2000-12-17 Elena Zannoni <ezannoni@kwikemart.cygnus.com>
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, Free Software Foundation, Inc.
5
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "value.h"
32 #include "gdbcmd.h"
33 #include "language.h"
34 #include "gdbcore.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdbtypes.h"
38 #include "target.h"
39 #include "arch-utils.h"
40
41 #include "opcode/mips.h"
42 #include "elf/mips.h"
43 #include "elf-bfd.h"
44 #include "symcat.h"
45
46 /* The sizes of floating point registers. */
47
48 enum
49 {
50 MIPS_FPU_SINGLE_REGSIZE = 4,
51 MIPS_FPU_DOUBLE_REGSIZE = 8
52 };
53
54 /* All the possible MIPS ABIs. */
55
56 enum mips_abi
57 {
58 MIPS_ABI_UNKNOWN,
59 MIPS_ABI_N32,
60 MIPS_ABI_O32,
61 MIPS_ABI_O64,
62 MIPS_ABI_EABI32,
63 MIPS_ABI_EABI64
64 };
65
66 struct frame_extra_info
67 {
68 mips_extra_func_info_t proc_desc;
69 int num_args;
70 };
71
72 /* Various MIPS ISA options (related to stack analysis) can be
73 overridden dynamically. Establish an enum/array for managing
74 them. */
75
76 static const char size_auto[] = "auto";
77 static const char size_32[] = "32";
78 static const char size_64[] = "64";
79
80 static const char *size_enums[] = {
81 size_auto,
82 size_32,
83 size_64,
84 0
85 };
86
87 /* Some MIPS boards don't support floating point while others only
88 support single-precision floating-point operations. See also
89 FP_REGISTER_DOUBLE. */
90
91 enum mips_fpu_type
92 {
93 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
94 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
95 MIPS_FPU_NONE /* No floating point. */
96 };
97
98 #ifndef MIPS_DEFAULT_FPU_TYPE
99 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
100 #endif
101 static int mips_fpu_type_auto = 1;
102 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
103 #define MIPS_FPU_TYPE mips_fpu_type
104
105 /* Do not use "TARGET_IS_MIPS64" to test the size of floating point registers */
106 #ifndef FP_REGISTER_DOUBLE
107 #define FP_REGISTER_DOUBLE (REGISTER_VIRTUAL_SIZE(FP0_REGNUM) == 8)
108 #endif
109
110 static int mips_debug = 0;
111
112 /* MIPS specific per-architecture information */
113 struct gdbarch_tdep
114 {
115 /* from the elf header */
116 int elf_flags;
117 /* mips options */
118 enum mips_abi mips_abi;
119 const char *mips_abi_string;
120 enum mips_fpu_type mips_fpu_type;
121 int mips_last_arg_regnum;
122 int mips_last_fp_arg_regnum;
123 int mips_default_saved_regsize;
124 int mips_fp_register_double;
125 int mips_regs_have_home_p;
126 int mips_default_stack_argsize;
127 int gdb_target_is_mips64;
128 int default_mask_address_p;
129 };
130
131 #if GDB_MULTI_ARCH
132 #undef MIPS_EABI
133 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
134 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
135 #endif
136
137 #if GDB_MULTI_ARCH
138 #undef MIPS_LAST_FP_ARG_REGNUM
139 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
140 #endif
141
142 #if GDB_MULTI_ARCH
143 #undef MIPS_LAST_ARG_REGNUM
144 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
145 #endif
146
147 #if GDB_MULTI_ARCH
148 #undef MIPS_FPU_TYPE
149 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
150 #endif
151
152 /* Return the currently configured (or set) saved register size. */
153
154 #if GDB_MULTI_ARCH
155 #undef MIPS_DEFAULT_SAVED_REGSIZE
156 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
157 #elif !defined (MIPS_DEFAULT_SAVED_REGSIZE)
158 #define MIPS_DEFAULT_SAVED_REGSIZE MIPS_REGSIZE
159 #endif
160
161 static const char *mips_saved_regsize_string = size_auto;
162
163 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
164
165 static unsigned int
166 mips_saved_regsize (void)
167 {
168 if (mips_saved_regsize_string == size_auto)
169 return MIPS_DEFAULT_SAVED_REGSIZE;
170 else if (mips_saved_regsize_string == size_64)
171 return 8;
172 else /* if (mips_saved_regsize_string == size_32) */
173 return 4;
174 }
175
176 /* Indicate that the ABI makes use of double-precision registers
177 provided by the FPU (rather than combining pairs of registers to
178 form double-precision values). Do not use "TARGET_IS_MIPS64" to
179 determine if the ABI is using double-precision registers. See also
180 MIPS_FPU_TYPE. */
181 #if GDB_MULTI_ARCH
182 #undef FP_REGISTER_DOUBLE
183 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
184 #endif
185
186 /* Does the caller allocate a ``home'' for each register used in the
187 function call? The N32 ABI and MIPS_EABI do not, the others do. */
188
189 #if GDB_MULTI_ARCH
190 #undef MIPS_REGS_HAVE_HOME_P
191 #define MIPS_REGS_HAVE_HOME_P (gdbarch_tdep (current_gdbarch)->mips_regs_have_home_p)
192 #elif !defined (MIPS_REGS_HAVE_HOME_P)
193 #define MIPS_REGS_HAVE_HOME_P (!MIPS_EABI)
194 #endif
195
196 /* The amount of space reserved on the stack for registers. This is
197 different to MIPS_SAVED_REGSIZE as it determines the alignment of
198 data allocated after the registers have run out. */
199
200 #if GDB_MULTI_ARCH
201 #undef MIPS_DEFAULT_STACK_ARGSIZE
202 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
203 #elif !defined (MIPS_DEFAULT_STACK_ARGSIZE)
204 #define MIPS_DEFAULT_STACK_ARGSIZE (MIPS_DEFAULT_SAVED_REGSIZE)
205 #endif
206
207 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
208
209 static const char *mips_stack_argsize_string = size_auto;
210
211 static unsigned int
212 mips_stack_argsize (void)
213 {
214 if (mips_stack_argsize_string == size_auto)
215 return MIPS_DEFAULT_STACK_ARGSIZE;
216 else if (mips_stack_argsize_string == size_64)
217 return 8;
218 else /* if (mips_stack_argsize_string == size_32) */
219 return 4;
220 }
221
222 #if GDB_MULTI_ARCH
223 #undef GDB_TARGET_IS_MIPS64
224 #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
225 #endif
226
227 #if GDB_MULTI_ARCH
228 #undef MIPS_DEFAULT_MASK_ADDRESS_P
229 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
230 #elif !defined (MIPS_DEFAULT_MASK_ADDRESS_P)
231 #define MIPS_DEFAULT_MASK_ADDRESS_P (0)
232 #endif
233
234 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
235
236 int gdb_print_insn_mips (bfd_vma, disassemble_info *);
237
238 static void mips_print_register (int, int);
239
240 static mips_extra_func_info_t
241 heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *);
242
243 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
244
245 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
246
247 int mips_set_processor_type (char *);
248
249 static void mips_show_processor_type_command (char *, int);
250
251 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
252
253 static mips_extra_func_info_t
254 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame);
255
256 static CORE_ADDR after_prologue (CORE_ADDR pc,
257 mips_extra_func_info_t proc_desc);
258
259 /* This value is the model of MIPS in use. It is derived from the value
260 of the PrID register. */
261
262 char *mips_processor_type;
263
264 char *tmp_mips_processor_type;
265
266 /* The list of available "set mips " and "show mips " commands */
267
268 static struct cmd_list_element *setmipscmdlist = NULL;
269 static struct cmd_list_element *showmipscmdlist = NULL;
270
271 /* A set of original names, to be used when restoring back to generic
272 registers from a specific set. */
273
274 char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
275 char **mips_processor_reg_names = mips_generic_reg_names;
276
277 char *
278 mips_register_name (int i)
279 {
280 return mips_processor_reg_names[i];
281 }
282 /* *INDENT-OFF* */
283 /* Names of IDT R3041 registers. */
284
285 char *mips_r3041_reg_names[] = {
286 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
287 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
288 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
289 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
290 "sr", "lo", "hi", "bad", "cause","pc",
291 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
292 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
293 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
294 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
295 "fsr", "fir", "fp", "",
296 "", "", "bus", "ccfg", "", "", "", "",
297 "", "", "port", "cmp", "", "", "epc", "prid",
298 };
299
300 /* Names of IDT R3051 registers. */
301
302 char *mips_r3051_reg_names[] = {
303 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
304 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
305 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
306 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
307 "sr", "lo", "hi", "bad", "cause","pc",
308 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
309 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
310 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
311 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
312 "fsr", "fir", "fp", "",
313 "inx", "rand", "elo", "", "ctxt", "", "", "",
314 "", "", "ehi", "", "", "", "epc", "prid",
315 };
316
317 /* Names of IDT R3081 registers. */
318
319 char *mips_r3081_reg_names[] = {
320 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
321 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
322 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
323 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
324 "sr", "lo", "hi", "bad", "cause","pc",
325 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
326 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
327 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
328 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
329 "fsr", "fir", "fp", "",
330 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
331 "", "", "ehi", "", "", "", "epc", "prid",
332 };
333
334 /* Names of LSI 33k registers. */
335
336 char *mips_lsi33k_reg_names[] = {
337 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
338 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
339 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
340 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
341 "epc", "hi", "lo", "sr", "cause","badvaddr",
342 "dcic", "bpc", "bda", "", "", "", "", "",
343 "", "", "", "", "", "", "", "",
344 "", "", "", "", "", "", "", "",
345 "", "", "", "", "", "", "", "",
346 "", "", "", "",
347 "", "", "", "", "", "", "", "",
348 "", "", "", "", "", "", "", "",
349 };
350
351 struct {
352 char *name;
353 char **regnames;
354 } mips_processor_type_table[] = {
355 { "generic", mips_generic_reg_names },
356 { "r3041", mips_r3041_reg_names },
357 { "r3051", mips_r3051_reg_names },
358 { "r3071", mips_r3081_reg_names },
359 { "r3081", mips_r3081_reg_names },
360 { "lsi33k", mips_lsi33k_reg_names },
361 { NULL, NULL }
362 };
363 /* *INDENT-ON* */
364
365
366
367
368 /* Table to translate MIPS16 register field to actual register number. */
369 static int mips16_to_32_reg[8] =
370 {16, 17, 2, 3, 4, 5, 6, 7};
371
372 /* Heuristic_proc_start may hunt through the text section for a long
373 time across a 2400 baud serial line. Allows the user to limit this
374 search. */
375
376 static unsigned int heuristic_fence_post = 0;
377
378 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
379 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
380 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
381 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
382 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
383 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
384 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
385 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
386 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
387 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
388 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
389 #define _PROC_MAGIC_ 0x0F0F0F0F
390 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
391 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
392
393 struct linked_proc_info
394 {
395 struct mips_extra_func_info info;
396 struct linked_proc_info *next;
397 }
398 *linked_proc_desc_table = NULL;
399
400 void
401 mips_print_extra_frame_info (struct frame_info *fi)
402 {
403 if (fi
404 && fi->extra_info
405 && fi->extra_info->proc_desc
406 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
407 printf_filtered (" frame pointer is at %s+%s\n",
408 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
409 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
410 }
411
412 /* Convert between RAW and VIRTUAL registers. The RAW register size
413 defines the remote-gdb packet. */
414
415 static int mips64_transfers_32bit_regs_p = 0;
416
417 int
418 mips_register_raw_size (int reg_nr)
419 {
420 if (mips64_transfers_32bit_regs_p)
421 return REGISTER_VIRTUAL_SIZE (reg_nr);
422 else
423 return MIPS_REGSIZE;
424 }
425
426 int
427 mips_register_convertible (int reg_nr)
428 {
429 if (mips64_transfers_32bit_regs_p)
430 return 0;
431 else
432 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
433 }
434
435 void
436 mips_register_convert_to_virtual (int n, struct type *virtual_type,
437 char *raw_buf, char *virt_buf)
438 {
439 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
440 memcpy (virt_buf,
441 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
442 TYPE_LENGTH (virtual_type));
443 else
444 memcpy (virt_buf,
445 raw_buf,
446 TYPE_LENGTH (virtual_type));
447 }
448
449 void
450 mips_register_convert_to_raw (struct type *virtual_type, int n,
451 char *virt_buf, char *raw_buf)
452 {
453 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
454 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
455 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
456 virt_buf,
457 TYPE_LENGTH (virtual_type));
458 else
459 memcpy (raw_buf,
460 virt_buf,
461 TYPE_LENGTH (virtual_type));
462 }
463
464 /* Should the upper word of 64-bit addresses be zeroed? */
465 enum cmd_auto_boolean mask_address_var = CMD_AUTO_BOOLEAN_AUTO;
466
467 static int
468 mips_mask_address_p (void)
469 {
470 switch (mask_address_var)
471 {
472 case CMD_AUTO_BOOLEAN_TRUE:
473 return 1;
474 case CMD_AUTO_BOOLEAN_FALSE:
475 return 0;
476 break;
477 case CMD_AUTO_BOOLEAN_AUTO:
478 return MIPS_DEFAULT_MASK_ADDRESS_P;
479 default:
480 internal_error ("mips_mask_address_p: bad switch");
481 return -1;
482 }
483 }
484
485 static void
486 show_mask_address (char *cmd, int from_tty)
487 {
488 switch (mask_address_var)
489 {
490 case CMD_AUTO_BOOLEAN_TRUE:
491 printf_filtered ("The 32 bit mips address mask is enabled\n");
492 break;
493 case CMD_AUTO_BOOLEAN_FALSE:
494 printf_filtered ("The 32 bit mips address mask is disabled\n");
495 break;
496 case CMD_AUTO_BOOLEAN_AUTO:
497 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
498 mips_mask_address_p () ? "enabled" : "disabled");
499 break;
500 default:
501 internal_error ("show_mask_address: bad switch");
502 break;
503 }
504 }
505
506 /* Should call_function allocate stack space for a struct return? */
507 int
508 mips_use_struct_convention (int gcc_p, struct type *type)
509 {
510 if (MIPS_EABI)
511 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
512 else
513 return 1; /* Structures are returned by ref in extra arg0 */
514 }
515
516 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
517
518 static int
519 pc_is_mips16 (bfd_vma memaddr)
520 {
521 struct minimal_symbol *sym;
522
523 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
524 if (IS_MIPS16_ADDR (memaddr))
525 return 1;
526
527 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
528 the high bit of the info field. Use this to decide if the function is
529 MIPS16 or normal MIPS. */
530 sym = lookup_minimal_symbol_by_pc (memaddr);
531 if (sym)
532 return MSYMBOL_IS_SPECIAL (sym);
533 else
534 return 0;
535 }
536
537 /* MIPS believes that the PC has a sign extended value. Perhaphs the
538 all registers should be sign extended for simplicity? */
539
540 static CORE_ADDR
541 mips_read_pc (int pid)
542 {
543 return read_signed_register_pid (PC_REGNUM, pid);
544 }
545
546 /* This returns the PC of the first inst after the prologue. If we can't
547 find the prologue, then return 0. */
548
549 static CORE_ADDR
550 after_prologue (CORE_ADDR pc,
551 mips_extra_func_info_t proc_desc)
552 {
553 struct symtab_and_line sal;
554 CORE_ADDR func_addr, func_end;
555
556 if (!proc_desc)
557 proc_desc = find_proc_desc (pc, NULL);
558
559 if (proc_desc)
560 {
561 /* If function is frameless, then we need to do it the hard way. I
562 strongly suspect that frameless always means prologueless... */
563 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
564 && PROC_FRAME_OFFSET (proc_desc) == 0)
565 return 0;
566 }
567
568 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
569 return 0; /* Unknown */
570
571 sal = find_pc_line (func_addr, 0);
572
573 if (sal.end < func_end)
574 return sal.end;
575
576 /* The line after the prologue is after the end of the function. In this
577 case, tell the caller to find the prologue the hard way. */
578
579 return 0;
580 }
581
582 /* Decode a MIPS32 instruction that saves a register in the stack, and
583 set the appropriate bit in the general register mask or float register mask
584 to indicate which register is saved. This is a helper function
585 for mips_find_saved_regs. */
586
587 static void
588 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
589 unsigned long *float_mask)
590 {
591 int reg;
592
593 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
594 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
595 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
596 {
597 /* It might be possible to use the instruction to
598 find the offset, rather than the code below which
599 is based on things being in a certain order in the
600 frame, but figuring out what the instruction's offset
601 is relative to might be a little tricky. */
602 reg = (inst & 0x001f0000) >> 16;
603 *gen_mask |= (1 << reg);
604 }
605 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
606 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
607 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
608
609 {
610 reg = ((inst & 0x001f0000) >> 16);
611 *float_mask |= (1 << reg);
612 }
613 }
614
615 /* Decode a MIPS16 instruction that saves a register in the stack, and
616 set the appropriate bit in the general register or float register mask
617 to indicate which register is saved. This is a helper function
618 for mips_find_saved_regs. */
619
620 static void
621 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
622 {
623 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
624 {
625 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
626 *gen_mask |= (1 << reg);
627 }
628 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
629 {
630 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
631 *gen_mask |= (1 << reg);
632 }
633 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
634 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
635 *gen_mask |= (1 << RA_REGNUM);
636 }
637
638
639 /* Fetch and return instruction from the specified location. If the PC
640 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
641
642 static t_inst
643 mips_fetch_instruction (CORE_ADDR addr)
644 {
645 char buf[MIPS_INSTLEN];
646 int instlen;
647 int status;
648
649 if (pc_is_mips16 (addr))
650 {
651 instlen = MIPS16_INSTLEN;
652 addr = UNMAKE_MIPS16_ADDR (addr);
653 }
654 else
655 instlen = MIPS_INSTLEN;
656 status = read_memory_nobpt (addr, buf, instlen);
657 if (status)
658 memory_error (status, addr);
659 return extract_unsigned_integer (buf, instlen);
660 }
661
662
663 /* These the fields of 32 bit mips instructions */
664 #define mips32_op(x) (x >> 25)
665 #define itype_op(x) (x >> 25)
666 #define itype_rs(x) ((x >> 21)& 0x1f)
667 #define itype_rt(x) ((x >> 16) & 0x1f)
668 #define itype_immediate(x) ( x & 0xffff)
669
670 #define jtype_op(x) (x >> 25)
671 #define jtype_target(x) ( x & 0x03fffff)
672
673 #define rtype_op(x) (x >>25)
674 #define rtype_rs(x) ((x>>21) & 0x1f)
675 #define rtype_rt(x) ((x>>16) & 0x1f)
676 #define rtype_rd(x) ((x>>11) & 0x1f)
677 #define rtype_shamt(x) ((x>>6) & 0x1f)
678 #define rtype_funct(x) (x & 0x3f )
679
680 static CORE_ADDR
681 mips32_relative_offset (unsigned long inst)
682 {
683 long x;
684 x = itype_immediate (inst);
685 if (x & 0x8000) /* sign bit set */
686 {
687 x |= 0xffff0000; /* sign extension */
688 }
689 x = x << 2;
690 return x;
691 }
692
693 /* Determine whate to set a single step breakpoint while considering
694 branch prediction */
695 CORE_ADDR
696 mips32_next_pc (CORE_ADDR pc)
697 {
698 unsigned long inst;
699 int op;
700 inst = mips_fetch_instruction (pc);
701 if ((inst & 0xe0000000) != 0) /* Not a special, junp or branch instruction */
702 {
703 if ((inst >> 27) == 5) /* BEQL BNEZ BLEZL BGTZE , bits 0101xx */
704 {
705 op = ((inst >> 25) & 0x03);
706 switch (op)
707 {
708 case 0:
709 goto equal_branch; /* BEQL */
710 case 1:
711 goto neq_branch; /* BNEZ */
712 case 2:
713 goto less_branch; /* BLEZ */
714 case 3:
715 goto greater_branch; /* BGTZ */
716 default:
717 pc += 4;
718 }
719 }
720 else
721 pc += 4; /* Not a branch, next instruction is easy */
722 }
723 else
724 { /* This gets way messy */
725
726 /* Further subdivide into SPECIAL, REGIMM and other */
727 switch (op = ((inst >> 26) & 0x07)) /* extract bits 28,27,26 */
728 {
729 case 0: /* SPECIAL */
730 op = rtype_funct (inst);
731 switch (op)
732 {
733 case 8: /* JR */
734 case 9: /* JALR */
735 /* Set PC to that address */
736 pc = read_signed_register (rtype_rs (inst));
737 break;
738 default:
739 pc += 4;
740 }
741
742 break; /* end special */
743 case 1: /* REGIMM */
744 {
745 op = jtype_op (inst); /* branch condition */
746 switch (jtype_op (inst))
747 {
748 case 0: /* BLTZ */
749 case 2: /* BLTXL */
750 case 16: /* BLTZALL */
751 case 18: /* BLTZALL */
752 less_branch:
753 if (read_signed_register (itype_rs (inst)) < 0)
754 pc += mips32_relative_offset (inst) + 4;
755 else
756 pc += 8; /* after the delay slot */
757 break;
758 case 1: /* GEZ */
759 case 3: /* BGEZL */
760 case 17: /* BGEZAL */
761 case 19: /* BGEZALL */
762 greater_equal_branch:
763 if (read_signed_register (itype_rs (inst)) >= 0)
764 pc += mips32_relative_offset (inst) + 4;
765 else
766 pc += 8; /* after the delay slot */
767 break;
768 /* All of the other intructions in the REGIMM catagory */
769 default:
770 pc += 4;
771 }
772 }
773 break; /* end REGIMM */
774 case 2: /* J */
775 case 3: /* JAL */
776 {
777 unsigned long reg;
778 reg = jtype_target (inst) << 2;
779 pc = reg + ((pc + 4) & 0xf0000000);
780 /* Whats this mysterious 0xf000000 adjustment ??? */
781 }
782 break;
783 /* FIXME case JALX : */
784 {
785 unsigned long reg;
786 reg = jtype_target (inst) << 2;
787 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
788 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
789 }
790 break; /* The new PC will be alternate mode */
791 case 4: /* BEQ , BEQL */
792 equal_branch:
793 if (read_signed_register (itype_rs (inst)) ==
794 read_signed_register (itype_rt (inst)))
795 pc += mips32_relative_offset (inst) + 4;
796 else
797 pc += 8;
798 break;
799 case 5: /* BNE , BNEL */
800 neq_branch:
801 if (read_signed_register (itype_rs (inst)) !=
802 read_signed_register (itype_rs (inst)))
803 pc += mips32_relative_offset (inst) + 4;
804 else
805 pc += 8;
806 break;
807 case 6: /* BLEZ , BLEZL */
808 less_zero_branch:
809 if (read_signed_register (itype_rs (inst) <= 0))
810 pc += mips32_relative_offset (inst) + 4;
811 else
812 pc += 8;
813 break;
814 case 7:
815 greater_branch: /* BGTZ BGTZL */
816 if (read_signed_register (itype_rs (inst) > 0))
817 pc += mips32_relative_offset (inst) + 4;
818 else
819 pc += 8;
820 break;
821 default:
822 pc += 8;
823 } /* switch */
824 } /* else */
825 return pc;
826 } /* mips32_next_pc */
827
828 /* Decoding the next place to set a breakpoint is irregular for the
829 mips 16 variant, but fortunately, there fewer instructions. We have to cope
830 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
831 We dont want to set a single step instruction on the extend instruction
832 either.
