CODE macro.
5272 */
5273
5274 static CORE_ADDR
5275 mips_skip_stub (CORE_ADDR pc)
5276 {
5277 char *name;
5278 CORE_ADDR start_addr;
5279
5280 /* Find the starting address and name of the function containing the PC. */
5281 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5282 return 0;
5283
5284 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5285 target PC is in $31 ($ra). */
5286 if (strcmp (name, "__mips16_ret_sf") == 0
5287 || strcmp (name, "__mips16_ret_df") == 0)
5288 return read_signed_register (RA_REGNUM);
5289
5290 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5291 {
5292 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5293 and the target PC is in $2. */
5294 if (name[19] >= '0' && name[19] <= '9')
5295 return read_signed_register (2);
5296
5297 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5298 before the jal instruction, this is effectively a call stub
5299 and the the target PC is in $2. Otherwise this is effectively
5300 a return stub and the target PC is in $18. */
5301 else if (name[19] == 's' || name[19] == 'd')
5302 {
5303 if (pc == start_addr)
5304 {
5305 /* Check if the target of the stub is a compiler-generated
5306 stub. Such a stub for a function bar might have a name
5307 like __fn_stub_bar, and might look like this:
5308 mfc1 $4,$f13
5309 mfc1 $5,$f12
5310 mfc1 $6,$f15
5311 mfc1 $7,$f14
5312 la $1,bar (becomes a lui/addiu pair)
5313 jr $1
5314 So scan down to the lui/addi and extract the target
5315 address from those two instructions. */
5316
5317 CORE_ADDR target_pc = read_signed_register (2);
5318 t_inst inst;
5319 int i;
5320
5321 /* See if the name of the target function is __fn_stub_*. */
5322 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5323 return target_pc;
5324 if (strncmp (name, "__fn_stub_", 10) != 0
5325 && strcmp (name, "etext") != 0
5326 && strcmp (name, "_etext") != 0)
5327 return target_pc;
5328
5329 /* Scan through this _fn_stub_ code for the lui/addiu pair.
5330 The limit on the search is arbitrarily set to 20
5331 instructions. FIXME. */
5332 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5333 {
5334 inst = mips_fetch_instruction (target_pc);
5335 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5336 pc = (inst << 16) & 0xffff0000; /* high word */
5337 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5338 return pc | (inst & 0xffff); /* low word */
5339 }
5340
5341 /* Couldn't find the lui/addui pair, so return stub address. */
5342 return target_pc;
5343 }
5344 else
5345 /* This is the 'return' part of a call stub. The return
5346 address is in $r18. */
5347 return read_signed_register (18);
5348 }
5349 }
5350 return 0; /* not a stub */
5351 }
5352
5353
5354 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5355 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5356
5357 static int
5358 mips_in_call_stub (CORE_ADDR pc, char *name)
5359 {
5360 CORE_ADDR start_addr;
5361
5362 /* Find the starting address of the function containing the PC. If the
5363 caller didn't give us a name, look it up at the same time. */
5364 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5365 return 0;
5366
5367 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5368 {
5369 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5370 if (name[19] >= '0' && name[19] <= '9')
5371 return 1;
5372 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5373 before the jal instruction, this is effectively a call stub. */
5374 else if (name[19] == 's' || name[19] == 'd')
5375 return pc == start_addr;
5376 }
5377
5378 return 0; /* not a stub */
5379 }
5380
5381
5382 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5383 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5384
5385 static int
5386 mips_in_return_stub (CORE_ADDR pc, char *name)
5387 {
5388 CORE_ADDR start_addr;
5389
5390 /* Find the starting address of the function containing the PC. */
5391 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5392 return 0;
5393
5394 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5395 if (strcmp (name, "__mips16_ret_sf") == 0
5396 || strcmp (name, "__mips16_ret_df") == 0)
5397 return 1;
5398
5399 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
5400 i.e. after the jal instruction, this is effectively a return stub. */
5401 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5402 && (name[19] == 's' || name[19] == 'd')
5403 && pc != start_addr)
5404 return 1;
5405
5406 return 0; /* not a stub */
5407 }
5408
5409
5410 /* Return non-zero if the PC is in a library helper function that should
5411 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5412
5413 int
5414 mips_ignore_helper (CORE_ADDR pc)
5415 {
5416 char *name;
5417
5418 /* Find the starting address and name of the function containing the PC. */
5419 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5420 return 0;
5421
5422 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5423 that we want to ignore. */
5424 return (strcmp (name, "__mips16_ret_sf") == 0
5425 || strcmp (name, "__mips16_ret_df") == 0);
5426 }
5427
5428
5429 /* Return a location where we can set a breakpoint that will be hit
5430 when an inferior function call returns. This is normally the
5431 program's entry point. Executables that don't have an entry
5432 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
5433 whose address is the location where the breakpoint should be placed. */
5434
5435 static CORE_ADDR
5436 mips_call_dummy_address (void)
5437 {
5438 struct minimal_symbol *sym;
5439
5440 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
5441 if (sym)
5442 return SYMBOL_VALUE_ADDRESS (sym);
5443 else
5444 return entry_point_address ();
5445 }
5446
5447
5448 /* If the current gcc for this target does not produce correct debugging
5449 information for float parameters, both prototyped and unprototyped, then
5450 define this macro. This forces gdb to always assume that floats are
5451 passed as doubles and then converted in the callee.
5452
5453 For the mips chip, it appears that the debug info marks the parameters as
5454 floats regardless of whether the function is prototyped, but the actual
5455 values are passed as doubles for the non-prototyped case and floats for
5456 the prototyped case. Thus we choose to make the non-prototyped case work
5457 for C and break the prototyped case, since the non-prototyped case is
5458 probably much more common. (FIXME). */
5459
5460 static int
5461 mips_coerce_float_to_double (struct type *formal, struct type *actual)
5462 {
5463 return current_language->la_language == language_c;
5464 }
5465
5466 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5467 the register stored on the stack (32) is different to its real raw
5468 size (64). The below ensures that registers are fetched from the
5469 stack using their ABI size and then stored into the RAW_BUFFER
5470 using their raw size.