833 */
834
835 /* Lots of mips16 instruction formats */
836 /* Predicting jumps requires itype,ritype,i8type
837 and their extensions extItype,extritype,extI8type
838 */
839 enum mips16_inst_fmts
840 {
841 itype, /* 0 immediate 5,10 */
842 ritype, /* 1 5,3,8 */
843 rrtype, /* 2 5,3,3,5 */
844 rritype, /* 3 5,3,3,5 */
845 rrrtype, /* 4 5,3,3,3,2 */
846 rriatype, /* 5 5,3,3,1,4 */
847 shifttype, /* 6 5,3,3,3,2 */
848 i8type, /* 7 5,3,8 */
849 i8movtype, /* 8 5,3,3,5 */
850 i8mov32rtype, /* 9 5,3,5,3 */
851 i64type, /* 10 5,3,8 */
852 ri64type, /* 11 5,3,3,5 */
853 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
854 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
855 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
856 extRRItype, /* 15 5,5,5,5,3,3,5 */
857 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
858 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
859 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
860 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
861 extRi64type, /* 20 5,6,5,5,3,3,5 */
862 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
863 };
864 /* I am heaping all the fields of the formats into one structure and
865 then, only the fields which are involved in instruction extension */
866 struct upk_mips16
867 {
868 CORE_ADDR offset;
869 unsigned int regx; /* Function in i8 type */
870 unsigned int regy;
871 };
872
873
874 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
875 for the bits which make up the immediatate extension. */
876
877 static CORE_ADDR
878 extended_offset (unsigned int extension)
879 {
880 CORE_ADDR value;
881 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
882 value = value << 6;
883 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
884 value = value << 5;
885 value |= extension & 0x01f; /* extract 4:0 */
886 return value;
887 }
888
889 /* Only call this function if you know that this is an extendable
890 instruction, It wont malfunction, but why make excess remote memory references?
891 If the immediate operands get sign extended or somthing, do it after
892 the extension is performed.
893 */
894 /* FIXME: Every one of these cases needs to worry about sign extension
895 when the offset is to be used in relative addressing */
896
897
898 static unsigned int
899 fetch_mips_16 (CORE_ADDR pc)
900 {
901 char buf[8];
902 pc &= 0xfffffffe; /* clear the low order bit */
903 target_read_memory (pc, buf, 2);
904 return extract_unsigned_integer (buf, 2);
905 }
906
907 static void
908 unpack_mips16 (CORE_ADDR pc,
909 unsigned int extension,
910 unsigned int inst,
911 enum mips16_inst_fmts insn_format,
912 struct upk_mips16 *upk)
913 {
914 CORE_ADDR offset;
915 int regx;
916 int regy;
917 switch (insn_format)
918 {
919 case itype:
920 {
921 CORE_ADDR value;
922 if (extension)
923 {
924 value = extended_offset (extension);
925 value = value << 11; /* rom for the original value */
926 value |= inst & 0x7ff; /* eleven bits from instruction */
927 }
928 else
929 {
930 value = inst & 0x7ff;
931 /* FIXME : Consider sign extension */
932 }
933 offset = value;
934 regx = -1;
935 regy = -1;
936 }
937 break;
938 case ritype:
939 case i8type:
940 { /* A register identifier and an offset */
941 /* Most of the fields are the same as I type but the
942 immediate value is of a different length */
943 CORE_ADDR value;
944 if (extension)
945 {
946 value = extended_offset (extension);
947 value = value << 8; /* from the original instruction */
948 value |= inst & 0xff; /* eleven bits from instruction */
949 regx = (extension >> 8) & 0x07; /* or i8 funct */
950 if (value & 0x4000) /* test the sign bit , bit 26 */
951 {
952 value &= ~0x3fff; /* remove the sign bit */
953 value = -value;
954 }
955 }
956 else
957 {
958 value = inst & 0xff; /* 8 bits */
959 regx = (inst >> 8) & 0x07; /* or i8 funct */
960 /* FIXME: Do sign extension , this format needs it */
961 if (value & 0x80) /* THIS CONFUSES ME */
962 {
963 value &= 0xef; /* remove the sign bit */
964 value = -value;
965 }
966 }
967 offset = value;
968 regy = -1;
969 break;
970 }
971 case jalxtype:
972 {
973 unsigned long value;
974 unsigned int nexthalf;
975 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
976 value = value << 16;
977 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
978 value |= nexthalf;
979 offset = value;
980 regx = -1;
981 regy = -1;
982 break;
983 }
984 default:
985 internal_error ("%s:%d: bad switch", __FILE__, __LINE__);
986 }
987 upk->offset = offset;
988 upk->regx = regx;
989 upk->regy = regy;
990 }
991
992
993 static CORE_ADDR
994 add_offset_16 (CORE_ADDR pc, int offset)
995 {
996 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
997
998 }
999
1000 static CORE_ADDR
1001 extended_mips16_next_pc (CORE_ADDR pc,
1002 unsigned int extension,
1003 unsigned int insn)
1004 {
1005 int op = (insn >> 11);
1006 switch (op)
1007 {
1008 case 2: /* Branch */
1009 {
1010 CORE_ADDR offset;
1011 struct upk_mips16 upk;
1012 unpack_mips16 (pc, extension, insn, itype, &upk);
1013 offset = upk.offset;
1014 if (offset & 0x800)
1015 {
1016 offset &= 0xeff;
1017 offset = -offset;
1018 }
1019 pc += (offset << 1) + 2;
1020 break;
1021 }
1022 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1023 {
1024 struct upk_mips16 upk;
1025 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1026 pc = add_offset_16 (pc, upk.offset);
1027 if ((insn >> 10) & 0x01) /* Exchange mode */
1028 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1029 else
1030 pc |= 0x01;
1031 break;
1032 }
1033 case 4: /* beqz */
1034 {
1035 struct upk_mips16 upk;
1036 int reg;
1037 unpack_mips16 (pc, extension, insn, ritype, &upk);
1038 reg = read_signed_register (upk.regx);
1039 if (reg == 0)
1040 pc += (upk.offset << 1) + 2;
1041 else
1042 pc += 2;
1043 break;
1044 }
1045 case 5: /* bnez */
1046 {
1047 struct upk_mips16 upk;
1048 int reg;
1049 unpack_mips16 (pc, extension, insn, ritype, &upk);
1050 reg = read_signed_register (upk.regx);
1051 if (reg != 0)
1052 pc += (upk.offset << 1) + 2;
1053 else
1054 pc += 2;
1055 break;
1056 }
1057 case 12: /* I8 Formats btez btnez */
1058 {
1059 struct upk_mips16 upk;
1060 int reg;
1061 unpack_mips16 (pc, extension, insn, i8type, &upk);
1062 /* upk.regx contains the opcode */
1063 reg = read_signed_register (24); /* Test register is 24 */
1064 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1065 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1066 /* pc = add_offset_16(pc,upk.offset) ; */
1067 pc += (upk.offset << 1) + 2;
1068 else
1069 pc += 2;
1070 break;
1071 }
1072 case 29: /* RR Formats JR, JALR, JALR-RA */
1073 {
1074 struct upk_mips16 upk;
1075 /* upk.fmt = rrtype; */
1076 op = insn & 0x1f;
1077 if (op == 0)
1078 {
1079 int reg;
1080 upk.regx = (insn >> 8) & 0x07;
1081 upk.regy = (insn >> 5) & 0x07;
1082 switch (upk.regy)
1083 {
1084 case 0:
1085 reg = upk.regx;
1086 break;
1087 case 1:
1088 reg = 31;
1089 break; /* Function return instruction */
1090 case 2:
1091 reg = upk.regx;
1092 break;
1093 default:
1094 reg = 31;
1095 break; /* BOGUS Guess */
1096 }
1097 pc = read_signed_register (reg);
1098 }
1099 else
1100 pc += 2;
1101 break;
1102 }
1103 case 30:
1104 /* This is an instruction extension. Fetch the real instruction
1105 (which follows the extension) and decode things based on
1106 that. */
1107 {
1108 pc += 2;
1109 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1110 break;
1111 }
1112 default:
1113 {
1114 pc += 2;
1115 break;
1116 }
1117 }
1118 return pc;
1119 }
1120
1121 CORE_ADDR
1122 mips16_next_pc (CORE_ADDR pc)
1123 {
1124 unsigned int insn = fetch_mips_16 (pc);
1125 return extended_mips16_next_pc (pc, 0, insn);
1126 }
1127
1128 /* The mips_next_pc function supports single_step when the remote
1129 target monitor or stub is not developed enough to do a single_step.
1130 It works by decoding the current instruction and predicting where a
1131 branch will go. This isnt hard because all the data is available.
1132 The MIPS32 and MIPS16 variants are quite different */
1133 CORE_ADDR
1134 mips_next_pc (CORE_ADDR pc)
1135 {
1136 if (pc & 0x01)
1137 return mips16_next_pc (pc);
1138 else
1139 return mips32_next_pc (pc);
1140 }
1141
1142 /* Guaranteed to set fci->saved_regs to some values (it never leaves it
1143 NULL). */
1144
1145 void
1146 mips_find_saved_regs (struct frame_info *fci)
1147 {
1148 int ireg;
1149 CORE_ADDR reg_position;
1150 /* r0 bit means kernel trap */
1151 int kernel_trap;
1152 /* What registers have been saved? Bitmasks. */
1153 unsigned long gen_mask, float_mask;
1154 mips_extra_func_info_t proc_desc;
1155 t_inst inst;
1156
1157 frame_saved_regs_zalloc (fci);
1158
1159 /* If it is the frame for sigtramp, the saved registers are located
1160 in a sigcontext structure somewhere on the stack.
1161 If the stack layout for sigtramp changes we might have to change these
1162 constants and the companion fixup_sigtramp in mdebugread.c */
1163 #ifndef SIGFRAME_BASE
1164 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1165 above the sigtramp frame. */
1166 #define SIGFRAME_BASE MIPS_REGSIZE
1167 /* FIXME! Are these correct?? */
1168 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1169 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1170 #define SIGFRAME_FPREGSAVE_OFF \
1171 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1172 #endif
1173 #ifndef SIGFRAME_REG_SIZE
1174 /* FIXME! Is this correct?? */
1175 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
1176 #endif
1177 if (fci->signal_handler_caller)
1178 {
1179 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1180 {
1181 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1182 + ireg * SIGFRAME_REG_SIZE;
1183 fci->saved_regs[ireg] = reg_position;
1184 }
1185 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1186 {
1187 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1188 + ireg * SIGFRAME_REG_SIZE;
1189 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1190 }
1191 fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1192 return;
1193 }
1194
1195 proc_desc = fci->extra_info->proc_desc;
1196 if (proc_desc == NULL)
1197 /* I'm not sure how/whether this can happen. Normally when we can't
1198 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1199 and set the saved_regs right away. */
1200 return;
1201
1202 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1203 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1204 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1205
1206 if ( /* In any frame other than the innermost or a frame interrupted by
1207 a signal, we assume that all registers have been saved.