5471
5472 The alternative to adding this function would be to add an ABI
5473 macro - REGISTER_STACK_SIZE(). */
5474
5475 static void
5476 mips_get_saved_register (char *raw_buffer,
5477 int *optimizedp,
5478 CORE_ADDR *addrp,
5479 struct frame_info *frame,
5480 int regnum,
5481 enum lval_type *lvalp)
5482 {
5483 CORE_ADDR addrx;
5484 enum lval_type lvalx;
5485 int optimizedx;
5486 int realnum;
5487
5488 if (!target_has_registers)
5489 error ("No registers.");
5490
5491 /* Make certain that all needed parameters are present. */
5492 if (addrp == NULL)
5493 addrp = &addrx;
5494 if (lvalp == NULL)
5495 lvalp = &lvalx;
5496 if (optimizedp == NULL)
5497 optimizedp = &optimizedx;
5498 frame_register_unwind (get_next_frame (frame), regnum, optimizedp, lvalp,
5499 addrp, &realnum, raw_buffer);
5500 /* FIXME: cagney/2002-09-13: This is just so bad. The MIPS should
5501 have a pseudo register range that correspons to the ABI's, rather
5502 than the ISA's, view of registers. These registers would then
5503 implicitly describe their size and hence could be used without
5504 the below munging. */
5505 if ((*lvalp) == lval_memory)
5506 {
5507 if (raw_buffer != NULL)
5508 {
5509 if (regnum < 32)
5510 {
5511 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
5512 saved. */
5513 LONGEST val = read_memory_integer ((*addrp), MIPS_SAVED_REGSIZE);
5514 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
5515 }
5516 }
5517 }
5518 }
5519
5520 /* Immediately after a function call, return the saved pc.
5521 Can't always go through the frames for this because on some machines
5522 the new frame is not set up until the new function executes
5523 some instructions. */
5524
5525 static CORE_ADDR
5526 mips_saved_pc_after_call (struct frame_info *frame)
5527 {
5528 return read_signed_register (RA_REGNUM);
5529 }
5530
5531
5532 /* Convert a dbx stab register number (from `r' declaration) to a gdb
5533 REGNUM */
5534
5535 static int
5536 mips_stab_reg_to_regnum (int num)
5537 {
5538 if (num < 32)
5539 return num;
5540 else
5541 return num + FP0_REGNUM - 38;
5542 }
5543
5544 /* Convert a ecoff register number to a gdb REGNUM */
5545
5546 static int
5547 mips_ecoff_reg_to_regnum (int num)
5548 {
5549 if (num < 32)
5550 return num;
5551 else
5552 return num + FP0_REGNUM - 32;
5553 }
5554
5555 /* Convert an integer into an address. By first converting the value
5556 into a pointer and then extracting it signed, the address is
5557 guarenteed to be correctly sign extended. */
5558
5559 static CORE_ADDR
5560 mips_integer_to_address (struct type *type, void *buf)
5561 {
5562 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5563 LONGEST val = unpack_long (type, buf);
5564 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5565 return extract_signed_integer (tmp,
5566 TYPE_LENGTH (builtin_type_void_data_ptr));
5567 }
5568
5569 static void
5570 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5571 {
5572 enum mips_abi *abip = (enum mips_abi *) obj;
5573 const char *name = bfd_get_section_name (abfd, sect);
5574
5575 if (*abip != MIPS_ABI_UNKNOWN)
5576 return;
5577
5578 if (strncmp (name, ".mdebug.", 8) != 0)
5579 return;
5580
5581 if (strcmp (name, ".mdebug.abi32") == 0)
5582 *abip = MIPS_ABI_O32;
5583 else if (strcmp (name, ".mdebug.abiN32") == 0)
5584 *abip = MIPS_ABI_N32;
5585 else if (strcmp (name, ".mdebug.abi64") == 0)
5586 *abip = MIPS_ABI_N64;
5587 else if (strcmp (name, ".mdebug.abiO64") == 0)
5588 *abip = MIPS_ABI_O64;
5589 else if (strcmp (name, ".mdebug.eabi32") == 0)
5590 *abip = MIPS_ABI_EABI32;
5591 else if (strcmp (name, ".mdebug.eabi64") == 0)
5592 *abip = MIPS_ABI_EABI64;
5593 else
5594 warning ("unsupported ABI %s.", name + 8);
5595 }
5596
5597 static enum mips_abi
5598 global_mips_abi (void)
5599 {
5600 int i;
5601
5602 for (i = 0; mips_abi_strings[i] != NULL; i++)
5603 if (mips_abi_strings[i] == mips_abi_string)
5604 return (enum mips_abi) i;
5605
5606 internal_error (__FILE__, __LINE__,
5607 "unknown ABI string");
5608 }
5609
5610 static struct gdbarch *
5611 mips_gdbarch_init (struct gdbarch_info info,
5612 struct gdbarch_list *arches)
5613 {
5614 static LONGEST mips_call_dummy_words[] =
5615 {0};
5616 struct gdbarch *gdbarch;
5617 struct gdbarch_tdep *tdep;
5618 int elf_flags;
5619 enum mips_abi mips_abi, found_abi, wanted_abi;
5620 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
5621
5622 /* Reset the disassembly info, in case it was set to something
5623 non-default. */
5624 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
5625 tm_print_insn_info.arch = bfd_arch_unknown;
5626 tm_print_insn_info.mach = 0;
5627
5628 elf_flags = 0;
5629
5630 if (info.abfd)
5631 {
5632 /* First of all, extract the elf_flags, if available. */
5633 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5634 elf_flags = elf_elfheader (info.abfd)->e_flags;
5635
5636 /* Try to determine the OS ABI of the object we are loading. If
5637 we end up with `unknown', just leave it that way. */
5638 osabi = gdbarch_lookup_osabi (info.abfd);
5639 }
5640
5641 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5642 switch ((elf_flags & EF_MIPS_ABI))
5643 {
5644 case E_MIPS_ABI_O32:
5645 mips_abi = MIPS_ABI_O32;
5646 break;
5647 case E_MIPS_ABI_O64:
5648 mips_abi = MIPS_ABI_O64;
5649 break;
5650 case E_MIPS_ABI_EABI32:
5651 mips_abi = MIPS_ABI_EABI32;
5652 break;
5653 case E_MIPS_ABI_EABI64:
5654 mips_abi = MIPS_ABI_EABI64;
5655 break;
5656 default:
5657 if ((elf_flags & EF_MIPS_ABI2))
5658 mips_abi = MIPS_ABI_N32;
5659 else
5660 mips_abi = MIPS_ABI_UNKNOWN;
5661 break;
5662 }
5663
5664 /* GCC creates a pseudo-section whose name describes the ABI. */
5665 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5666 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5667
5668 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5669 Use the ABI from the last architecture if there is one. */
5670 if (info.abfd == NULL && arches != NULL)
5671 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5672
5673 /* Try the architecture for any hint of the correct ABI. */
5674 if (mips_abi == MIPS_ABI_UNKNOWN
5675 && info.bfd_arch_info != NULL
5676 && info.bfd_arch_info->arch == bfd_arch_mips)
5677 {
5678 switch (info.bfd_arch_info->mach)
5679 {
5680 case bfd_mach_mips3900:
5681 mips_abi = MIPS_ABI_EABI32;
5682 break;
5683 case bfd_mach_mips4100:
5684 case bfd_mach_mips5000:
5685 mips_abi = MIPS_ABI_EABI64;
5686 break;
5687 case bfd_mach_mips8000:
5688 case bfd_mach_mips10000:
5689 /* On Irix, ELF64 executables use the N64 ABI. The
5690 pseudo-sections which describe the ABI aren't present
5691 on IRIX. (Even for executables created by gcc.) */
5692 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5693 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5694 mips_abi = MIPS_ABI_N64;
5695 else
5696 mips_abi = MIPS_ABI_N32;
5697 break;
5698 }
5699 }
5700
5701 if (mips_abi == MIPS_ABI_UNKNOWN)
5702 mips_abi = MIPS_ABI_O32;
5703
5704 /* Now that we have found what the ABI for this binary would be,
5705 check whether the user is overriding it. */
5706 found_abi = mips_abi;
5707 wanted_abi = global_mips_abi ();
5708 if (wanted_abi != MIPS_ABI_UNKNOWN)
5709 mips_abi = wanted_abi;
5710
5711 if (gdbarch_debug)
5712 {
5713 fprintf_unfiltered (gdb_stdlog,
5714 "mips_gdbarch_init: elf_flags = 0x%08x\n",
5715 elf_flags);
5716 fprintf_unfiltered (gdb_stdlog,
5717 "mips_gdbarch_init: mips_abi = %d\n",
5718 mips_abi);
5719 fprintf_unfiltered (gdb_stdlog,
5720 "mips_gdbarch_init: found_mips_abi = %d\n",
5721 found_abi);
5722 }
5723
5724 /* try to find a pre-existing architecture */
5725 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5726 arches != NULL;
5727 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5728 {
5729 /* MIPS needs to be pedantic about which ABI the object is
5730 using. */
5731 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5732 continue;
5733 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5734 continue;
5735 if (gdbarch_tdep (arches->gdbarch)->osabi == osabi)
5736 return arches->gdbarch;
5737 }
5738
5739 /* Need a new architecture. Fill in a target specific vector. */
5740 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5741 gdbarch = gdbarch_alloc (&info, tdep);
5742 tdep->elf_flags = elf_flags;
5743 tdep->osabi = osabi;
5744
5745 /* Initially set everything according to the default ABI/ISA. */
5746 set_gdbarch_short_bit (gdbarch, 16);
5747 set_gdbarch_int_bit (gdbarch, 32);
5748 set_gdbarch_float_bit (gdbarch, 32);
5749 set_gdbarch_double_bit (gdbarch, 64);
5750 set_gdbarch_long_double_bit (gdbarch, 64);
5751 set_gdbarch_register_raw_size (gdbarch, mips_register_raw_size);
5752 set_gdbarch_max_register_raw_size (gdbarch, 8);
5753 set_gdbarch_max_register_virtual_size (gdbarch, 8);
5754 tdep->found_abi = found_abi;
5755 tdep->mips_abi = mips_abi;
5756
5757 set_gdbarch_elf_make_msymbol_special (gdbarch,
5758 mips_elf_make_msymbol_special);
5759
5760 switch (mips_abi)
5761 {
5762 case MIPS_ABI_O32:
5763 set_gdbarch_push_arguments (gdbarch, mips_o32_push_arguments);
5764 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
5765 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
5766 tdep->mips_default_saved_regsize = 4;
5767 tdep->mips_default_stack_argsize = 4;
5768 tdep->mips_fp_register_double = 0;
5769 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5770 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5771 tdep->gdb_target_is_mips64 = 0;
5772 tdep->default_mask_address_p = 0;
5773 set_gdbarch_long_bit (gdbarch, 32);
5774 set_gdbarch_ptr_bit (gdbarch, 32);
5775 set_gdbarch_long_long_bit (gdbarch, 64);
5776 set_gdbarch_reg_struct_has_addr (gdbarch,
5777 mips_o32_reg_struct_has_addr);
5778 set_gdbarch_use_struct_convention (gdbarch,
5779 mips_o32_use_struct_convention);
5780 break;
5781 case MIPS_ABI_O64:
5782 set_gdbarch_push_arguments (gdbarch, mips_o64_push_arguments);
5783 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
5784 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
5785 tdep->mips_default_saved_regsize = 8;
5786 tdep->mips_default_stack_argsize = 8;
5787 tdep->mips_fp_register_double = 1;
5788 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5789 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5790 tdep->gdb_target_is_mips64 = 1;
5791 tdep->default_mask_address_p = 0;