1208 This assumes that all register saves in a function happen before
1209 the first function call. */
1210 (fci->next == NULL || fci->next->signal_handler_caller)
1211
1212 /* In a dummy frame we know exactly where things are saved. */
1213 && !PROC_DESC_IS_DUMMY (proc_desc)
1214
1215 /* Don't bother unless we are inside a function prologue. Outside the
1216 prologue, we know where everything is. */
1217
1218 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
1219
1220 /* Not sure exactly what kernel_trap means, but if it means
1221 the kernel saves the registers without a prologue doing it,
1222 we better not examine the prologue to see whether registers
1223 have been saved yet. */
1224 && !kernel_trap)
1225 {
1226 /* We need to figure out whether the registers that the proc_desc
1227 claims are saved have been saved yet. */
1228
1229 CORE_ADDR addr;
1230
1231 /* Bitmasks; set if we have found a save for the register. */
1232 unsigned long gen_save_found = 0;
1233 unsigned long float_save_found = 0;
1234 int instlen;
1235
1236 /* If the address is odd, assume this is MIPS16 code. */
1237 addr = PROC_LOW_ADDR (proc_desc);
1238 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1239
1240 /* Scan through this function's instructions preceding the current
1241 PC, and look for those that save registers. */
1242 while (addr < fci->pc)
1243 {
1244 inst = mips_fetch_instruction (addr);
1245 if (pc_is_mips16 (addr))
1246 mips16_decode_reg_save (inst, &gen_save_found);
1247 else
1248 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1249 addr += instlen;
1250 }
1251 gen_mask = gen_save_found;
1252 float_mask = float_save_found;
1253 }
1254
1255 /* Fill in the offsets for the registers which gen_mask says
1256 were saved. */
1257 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1258 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1259 if (gen_mask & 0x80000000)
1260 {
1261 fci->saved_regs[ireg] = reg_position;
1262 reg_position -= MIPS_SAVED_REGSIZE;
1263 }
1264
1265 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1266 of that normally used by gcc. Therefore, we have to fetch the first
1267 instruction of the function, and if it's an entry instruction that
1268 saves $s0 or $s1, correct their saved addresses. */
1269 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1270 {
1271 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1272 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1273 {
1274 int reg;
1275 int sreg_count = (inst >> 6) & 3;
1276
1277 /* Check if the ra register was pushed on the stack. */
1278 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1279 if (inst & 0x20)
1280 reg_position -= MIPS_SAVED_REGSIZE;
1281
1282 /* Check if the s0 and s1 registers were pushed on the stack. */
1283 for (reg = 16; reg < sreg_count + 16; reg++)
1284 {
1285 fci->saved_regs[reg] = reg_position;
1286 reg_position -= MIPS_SAVED_REGSIZE;
1287 }
1288 }
1289 }
1290
1291 /* Fill in the offsets for the registers which float_mask says
1292 were saved. */
1293 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1294
1295 /* The freg_offset points to where the first *double* register
1296 is saved. So skip to the high-order word. */
1297 if (!GDB_TARGET_IS_MIPS64)
1298 reg_position += MIPS_SAVED_REGSIZE;
1299
1300 /* Fill in the offsets for the float registers which float_mask says
1301 were saved. */
1302 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1303 if (float_mask & 0x80000000)
1304 {
1305 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1306 reg_position -= MIPS_SAVED_REGSIZE;
1307 }
1308
1309 fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
1310 }
1311
1312 static CORE_ADDR
1313 read_next_frame_reg (struct frame_info *fi, int regno)
1314 {
1315 for (; fi; fi = fi->next)
1316 {
1317 /* We have to get the saved sp from the sigcontext
1318 if it is a signal handler frame. */
1319 if (regno == SP_REGNUM && !fi->signal_handler_caller)
1320 return fi->frame;
1321 else
1322 {
1323 if (fi->saved_regs == NULL)
1324 mips_find_saved_regs (fi);
1325 if (fi->saved_regs[regno])
1326 return read_memory_integer (ADDR_BITS_REMOVE (fi->saved_regs[regno]), MIPS_SAVED_REGSIZE);
1327 }
1328 }
1329 return read_signed_register (regno);
1330 }
1331
1332 /* mips_addr_bits_remove - remove useless address bits */
1333
1334 CORE_ADDR
1335 mips_addr_bits_remove (CORE_ADDR addr)
1336 {
1337 if (GDB_TARGET_IS_MIPS64)
1338 {
1339 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
1340 {
1341 /* This hack is a work-around for existing boards using
1342 PMON, the simulator, and any other 64-bit targets that
1343 doesn't have true 64-bit addressing. On these targets,
1344 the upper 32 bits of addresses are ignored by the
1345 hardware. Thus, the PC or SP are likely to have been
1346 sign extended to all 1s by instruction sequences that
1347 load 32-bit addresses. For example, a typical piece of
1348 code that loads an address is this:
1349 lui $r2, <upper 16 bits>
1350 ori $r2, <lower 16 bits>
1351 But the lui sign-extends the value such that the upper 32
1352 bits may be all 1s. The workaround is simply to mask off
1353 these bits. In the future, gcc may be changed to support
1354 true 64-bit addressing, and this masking will have to be
1355 disabled. */
1356 addr &= (CORE_ADDR) 0xffffffff;
1357 }
1358 }
1359 else if (mips_mask_address_p ())
1360 {
1361 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1362 masking off bits, instead, the actual target should be asking
1363 for the address to be converted to a valid pointer. */
1364 /* Even when GDB is configured for some 32-bit targets
1365 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1366 so CORE_ADDR is 64 bits. So we still have to mask off
1367 useless bits from addresses. */
1368 addr &= (CORE_ADDR) 0xffffffff;
1369 }
1370 return addr;
1371 }
1372
1373 void
1374 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1375 {
1376 CORE_ADDR pc, tmp;
1377
1378 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
1379 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
1380 tmp = mips_skip_stub (pc);
1381 prev->pc = tmp ? tmp : pc;
1382 }
1383
1384
1385 CORE_ADDR
1386 mips_frame_saved_pc (struct frame_info *frame)
1387 {
1388 CORE_ADDR saved_pc;
1389 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
1390 /* We have to get the saved pc from the sigcontext
1391 if it is a signal handler frame. */
1392 int pcreg = frame->signal_handler_caller ? PC_REGNUM
1393 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1394
1395 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1396 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1397 else
1398 saved_pc = read_next_frame_reg (frame, pcreg);
1399
1400 return ADDR_BITS_REMOVE (saved_pc);
1401 }
1402
1403 static struct mips_extra_func_info temp_proc_desc;
1404 static CORE_ADDR temp_saved_regs[NUM_REGS];
1405
1406 /* Set a register's saved stack address in temp_saved_regs. If an address
1407 has already been set for this register, do nothing; this way we will
1408 only recognize the first save of a given register in a function prologue.
1409 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1410
1411 static void
1412 set_reg_offset (int regno, CORE_ADDR offset)
1413 {
1414 if (temp_saved_regs[regno] == 0)
1415 temp_saved_regs[regno] = offset;
1416 }
1417
1418
1419 /* Test whether the PC points to the return instruction at the
1420 end of a function. */
1421
1422 static int
1423 mips_about_to_return (CORE_ADDR pc)
1424 {
1425 if (pc_is_mips16 (pc))
1426 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1427 generates a "jr $ra"; other times it generates code to load
1428 the return address from the stack to an accessible register (such
1429 as $a3), then a "jr" using that register. This second case
1430 is almost impossible to distinguish from an indirect jump
1431 used for switch statements, so we don't even try. */
1432 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1433 else
1434 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1435 }
1436
1437
1438 /* This fencepost looks highly suspicious to me. Removing it also
1439 seems suspicious as it could affect remote debugging across serial
1440 lines. */
1441
1442 static CORE_ADDR
1443 heuristic_proc_start (CORE_ADDR pc)
1444 {
1445 CORE_ADDR start_pc;
1446 CORE_ADDR fence;
1447 int instlen;
1448 int seen_adjsp = 0;
1449
1450 pc = ADDR_BITS_REMOVE (pc);
1451 start_pc = pc;
1452 fence = start_pc - heuristic_fence_post;
1453 if (start_pc == 0)
1454 return 0;
1455
1456 if (heuristic_fence_post == UINT_MAX
1457 || fence < VM_MIN_ADDRESS)
1458 fence = VM_MIN_ADDRESS;
1459
1460 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1461
1462 /* search back for previous return */
1463 for (start_pc -= instlen;; start_pc -= instlen)
1464 if (start_pc < fence)
1465 {
1466 /* It's not clear to me why we reach this point when
1467 stop_soon_quietly, but with this test, at least we
1468 don't print out warnings for every child forked (eg, on
1469 decstation). 22apr93 rich@cygnus.com. */
1470 if (!stop_soon_quietly)
1471 {
1472 static int blurb_printed = 0;
1473
1474 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1475 paddr_nz (pc));
1476
1477 if (!blurb_printed)
1478 {
1479 /* This actually happens frequently in embedded
1480 development, when you first connect to a board
1481 and your stack pointer and pc are nowhere in
1482 particular. This message needs to give people
1483 in that situation enough information to
1484 determine that it's no big deal. */
1485 printf_filtered ("\n\
1486 GDB is unable to find the start of the function at 0x%s\n\
1487 and thus can't determine the size of that function's stack frame.\n\
1488 This means that GDB may be unable to access that stack frame, or\n\
1489 the frames below it.\n\
1490 This problem is most likely caused by an invalid program counter or\n\
1491 stack pointer.\n\
1492 However, if you think GDB should simply search farther back\n\
1493 from 0x%s for code which looks like the beginning of a\n\
1494 function, you can increase the range of the search using the `set\n\
1495 heuristic-fence-post' command.\n",
1496 paddr_nz (pc), paddr_nz (pc));
1497 blurb_printed = 1;
1498 }
1499 }
1500
1501 return 0;
1502 }
1503 else if (pc_is_mips16 (start_pc))
1504 {
1505 unsigned short inst;
1506
1507 /* On MIPS16, any one of the following is likely to be the
1508 start of a function:
1509 entry
1510 addiu sp,-n
1511 daddiu sp,-n
1512 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1513 inst = mips_fetch_instruction (start_pc);
1514 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1515 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1516 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1517 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1518 break;
1519 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1520 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1521 seen_adjsp = 1;
1522 else
1523 seen_adjsp = 0;
1524 }
1525 else if (mips_about_to_return (start_pc))
1526 {
1527 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1528 break;
1529 }
1530
1531 return start_pc;
1532 }
1533
1534 /* Fetch the immediate value from a MIPS16 instruction.
1535 If the previous instruction was an EXTEND, use it to extend
1536 the upper bits of the immediate value. This is a helper function
1537 for mips16_heuristic_proc_desc. */
1538
1539 static int
1540 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1541 unsigned short inst, /* current instruction */
1542 int nbits, /* number of bits in imm field */
1543 int scale, /* scale factor to be applied to imm */
1544 int is_signed) /* is the imm field signed? */
1545 {
1546 int offset;
1547
1548 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1549 {
1550 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1551 if (offset & 0x8000) /* check for negative extend */
1552 offset = 0 - (0x10000 - (offset & 0xffff));
1553 return offset | (inst & 0x1f);
1554 }
1555 else
1556 {
1557 int max_imm = 1 << nbits;
1558 int mask = max_imm - 1;
1559 int sign_bit = max_imm >> 1;
1560
1561 offset = inst & mask;
1562 if (is_signed && (offset & sign_bit))
1563 offset = 0 - (max_imm - offset);
1564 return offset * scale;
1565 }
1566 }
1567
1568
1569 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
1570 stream from start_pc to limit_pc. */
1571
1572 static void
1573 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1574 struct frame_info *next_frame, CORE_ADDR sp)
1575 {
1576 CORE_ADDR cur_pc;
1577 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1578 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1579 unsigned inst = 0; /* current instruction */
1580 unsigned entry_inst = 0; /* the entry instruction */
1581 int reg, offset;
1582
1583 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1584 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1585
1586 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1587 {
1588 /* Save the previous instruction. If it's an EXTEND, we'll extract
1589 the immediate offset extension from it in mips16_get_imm. */
1590 prev_inst = inst;
1591
1592 /* Fetch and decode the instruction. */
1593 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1594 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1595 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1596 {
1597 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1598 if (offset < 0) /* negative stack adjustment? */
1599 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
1600 else
1601 /* Exit loop if a positive stack adjustment is found, which
1602 usually means that the stack cleanup code in the function
1603 epilogue is reached. */
1604 break;
1605 }
1606 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1607 {
1608 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1609 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1610 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1611 set_reg_offset (reg, sp + offset);
1612 }
1613 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1614 {
1615 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1616 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1617 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1618 set_reg_offset (reg, sp + offset);
1619 }
1620 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1621 {
1622 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1623 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1624 set_reg_offset (RA_REGNUM, sp + offset);
1625 }
1626 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1627 {
1628 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1629 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1630 set_reg_offset (RA_REGNUM, sp + offset);
1631 }
1632 else if (inst == 0x673d) /* move $s1, $sp */
1633 {
1634 frame_addr = sp;
1635 PROC_FRAME_REG (&temp_proc_desc) = 17;
1636 }
1637 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1638 {
1639 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1640 frame_addr = sp + offset;
1641 PROC_FRAME_REG (&temp_proc_desc) = 17;
1642 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1643 }
1644 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1645 {
1646 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1647 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1648 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1649 set_reg_offset (reg, frame_addr + offset);
1650 }
1651 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1652 {
1653 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1654 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1655 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1656 set_reg_offset (reg, frame_addr + offset);
1657 }
1658 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1659 entry_inst = inst; /* save for later processing */
1660 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1661 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
1662 }
1663
1664 /* The entry instruction is typically the first instruction in a function,
1665 and it stores registers at offsets relative to the value of the old SP
1666 (before the prologue). But the value of the sp parameter to this
1667 function is the new SP (after the prologue has been executed). So we
1668 can't calculate those offsets until we've seen the entire prologue,
1669 and can calculate what the old SP must have been. */
1670 if (entry_inst != 0)
1671 {
1672 int areg_count = (entry_inst >> 8) & 7;
1673 int sreg_count = (entry_inst >> 6) & 3;
1674
1675 /* The entry instruction always subtracts 32 from the SP. */
1676 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
1677
1678 /* Now we can calculate what the SP must have been at the
1679 start of the function prologue. */
1680 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
1681
1682 /* Check if a0-a3 were saved in the caller's argument save area. */
1683 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1684 {
1685 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1686 set_reg_offset (reg, sp + offset);
1687 offset += MIPS_SAVED_REGSIZE;
1688 }
1689
1690 /* Check if the ra register was pushed on the stack. */
1691 offset = -4;
1692 if (entry_inst & 0x20)
1693 {
1694 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
1695 set_reg_offset (RA_REGNUM, sp + offset);
1696 offset -= MIPS_SAVED_REGSIZE;
1697 }
1698
1699 /* Check if the s0 and s1 registers were pushed on the stack. */
1700 for (reg = 16; reg < sreg_count + 16; reg++)
1701 {
1702 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1703 set_reg_offset (reg, sp + offset);
1704 offset -= MIPS_SAVED_REGSIZE;
1705 }
1706 }
1707 }
1708
1709 static void
1710 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1711 struct frame_info *next_frame, CORE_ADDR sp)
1712 {
1713 CORE_ADDR cur_pc;
1714 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1715 restart:
1716 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
1717 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
1718 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1719 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
1720 {
1721 unsigned long inst, high_word, low_word;
1722 int reg;
1723
1724 /* Fetch the instruction. */
1725 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1726
1727 /* Save some code by pre-extracting some useful fields. */
1728 high_word = (inst >> 16) & 0xffff;
1729 low_word = inst & 0xffff;
1730 reg = high_word & 0x1f;
1731
1732 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1733 || high_word == 0x23bd /* addi $sp,$sp,-i */
1734 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1735 {
1736 if (low_word & 0x8000) /* negative stack adjustment? */
1737 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
1738 else
1739 /* Exit loop if a positive stack adjustment is found, which
1740 usually means that the stack cleanup code in the function
1741 epilogue is reached. */
1742 break;
1743 }
1744 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1745 {
1746 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1747 set_reg_offset (reg, sp + low_word);
1748 }
1749 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1750 {
1751 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
1752 but the register size used is only 32 bits. Make the address
1753 for the saved register point to the lower 32 bits. */
1754 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1755 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
1756 }
1757 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1758 {
1759 /* Old gcc frame, r30 is virtual frame pointer. */
1760 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
1761 frame_addr = sp + low_word;
1762 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1763 {
1764 unsigned alloca_adjust;
1765 PROC_FRAME_REG (&temp_proc_desc) = 30;
1766 frame_addr = read_next_frame_reg (next_frame, 30);
1767 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1768 if (alloca_adjust > 0)
1769 {
1770 /* FP > SP + frame_size. This may be because
1771 * of an alloca or somethings similar.
1772 * Fix sp to "pre-alloca" value, and try again.
1773 */
1774 sp += alloca_adjust;
1775 goto restart;
1776 }
1777 }
1778 }
1779 /* move $30,$sp. With different versions of gas this will be either
1780 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1781 Accept any one of these. */
1782 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1783 {
1784 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1785 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1786 {
1787 unsigned alloca_adjust;
1788 PROC_FRAME_REG (&temp_proc_desc) = 30;
1789 frame_addr = read_next_frame_reg (next_frame, 30);
1790 alloca_adjust = (unsigned) (frame_addr - sp);
1791 if (alloca_adjust > 0)
1792 {
1793 /* FP > SP + frame_size. This may be because
1794 * of an alloca or somethings similar.
1795 * Fix sp to "pre-alloca" value, and try again.
1796 */
1797 sp += alloca_adjust;
1798 goto restart;
1799 }
1800 }
1801 }
1802 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1803 {
1804 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1805 set_reg_offset (reg, frame_addr + low_word);
1806 }
1807 }
1808 }
1809
1810 static mips_extra_func_info_t
1811 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1812 struct frame_info *next_frame)
1813 {
1814 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
1815
1816 if (start_pc == 0)
1817 return NULL;
1818 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
1819 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
1820 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
1821 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
1822 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
1823
1824 if (start_pc + 200 < limit_pc)
1825 limit_pc = start_pc + 200;
1826 if (pc_is_mips16 (start_pc))
1827 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1828 else
1829 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1830 return &temp_proc_desc;
1831 }
1832
1833 static mips_extra_func_info_t
1834 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
1835 {
1836 CORE_ADDR startaddr;
1837 mips_extra_func_info_t proc_desc;
1838 struct block *b = block_for_pc (pc);
1839 struct symbol *sym;
1840
1841 find_pc_partial_function (pc, NULL, &startaddr, NULL);
1842 if (addrptr)
1843 *addrptr = startaddr;
1844 if (b == NULL || PC_IN_CALL_DUMMY (pc, 0, 0))
1845 sym = NULL;
1846 else
1847 {
1848 if (startaddr > BLOCK_START (b))
1849 /* This is the "pathological" case referred to in a comment in
1850 print_frame_info. It might be better to move this check into
1851 symbol reading. */
1852 sym = NULL;
1853 else
1854 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
1855 }
1856
1857 /* If we never found a PDR for this function in symbol reading, then
1858 examine prologues to find the information. */
1859 if (sym)
1860 {
1861 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
1862 if (PROC_FRAME_REG (proc_desc) == -1)
1863 return NULL;
1864 else
1865 return proc_desc;
1866 }
1867 else
1868 return NULL;
1869 }
1870
1871
1872 static mips_extra_func_info_t
1873 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame)
1874 {
1875 mips_extra_func_info_t proc_desc;
1876 CORE_ADDR startaddr;
1877
1878 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
1879
1880 if (proc_desc)
1881 {
1882 /* IF this is the topmost frame AND
1883 * (this proc does not have debugging information OR
1884 * the PC is in the procedure prologue)
1885 * THEN create a "heuristic" proc_desc (by analyzing
1886 * the actual code) to replace the "official" proc_desc.
1887 */
1888 if (next_frame == NULL)
1889 {
1890 struct symtab_and_line val;
1891 struct symbol *proc_symbol =
1892 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
1893
1894 if (proc_symbol)
1895 {
1896 val = find_pc_line (BLOCK_START
1897 (SYMBOL_BLOCK_VALUE (proc_symbol)),
1898 0);
1899 val.pc = val.end ? val.end : pc;
1900 }
1901 if (!proc_symbol || pc < val.pc)
1902 {
1903 mips_extra_func_info_t found_heuristic =
1904 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
1905 pc, next_frame);
1906 if (found_heuristic)
1907 proc_desc = found_heuristic;
1908 }
1909 }
1910 }
1911 else
1912 {
1913 /* Is linked_proc_desc_table really necessary? It only seems to be used
1914 by procedure call dummys. However, the procedures being called ought
1915 to have their own proc_descs, and even if they don't,
1916 heuristic_proc_desc knows how to create them! */
1917
1918 register struct linked_proc_info *link;
1919
1920 for (link = linked_proc_desc_table; link; link = link->next)
1921 if (PROC_LOW_ADDR (&link->info) <= pc
1922 && PROC_HIGH_ADDR (&link->info) > pc)
1923 return &link->info;
1924
1925 if (startaddr == 0)
1926 startaddr = heuristic_proc_start (pc);
1927
1928 proc_desc =
1929 heuristic_proc_desc (startaddr, pc, next_frame);
1930 }
1931 return proc_desc;
1932 }
1933
1934 static CORE_ADDR
1935 get_frame_pointer (struct frame_info *frame,
1936 mips_extra_func_info_t proc_desc)
1937 {
1938 return ADDR_BITS_REMOVE (
1939 read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc)) +
1940 PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc));
1941 }
1942
1943 mips_extra_func_info_t cached_proc_desc;
1944
1945 CORE_ADDR
1946 mips_frame_chain (struct frame_info *frame)
1947 {
1948 mips_extra_func_info_t proc_desc;
1949 CORE_ADDR tmp;
1950 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
1951
1952 if (saved_pc == 0 || inside_entry_file (saved_pc))
1953 return 0;
1954
1955 /* Check if the PC is inside a call stub. If it is, fetch the
1956 PC of the caller of that stub. */
1957 if ((tmp = mips_skip_stub (saved_pc)) != 0)
1958 saved_pc = tmp;
1959
1960 /* Look up the procedure descriptor for this PC. */
1961 proc_desc = find_proc_desc (saved_pc, frame);
1962 if (!proc_desc)
1963 return 0;
1964
1965 cached_proc_desc = proc_desc;
1966
1967 /* If no frame pointer and frame size is zero, we must be at end
1968 of stack (or otherwise hosed). If we don't check frame size,
1969 we loop forever if we see a zero size frame. */
1970 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
1971 && PROC_FRAME_OFFSET (proc_desc) == 0
1972 /* The previous frame from a sigtramp frame might be frameless
1973 and have frame size zero. */
1974 && !frame->signal_handler_caller)
1975 return 0;
1976 else
1977 return get_frame_pointer (frame, proc_desc);
1978 }
1979
1980 void
1981 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
1982 {
1983 int regnum;
1984
1985 /* Use proc_desc calculated in frame_chain */
1986 mips_extra_func_info_t proc_desc =
1987 fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next);
1988
1989 fci->extra_info = (struct frame_extra_info *)
1990 frame_obstack_alloc (sizeof (struct frame_extra_info));
1991
1992 fci->saved_regs = NULL;
1993 fci->extra_info->proc_desc =
1994 proc_desc == &temp_proc_desc ? 0 : proc_desc;
1995 if (proc_desc)
1996 {
1997 /* Fixup frame-pointer - only needed for top frame */
1998 /* This may not be quite right, if proc has a real frame register.
1999 Get the value of the frame relative sp, procedure might have been
2000 interrupted by a signal at it's very start. */
2001 if (fci->pc == PROC_LOW_ADDR (proc_desc)
2002 && !PROC_DESC_IS_DUMMY (proc_desc))
2003 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
2004 else
2005 fci->frame = get_frame_pointer (fci->next, proc_desc);
2006
2007 if (proc_desc == &temp_proc_desc)
2008 {
2009 char *name;
2010
2011 /* Do not set the saved registers for a sigtramp frame,
2012 mips_find_saved_registers will do that for us.
2013 We can't use fci->signal_handler_caller, it is not yet set. */
2014 find_pc_partial_function (fci->pc, &name,
2015 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2016 if (!IN_SIGTRAMP (fci->pc, name))
2017 {
2018 frame_saved_regs_zalloc (fci);
2019 memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2020 fci->saved_regs[PC_REGNUM]
2021 = fci->saved_regs[RA_REGNUM];
2022 }
2023 }
2024
2025 /* hack: if argument regs are saved, guess these contain args */
2026 /* assume we can't tell how many args for now */
2027 fci->extra_info->num_args = -1;
2028 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2029 {
2030 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2031 {
2032 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
2033 break;
2034 }
2035 }
2036 }
2037 }
2038
2039 /* MIPS stack frames are almost impenetrable. When execution stops,
2040 we basically have to look at symbol information for the function
2041 that we stopped in, which tells us *which* register (if any) is
2042 the base of the frame pointer, and what offset from that register
2043 the frame itself is at.
2044
2045 This presents a problem when trying to examine a stack in memory
2046 (that isn't executing at the moment), using the "frame" command. We
2047 don't have a PC, nor do we have any registers except SP.
2048
2049 This routine takes two arguments, SP and PC, and tries to make the
2050 cached frames look as if these two arguments defined a frame on the
2051 cache. This allows the rest of info frame to extract the important
2052 arguments without difficulty. */
2053
2054 struct frame_info *
2055 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2056 {
2057 if (argc != 2)
2058 error ("MIPS frame specifications require two arguments: sp and pc");
2059
2060 return create_new_frame (argv[0], argv[1]);
2061 }
2062
2063 /* According to the current ABI, should the type be passed in a
2064 floating-point register (assuming that there is space)? When there
2065 is no FPU, FP are not even considered as possibile candidates for
2066 FP registers and, consequently this returns false - forces FP
2067 arguments into integer registers. */
2068
2069 static int
2070 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2071 {
2072 return ((typecode == TYPE_CODE_FLT
2073 || (MIPS_EABI
2074 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2075 && TYPE_NFIELDS (arg_type) == 1
2076 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2077 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2078 }
2079
2080 CORE_ADDR
2081 mips_push_arguments (int nargs,
2082 value_ptr *args,
2083 CORE_ADDR sp,
2084 int struct_return,
2085 CORE_ADDR struct_addr)
2086 {
2087 int argreg;
2088 int float_argreg;
2089 int argnum;
2090 int len = 0;
2091 int stack_offset = 0;
2092
2093 /* Macros to round N up or down to the next A boundary; A must be
2094 a power of two. */
2095 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2096 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2097
2098 /* First ensure that the stack and structure return address (if any)
2099 are properly aligned. The stack has to be at least 64-bit aligned
2100 even on 32-bit machines, because doubles must be 64-bit aligned.
2101 On at least one MIPS variant, stack frames need to be 128-bit
2102 aligned, so we round to this widest known alignment. */
2103 sp = ROUND_DOWN (sp, 16);
2104 struct_addr = ROUND_DOWN (struct_addr, 16);
2105
2106 /* Now make space on the stack for the args. We allocate more
2107 than necessary for EABI, because the first few arguments are
2108 passed in registers, but that's OK. */
2109 for (argnum = 0; argnum < nargs; argnum++)
2110 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), MIPS_STACK_ARGSIZE);
2111 sp -= ROUND_UP (len, 16);
2112
2113 if (mips_debug)
2114 fprintf_unfiltered (gdb_stdlog, "mips_push_arguments: sp=0x%lx allocated %d\n",
2115 (long) sp, ROUND_UP (len, 16));
2116
2117 /* Initialize the integer and float register pointers. */
2118 argreg = A0_REGNUM;
2119 float_argreg = FPA0_REGNUM;
2120
2121 /* the struct_return pointer occupies the first parameter-passing reg */
2122 if (struct_return)
2123 {
2124 if (mips_debug)
2125 fprintf_unfiltered (gdb_stdlog,
2126 "mips_push_arguments: struct_return reg=%d 0x%lx\n",
2127 argreg, (long) struct_addr);
2128 write_register (argreg++, struct_addr);
2129 if (MIPS_REGS_HAVE_HOME_P)
2130 stack_offset += MIPS_STACK_ARGSIZE;
2131 }
2132
2133 /* Now load as many as possible of the first arguments into
2134 registers, and push the rest onto the stack. Loop thru args
2135 from first to last. */
2136 for (argnum = 0; argnum < nargs; argnum++)
2137 {
2138 char *val;
2139 char valbuf[MAX_REGISTER_RAW_SIZE];
2140 value_ptr arg = args[argnum];
2141 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2142 int len = TYPE_LENGTH (arg_type);
2143 enum type_code typecode = TYPE_CODE (arg_type);
2144
2145 if (mips_debug)
2146 fprintf_unfiltered (gdb_stdlog,
2147 "mips_push_arguments: %d len=%d type=%d",
2148 argnum + 1, len, (int) typecode);
2149
2150 /* The EABI passes structures that do not fit in a register by
2151 reference. In all other cases, pass the structure by value. */
2152 if (MIPS_EABI
2153 && len > MIPS_SAVED_REGSIZE
2154 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2155 {
2156 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2157 typecode = TYPE_CODE_PTR;
2158 len = MIPS_SAVED_REGSIZE;
2159 val = valbuf;
2160 if (mips_debug)
2161 fprintf_unfiltered (gdb_stdlog, " push");
2162 }
2163 else
2164 val = (char *) VALUE_CONTENTS (arg);
2165
2166 /* 32-bit ABIs always start floating point arguments in an
2167 even-numbered floating point register. Round the FP register
2168 up before the check to see if there are any FP registers
2169 left. Non MIPS_EABI targets also pass the FP in the integer
2170 registers so also round up normal registers. */
2171 if (!FP_REGISTER_DOUBLE
2172 && fp_register_arg_p (typecode, arg_type))
2173 {
2174 if ((float_argreg & 1))
2175 float_argreg++;
2176 }
2177
2178 /* Floating point arguments passed in registers have to be
2179 treated specially. On 32-bit architectures, doubles
2180 are passed in register pairs; the even register gets
2181 the low word, and the odd register gets the high word.
2182 On non-EABI processors, the first two floating point arguments are
2183 also copied to general registers, because MIPS16 functions
2184 don't use float registers for arguments. This duplication of
2185 arguments in general registers can't hurt non-MIPS16 functions
2186 because those registers are normally skipped. */
2187 /* MIPS_EABI squeeses a struct that contains a single floating
2188 point value into an FP register instead of pusing it onto the
2189 stack. */
2190 if (fp_register_arg_p (typecode, arg_type)
2191 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2192 {
2193 if (!FP_REGISTER_DOUBLE && len == 8)
2194 {
2195 int low_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
2196 unsigned long regval;
2197
2198 /* Write the low word of the double to the even register(s). */
2199 regval = extract_unsigned_integer (val + low_offset, 4);
2200 if (mips_debug)
2201 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2202 float_argreg, phex (regval, 4));
2203 write_register (float_argreg++, regval);
2204 if (!MIPS_EABI)
2205 {
2206 if (mips_debug)
2207 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2208 argreg, phex (regval, 4));
2209 write_register (argreg++, regval);
2210 }
2211
2212 /* Write the high word of the double to the odd register(s). */
2213 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2214 if (mips_debug)
2215 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2216 float_argreg, phex (regval, 4));
2217 write_register (float_argreg++, regval);
2218 if (!MIPS_EABI)
2219 {
2220 if (mips_debug)
2221 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2222 argreg, phex (regval, 4));
2223 write_register (argreg++, regval);
2224 }
2225
2226 }
2227 else
2228 {
2229 /* This is a floating point value that fits entirely
2230 in a single register. */
2231 /* On 32 bit ABI's the float_argreg is further adjusted
2232 above to ensure that it is even register aligned. */
2233 LONGEST regval = extract_unsigned_integer (val, len);
2234 if (mips_debug)
2235 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2236 float_argreg, phex (regval, len));
2237 write_register (float_argreg++, regval);
2238 if (!MIPS_EABI)
2239 {
2240 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
2241 registers for each argument. The below is (my
2242 guess) to ensure that the corresponding integer
2243 register has reserved the same space. */
2244 if (mips_debug)
2245 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2246 argreg, phex (regval, len));
2247 write_register (argreg, regval);
2248 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
2249 }
2250 }
2251 /* Reserve space for the FP register. */
2252 if (MIPS_REGS_HAVE_HOME_P)
2253 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
2254 }
2255 else
2256 {
2257 /* Copy the argument to general registers or the stack in
2258 register-sized pieces. Large arguments are split between
2259 registers and stack. */
2260 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2261 are treated specially: Irix cc passes them in registers
2262 where gcc sometimes puts them on the stack. For maximum
2263 compatibility, we will put them in both places. */
2264 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2265 (len % MIPS_SAVED_REGSIZE != 0));
2266 /* Note: Floating-point values that didn't fit into an FP
2267 register are only written to memory. */
2268 while (len > 0)
2269 {
2270 /* Rememer if the argument was written to the stack. */
2271 int stack_used_p = 0;
2272 int partial_len = len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
2273
2274 if (mips_debug)
2275 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2276 partial_len);
2277
2278 /* Write this portion of the argument to the stack. */
2279 if (argreg > MIPS_LAST_ARG_REGNUM
2280 || odd_sized_struct
2281 || fp_register_arg_p (typecode, arg_type))
2282 {
2283 /* Should shorter than int integer values be
2284 promoted to int before being stored? */
2285 int longword_offset = 0;
2286 CORE_ADDR addr;
2287 stack_used_p = 1;
2288 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2289 {
2290 if (MIPS_STACK_ARGSIZE == 8 &&
2291 (typecode == TYPE_CODE_INT ||
2292 typecode == TYPE_CODE_PTR ||
2293 typecode == TYPE_CODE_FLT) && len <= 4)
2294 longword_offset = MIPS_STACK_ARGSIZE - len;
2295 else if ((typecode == TYPE_CODE_STRUCT ||
2296 typecode == TYPE_CODE_UNION) &&
2297 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2298 longword_offset = MIPS_STACK_ARGSIZE - len;
2299 }
2300
2301 if (mips_debug)
2302 {
2303 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%lx",
2304 (long) stack_offset);
2305 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%lx",
2306 (long) longword_offset);
2307 }
2308
2309 addr = sp + stack_offset + longword_offset;
2310
2311 if (mips_debug)
2312 {
2313 int i;
2314 fprintf_unfiltered (gdb_stdlog, " @0x%lx ", (long) addr);
2315 for (i = 0; i < partial_len; i++)
2316 {
2317 fprintf_unfiltered (gdb_stdlog, "%02x", val[i] & 0xff);
2318 }
2319 }
2320 write_memory (addr, val, partial_len);
2321 }
2322
2323 /* Note!!! This is NOT an else clause. Odd sized
2324 structs may go thru BOTH paths. Floating point
2325 arguments will not. */
2326 /* Write this portion of the argument to a general
2327 purpose register. */
2328 if (argreg <= MIPS_LAST_ARG_REGNUM
2329 && !fp_register_arg_p (typecode, arg_type))
2330 {
2331 LONGEST regval = extract_unsigned_integer (val, partial_len);
2332
2333 /* A non-floating-point argument being passed in a
2334 general register. If a struct or union, and if
2335 the remaining length is smaller than the register
2336 size, we have to adjust the register value on
2337 big endian targets.
2338
2339 It does not seem to be necessary to do the
2340 same for integral types.
2341
2342 Also don't do this adjustment on EABI and O64
2343 binaries. */
2344
2345 if (!MIPS_EABI
2346 && MIPS_SAVED_REGSIZE < 8
2347 && TARGET_BYTE_ORDER == BIG_ENDIAN
2348 && partial_len < MIPS_SAVED_REGSIZE
2349 && (typecode == TYPE_CODE_STRUCT ||
2350 typecode == TYPE_CODE_UNION))
2351 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
2352 TARGET_CHAR_BIT);
2353
2354 if (mips_debug)
2355 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2356 argreg,
2357 phex (regval, MIPS_SAVED_REGSIZE));
2358 write_register (argreg, regval);
2359 argreg++;
2360
2361 /* If this is the old ABI, prevent subsequent floating
2362 point arguments from being passed in floating point
2363 registers. */
2364 if (!MIPS_EABI)
2365 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
2366 }
2367
2368 len -= partial_len;
2369 val += partial_len;
2370
2371 /* Compute the the offset into the stack at which we
2372 will copy the next parameter.
2373
2374 In older ABIs, the caller reserved space for
2375 registers that contained arguments. This was loosely
2376 refered to as their "home". Consequently, space is
2377 always allocated.
2378
2379 In the new EABI (and the NABI32), the stack_offset
2380 only needs to be adjusted when it has been used.. */
2381
2382 if (MIPS_REGS_HAVE_HOME_P || stack_used_p)
2383 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
2384 }
2385 }
2386 if (mips_debug)
2387 fprintf_unfiltered (gdb_stdlog, "\n");
2388 }
2389
2390 /* Return adjusted stack pointer. */
2391 return sp;
2392 }
2393
2394 CORE_ADDR
2395 mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
2396 {
2397 /* Set the return address register to point to the entry
2398 point of the program, where a breakpoint lies in wait. */
2399 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
2400 return sp;
2401 }
2402
2403 static void
2404 mips_push_register (CORE_ADDR * sp, int regno)
2405 {
2406 char buffer[MAX_REGISTER_RAW_SIZE];
2407 int regsize;
2408 int offset;
2409 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
2410 {
2411 regsize = MIPS_SAVED_REGSIZE;
2412 offset = (TARGET_BYTE_ORDER == BIG_ENDIAN
2413 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
2414 : 0);
2415 }
2416 else
2417 {
2418 regsize = REGISTER_RAW_SIZE (regno);
2419 offset = 0;
2420 }
2421 *sp -= regsize;
2422 read_register_gen (regno, buffer);
2423 write_memory (*sp, buffer + offset, regsize);
2424 }
2425
2426 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
2427 #define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
2428
2429 void
2430 mips_push_dummy_frame (void)
2431 {
2432 int ireg;
2433 struct linked_proc_info *link = (struct linked_proc_info *)
2434 xmalloc (sizeof (struct linked_proc_info));
2435 mips_extra_func_info_t proc_desc = &link->info;
2436 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
2437 CORE_ADDR old_sp = sp;
2438 link->next = linked_proc_desc_table;
2439 linked_proc_desc_table = link;
2440
2441 /* FIXME! are these correct ? */
2442 #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
2443 #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
2444 #define FLOAT_REG_SAVE_MASK MASK(0,19)
2445 #define FLOAT_SINGLE_REG_SAVE_MASK \
2446 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
2447 /*
2448 * The registers we must save are all those not preserved across
2449 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
2450 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
2451 * and FP Control/Status registers.
2452 *
2453 *
2454 * Dummy frame layout:
2455 * (high memory)
2456 * Saved PC
2457 * Saved MMHI, MMLO, FPC_CSR
2458 * Saved R31
2459 * Saved R28
2460 * ...
2461 * Saved R1
2462 * Saved D18 (i.e. F19, F18)
2463 * ...