5792 set_gdbarch_long_bit (gdbarch, 32);
5793 set_gdbarch_ptr_bit (gdbarch, 32);
5794 set_gdbarch_long_long_bit (gdbarch, 64);
5795 set_gdbarch_reg_struct_has_addr (gdbarch,
5796 mips_o32_reg_struct_has_addr);
5797 set_gdbarch_use_struct_convention (gdbarch,
5798 mips_o32_use_struct_convention);
5799 break;
5800 case MIPS_ABI_EABI32:
5801 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
5802 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5803 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5804 tdep->mips_default_saved_regsize = 4;
5805 tdep->mips_default_stack_argsize = 4;
5806 tdep->mips_fp_register_double = 0;
5807 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5808 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5809 tdep->gdb_target_is_mips64 = 0;
5810 tdep->default_mask_address_p = 0;
5811 set_gdbarch_long_bit (gdbarch, 32);
5812 set_gdbarch_ptr_bit (gdbarch, 32);
5813 set_gdbarch_long_long_bit (gdbarch, 64);
5814 set_gdbarch_reg_struct_has_addr (gdbarch,
5815 mips_eabi_reg_struct_has_addr);
5816 set_gdbarch_use_struct_convention (gdbarch,
5817 mips_eabi_use_struct_convention);
5818 break;
5819 case MIPS_ABI_EABI64:
5820 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
5821 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5822 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5823 tdep->mips_default_saved_regsize = 8;
5824 tdep->mips_default_stack_argsize = 8;
5825 tdep->mips_fp_register_double = 1;
5826 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5827 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5828 tdep->gdb_target_is_mips64 = 1;
5829 tdep->default_mask_address_p = 0;
5830 set_gdbarch_long_bit (gdbarch, 64);
5831 set_gdbarch_ptr_bit (gdbarch, 64);
5832 set_gdbarch_long_long_bit (gdbarch, 64);
5833 set_gdbarch_reg_struct_has_addr (gdbarch,
5834 mips_eabi_reg_struct_has_addr);
5835 set_gdbarch_use_struct_convention (gdbarch,
5836 mips_eabi_use_struct_convention);
5837 break;
5838 case MIPS_ABI_N32:
5839 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
5840 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5841 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5842 tdep->mips_default_saved_regsize = 8;
5843 tdep->mips_default_stack_argsize = 8;
5844 tdep->mips_fp_register_double = 1;
5845 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5846 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5847 tdep->gdb_target_is_mips64 = 1;
5848 tdep->default_mask_address_p = 0;
5849 set_gdbarch_long_bit (gdbarch, 32);
5850 set_gdbarch_ptr_bit (gdbarch, 32);
5851 set_gdbarch_long_long_bit (gdbarch, 64);
5852
5853 /* Set up the disassembler info, so that we get the right
5854 register names from libopcodes. */
5855 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5856 tm_print_insn_info.arch = bfd_arch_mips;
5857 if (info.bfd_arch_info != NULL
5858 && info.bfd_arch_info->arch == bfd_arch_mips
5859 && info.bfd_arch_info->mach)
5860 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5861 else
5862 tm_print_insn_info.mach = bfd_mach_mips8000;
5863
5864 set_gdbarch_use_struct_convention (gdbarch,
5865 mips_n32n64_use_struct_convention);
5866 set_gdbarch_reg_struct_has_addr (gdbarch,
5867 mips_n32n64_reg_struct_has_addr);
5868 break;
5869 case MIPS_ABI_N64:
5870 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
5871 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5872 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5873 tdep->mips_default_saved_regsize = 8;
5874 tdep->mips_default_stack_argsize = 8;
5875 tdep->mips_fp_register_double = 1;
5876 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5877 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5878 tdep->gdb_target_is_mips64 = 1;
5879 tdep->default_mask_address_p = 0;
5880 set_gdbarch_long_bit (gdbarch, 64);
5881 set_gdbarch_ptr_bit (gdbarch, 64);
5882 set_gdbarch_long_long_bit (gdbarch, 64);
5883
5884 /* Set up the disassembler info, so that we get the right
5885 register names from libopcodes. */
5886 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5887 tm_print_insn_info.arch = bfd_arch_mips;
5888 if (info.bfd_arch_info != NULL
5889 && info.bfd_arch_info->arch == bfd_arch_mips
5890 && info.bfd_arch_info->mach)
5891 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5892 else
5893 tm_print_insn_info.mach = bfd_mach_mips8000;
5894
5895 set_gdbarch_use_struct_convention (gdbarch,
5896 mips_n32n64_use_struct_convention);
5897 set_gdbarch_reg_struct_has_addr (gdbarch,
5898 mips_n32n64_reg_struct_has_addr);
5899 break;
5900 default:
5901 internal_error (__FILE__, __LINE__,
5902 "unknown ABI in switch");
5903 }
5904
5905 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5906 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5907 comment:
5908
5909 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5910 flag in object files because to do so would make it impossible to
5911 link with libraries compiled without "-gp32". This is
5912 unnecessarily restrictive.
5913
5914 We could solve this problem by adding "-gp32" multilibs to gcc,
5915 but to set this flag before gcc is built with such multilibs will
5916 break too many systems.''