2464 * Saved D0 (i.e. F1, F0)
2465 * Argument build area and stack arguments written via mips_push_arguments
2466 * (low memory)
2467 */
2468
2469 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
2470 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
2471 PROC_FRAME_OFFSET (proc_desc) = 0;
2472 PROC_FRAME_ADJUST (proc_desc) = 0;
2473 mips_push_register (&sp, PC_REGNUM);
2474 mips_push_register (&sp, HI_REGNUM);
2475 mips_push_register (&sp, LO_REGNUM);
2476 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
2477
2478 /* Save general CPU registers */
2479 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
2480 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
2481 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
2482 for (ireg = 32; --ireg >= 0;)
2483 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
2484 mips_push_register (&sp, ireg);
2485
2486 /* Save floating point registers starting with high order word */
2487 PROC_FREG_MASK (proc_desc) =
2488 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
2489 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
2490 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
2491 from FP. */
2492 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
2493 for (ireg = 32; --ireg >= 0;)
2494 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
2495 mips_push_register (&sp, ireg + FP0_REGNUM);
2496
2497 /* Update the frame pointer for the call dummy and the stack pointer.
2498 Set the procedure's starting and ending addresses to point to the
2499 call dummy address at the entry point. */
2500 write_register (PUSH_FP_REGNUM, old_sp);
2501 write_register (SP_REGNUM, sp);
2502 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
2503 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
2504 SET_PROC_DESC_IS_DUMMY (proc_desc);
2505 PROC_PC_REG (proc_desc) = RA_REGNUM;
2506 }
2507
2508 void
2509 mips_pop_frame (void)
2510 {
2511 register int regnum;
2512 struct frame_info *frame = get_current_frame ();
2513 CORE_ADDR new_sp = FRAME_FP (frame);
2514
2515 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
2516
2517 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
2518 if (frame->saved_regs == NULL)
2519 mips_find_saved_regs (frame);
2520 for (regnum = 0; regnum < NUM_REGS; regnum++)
2521 {
2522 if (regnum != SP_REGNUM && regnum != PC_REGNUM
2523 && frame->saved_regs[regnum])
2524 write_register (regnum,
2525 read_memory_integer (frame->saved_regs[regnum],
2526 MIPS_SAVED_REGSIZE));
2527 }
2528 write_register (SP_REGNUM, new_sp);
2529 flush_cached_frames ();
2530
2531 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
2532 {
2533 struct linked_proc_info *pi_ptr, *prev_ptr;
2534
2535 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
2536 pi_ptr != NULL;
2537 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
2538 {
2539 if (&pi_ptr->info == proc_desc)
2540 break;
2541 }
2542
2543 if (pi_ptr == NULL)
2544 error ("Can't locate dummy extra frame info\n");
2545
2546 if (prev_ptr != NULL)
2547 prev_ptr->next = pi_ptr->next;
2548 else
2549 linked_proc_desc_table = pi_ptr->next;
2550
2551 xfree (pi_ptr);
2552
2553 write_register (HI_REGNUM,
2554 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
2555 MIPS_SAVED_REGSIZE));
2556 write_register (LO_REGNUM,
2557 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
2558 MIPS_SAVED_REGSIZE));
2559 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
2560 write_register (FCRCS_REGNUM,
2561 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
2562 MIPS_SAVED_REGSIZE));
2563 }
2564 }
2565
2566 static void
2567 mips_print_register (int regnum, int all)
2568 {
2569 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2570
2571 /* Get the data in raw format. */
2572 if (read_relative_register_raw_bytes (regnum, raw_buffer))
2573 {
2574 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
2575 return;
2576 }
2577
2578 /* If an even floating point register, also print as double. */
2579 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
2580 && !((regnum - FP0_REGNUM) & 1))
2581 if (REGISTER_RAW_SIZE (regnum) == 4) /* this would be silly on MIPS64 or N32 (Irix 6) */
2582 {
2583 char dbuffer[2 * MAX_REGISTER_RAW_SIZE];
2584
2585 read_relative_register_raw_bytes (regnum, dbuffer);
2586 read_relative_register_raw_bytes (regnum + 1, dbuffer + MIPS_REGSIZE);
2587 REGISTER_CONVERT_TO_TYPE (regnum, builtin_type_double, dbuffer);
2588
2589 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
2590 val_print (builtin_type_double, dbuffer, 0, 0,
2591 gdb_stdout, 0, 1, 0, Val_pretty_default);
2592 printf_filtered ("); ");
2593 }
2594 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
2595
2596 /* The problem with printing numeric register names (r26, etc.) is that
2597 the user can't use them on input. Probably the best solution is to
2598 fix it so that either the numeric or the funky (a2, etc.) names
2599 are accepted on input. */
2600 if (regnum < MIPS_NUMREGS)
2601 printf_filtered ("(r%d): ", regnum);
2602 else
2603 printf_filtered (": ");
2604
2605 /* If virtual format is floating, print it that way. */
2606 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2607 if (FP_REGISTER_DOUBLE)
2608 { /* show 8-byte floats as float AND double: */
2609 int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
2610
2611 printf_filtered (" (float) ");
2612 val_print (builtin_type_float, raw_buffer + offset, 0, 0,
2613 gdb_stdout, 0, 1, 0, Val_pretty_default);
2614 printf_filtered (", (double) ");
2615 val_print (builtin_type_double, raw_buffer, 0, 0,
2616 gdb_stdout, 0, 1, 0, Val_pretty_default);
2617 }
2618 else
2619 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
2620 gdb_stdout, 0, 1, 0, Val_pretty_default);
2621 /* Else print as integer in hex. */
2622 else
2623 {
2624 int offset;
2625
2626 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2627 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
2628 else
2629 offset = 0;
2630
2631 print_scalar_formatted (raw_buffer + offset,
2632 REGISTER_VIRTUAL_TYPE (regnum),
2633 'x', 0, gdb_stdout);
2634 }
2635 }
2636
2637 /* Replacement for generic do_registers_info.
2638 Print regs in pretty columns. */
2639
2640 static int
2641 do_fp_register_row (int regnum)
2642 { /* do values for FP (float) regs */
2643 char *raw_buffer[2];
2644 char *dbl_buffer;
2645 /* use HI and LO to control the order of combining two flt regs */
2646 int HI = (TARGET_BYTE_ORDER == BIG_ENDIAN);
2647 int LO = (TARGET_BYTE_ORDER != BIG_ENDIAN);
2648 double doub, flt1, flt2; /* doubles extracted from raw hex data */
2649 int inv1, inv2, inv3;
2650
2651 raw_buffer[0] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
2652 raw_buffer[1] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
2653 dbl_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
2654
2655 /* Get the data in raw format. */
2656 if (read_relative_register_raw_bytes (regnum, raw_buffer[HI]))
2657 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
2658 if (REGISTER_RAW_SIZE (regnum) == 4)
2659 {
2660 /* 4-byte registers: we can fit two registers per row. */
2661 /* Also print every pair of 4-byte regs as an 8-byte double. */
2662 if (read_relative_register_raw_bytes (regnum + 1, raw_buffer[LO]))
2663 error ("can't read register %d (%s)",
2664 regnum + 1, REGISTER_NAME (regnum + 1));
2665
2666 /* copy the two floats into one double, and unpack both */
2667 memcpy (dbl_buffer, raw_buffer, 2 * REGISTER_RAW_SIZE (FP0_REGNUM));
2668 flt1 = unpack_double (builtin_type_float, raw_buffer[HI], &inv1);
2669 flt2 = unpack_double (builtin_type_float, raw_buffer[LO], &inv2);
2670 doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
2671
2672 printf_filtered (inv1 ? " %-5s: <invalid float>" :
2673 " %-5s%-17.9g", REGISTER_NAME (regnum), flt1);
2674 printf_filtered (inv2 ? " %-5s: <invalid float>" :
2675 " %-5s%-17.9g", REGISTER_NAME (regnum + 1), flt2);
2676 printf_filtered (inv3 ? " dbl: <invalid double>\n" :
2677 " dbl: %-24.17g\n", doub);
2678 /* may want to do hex display here (future enhancement) */
2679 regnum += 2;
2680 }
2681 else
2682 { /* eight byte registers: print each one as float AND as double. */
2683 int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
2684
2685 memcpy (dbl_buffer, raw_buffer[HI], 2 * REGISTER_RAW_SIZE (FP0_REGNUM));
2686 flt1 = unpack_double (builtin_type_float,
2687 &raw_buffer[HI][offset], &inv1);
2688 doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
2689
2690 printf_filtered (inv1 ? " %-5s: <invalid float>" :
2691 " %-5s flt: %-17.9g", REGISTER_NAME (regnum), flt1);
2692 printf_filtered (inv3 ? " dbl: <invalid double>\n" :
2693 " dbl: %-24.17g\n", doub);
2694 /* may want to do hex display here (future enhancement) */
2695 regnum++;
2696 }
2697 return regnum;
2698 }
2699
2700 /* Print a row's worth of GP (int) registers, with name labels above */
2701
2702 static int
2703 do_gp_register_row (int regnum)
2704 {
2705 /* do values for GP (int) regs */
2706 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2707 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
2708 int col, byte;
2709 int start_regnum = regnum;
2710 int numregs = NUM_REGS;
2711
2712
2713 /* For GP registers, we print a separate row of names above the vals */
2714 printf_filtered (" ");
2715 for (col = 0; col < ncols && regnum < numregs; regnum++)
2716 {
2717 if (*REGISTER_NAME (regnum) == '\0')
2718 continue; /* unused register */
2719 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2720 break; /* end the row: reached FP register */
2721 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
2722 REGISTER_NAME (regnum));
2723 col++;
2724 }
2725 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
2726 start_regnum); /* print the R0 to R31 names */
2727
2728 regnum = start_regnum; /* go back to start of row */
2729 /* now print the values in hex, 4 or 8 to the row */
2730 for (col = 0; col < ncols && regnum < numregs; regnum++)
2731 {
2732 if (*REGISTER_NAME (regnum) == '\0')
2733 continue; /* unused register */
2734 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2735 break; /* end row: reached FP register */
2736 /* OK: get the data in raw format. */
2737 if (read_relative_register_raw_bytes (regnum, raw_buffer))
2738 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
2739 /* pad small registers */
2740 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
2741 printf_filtered (" ");
2742 /* Now print the register value in hex, endian order. */
2743 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2744 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
2745 byte < REGISTER_RAW_SIZE (regnum);
2746 byte++)
2747 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
2748 else
2749 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
2750 byte >= 0;
2751 byte--)
2752 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
2753 printf_filtered (" ");
2754 col++;
2755 }
2756 if (col > 0) /* ie. if we actually printed anything... */
2757 printf_filtered ("\n");
2758
2759 return regnum;
2760 }
2761
2762 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
2763
2764 void
2765 mips_do_registers_info (int regnum, int fpregs)
2766 {
2767 if (regnum != -1) /* do one specified register */
2768 {
2769 if (*(REGISTER_NAME (regnum)) == '\0')
2770 error ("Not a valid register for the current processor type");
2771
2772 mips_print_register (regnum, 0);
2773 printf_filtered ("\n");
2774 }
2775 else
2776 /* do all (or most) registers */
2777 {
2778 regnum = 0;
2779 while (regnum < NUM_REGS)
2780 {
2781 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2782 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
2783 regnum = do_fp_register_row (regnum); /* FP regs */
2784 else
2785 regnum += MIPS_NUMREGS; /* skip floating point regs */
2786 else
2787 regnum = do_gp_register_row (regnum); /* GP (int) regs */
2788 }
2789 }
2790 }
2791
2792 /* Return number of args passed to a frame. described by FIP.
2793 Can return -1, meaning no way to tell. */
2794
2795 int
2796 mips_frame_num_args (struct frame_info *frame)
2797 {
2798 return -1;
2799 }
2800
2801 /* Is this a branch with a delay slot? */
2802
2803 static int is_delayed (unsigned long);
2804
2805 static int
2806 is_delayed (unsigned long insn)
2807 {
2808 int i;
2809 for (i = 0; i < NUMOPCODES; ++i)
2810 if (mips_opcodes[i].pinfo != INSN_MACRO
2811 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
2812 break;
2813 return (i < NUMOPCODES
2814 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
2815 | INSN_COND_BRANCH_DELAY
2816 | INSN_COND_BRANCH_LIKELY)));
2817 }
2818
2819 int
2820 mips_step_skips_delay (CORE_ADDR pc)
2821 {
2822 char buf[MIPS_INSTLEN];
2823
2824 /* There is no branch delay slot on MIPS16. */
2825 if (pc_is_mips16 (pc))
2826 return 0;
2827
2828 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
2829 /* If error reading memory, guess that it is not a delayed branch. */
2830 return 0;
2831 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
2832 }
2833
2834
2835 /* Skip the PC past function prologue instructions (32-bit version).
2836 This is a helper function for mips_skip_prologue. */
2837
2838 static CORE_ADDR
2839 mips32_skip_prologue (CORE_ADDR pc)
2840 {
2841 t_inst inst;
2842 CORE_ADDR end_pc;
2843 int seen_sp_adjust = 0;
2844 int load_immediate_bytes = 0;
2845
2846 /* Skip the typical prologue instructions. These are the stack adjustment
2847 instruction and the instructions that save registers on the stack
2848 or in the gcc frame. */
2849 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
2850 {
2851 unsigned long high_word;
2852
2853 inst = mips_fetch_instruction (pc);
2854 high_word = (inst >> 16) & 0xffff;
2855
2856 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
2857 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
2858 seen_sp_adjust = 1;
2859 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
2860 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
2861 seen_sp_adjust = 1;
2862 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
2863 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
2864 && (inst & 0x001F0000)) /* reg != $zero */
2865 continue;
2866
2867 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
2868 continue;
2869 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
2870 /* sx reg,n($s8) */
2871 continue; /* reg != $zero */
2872
2873 /* move $s8,$sp. With different versions of gas this will be either
2874 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
2875 Accept any one of these. */
2876 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2877 continue;
2878
2879 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
2880 continue;
2881 else if (high_word == 0x3c1c) /* lui $gp,n */
2882 continue;
2883 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
2884 continue;
2885 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
2886 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
2887 continue;
2888 /* The following instructions load $at or $t0 with an immediate
2889 value in preparation for a stack adjustment via
2890 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
2891 a local variable, so we accept them only before a stack adjustment
2892 instruction was seen. */
2893 else if (!seen_sp_adjust)
2894 {
2895 if (high_word == 0x3c01 || /* lui $at,n */
2896 high_word == 0x3c08) /* lui $t0,n */
2897 {
2898 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
2899 continue;
2900 }
2901 else if (high_word == 0x3421 || /* ori $at,$at,n */
2902 high_word == 0x3508 || /* ori $t0,$t0,n */
2903 high_word == 0x3401 || /* ori $at,$zero,n */
2904 high_word == 0x3408) /* ori $t0,$zero,n */
2905 {
2906 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
2907 continue;
2908 }
2909 else
2910 break;
2911 }
2912 else
2913 break;
2914 }
2915
2916 /* In a frameless function, we might have incorrectly
2917 skipped some load immediate instructions. Undo the skipping
2918 if the load immediate was not followed by a stack adjustment. */
2919 if (load_immediate_bytes && !seen_sp_adjust)
2920 pc -= load_immediate_bytes;
2921 return pc;
2922 }
2923
2924 /* Skip the PC past function prologue instructions (16-bit version).
2925 This is a helper function for mips_skip_prologue. */
2926
2927 static CORE_ADDR
2928 mips16_skip_prologue (CORE_ADDR pc)
2929 {
2930 CORE_ADDR end_pc;
2931 int extend_bytes = 0;
2932 int prev_extend_bytes;
2933
2934 /* Table of instructions likely to be found in a function prologue. */
2935 static struct
2936 {
2937 unsigned short inst;
2938 unsigned short mask;
2939 }
2940 table[] =
2941 {
2942 {
2943 0x6300, 0xff00
2944 }
2945 , /* addiu $sp,offset */
2946 {
2947 0xfb00, 0xff00
2948 }
2949 , /* daddiu $sp,offset */
2950 {
2951 0xd000, 0xf800
2952 }
2953 , /* sw reg,n($sp) */
2954 {
2955 0xf900, 0xff00
2956 }
2957 , /* sd reg,n($sp) */
2958 {
2959 0x6200, 0xff00
2960 }
2961 , /* sw $ra,n($sp) */
2962 {
2963 0xfa00, 0xff00
2964 }
2965 , /* sd $ra,n($sp) */
2966 {
2967 0x673d, 0xffff
2968 }
2969 , /* move $s1,sp */
2970 {
2971 0xd980, 0xff80
2972 }
2973 , /* sw $a0-$a3,n($s1) */
2974 {
2975 0x6704, 0xff1c
2976 }
2977 , /* move reg,$a0-$a3 */
2978 {
2979 0xe809, 0xf81f
2980 }
2981 , /* entry pseudo-op */
2982 {
2983 0x0100, 0xff00
2984 }
2985 , /* addiu $s1,$sp,n */
2986 {
2987 0, 0
2988 } /* end of table marker */
2989 };
2990
2991 /* Skip the typical prologue instructions. These are the stack adjustment
2992 instruction and the instructions that save registers on the stack
2993 or in the gcc frame. */
2994 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
2995 {
2996 unsigned short inst;
2997 int i;
2998
2999 inst = mips_fetch_instruction (pc);
3000
3001 /* Normally we ignore an extend instruction. However, if it is
3002 not followed by a valid prologue instruction, we must adjust
3003 the pc back over the extend so that it won't be considered
3004 part of the prologue. */
3005 if ((inst & 0xf800) == 0xf000) /* extend */
3006 {
3007 extend_bytes = MIPS16_INSTLEN;
3008 continue;
3009 }
3010 prev_extend_bytes = extend_bytes;
3011 extend_bytes = 0;
3012
3013 /* Check for other valid prologue instructions besides extend. */
3014 for (i = 0; table[i].mask != 0; i++)
3015 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
3016 break;
3017 if (table[i].mask != 0) /* it was in table? */
3018 continue; /* ignore it */
3019 else
3020 /* non-prologue */
3021 {
3022 /* Return the current pc, adjusted backwards by 2 if
3023 the previous instruction was an extend. */
3024 return pc - prev_extend_bytes;
3025 }
3026 }
3027 return pc;
3028 }
3029
3030 /* To skip prologues, I use this predicate. Returns either PC itself
3031 if the code at PC does not look like a function prologue; otherwise
3032 returns an address that (if we're lucky) follows the prologue. If
3033 LENIENT, then we must skip everything which is involved in setting
3034 up the frame (it's OK to skip more, just so long as we don't skip
3035 anything which might clobber the registers which are being saved.
3036 We must skip more in the case where part of the prologue is in the
3037 delay slot of a non-prologue instruction). */
3038
3039 CORE_ADDR
3040 mips_skip_prologue (CORE_ADDR pc)
3041 {
3042 /* See if we can determine the end of the prologue via the symbol table.
3043 If so, then return either PC, or the PC after the prologue, whichever
3044 is greater. */
3045
3046 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
3047
3048 if (post_prologue_pc != 0)
3049 return max (pc, post_prologue_pc);
3050
3051 /* Can't determine prologue from the symbol table, need to examine
3052 instructions. */
3053
3054 if (pc_is_mips16 (pc))
3055 return mips16_skip_prologue (pc);
3056 else
3057 return mips32_skip_prologue (pc);
3058 }
3059
3060 /* Determine how a return value is stored within the MIPS register
3061 file, given the return type `valtype'. */
3062
3063 struct return_value_word
3064 {
3065 int len;
3066 int reg;
3067 int reg_offset;
3068 int buf_offset;
3069 };
3070
3071 static void
3072 return_value_location (struct type *valtype,
3073 struct return_value_word *hi,
3074 struct return_value_word *lo)
3075 {
3076 int len = TYPE_LENGTH (valtype);
3077
3078 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
3079 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
3080 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
3081 {
3082 if (!FP_REGISTER_DOUBLE && len == 8)
3083 {
3084 /* We need to break a 64bit float in two 32 bit halves and
3085 spread them across a floating-point register pair. */
3086 lo->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
3087 hi->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 0 : 4;
3088 lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN
3089 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
3090 ? 4 : 0);
3091 hi->reg_offset = lo->reg_offset;
3092 lo->reg = FP0_REGNUM + 0;
3093 hi->reg = FP0_REGNUM + 1;
3094 lo->len = 4;
3095 hi->len = 4;
3096 }
3097 else
3098 {
3099 /* The floating point value fits in a single floating-point
3100 register. */
3101 lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN
3102 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
3103 && len == 4)
3104 ? 4 : 0);
3105 lo->reg = FP0_REGNUM;
3106 lo->len = len;
3107 lo->buf_offset = 0;
3108 hi->len = 0;
3109 hi->reg_offset = 0;
3110 hi->buf_offset = 0;
3111 hi->reg = 0;
3112 }
3113 }
3114 else
3115 {
3116 /* Locate a result possibly spread across two registers. */
3117 int regnum = 2;
3118 lo->reg = regnum + 0;
3119 hi->reg = regnum + 1;
3120 if (TARGET_BYTE_ORDER == BIG_ENDIAN
3121 && len < MIPS_SAVED_REGSIZE)
3122 {
3123 /* "un-left-justify" the value in the low register */
3124 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
3125 lo->len = len;
3126 hi->reg_offset = 0;
3127 hi->len = 0;
3128 }
3129 else if (TARGET_BYTE_ORDER == BIG_ENDIAN
3130 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
3131 && len < MIPS_SAVED_REGSIZE * 2
3132 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
3133 TYPE_CODE (valtype) == TYPE_CODE_UNION))
3134 {
3135 /* "un-left-justify" the value spread across two registers. */
3136 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
3137 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
3138 hi->reg_offset = 0;
3139 hi->len = len - lo->len;
3140 }
3141 else
3142 {
3143 /* Only perform a partial copy of the second register. */
3144 lo->reg_offset = 0;
3145 hi->reg_offset = 0;
3146 if (len > MIPS_SAVED_REGSIZE)
3147 {
3148 lo->len = MIPS_SAVED_REGSIZE;
3149 hi->len = len - MIPS_SAVED_REGSIZE;
3150 }
3151 else
3152 {
3153 lo->len = len;
3154 hi->len = 0;
3155 }
3156 }
3157 if (TARGET_BYTE_ORDER == BIG_ENDIAN
3158 && REGISTER_RAW_SIZE (regnum) == 8
3159 && MIPS_SAVED_REGSIZE == 4)
3160 {
3161 /* Account for the fact that only the least-signficant part
3162 of the register is being used */
3163 lo->reg_offset += 4;
3164 hi->reg_offset += 4;
3165 }
3166 lo->buf_offset = 0;
3167 hi->buf_offset = lo->len;
3168 }
3169 }
3170
3171 /* Given a return value in `regbuf' with a type `valtype', extract and
3172 copy its value into `valbuf'. */
3173
3174 void
3175 mips_extract_return_value (struct type *valtype,
3176 char regbuf[REGISTER_BYTES],
3177 char *valbuf)
3178 {
3179 struct return_value_word lo;
3180 struct return_value_word hi;
3181 return_value_location (valtype, &lo, &hi);
3182
3183 memcpy (valbuf + lo.buf_offset,
3184 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
3185 lo.len);
3186
3187 if (hi.len > 0)
3188 memcpy (valbuf + hi.buf_offset,
3189 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
3190 hi.len);
3191 }
3192
3193 /* Given a return value in `valbuf' with a type `valtype', write it's
3194 value into the appropriate register. */
3195
3196 void
3197 mips_store_return_value (struct type *valtype, char *valbuf)
3198 {
3199 char raw_buffer[MAX_REGISTER_RAW_SIZE];
3200 struct return_value_word lo;
3201 struct return_value_word hi;
3202 return_value_location (valtype, &lo, &hi);
3203
3204 memset (raw_buffer, 0, sizeof (raw_buffer));
3205 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
3206 write_register_bytes (REGISTER_BYTE (lo.reg),
3207 raw_buffer,
3208 REGISTER_RAW_SIZE (lo.reg));
3209
3210 if (hi.len > 0)
3211 {
3212 memset (raw_buffer, 0, sizeof (raw_buffer));
3213 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
3214 write_register_bytes (REGISTER_BYTE (hi.reg),
3215 raw_buffer,
3216 REGISTER_RAW_SIZE (hi.reg));
3217 }
3218 }
3219
3220 /* Exported procedure: Is PC in the signal trampoline code */
3221
3222 int
3223 in_sigtramp (CORE_ADDR pc, char *ignore)
3224 {
3225 if (sigtramp_address == 0)
3226 fixup_sigtramp ();
3227 return (pc >= sigtramp_address && pc < sigtramp_end);
3228 }
3229
3230 /* Root of all "set mips "/"show mips " commands. This will eventually be
3231 used for all MIPS-specific commands. */
3232
3233 static void
3234 show_mips_command (char *args, int from_tty)
3235 {
3236 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
3237 }
3238
3239 static void
3240 set_mips_command (char *args, int from_tty)
3241 {
3242 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
3243 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
3244 }
3245
3246 /* Commands to show/set the MIPS FPU type. */
3247
3248 static void
3249 show_mipsfpu_command (char *args, int from_tty)
3250 {
3251 char *msg;
3252 char *fpu;
3253 switch (MIPS_FPU_TYPE)
3254 {
3255 case MIPS_FPU_SINGLE:
3256 fpu = "single-precision";
3257 break;
3258 case MIPS_FPU_DOUBLE:
3259 fpu = "double-precision";
3260 break;
3261 case MIPS_FPU_NONE:
3262 fpu = "absent (none)";
3263 break;
3264 }
3265 if (mips_fpu_type_auto)
3266 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
3267 fpu);
3268 else
3269 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
3270 fpu);
3271 }
3272
3273
3274 static void
3275 set_mipsfpu_command (char *args, int from_tty)
3276 {
3277 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
3278 show_mipsfpu_command (args, from_tty);
3279 }
3280
3281 static void
3282 set_mipsfpu_single_command (char *args, int from_tty)
3283 {
3284 mips_fpu_type = MIPS_FPU_SINGLE;
3285 mips_fpu_type_auto = 0;
3286 if (GDB_MULTI_ARCH)
3287 {
3288 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
3289 }
3290 }
3291
3292 static void
3293 set_mipsfpu_double_command (char *args, int from_tty)
3294 {
3295 mips_fpu_type = MIPS_FPU_DOUBLE;
3296 mips_fpu_type_auto = 0;
3297 if (GDB_MULTI_ARCH)
3298 {
3299 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
3300 }
3301 }
3302
3303 static void
3304 set_mipsfpu_none_command (char *args, int from_tty)
3305 {
3306 mips_fpu_type = MIPS_FPU_NONE;
3307 mips_fpu_type_auto = 0;
3308 if (GDB_MULTI_ARCH)
3309 {
3310 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
3311 }
3312 }
3313
3314 static void
3315 set_mipsfpu_auto_command (char *args, int from_tty)
3316 {
3317 mips_fpu_type_auto = 1;
3318 }
3319
3320 /* Command to set the processor type. */
3321
3322 void
3323 mips_set_processor_type_command (char *args, int from_tty)
3324 {
3325 int i;
3326
3327 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
3328 {
3329 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
3330 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3331 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
3332
3333 /* Restore the value. */
3334 tmp_mips_processor_type = strsave (mips_processor_type);
3335
3336 return;
3337 }
3338
3339 if (!mips_set_processor_type (tmp_mips_processor_type))
3340 {
3341 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
3342 /* Restore its value. */
3343 tmp_mips_processor_type = strsave (mips_processor_type);
3344 }
3345 }
3346
3347 static void
3348 mips_show_processor_type_command (char *args, int from_tty)
3349 {
3350 }
3351
3352 /* Modify the actual processor type. */
3353
3354 int
3355 mips_set_processor_type (char *str)
3356 {
3357 int i, j;
3358
3359 if (str == NULL)
3360 return 0;
3361
3362 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3363 {
3364 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
3365 {
3366 mips_processor_type = str;
3367 mips_processor_reg_names = mips_processor_type_table[i].regnames;
3368 return 1;
3369 /* FIXME tweak fpu flag too */
3370 }
3371 }
3372
3373 return 0;
3374 }
3375
3376 /* Attempt to identify the particular processor model by reading the
3377 processor id. */
3378
3379 char *
3380 mips_read_processor_type (void)
3381 {
3382 CORE_ADDR prid;
3383
3384 prid = read_register (PRID_REGNUM);
3385
3386 if ((prid & ~0xf) == 0x700)
3387 return savestring ("r3041", strlen ("r3041"));
3388
3389 return NULL;
3390 }
3391
3392 /* Just like reinit_frame_cache, but with the right arguments to be
3393 callable as an sfunc. */
3394
3395 static void
3396 reinit_frame_cache_sfunc (char *args, int from_tty,
3397 struct cmd_list_element *c)
3398 {
3399 reinit_frame_cache ();
3400 }
3401
3402 int
3403 gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
3404 {
3405 mips_extra_func_info_t proc_desc;
3406
3407 /* Search for the function containing this address. Set the low bit
3408 of the address when searching, in case we were given an even address
3409 that is the start of a 16-bit function. If we didn't do this,
3410 the search would fail because the symbol table says the function
3411 starts at an odd address, i.e. 1 byte past the given address. */
3412 memaddr = ADDR_BITS_REMOVE (memaddr);
3413 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
3414
3415 /* Make an attempt to determine if this is a 16-bit function. If
3416 the procedure descriptor exists and the address therein is odd,
3417 it's definitely a 16-bit function. Otherwise, we have to just
3418 guess that if the address passed in is odd, it's 16-bits. */
3419 if (proc_desc)
3420 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
3421 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
3422 else
3423 info->mach = pc_is_mips16 (memaddr) ?
3424 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
3425
3426 /* Round down the instruction address to the appropriate boundary. */
3427 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
3428
3429 /* Call the appropriate disassembler based on the target endian-ness. */
3430 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
3431 return print_insn_big_mips (memaddr, info);
3432 else
3433 return print_insn_little_mips (memaddr, info);
3434 }
3435
3436 /* Old-style breakpoint macros.
3437 The IDT board uses an unusual breakpoint value, and sometimes gets
3438 confused when it sees the usual MIPS breakpoint instruction. */
3439
3440 #define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
3441 #define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
3442 #define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
3443 #define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
3444 #define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
3445 #define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
3446 #define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
3447 #define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
3448
3449 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
3450 counter value to determine whether a 16- or 32-bit breakpoint should be
3451 used. It returns a pointer to a string of bytes that encode a breakpoint
3452 instruction, stores the length of the string to *lenptr, and adjusts pc
3453 (if necessary) to point to the actual memory location where the
3454 breakpoint should be inserted. */
3455
3456 unsigned char *
3457 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
3458 {
3459 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
3460 {
3461 if (pc_is_mips16 (*pcptr))
3462 {
3463 static char mips16_big_breakpoint[] = MIPS16_BIG_BREAKPOINT;
3464 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
3465 *lenptr = sizeof (mips16_big_breakpoint);
3466 return mips16_big_breakpoint;
3467 }
3468 else
3469 {
3470 static char big_breakpoint[] = BIG_BREAKPOINT;
3471 static char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
3472 static char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
3473
3474 *lenptr = sizeof (big_breakpoint);
3475
3476 if (strcmp (target_shortname, "mips") == 0)
3477 return idt_big_breakpoint;
3478 else if (strcmp (target_shortname, "ddb") == 0
3479 || strcmp (target_shortname, "pmon") == 0
3480 || strcmp (target_shortname, "lsi") == 0)
3481 return pmon_big_breakpoint;
3482 else
3483 return big_breakpoint;
3484 }
3485 }
3486 else
3487 {
3488 if (pc_is_mips16 (*pcptr))
3489 {
3490 static char mips16_little_breakpoint[] = MIPS16_LITTLE_BREAKPOINT;
3491 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
3492 *lenptr = sizeof (mips16_little_breakpoint);
3493 return mips16_little_breakpoint;
3494 }
3495 else
3496 {
3497 static char little_breakpoint[] = LITTLE_BREAKPOINT;
3498 static char pmon_little_breakpoint[] = PMON_LITTLE_BREAKPOINT;
3499 static char idt_little_breakpoint[] = IDT_LITTLE_BREAKPOINT;
3500
3501 *lenptr = sizeof (little_breakpoint);
3502
3503 if (strcmp (target_shortname, "mips") == 0)
3504 return idt_little_breakpoint;
3505 else if (strcmp (target_shortname, "ddb") == 0
3506 || strcmp (target_shortname, "pmon") == 0
3507 || strcmp (target_shortname, "lsi") == 0)
3508 return pmon_little_breakpoint;
3509 else
3510 return little_breakpoint;
3511 }
3512 }
3513 }
3514
3515 /* If PC is in a mips16 call or return stub, return the address of the target
3516 PC, which is either the callee or the caller. There are several
3517 cases which must be handled:
3518
3519 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
3520 target PC is in $31 ($ra).
3521 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
3522 and the target PC is in $2.
3523 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
3524 before the jal instruction, this is effectively a call stub
3525 and the the target PC is in $2. Otherwise this is effectively
3526 a return stub and the target PC is in $18.
3527
3528 See the source code for the stubs in gcc/config/mips/mips16.S for
3529 gory details.
3530
3531 This function implements the SKIP_TRAMPOLINE_CODE macro.
3532 */
3533
3534 CORE_ADDR
3535 mips_skip_stub (CORE_ADDR pc)
3536 {
3537 char *name;
3538 CORE_ADDR start_addr;
3539
3540 /* Find the starting address and name of the function containing the PC. */
3541 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
3542 return 0;
3543
3544 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
3545 target PC is in $31 ($ra). */
3546 if (strcmp (name, "__mips16_ret_sf") == 0
3547 || strcmp (name, "__mips16_ret_df") == 0)
3548 return read_signed_register (RA_REGNUM);
3549
3550 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
3551 {
3552 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
3553 and the target PC is in $2. */
3554 if (name[19] >= '0' && name[19] <= '9')
3555 return read_signed_register (2);
3556
3557 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
3558 before the jal instruction, this is effectively a call stub
3559 and the the target PC is in $2. Otherwise this is effectively
3560 a return stub and the target PC is in $18. */
3561 else if (name[19] == 's' || name[19] == 'd')
3562 {
3563 if (pc == start_addr)
3564 {
3565 /* Check if the target of the stub is a compiler-generated
3566 stub. Such a stub for a function bar might have a name
3567 like __fn_stub_bar, and might look like this:
3568 mfc1 $4,$f13
3569 mfc1 $5,$f12
3570 mfc1 $6,$f15
3571 mfc1 $7,$f14
3572 la $1,bar (becomes a lui/addiu pair)
3573 jr $1
3574 So scan down to the lui/addi and extract the target
3575 address from those two instructions. */
3576
3577 CORE_ADDR target_pc = read_signed_register (2);
3578 t_inst inst;
3579 int i;
3580
3581 /* See if the name of the target function is __fn_stub_*. */
3582 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
3583 return target_pc;
3584 if (strncmp (name, "__fn_stub_", 10) != 0
3585 && strcmp (name, "etext") != 0
3586 && strcmp (name, "_etext") != 0)
3587 return target_pc;
3588
3589 /* Scan through this _fn_stub_ code for the lui/addiu pair.