5917
5918 But even more unhelpfully, the default linker output target for
5919 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5920 for 64-bit programs - you need to change the ABI to change this,
5921 and not all gcc targets support that currently. Therefore using
5922 this flag to detect 32-bit mode would do the wrong thing given
5923 the current gcc - it would make GDB treat these 64-bit programs
5924 as 32-bit programs by default. */
5925
5926 /* enable/disable the MIPS FPU */
5927 if (!mips_fpu_type_auto)
5928 tdep->mips_fpu_type = mips_fpu_type;
5929 else if (info.bfd_arch_info != NULL
5930 && info.bfd_arch_info->arch == bfd_arch_mips)
5931 switch (info.bfd_arch_info->mach)
5932 {
5933 case bfd_mach_mips3900:
5934 case bfd_mach_mips4100:
5935 case bfd_mach_mips4111:
5936 tdep->mips_fpu_type = MIPS_FPU_NONE;
5937 break;
5938 case bfd_mach_mips4650:
5939 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5940 break;
5941 default:
5942 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5943 break;
5944 }
5945 else
5946 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5947
5948 /* MIPS version of register names. NOTE: At present the MIPS
5949 register name management is part way between the old -
5950 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
5951 Further work on it is required. */
5952 /* NOTE: many targets (esp. embedded) do not go thru the
5953 gdbarch_register_name vector at all, instead bypassing it
5954 by defining REGISTER_NAMES. */
5955 set_gdbarch_register_name (gdbarch, mips_register_name);
5956 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5957 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
5958 set_gdbarch_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
5959 set_gdbarch_read_sp (gdbarch, mips_read_sp);
5960 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
5961
5962 /* Add/remove bits from an address. The MIPS needs be careful to
5963 ensure that all 32 bit addresses are sign extended to 64 bits. */
5964 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5965
5966 /* There's a mess in stack frame creation. See comments in
5967 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
5968 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
5969 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
5970
5971 /* Map debug register numbers onto internal register numbers. */
5972 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5973 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_ecoff_reg_to_regnum);
5974
5975 /* Initialize a frame */
5976 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
5977 set_gdbarch_frame_init_saved_regs (gdbarch, mips_frame_init_saved_regs);
5978
5979 /* MIPS version of CALL_DUMMY */
5980
5981 set_gdbarch_call_dummy_p (gdbarch, 1);
5982 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
5983 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
5984 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
5985 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
5986 set_gdbarch_pop_frame (gdbarch, mips_pop_frame);
5987 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
5988 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
5989 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
5990 set_gdbarch_call_dummy_length (gdbarch, 0);
5991 set_gdbarch_fix_call_dummy (gdbarch, mips_fix_call_dummy);
5992 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
5993 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
5994 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
5995 set_gdbarch_frame_align (gdbarch, mips_frame_align);
5996 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
5997 set_gdbarch_register_convertible (gdbarch, mips_register_convertible);
5998 set_gdbarch_register_convert_to_virtual (gdbarch,
5999 mips_register_convert_to_virtual);
6000 set_gdbarch_register_convert_to_raw (gdbarch,
6001 mips_register_convert_to_raw);
6002
6003 set_gdbarch_coerce_float_to_double (gdbarch, mips_coerce_float_to_double);
6004
6005 set_gdbarch_frame_chain (gdbarch, mips_frame_chain);
6006 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
6007 set_gdbarch_frameless_function_invocation (gdbarch,
6008 generic_frameless_function_invocation_not);
6009 set_gdbarch_frame_saved_pc (gdbarch, mips_frame_saved_pc);
6010 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
6011 set_gdbarch_frame_args_skip (gdbarch, 0);
6012
6013 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
6014
6015 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6016 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
6017 set_gdbarch_decr_pc_after_break (gdbarch, 0);
6018
6019 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6020 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
6021
6022 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6023 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6024 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
6025
6026 set_gdbarch_function_start_offset (gdbarch, 0);
6027
6028 /* There are MIPS targets which do not yet use this since they still
6029 define REGISTER_VIRTUAL_TYPE. */
6030 set_gdbarch_register_virtual_type (gdbarch, mips_register_virtual_type);
6031 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
6032
6033 set_gdbarch_deprecated_do_registers_info (gdbarch, mips_do_registers_info);
6034 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
6035
6036 /* Hook in OS ABI-specific overrides, if they have been registered. */
6037 gdbarch_init_osabi (info, gdbarch, osabi);
6038
6039 set_gdbarch_store_struct_return (gdbarch, mips_store_struct_return);
6040 set_gdbarch_extract_struct_value_address (gdbarch,
6041 mips_extract_struct_value_address);
6042
6043 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6044
6045 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
6046 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
6047
6048 return gdbarch;
6049 }
6050
6051 static void
6052 mips_abi_update (char *ignore_args, int from_tty,
6053 struct cmd_list_element *c)
6054 {
6055 struct gdbarch_info info;
6056
6057 /* Force the architecture to update, and (if it's a MIPS architecture)
6058 mips_gdbarch_init will take care of the rest. */
6059 gdbarch_info_init (&info);
6060 gdbarch_update_p (info);
6061 }
6062
6063 static void
6064 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6065 {
6066 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6067 if (tdep != NULL)
6068 {
6069 int ef_mips_arch;
6070 int ef_mips_32bitmode;
6071 /* determine the ISA */
6072 switch (tdep->elf_flags & EF_MIPS_ARCH)
6073 {
6074 case E_MIPS_ARCH_1:
6075 ef_mips_arch = 1;
6076 break;
6077 case E_MIPS_ARCH_2:
6078 ef_mips_arch = 2;
6079 break;
6080 case E_MIPS_ARCH_3:
6081 ef_mips_arch = 3;
6082 break;
6083 case E_MIPS_ARCH_4:
6084 ef_mips_arch = 4;
6085 break;
6086 default:
6087 ef_mips_arch = 0;
6088 break;
6089 }
6090 /* determine the size of a pointer */
6091 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
6092 fprintf_unfiltered (file,
6093 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
6094 tdep->elf_flags);
6095 fprintf_unfiltered (file,
6096 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6097 ef_mips_32bitmode);
6098 fprintf_unfiltered (file,
6099 "mips_dump_tdep: ef_mips_arch = %d\n",
6100 ef_mips_arch);
6101 fprintf_unfiltered (file,
6102 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6103 tdep->mips_abi,
6104 mips_abi_strings[tdep->mips_abi]);
6105 fprintf_unfiltered (file,
6106 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6107 mips_mask_address_p (),
6108 tdep->default_mask_address_p);
6109 }
6110 fprintf_unfiltered (file,
6111 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6112 FP_REGISTER_DOUBLE);
6113 fprintf_unfiltered (file,
6114 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6115 MIPS_DEFAULT_FPU_TYPE,
6116 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6117 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6118 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6119 : "???"));
6120 fprintf_unfiltered (file,
6121 "mips_dump_tdep: MIPS_EABI = %d\n",
6122 MIPS_EABI);
6123 fprintf_unfiltered (file,
6124 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6125 MIPS_LAST_FP_ARG_REGNUM,
6126 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
6127 fprintf_unfiltered (file,
6128 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6129 MIPS_FPU_TYPE,
6130 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6131 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6132 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6133 : "???"));
6134 fprintf_unfiltered (file,
6135 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6136 MIPS_DEFAULT_SAVED_REGSIZE);
6137 fprintf_unfiltered (file,
6138 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6139 FP_REGISTER_DOUBLE);
6140 fprintf_unfiltered (file,
6141 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6142 MIPS_DEFAULT_STACK_ARGSIZE);
6143 fprintf_unfiltered (file,
6144 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6145 MIPS_STACK_ARGSIZE);
6146 fprintf_unfiltered (file,
6147 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6148 MIPS_REGSIZE);
6149 fprintf_unfiltered (file,
6150 "mips_dump_tdep: A0_REGNUM = %d\n",
6151 A0_REGNUM);
6152 fprintf_unfiltered (file,
6153 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6154 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6155 fprintf_unfiltered (file,
6156 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6157 XSTRING (ATTACH_DETACH));
6158 fprintf_unfiltered (file,
6159 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6160 BADVADDR_REGNUM);
6161 fprintf_unfiltered (file,
6162 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
6163 fprintf_unfiltered (file,
6164 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6165 CAUSE_REGNUM);
6166 fprintf_unfiltered (file,
6167 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6168 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6169 fprintf_unfiltered (file,
6170 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6171 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
6172 fprintf_unfiltered (file,
6173 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6174 FCRCS_REGNUM);
6175 fprintf_unfiltered (file,
6176 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6177 FCRIR_REGNUM);
6178 fprintf_unfiltered (file,
6179 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6180 FIRST_EMBED_REGNUM);
6181 fprintf_unfiltered (file,
6182 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6183 FPA0_REGNUM);
6184 fprintf_unfiltered (file,
6185 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6186 GDB_TARGET_IS_MIPS64);
6187 fprintf_unfiltered (file,
6188 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
6189 GEN_REG_SAVE_MASK);
6190 fprintf_unfiltered (file,
6191 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
6192 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
6193 fprintf_unfiltered (file,
6194 "mips_dump_tdep: HI_REGNUM = %d\n",
6195 HI_REGNUM);
6196 fprintf_unfiltered (file,
6197 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
6198 fprintf_unfiltered (file,
6199 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
6200 fprintf_unfiltered (file,
6201 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6202 XSTRING (IGNORE_HELPER_CALL (PC)));
6203 fprintf_unfiltered (file,
6204 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6205 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6206 fprintf_unfiltered (file,
6207 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6208 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6209 fprintf_unfiltered (file,
6210 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
6211 fprintf_unfiltered (file,
6212 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6213 LAST_EMBED_REGNUM);
6214 fprintf_unfiltered (file,
6215 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
6216 fprintf_unfiltered (file,
6217 "mips_dump_tdep: LO_REGNUM = %d\n",
6218 LO_REGNUM);
6219 #ifdef MACHINE_CPROC_FP_OFFSET
6220 fprintf_unfiltered (file,
6221 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6222 MACHINE_CPROC_FP_OFFSET);
6223 #endif
6224 #ifdef MACHINE_CPROC_PC_OFFSET
6225 fprintf_unfiltered (file,
6226 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6227 MACHINE_CPROC_PC_OFFSET);
6228 #endif
6229 #ifdef MACHINE_CPROC_SP_OFFSET
6230 fprintf_unfiltered (file,
6231 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6232 MACHINE_CPROC_SP_OFFSET);
6233 #endif
6234 fprintf_unfiltered (file,
6235 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
6236 fprintf_unfiltered (file,
6237 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
6238 fprintf_unfiltered (file,
6239 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6240 MIPS16_INSTLEN);
6241 fprintf_unfiltered (file,
6242 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
6243 fprintf_unfiltered (file,
6244 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6245 fprintf_unfiltered (file,
6246 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6247 fprintf_unfiltered (file,
6248 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6249 MIPS_INSTLEN);
6250 fprintf_unfiltered (file,
6251 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6252 MIPS_LAST_ARG_REGNUM,
6253 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
6254 fprintf_unfiltered (file,