3590 The limit on the search is arbitrarily set to 20
3591 instructions. FIXME. */
3592 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
3593 {
3594 inst = mips_fetch_instruction (target_pc);
3595 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
3596 pc = (inst << 16) & 0xffff0000; /* high word */
3597 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
3598 return pc | (inst & 0xffff); /* low word */
3599 }
3600
3601 /* Couldn't find the lui/addui pair, so return stub address. */
3602 return target_pc;
3603 }
3604 else
3605 /* This is the 'return' part of a call stub. The return
3606 address is in $r18. */
3607 return read_signed_register (18);
3608 }
3609 }
3610 return 0; /* not a stub */
3611 }
3612
3613
3614 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
3615 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
3616
3617 int
3618 mips_in_call_stub (CORE_ADDR pc, char *name)
3619 {
3620 CORE_ADDR start_addr;
3621
3622 /* Find the starting address of the function containing the PC. If the
3623 caller didn't give us a name, look it up at the same time. */
3624 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
3625 return 0;
3626
3627 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
3628 {
3629 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
3630 if (name[19] >= '0' && name[19] <= '9')
3631 return 1;
3632 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
3633 before the jal instruction, this is effectively a call stub. */
3634 else if (name[19] == 's' || name[19] == 'd')
3635 return pc == start_addr;
3636 }
3637
3638 return 0; /* not a stub */
3639 }
3640
3641
3642 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
3643 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
3644
3645 int
3646 mips_in_return_stub (CORE_ADDR pc, char *name)
3647 {
3648 CORE_ADDR start_addr;
3649
3650 /* Find the starting address of the function containing the PC. */
3651 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
3652 return 0;
3653
3654 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
3655 if (strcmp (name, "__mips16_ret_sf") == 0
3656 || strcmp (name, "__mips16_ret_df") == 0)
3657 return 1;
3658
3659 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
3660 i.e. after the jal instruction, this is effectively a return stub. */
3661 if (strncmp (name, "__mips16_call_stub_", 19) == 0
3662 && (name[19] == 's' || name[19] == 'd')
3663 && pc != start_addr)
3664 return 1;
3665
3666 return 0; /* not a stub */
3667 }
3668
3669
3670 /* Return non-zero if the PC is in a library helper function that should
3671 be ignored. This implements the IGNORE_HELPER_CALL macro. */
3672
3673 int
3674 mips_ignore_helper (CORE_ADDR pc)
3675 {
3676 char *name;
3677
3678 /* Find the starting address and name of the function containing the PC. */
3679 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
3680 return 0;
3681
3682 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
3683 that we want to ignore. */
3684 return (strcmp (name, "__mips16_ret_sf") == 0
3685 || strcmp (name, "__mips16_ret_df") == 0);
3686 }
3687
3688
3689 /* Return a location where we can set a breakpoint that will be hit
3690 when an inferior function call returns. This is normally the
3691 program's entry point. Executables that don't have an entry
3692 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
3693 whose address is the location where the breakpoint should be placed. */
3694
3695 CORE_ADDR
3696 mips_call_dummy_address (void)
3697 {
3698 struct minimal_symbol *sym;
3699
3700 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
3701 if (sym)
3702 return SYMBOL_VALUE_ADDRESS (sym);
3703 else
3704 return entry_point_address ();
3705 }
3706
3707
3708 /* If the current gcc for for this target does not produce correct debugging
3709 information for float parameters, both prototyped and unprototyped, then
3710 define this macro. This forces gdb to always assume that floats are
3711 passed as doubles and then converted in the callee.
3712
3713 For the mips chip, it appears that the debug info marks the parameters as
3714 floats regardless of whether the function is prototyped, but the actual
3715 values are passed as doubles for the non-prototyped case and floats for
3716 the prototyped case. Thus we choose to make the non-prototyped case work
3717 for C and break the prototyped case, since the non-prototyped case is
3718 probably much more common. (FIXME). */
3719
3720 static int
3721 mips_coerce_float_to_double (struct type *formal, struct type *actual)
3722 {
3723 return current_language->la_language == language_c;
3724 }
3725
3726 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
3727 the register stored on the stack (32) is different to its real raw
3728 size (64). The below ensures that registers are fetched from the
3729 stack using their ABI size and then stored into the RAW_BUFFER
3730 using their raw size.
3731
3732 The alternative to adding this function would be to add an ABI
3733 macro - REGISTER_STACK_SIZE(). */
3734
3735 static void
3736 mips_get_saved_register (char *raw_buffer,
3737 int *optimized,
3738 CORE_ADDR *addrp,
3739 struct frame_info *frame,
3740 int regnum,
3741 enum lval_type *lval)
3742 {
3743 CORE_ADDR addr;
3744
3745 if (!target_has_registers)
3746 error ("No registers.");
3747
3748 /* Normal systems don't optimize out things with register numbers. */
3749 if (optimized != NULL)
3750 *optimized = 0;
3751 addr = find_saved_register (frame, regnum);
3752 if (addr != 0)
3753 {
3754 if (lval != NULL)
3755 *lval = lval_memory;
3756 if (regnum == SP_REGNUM)
3757 {
3758 if (raw_buffer != NULL)
3759 {
3760 /* Put it back in target format. */
3761 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
3762 (LONGEST) addr);
3763 }
3764 if (addrp != NULL)
3765 *addrp = 0;
3766 return;
3767 }
3768 if (raw_buffer != NULL)
3769 {
3770 LONGEST val;
3771 if (regnum < 32)
3772 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
3773 saved. */
3774 val = read_memory_integer (addr, MIPS_SAVED_REGSIZE);
3775 else
3776 val = read_memory_integer (addr, REGISTER_RAW_SIZE (regnum));
3777 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
3778 }
3779 }
3780 else
3781 {
3782 if (lval != NULL)
3783 *lval = lval_register;
3784 addr = REGISTER_BYTE (regnum);
3785 if (raw_buffer != NULL)
3786 read_register_gen (regnum, raw_buffer);
3787 }
3788 if (addrp != NULL)
3789 *addrp = addr;
3790 }
3791
3792 /* Immediately after a function call, return the saved pc.
3793 Can't always go through the frames for this because on some machines
3794 the new frame is not set up until the new function executes
3795 some instructions. */
3796
3797 static CORE_ADDR
3798 mips_saved_pc_after_call (struct frame_info *frame)
3799 {
3800 return read_signed_register (RA_REGNUM);
3801 }
3802
3803
3804 /* Convert a dbx stab register number (from `r' declaration) to a gdb
3805 REGNUM */
3806
3807 static int
3808 mips_stab_reg_to_regnum (int num)
3809 {
3810 if (num < 32)
3811 return num;
3812 else
3813 return num + FP0_REGNUM - 38;
3814 }
3815
3816 /* Convert a ecoff register number to a gdb REGNUM */
3817
3818 static int
3819 mips_ecoff_reg_to_regnum (int num)
3820 {
3821 if (num < 32)
3822 return num;
3823 else
3824 return num + FP0_REGNUM - 32;
3825 }
3826
3827 static struct gdbarch *
3828 mips_gdbarch_init (struct gdbarch_info info,
3829 struct gdbarch_list *arches)
3830 {
3831 static LONGEST mips_call_dummy_words[] =
3832 {0};
3833 struct gdbarch *gdbarch;
3834 struct gdbarch_tdep *tdep;
3835 int elf_flags;
3836 enum mips_abi mips_abi;
3837
3838 /* Extract the elf_flags if available */
3839 if (info.abfd != NULL
3840 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
3841 elf_flags = elf_elfheader (info.abfd)->e_flags;
3842 else
3843 elf_flags = 0;
3844
3845 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
3846 switch ((elf_flags & EF_MIPS_ABI))
3847 {
3848 case E_MIPS_ABI_O32:
3849 mips_abi = MIPS_ABI_O32;
3850 break;
3851 case E_MIPS_ABI_O64:
3852 mips_abi = MIPS_ABI_O64;
3853 break;
3854 case E_MIPS_ABI_EABI32:
3855 mips_abi = MIPS_ABI_EABI32;
3856 break;
3857 case E_MIPS_ABI_EABI64:
3858 mips_abi = MIPS_ABI_EABI64;
3859 break;
3860 default:
3861 if ((elf_flags & EF_MIPS_ABI2))
3862 mips_abi = MIPS_ABI_N32;
3863 else
3864 mips_abi = MIPS_ABI_UNKNOWN;
3865 break;
3866 }
3867
3868 /* Try the architecture for any hint of the corect ABI */
3869 if (mips_abi == MIPS_ABI_UNKNOWN
3870 && info.bfd_arch_info != NULL
3871 && info.bfd_arch_info->arch == bfd_arch_mips)
3872 {
3873 switch (info.bfd_arch_info->mach)
3874 {
3875 case bfd_mach_mips3900:
3876 mips_abi = MIPS_ABI_EABI32;
3877 break;
3878 case bfd_mach_mips4100:
3879 case bfd_mach_mips5000:
3880 mips_abi = MIPS_ABI_EABI64;
3881 break;
3882 }
3883 }
3884 #ifdef MIPS_DEFAULT_ABI
3885 if (mips_abi == MIPS_ABI_UNKNOWN)
3886 mips_abi = MIPS_DEFAULT_ABI;
3887 #endif
3888
3889 if (gdbarch_debug)
3890 {
3891 fprintf_unfiltered (gdb_stdlog,
3892 "mips_gdbarch_init: elf_flags = 0x%08x\n",
3893 elf_flags);
3894 fprintf_unfiltered (gdb_stdlog,
3895 "mips_gdbarch_init: mips_abi = %d\n",
3896 mips_abi);
3897 }
3898
3899 /* try to find a pre-existing architecture */
3900 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3901 arches != NULL;
3902 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3903 {
3904 /* MIPS needs to be pedantic about which ABI the object is
3905 using. */
3906 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
3907 continue;
3908 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
3909 continue;
3910 return arches->gdbarch;
3911 }
3912
3913 /* Need a new architecture. Fill in a target specific vector. */
3914 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
3915 gdbarch = gdbarch_alloc (&info, tdep);
3916 tdep->elf_flags = elf_flags;
3917
3918 /* Initially set everything according to the ABI. */
3919 set_gdbarch_short_bit (gdbarch, 16);
3920 set_gdbarch_int_bit (gdbarch, 32);
3921 set_gdbarch_float_bit (gdbarch, 32);
3922 set_gdbarch_double_bit (gdbarch, 64);
3923 set_gdbarch_long_double_bit (gdbarch, 64);
3924 tdep->mips_abi = mips_abi;
3925 switch (mips_abi)
3926 {
3927 case MIPS_ABI_O32:
3928 tdep->mips_abi_string = "o32";
3929 tdep->mips_default_saved_regsize = 4;
3930 tdep->mips_default_stack_argsize = 4;
3931 tdep->mips_fp_register_double = 0;
3932 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
3933 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
3934 tdep->mips_regs_have_home_p = 1;
3935 tdep->gdb_target_is_mips64 = 0;
3936 tdep->default_mask_address_p = 0;
3937 set_gdbarch_long_bit (gdbarch, 32);
3938 set_gdbarch_ptr_bit (gdbarch, 32);
3939 set_gdbarch_long_long_bit (gdbarch, 64);
3940 break;
3941 case MIPS_ABI_O64:
3942 tdep->mips_abi_string = "o64";
3943 tdep->mips_default_saved_regsize = 8;
3944 tdep->mips_default_stack_argsize = 8;
3945 tdep->mips_fp_register_double = 1;
3946 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
3947 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
3948 tdep->mips_regs_have_home_p = 1;
3949 tdep->gdb_target_is_mips64 = 1;
3950 tdep->default_mask_address_p = 0;
3951 set_gdbarch_long_bit (gdbarch, 32);
3952 set_gdbarch_ptr_bit (gdbarch, 32);
3953 set_gdbarch_long_long_bit (gdbarch, 64);
3954 break;
3955 case MIPS_ABI_EABI32:
3956 tdep->mips_abi_string = "eabi32";
3957 tdep->mips_default_saved_regsize = 4;
3958 tdep->mips_default_stack_argsize = 4;
3959 tdep->mips_fp_register_double = 0;
3960 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
3961 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
3962 tdep->mips_regs_have_home_p = 0;
3963 tdep->gdb_target_is_mips64 = 0;
3964 tdep->default_mask_address_p = 0;
3965 set_gdbarch_long_bit (gdbarch, 32);
3966 set_gdbarch_ptr_bit (gdbarch, 32);
3967 set_gdbarch_long_long_bit (gdbarch, 64);
3968 break;
3969 case MIPS_ABI_EABI64:
3970 tdep->mips_abi_string = "eabi64";
3971 tdep->mips_default_saved_regsize = 8;
3972 tdep->mips_default_stack_argsize = 8;
3973 tdep->mips_fp_register_double = 1;
3974 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
3975 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
3976 tdep->mips_regs_have_home_p = 0;
3977 tdep->gdb_target_is_mips64 = 1;
3978 tdep->default_mask_address_p = 0;
3979 set_gdbarch_long_bit (gdbarch, 64);
3980 set_gdbarch_ptr_bit (gdbarch, 64);
3981 set_gdbarch_long_long_bit (gdbarch, 64);
3982 break;
3983 case MIPS_ABI_N32:
3984 tdep->mips_abi_string = "n32";
3985 tdep->mips_default_saved_regsize = 4;
3986 tdep->mips_default_stack_argsize = 8;
3987 tdep->mips_fp_register_double = 1;
3988 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
3989 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
3990 tdep->mips_regs_have_home_p = 0;
3991 tdep->gdb_target_is_mips64 = 0;
3992 tdep->default_mask_address_p = 0;
3993 set_gdbarch_long_bit (gdbarch, 32);
3994 set_gdbarch_ptr_bit (gdbarch, 32);
3995 set_gdbarch_long_long_bit (gdbarch, 64);
3996 break;
3997 default:
3998 tdep->mips_abi_string = "default";
3999 tdep->mips_default_saved_regsize = MIPS_REGSIZE;
4000 tdep->mips_default_stack_argsize = MIPS_REGSIZE;
4001 tdep->mips_fp_register_double = (REGISTER_VIRTUAL_SIZE (FP0_REGNUM) == 8);
4002 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4003 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
4004 tdep->mips_regs_have_home_p = 1;
4005 tdep->gdb_target_is_mips64 = 0;
4006 tdep->default_mask_address_p = 0;
4007 set_gdbarch_long_bit (gdbarch, 32);
4008 set_gdbarch_ptr_bit (gdbarch, 32);
4009 set_gdbarch_long_long_bit (gdbarch, 64);
4010 break;
4011 }
4012
4013 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
4014 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
4015 comment:
4016
4017 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
4018 flag in object files because to do so would make it impossible to
4019 link with libraries compiled without "-gp32". This is
4020 unnecessarily restrictive.
4021
4022 We could solve this problem by adding "-gp32" multilibs to gcc,
4023 but to set this flag before gcc is built with such multilibs will
4024 break too many systems.''
4025
4026 But even more unhelpfully, the default linker output target for
4027 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
4028 for 64-bit programs - you need to change the ABI to change this,
4029 and not all gcc targets support that currently. Therefore using
4030 this flag to detect 32-bit mode would do the wrong thing given
4031 the current gcc - it would make GDB treat these 64-bit programs
4032 as 32-bit programs by default. */
4033
4034 /* enable/disable the MIPS FPU */
4035 if (!mips_fpu_type_auto)
4036 tdep->mips_fpu_type = mips_fpu_type;
4037 else if (info.bfd_arch_info != NULL
4038 && info.bfd_arch_info->arch == bfd_arch_mips)
4039 switch (info.bfd_arch_info->mach)
4040 {
4041 case bfd_mach_mips3900:
4042 case bfd_mach_mips4100:
4043 case bfd_mach_mips4111:
4044 tdep->mips_fpu_type = MIPS_FPU_NONE;
4045 break;
4046 case bfd_mach_mips4650:
4047 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
4048 break;
4049 default:
4050 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
4051 break;
4052 }
4053 else
4054 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
4055
4056 /* MIPS version of register names. NOTE: At present the MIPS
4057 register name management is part way between the old -
4058 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
4059 Further work on it is required. */
4060 set_gdbarch_register_name (gdbarch, mips_register_name);
4061 set_gdbarch_read_pc (gdbarch, mips_read_pc);
4062 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
4063 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
4064 set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
4065 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
4066 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
4067
4068 /* Map debug register numbers onto internal register numbers. */
4069 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
4070 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_ecoff_reg_to_regnum);
4071
4072 /* Initialize a frame */
4073 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
4074
4075 /* MIPS version of CALL_DUMMY */
4076
4077 set_gdbarch_call_dummy_p (gdbarch, 1);
4078 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
4079 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
4080 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
4081 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
4082 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
4083 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
4084 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
4085 set_gdbarch_call_dummy_length (gdbarch, 0);
4086 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
4087 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
4088 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
4089 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
4090 set_gdbarch_push_arguments (gdbarch, mips_push_arguments);
4091 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
4092 set_gdbarch_coerce_float_to_double (gdbarch, mips_coerce_float_to_double);
4093
4094 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
4095 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
4096
4097 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4098 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
4099 set_gdbarch_decr_pc_after_break (gdbarch, 0);
4100 set_gdbarch_ieee_float (gdbarch, 1);
4101
4102 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
4103 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
4104
4105 return gdbarch;
4106 }
4107
4108 static void
4109 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
4110 {
4111 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4112 if (tdep != NULL)
4113 {
4114 int ef_mips_arch;
4115 int ef_mips_32bitmode;
4116 /* determine the ISA */
4117 switch (tdep->elf_flags & EF_MIPS_ARCH)
4118 {
4119 case E_MIPS_ARCH_1:
4120 ef_mips_arch = 1;
4121 break;
4122 case E_MIPS_ARCH_2:
4123 ef_mips_arch = 2;
4124 break;
4125 case E_MIPS_ARCH_3:
4126 ef_mips_arch = 3;
4127 break;
4128 case E_MIPS_ARCH_4:
4129 ef_mips_arch = 0;
4130 break;
4131 default:
4132 break;
4133 }
4134 /* determine the size of a pointer */
4135 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4136 fprintf_unfiltered (file,
4137 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
4138 tdep->elf_flags);
4139 fprintf_unfiltered (file,
4140 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
4141 ef_mips_32bitmode);
4142 fprintf_unfiltered (file,
4143 "mips_dump_tdep: ef_mips_arch = %d\n",
4144 ef_mips_arch);
4145 fprintf_unfiltered (file,
4146 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
4147 tdep->mips_abi,
4148 tdep->mips_abi_string);
4149 fprintf_unfiltered (file,
4150 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
4151 mips_mask_address_p (),
4152 tdep->default_mask_address_p);
4153 }
4154 fprintf_unfiltered (file,
4155 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
4156 FP_REGISTER_DOUBLE);
4157 fprintf_unfiltered (file,
4158 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
4159 MIPS_DEFAULT_FPU_TYPE,
4160 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
4161 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
4162 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
4163 : "???"));
4164 fprintf_unfiltered (file,
4165 "mips_dump_tdep: MIPS_EABI = %d\n",
4166 MIPS_EABI);
4167 fprintf_unfiltered (file,
4168 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
4169 MIPS_LAST_FP_ARG_REGNUM,
4170 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
4171 fprintf_unfiltered (file,
4172 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
4173 MIPS_FPU_TYPE,
4174 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
4175 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
4176 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
4177 : "???"));
4178 fprintf_unfiltered (file,
4179 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
4180 MIPS_DEFAULT_SAVED_REGSIZE);
4181 fprintf_unfiltered (file,
4182 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
4183 FP_REGISTER_DOUBLE);
4184 fprintf_unfiltered (file,
4185 "mips_dump_tdep: MIPS_REGS_HAVE_HOME_P = %d\n",
4186 MIPS_REGS_HAVE_HOME_P);
4187 fprintf_unfiltered (file,
4188 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
4189 MIPS_DEFAULT_STACK_ARGSIZE);
4190 fprintf_unfiltered (file,
4191 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
4192 MIPS_STACK_ARGSIZE);
4193 fprintf_unfiltered (file,
4194 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
4195 MIPS_REGSIZE);
4196 fprintf_unfiltered (file,
4197 "mips_dump_tdep: A0_REGNUM = %d\n",
4198 A0_REGNUM);
4199 fprintf_unfiltered (file,
4200 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
4201 XSTRING (ADDR_BITS_REMOVE(ADDR)));
4202 fprintf_unfiltered (file,
4203 "mips_dump_tdep: ATTACH_DETACH # %s\n",
4204 XSTRING (ATTACH_DETACH));
4205 fprintf_unfiltered (file,
4206 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
4207 BADVADDR_REGNUM);
4208 fprintf_unfiltered (file,
4209 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
4210 fprintf_unfiltered (file,
4211 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
4212 CAUSE_REGNUM);
4213 fprintf_unfiltered (file,
4214 "mips_dump_tdep: CPLUS_MARKER = %c\n",
4215 CPLUS_MARKER);
4216 fprintf_unfiltered (file,
4217 "mips_dump_tdep: DEFAULT_MIPS_TYPE = %s\n",
4218 DEFAULT_MIPS_TYPE);
4219 fprintf_unfiltered (file,
4220 "mips_dump_tdep: DO_REGISTERS_INFO # %s\n",
4221 XSTRING (DO_REGISTERS_INFO));
4222 fprintf_unfiltered (file,
4223 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
4224 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
4225 fprintf_unfiltered (file,
4226 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
4227 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
4228 fprintf_unfiltered (file,
4229 "mips_dump_tdep: ELF_MAKE_MSYMBOL_SPECIAL # %s\n",
4230 XSTRING (ELF_MAKE_MSYMBOL_SPECIAL (SYM, MSYM)));
4231 fprintf_unfiltered (file,
4232 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
4233 FCRCS_REGNUM);
4234 fprintf_unfiltered (file,
4235 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
4236 FCRIR_REGNUM);
4237 fprintf_unfiltered (file,
4238 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
4239 FIRST_EMBED_REGNUM);
4240 fprintf_unfiltered (file,
4241 "mips_dump_tdep: FPA0_REGNUM = %d\n",
4242 FPA0_REGNUM);
4243 fprintf_unfiltered (file,
4244 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
4245 GDB_TARGET_IS_MIPS64);
4246 fprintf_unfiltered (file,
4247 "mips_dump_tdep: GDB_TARGET_MASK_DISAS_PC # %s\n",
4248 XSTRING (GDB_TARGET_MASK_DISAS_PC (PC)));
4249 fprintf_unfiltered (file,
4250 "mips_dump_tdep: GDB_TARGET_UNMASK_DISAS_PC # %s\n",
4251 XSTRING (GDB_TARGET_UNMASK_DISAS_PC (PC)));
4252 fprintf_unfiltered (file,
4253 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
4254 GEN_REG_SAVE_MASK);
4255 fprintf_unfiltered (file,
4256 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
4257 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
4258 fprintf_unfiltered (file,
4259 "mips_dump_tdep: HI_REGNUM = %d\n",
4260 HI_REGNUM);
4261 fprintf_unfiltered (file,
4262 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
4263 fprintf_unfiltered (file,
4264 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
4265 fprintf_unfiltered (file,
4266 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
4267 XSTRING (IGNORE_HELPER_CALL (PC)));
4268 fprintf_unfiltered (file,
4269 "mips_dump_tdep: INIT_FRAME_PC # %s\n",
4270 XSTRING (INIT_FRAME_PC (FROMLEAF, PREV)));
4271 fprintf_unfiltered (file,
4272 "mips_dump_tdep: INIT_FRAME_PC_FIRST # %s\n",
4273 XSTRING (INIT_FRAME_PC_FIRST (FROMLEAF, PREV)));
4274 fprintf_unfiltered (file,
4275 "mips_dump_tdep: IN_SIGTRAMP # %s\n",
4276 XSTRING (IN_SIGTRAMP (PC, NAME)));
4277 fprintf_unfiltered (file,
4278 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
4279 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
4280 fprintf_unfiltered (file,
4281 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
4282 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
4283 fprintf_unfiltered (file,
4284 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
4285 fprintf_unfiltered (file,
4286 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
4287 LAST_EMBED_REGNUM);
4288 fprintf_unfiltered (file,
4289 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
4290 fprintf_unfiltered (file,
4291 "mips_dump_tdep: LO_REGNUM = %d\n",
4292 LO_REGNUM);
4293 #ifdef MACHINE_CPROC_FP_OFFSET
4294 fprintf_unfiltered (file,
4295 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
4296 MACHINE_CPROC_FP_OFFSET);
4297 #endif
4298 #ifdef MACHINE_CPROC_PC_OFFSET
4299 fprintf_unfiltered (file,
4300 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
4301 MACHINE_CPROC_PC_OFFSET);
4302 #endif
4303 #ifdef MACHINE_CPROC_SP_OFFSET
4304 fprintf_unfiltered (file,
4305 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
4306 MACHINE_CPROC_SP_OFFSET);
4307 #endif
4308 fprintf_unfiltered (file,
4309 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
4310 fprintf_unfiltered (file,
4311 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
4312 fprintf_unfiltered (file,
4313 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
4314 MIPS16_INSTLEN);
4315 fprintf_unfiltered (file,
4316 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
4317 fprintf_unfiltered (file,
4318 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
4319 fprintf_unfiltered (file,
4320 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
4321 fprintf_unfiltered (file,
4322 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
4323 MIPS_INSTLEN);
4324 fprintf_unfiltered (file,
4325 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
4326 MIPS_LAST_ARG_REGNUM,
4327 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
4328 fprintf_unfiltered (file,
4329 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
4330 MIPS_NUMREGS);
4331 fprintf_unfiltered (file,
4332 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
4333 fprintf_unfiltered (file,
4334 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
4335 MIPS_SAVED_REGSIZE);
4336 fprintf_unfiltered (file,
4337 "mips_dump_tdep: MSYMBOL_IS_SPECIAL = function?\n");
4338 fprintf_unfiltered (file,
4339 "mips_dump_tdep: MSYMBOL_SIZE # %s\n",
4340 XSTRING (MSYMBOL_SIZE (MSYM)));
4341 fprintf_unfiltered (file,
4342 "mips_dump_tdep: OP_LDFPR = used?\n");
4343 fprintf_unfiltered (file,
4344 "mips_dump_tdep: OP_LDGPR = used?\n");
4345 fprintf_unfiltered (file,
4346 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
4347 fprintf_unfiltered (file,
4348 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
4349 fprintf_unfiltered (file,
4350 "mips_dump_tdep: PRID_REGNUM = %d\n",
4351 PRID_REGNUM);
4352 fprintf_unfiltered (file,
4353 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
4354 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
4355 fprintf_unfiltered (file,
4356 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
4357 fprintf_unfiltered (file,
4358 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
4359 fprintf_unfiltered (file,
4360 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
4361 fprintf_unfiltered (file,
4362 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
4363 fprintf_unfiltered (file,
4364 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
4365 fprintf_unfiltered (file,
4366 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
4367 fprintf_unfiltered (file,
4368 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
4369 fprintf_unfiltered (file,
4370 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
4371 fprintf_unfiltered (file,
4372 "mips_dump_tdep: PROC_PC_REG = function?\n");
4373 fprintf_unfiltered (file,
4374 "mips_dump_tdep: PROC_REG_MASK = function?\n");
4375 fprintf_unfiltered (file,
4376 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
4377 fprintf_unfiltered (file,
4378 "mips_dump_tdep: PROC_SYMBOL = function?\n");
4379 fprintf_unfiltered (file,
4380 "mips_dump_tdep: PS_REGNUM = %d\n",
4381 PS_REGNUM);
4382 fprintf_unfiltered (file,
4383 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
4384 PUSH_FP_REGNUM);
4385 fprintf_unfiltered (file,
4386 "mips_dump_tdep: RA_REGNUM = %d\n",
4387 RA_REGNUM);
4388 fprintf_unfiltered (file,
4389 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
4390 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
4391 fprintf_unfiltered (file,
4392 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
4393 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
4394 fprintf_unfiltered (file,
4395 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
4396 fprintf_unfiltered (file,
4397 "mips_dump_tdep: ROUND_DOWN = function?\n");
4398 fprintf_unfiltered (file,
4399 "mips_dump_tdep: ROUND_UP = function?\n");
4400 #ifdef SAVED_BYTES
4401 fprintf_unfiltered (file,
4402 "mips_dump_tdep: SAVED_BYTES = %d\n",
4403 SAVED_BYTES);
4404 #endif
4405 #ifdef SAVED_FP
4406 fprintf_unfiltered (file,
4407 "mips_dump_tdep: SAVED_FP = %d\n",
4408 SAVED_FP);
4409 #endif
4410 #ifdef SAVED_PC
4411 fprintf_unfiltered (file,
4412 "mips_dump_tdep: SAVED_PC = %d\n",
4413 SAVED_PC);
4414 #endif
4415 fprintf_unfiltered (file,
4416 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
4417 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
4418 fprintf_unfiltered (file,
4419 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
4420 fprintf_unfiltered (file,
4421 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
4422 SIGFRAME_BASE);
4423 fprintf_unfiltered (file,
4424 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
4425 SIGFRAME_FPREGSAVE_OFF);
4426 fprintf_unfiltered (file,
4427 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
4428 SIGFRAME_PC_OFF);
4429 fprintf_unfiltered (file,
4430 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
4431 SIGFRAME_REGSAVE_OFF);
4432 fprintf_unfiltered (file,
4433 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
4434 SIGFRAME_REG_SIZE);
4435 fprintf_unfiltered (file,
4436 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
4437 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
4438 fprintf_unfiltered (file,
4439 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
4440 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
4441 fprintf_unfiltered (file,
4442 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P = %d\n",
4443 SOFTWARE_SINGLE_STEP_P);
4444 fprintf_unfiltered (file,
4445 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P = %d\n",
4446 SOFTWARE_SINGLE_STEP_P);
4447 fprintf_unfiltered (file,
4448 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
4449 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
4450 #ifdef STACK_END_ADDR
4451 fprintf_unfiltered (file,
4452 "mips_dump_tdep: STACK_END_ADDR = %d\n",
4453 STACK_END_ADDR);
4454 #endif
4455 fprintf_unfiltered (file,
4456 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
4457 XSTRING (STEP_SKIPS_DELAY (PC)));
4458 fprintf_unfiltered (file,
4459 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
4460 STEP_SKIPS_DELAY_P);
4461 fprintf_unfiltered (file,
4462 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
4463 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
4464 fprintf_unfiltered (file,
4465 "mips_dump_tdep: T9_REGNUM = %d\n",
4466 T9_REGNUM);
4467 fprintf_unfiltered (file,
4468 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
4469 fprintf_unfiltered (file,
4470 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
4471 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
4472 fprintf_unfiltered (file,
4473 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
4474 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
4475 fprintf_unfiltered (file,
4476 "mips_dump_tdep: TARGET_MIPS = used?\n");
4477 fprintf_unfiltered (file,
4478 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
4479 XSTRING (TM_PRINT_INSN_MACH));
4480 #ifdef TRACE_CLEAR
4481 fprintf_unfiltered (file,
4482 "mips_dump_tdep: TRACE_CLEAR # %s\n",
4483 XSTRING (TRACE_CLEAR (THREAD, STATE)));
4484 #endif
4485 #ifdef TRACE_FLAVOR
4486 fprintf_unfiltered (file,
4487 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
4488 TRACE_FLAVOR);
4489 #endif
4490 #ifdef TRACE_FLAVOR_SIZE
4491 fprintf_unfiltered (file,
4492 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
4493 TRACE_FLAVOR_SIZE);
4494 #endif
4495 #ifdef TRACE_SET
4496 fprintf_unfiltered (file,
4497 "mips_dump_tdep: TRACE_SET # %s\n",
4498 XSTRING (TRACE_SET (X,STATE)));
4499 #endif
4500 fprintf_unfiltered (file,
4501 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
4502 #ifdef UNUSED_REGNUM
4503 fprintf_unfiltered (file,
4504 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
4505 UNUSED_REGNUM);
4506 #endif
4507 fprintf_unfiltered (file,
4508 "mips_dump_tdep: V0_REGNUM = %d\n",
4509 V0_REGNUM);
4510 fprintf_unfiltered (file,
4511 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
4512 (long) VM_MIN_ADDRESS);
4513 #ifdef VX_NUM_REGS
4514 fprintf_unfiltered (file,
4515 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
4516 VX_NUM_REGS);
4517 #endif
4518 fprintf_unfiltered (file,
4519 "mips_dump_tdep: ZERO_REGNUM = %d\n",
4520 ZERO_REGNUM);
4521 fprintf_unfiltered (file,
4522 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
4523 _PROC_MAGIC_);
4524 }
4525
4526 void
4527 _initialize_mips_tdep (void)
4528 {
4529 static struct cmd_list_element *mipsfpulist = NULL;
4530 struct cmd_list_element *c;
4531
4532 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
4533 if (!tm_print_insn) /* Someone may have already set it */
4534 tm_print_insn = gdb_print_insn_mips;
4535
4536 /* Add root prefix command for all "set mips"/"show mips" commands */
4537 add_prefix_cmd ("mips", no_class, set_mips_command,
4538 "Various MIPS specific commands.",
4539 &setmipscmdlist, "set mips ", 0, &setlist);
4540
4541 add_prefix_cmd ("mips", no_class, show_mips_command,
4542 "Various MIPS specific commands.",
4543 &showmipscmdlist, "show mips ", 0, &showlist);
4544
4545 /* Allow the user to override the saved register size. */
4546 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
4547 class_obscure,
4548 size_enums,
4549 &mips_saved_regsize_string, "\
4550 Set size of general purpose registers saved on the stack.\n\
4551 This option can be set to one of:\n\
4552 32 - Force GDB to treat saved GP registers as 32-bit\n\
4553 64 - Force GDB to treat saved GP registers as 64-bit\n\
4554 auto - Allow GDB to use the target's default setting or autodetect the\n\
4555 saved GP register size from information contained in the executable.\n\
4556 (default: auto)",
4557 &setmipscmdlist),
4558 &showmipscmdlist);
4559
4560 /* Allow the user to override the argument stack size. */
4561 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
4562 class_obscure,
4563 size_enums,
4564 &mips_stack_argsize_string, "\
4565 Set the amount of stack space reserved for each argument.\n\
4566 This option can be set to one of:\n\
4567 32 - Force GDB to allocate 32-bit chunks per argument\n\
4568 64 - Force GDB to allocate 64-bit chunks per argument\n\
4569 auto - Allow GDB to determine the correct setting from the current\n\
4570 target and executable (default)",
4571 &setmipscmdlist),
4572 &showmipscmdlist);
4573
4574 /* Let the user turn off floating point and set the fence post for
4575 heuristic_proc_start. */
4576
4577 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
4578 "Set use of MIPS floating-point coprocessor.",
4579 &mipsfpulist, "set mipsfpu ", 0, &setlist);
4580 add_cmd ("single", class_support, set_mipsfpu_single_command,
4581 "Select single-precision MIPS floating-point coprocessor.",
4582 &mipsfpulist);
4583 add_cmd ("double", class_support, set_mipsfpu_double_command,
4584 "Select double-precision MIPS floating-point coprocessor.",
4585 &mipsfpulist);
4586 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
4587 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
4588 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
4589 add_cmd ("none", class_support, set_mipsfpu_none_command,
4590 "Select no MIPS floating-point coprocessor.",
4591 &mipsfpulist);
4592 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
4593 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
4594 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
4595 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
4596 "Select MIPS floating-point coprocessor automatically.",
4597 &mipsfpulist);
4598 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
4599 "Show current use of MIPS floating-point coprocessor target.",
4600 &showlist);
4601
4602 #if !GDB_MULTI_ARCH
4603 c = add_set_cmd ("processor", class_support, var_string_noescape,
4604 (char *) &tmp_mips_processor_type,
4605 "Set the type of MIPS processor in use.\n\
4606 Set this to be able to access processor-type-specific registers.\n\
4607 ",
4608 &setlist);
4609 c->function.cfunc = mips_set_processor_type_command;
4610 c = add_show_from_set (c, &showlist);
4611 c->function.cfunc = mips_show_processor_type_command;
4612
4613 tmp_mips_processor_type = strsave (DEFAULT_MIPS_TYPE);
4614 mips_set_processor_type_command (strsave (DEFAULT_MIPS_TYPE), 0);
4615 #endif
4616
4617 /* We really would like to have both "0" and "unlimited" work, but
4618 command.c doesn't deal with that. So make it a var_zinteger
4619 because the user can always use "999999" or some such for unlimited. */
4620 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
4621 (char *) &heuristic_fence_post,
4622 "\
4623 Set the distance searched for the start of a function.\n\
4624 If you are debugging a stripped executable, GDB needs to search through the\n\
4625 program for the start of a function. This command sets the distance of the\n\
4626 search. The only need to set it is when debugging a stripped executable.",
4627 &setlist);
4628 /* We need to throw away the frame cache when we set this, since it
4629 might change our ability to get backtraces. */
4630 c->function.sfunc = reinit_frame_cache_sfunc;
4631 add_show_from_set (c, &showlist);
4632
4633 /* Allow the user to control whether the upper bits of 64-bit
4634 addresses should be zeroed. */
4635 c = add_set_auto_boolean_cmd ("mask-address", no_class, &mask_address_var,
4636 "Set zeroing of upper 32 bits of 64-bit addresses.\n\
4637 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to allow GDB to determine\n\
4638 the correct value.\n",
4639 &setmipscmdlist);
4640 add_cmd ("mask-address", no_class, show_mask_address,
4641 "Show current mask-address value", &showmipscmdlist);
4642
4643 /* Allow the user to control the size of 32 bit registers within the
4644 raw remote packet. */
4645 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
4646 class_obscure,
4647 var_boolean,
4648 (char *)&mips64_transfers_32bit_regs_p, "\
4649 Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
4650 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
4651 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
4652 64 bits for others. Use \"off\" to disable compatibility mode",
4653 &setlist),
4654 &showlist);
4655
4656 /* Debug this files internals. */
4657 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
4658 &mips_debug, "Set mips debugging.\n\
4659 When non-zero, mips specific debugging is enabled.", &setdebuglist),
4660 &showdebuglist);
4661 }
4662
This page took 0.13439 seconds and 4 git commands to generate.