6255 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6256 MIPS_NUMREGS);
6257 fprintf_unfiltered (file,
6258 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6259 fprintf_unfiltered (file,
6260 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6261 MIPS_SAVED_REGSIZE);
6262 fprintf_unfiltered (file,
6263 "mips_dump_tdep: OP_LDFPR = used?\n");
6264 fprintf_unfiltered (file,
6265 "mips_dump_tdep: OP_LDGPR = used?\n");
6266 fprintf_unfiltered (file,
6267 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
6268 fprintf_unfiltered (file,
6269 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
6270 fprintf_unfiltered (file,
6271 "mips_dump_tdep: PRID_REGNUM = %d\n",
6272 PRID_REGNUM);
6273 fprintf_unfiltered (file,
6274 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6275 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6276 fprintf_unfiltered (file,
6277 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6278 fprintf_unfiltered (file,
6279 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6280 fprintf_unfiltered (file,
6281 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6282 fprintf_unfiltered (file,
6283 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6284 fprintf_unfiltered (file,
6285 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6286 fprintf_unfiltered (file,
6287 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6288 fprintf_unfiltered (file,
6289 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6290 fprintf_unfiltered (file,
6291 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6292 fprintf_unfiltered (file,
6293 "mips_dump_tdep: PROC_PC_REG = function?\n");
6294 fprintf_unfiltered (file,
6295 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6296 fprintf_unfiltered (file,
6297 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6298 fprintf_unfiltered (file,
6299 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6300 fprintf_unfiltered (file,
6301 "mips_dump_tdep: PS_REGNUM = %d\n",
6302 PS_REGNUM);
6303 fprintf_unfiltered (file,
6304 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
6305 PUSH_FP_REGNUM);
6306 fprintf_unfiltered (file,
6307 "mips_dump_tdep: RA_REGNUM = %d\n",
6308 RA_REGNUM);
6309 fprintf_unfiltered (file,
6310 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
6311 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6312 fprintf_unfiltered (file,
6313 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
6314 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6315 fprintf_unfiltered (file,
6316 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6317 fprintf_unfiltered (file,
6318 "mips_dump_tdep: ROUND_DOWN = function?\n");
6319 fprintf_unfiltered (file,
6320 "mips_dump_tdep: ROUND_UP = function?\n");
6321 #ifdef SAVED_BYTES
6322 fprintf_unfiltered (file,
6323 "mips_dump_tdep: SAVED_BYTES = %d\n",
6324 SAVED_BYTES);
6325 #endif
6326 #ifdef SAVED_FP
6327 fprintf_unfiltered (file,
6328 "mips_dump_tdep: SAVED_FP = %d\n",
6329 SAVED_FP);
6330 #endif
6331 #ifdef SAVED_PC
6332 fprintf_unfiltered (file,
6333 "mips_dump_tdep: SAVED_PC = %d\n",
6334 SAVED_PC);
6335 #endif
6336 fprintf_unfiltered (file,
6337 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6338 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6339 fprintf_unfiltered (file,
6340 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6341 fprintf_unfiltered (file,
6342 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6343 SIGFRAME_BASE);
6344 fprintf_unfiltered (file,
6345 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6346 SIGFRAME_FPREGSAVE_OFF);
6347 fprintf_unfiltered (file,
6348 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6349 SIGFRAME_PC_OFF);
6350 fprintf_unfiltered (file,
6351 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6352 SIGFRAME_REGSAVE_OFF);
6353 fprintf_unfiltered (file,
6354 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6355 SIGFRAME_REG_SIZE);
6356 fprintf_unfiltered (file,
6357 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6358 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6359 fprintf_unfiltered (file,
6360 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6361 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6362 fprintf_unfiltered (file,
6363 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6364 SOFTWARE_SINGLE_STEP_P ());
6365 fprintf_unfiltered (file,
6366 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6367 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6368 #ifdef STACK_END_ADDR
6369 fprintf_unfiltered (file,
6370 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6371 STACK_END_ADDR);
6372 #endif
6373 fprintf_unfiltered (file,
6374 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6375 XSTRING (STEP_SKIPS_DELAY (PC)));
6376 fprintf_unfiltered (file,
6377 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6378 STEP_SKIPS_DELAY_P);
6379 fprintf_unfiltered (file,
6380 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6381 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6382 fprintf_unfiltered (file,
6383 "mips_dump_tdep: T9_REGNUM = %d\n",
6384 T9_REGNUM);
6385 fprintf_unfiltered (file,
6386 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6387 fprintf_unfiltered (file,
6388 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6389 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6390 fprintf_unfiltered (file,
6391 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6392 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6393 fprintf_unfiltered (file,
6394 "mips_dump_tdep: TARGET_MIPS = used?\n");
6395 fprintf_unfiltered (file,
6396 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
6397 XSTRING (TM_PRINT_INSN_MACH));
6398 #ifdef TRACE_CLEAR
6399 fprintf_unfiltered (file,
6400 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6401 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6402 #endif
6403 #ifdef TRACE_FLAVOR
6404 fprintf_unfiltered (file,
6405 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6406 TRACE_FLAVOR);
6407 #endif
6408 #ifdef TRACE_FLAVOR_SIZE
6409 fprintf_unfiltered (file,
6410 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6411 TRACE_FLAVOR_SIZE);
6412 #endif
6413 #ifdef TRACE_SET
6414 fprintf_unfiltered (file,
6415 "mips_dump_tdep: TRACE_SET # %s\n",
6416 XSTRING (TRACE_SET (X,STATE)));
6417 #endif
6418 fprintf_unfiltered (file,
6419 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
6420 #ifdef UNUSED_REGNUM
6421 fprintf_unfiltered (file,
6422 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6423 UNUSED_REGNUM);
6424 #endif
6425 fprintf_unfiltered (file,
6426 "mips_dump_tdep: V0_REGNUM = %d\n",
6427 V0_REGNUM);
6428 fprintf_unfiltered (file,
6429 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6430 (long) VM_MIN_ADDRESS);
6431 #ifdef VX_NUM_REGS
6432 fprintf_unfiltered (file,
6433 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6434 VX_NUM_REGS);
6435 #endif
6436 fprintf_unfiltered (file,
6437 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6438 ZERO_REGNUM);
6439 fprintf_unfiltered (file,
6440 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6441 _PROC_MAGIC_);
6442
6443 fprintf_unfiltered (file,
6444 "mips_dump_tdep: OS ABI = %s\n",
6445 gdbarch_osabi_name (tdep->osabi));
6446 }
6447
6448 void
6449 _initialize_mips_tdep (void)
6450 {
6451 static struct cmd_list_element *mipsfpulist = NULL;
6452 struct cmd_list_element *c;
6453
6454 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6455 if (MIPS_ABI_LAST + 1
6456 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6457 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6458
6459 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6460 if (!tm_print_insn) /* Someone may have already set it */
6461 tm_print_insn = gdb_print_insn_mips;
6462
6463 /* Add root prefix command for all "set mips"/"show mips" commands */
6464 add_prefix_cmd ("mips", no_class, set_mips_command,
6465 "Various MIPS specific commands.",
6466 &setmipscmdlist, "set mips ", 0, &setlist);
6467
6468 add_prefix_cmd ("mips", no_class, show_mips_command,
6469 "Various MIPS specific commands.",
6470 &showmipscmdlist, "show mips ", 0, &showlist);
6471
6472 /* Allow the user to override the saved register size. */
6473 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
6474 class_obscure,
6475 size_enums,
6476 &mips_saved_regsize_string, "\
6477 Set size of general purpose registers saved on the stack.\n\
6478 This option can be set to one of:\n\
6479 32 - Force GDB to treat saved GP registers as 32-bit\n\
6480 64 - Force GDB to treat saved GP registers as 64-bit\n\
6481 auto - Allow GDB to use the target's default setting or autodetect the\n\
6482 saved GP register size from information contained in the executable.\n\
6483 (default: auto)",
6484 &setmipscmdlist),
6485 &showmipscmdlist);
6486
6487 /* Allow the user to override the argument stack size. */
6488 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6489 class_obscure,
6490 size_enums,
6491 &mips_stack_argsize_string, "\
6492 Set the amount of stack space reserved for each argument.\n\
6493 This option can be set to one of:\n\
6494 32 - Force GDB to allocate 32-bit chunks per argument\n\
6495 64 - Force GDB to allocate 64-bit chunks per argument\n\
6496 auto - Allow GDB to determine the correct setting from the current\n\
6497 target and executable (default)",
6498 &setmipscmdlist),
6499 &showmipscmdlist);
6500
6501 /* Allow the user to override the ABI. */
6502 c = add_set_enum_cmd
6503 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6504 "Set the ABI used by this program.\n"
6505 "This option can be set to one of:\n"
6506 " auto - the default ABI associated with the current binary\n"
6507 " o32\n"
6508 " o64\n"
6509 " n32\n"
6510 " n64\n"
6511 " eabi32\n"
6512 " eabi64",
6513 &setmipscmdlist);
6514 add_show_from_set (c, &showmipscmdlist);
6515 set_cmd_sfunc (c, mips_abi_update);
6516
6517 /* Let the user turn off floating point and set the fence post for
6518 heuristic_proc_start. */
6519
6520 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6521 "Set use of MIPS floating-point coprocessor.",
6522 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6523 add_cmd ("single", class_support, set_mipsfpu_single_command,
6524 "Select single-precision MIPS floating-point coprocessor.",
6525 &mipsfpulist);
6526 add_cmd ("double", class_support, set_mipsfpu_double_command,
6527 "Select double-precision MIPS floating-point coprocessor.",
6528 &mipsfpulist);
6529 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6530 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6531 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6532 add_cmd ("none", class_support, set_mipsfpu_none_command,
6533 "Select no MIPS floating-point coprocessor.",
6534 &mipsfpulist);
6535 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6536 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6537 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6538 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6539 "Select MIPS floating-point coprocessor automatically.",
6540 &mipsfpulist);
6541 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6542 "Show current use of MIPS floating-point coprocessor target.",
6543 &showlist);
6544
6545 /* We really would like to have both "0" and "unlimited" work, but
6546 command.c doesn't deal with that. So make it a var_zinteger
6547 because the user can always use "999999" or some such for unlimited. */
6548 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6549 (char *) &heuristic_fence_post,
6550 "\
6551 Set the distance searched for the start of a function.\n\
6552 If you are debugging a stripped executable, GDB needs to search through the\n\
6553 program for the start of a function. This command sets the distance of the\n\
6554 search. The only need to set it is when debugging a stripped executable.",
6555 &setlist);
6556 /* We need to throw away the frame cache when we set this, since it
6557 might change our ability to get backtraces. */
6558 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
6559 add_show_from_set (c, &showlist);
6560
6561 /* Allow the user to control whether the upper bits of 64-bit
6562 addresses should be zeroed. */
6563 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6564 Set zeroing of upper 32 bits of 64-bit addresses.\n\
6565 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6566 allow GDB to determine the correct value.\n", "\
6567 Show zeroing of upper 32 bits of 64-bit addresses.",
6568 NULL, show_mask_address,
6569 &setmipscmdlist, &showmipscmdlist);
6570
6571 /* Allow the user to control the size of 32 bit registers within the
6572 raw remote packet. */
6573 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6574 class_obscure,
6575 var_boolean,
6576 (char *)&mips64_transfers_32bit_regs_p, "\
6577 Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6578 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6579 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6580 64 bits for others. Use \"off\" to disable compatibility mode",
6581 &setlist),
6582 &showlist);
6583
6584 /* Debug this files internals. */
6585 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6586 &mips_debug, "Set mips debugging.\n\
6587 When non-zero, mips specific debugging is enabled.", &setdebuglist),
6588 &showdebuglist);
6589 }
This page took 0.181431 seconds and 4 git commands to generate.