* mips-tdep.c (mips_eabi_push_dummy_call): When pushing floating
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 51 Franklin Street, Fifth Floor,
25 Boston, MA 02110-1301, USA. */
26
27 #include "defs.h"
28 #include "gdb_string.h"
29 #include "gdb_assert.h"
30 #include "frame.h"
31 #include "inferior.h"
32 #include "symtab.h"
33 #include "value.h"
34 #include "gdbcmd.h"
35 #include "language.h"
36 #include "gdbcore.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "gdbtypes.h"
40 #include "target.h"
41 #include "arch-utils.h"
42 #include "regcache.h"
43 #include "osabi.h"
44 #include "mips-tdep.h"
45 #include "block.h"
46 #include "reggroups.h"
47 #include "opcode/mips.h"
48 #include "elf/mips.h"
49 #include "elf-bfd.h"
50 #include "symcat.h"
51 #include "sim-regno.h"
52 #include "dis-asm.h"
53 #include "frame-unwind.h"
54 #include "frame-base.h"
55 #include "trad-frame.h"
56 #include "infcall.h"
57 #include "floatformat.h"
58 #include "remote.h"
59 #include "target-descriptions.h"
60
61 static const struct objfile_data *mips_pdr_data;
62
63 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
64
65 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
66 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
67 #define ST0_FR (1 << 26)
68
69 /* The sizes of floating point registers. */
70
71 enum
72 {
73 MIPS_FPU_SINGLE_REGSIZE = 4,
74 MIPS_FPU_DOUBLE_REGSIZE = 8
75 };
76
77
78 static const char *mips_abi_string;
79
80 static const char *mips_abi_strings[] = {
81 "auto",
82 "n32",
83 "o32",
84 "n64",
85 "o64",
86 "eabi32",
87 "eabi64",
88 NULL
89 };
90
91 /* Various MIPS ISA options (related to stack analysis) can be
92 overridden dynamically. Establish an enum/array for managing
93 them. */
94
95 static const char size_auto[] = "auto";
96 static const char size_32[] = "32";
97 static const char size_64[] = "64";
98
99 static const char *size_enums[] = {
100 size_auto,
101 size_32,
102 size_64,
103 0
104 };
105
106 /* Some MIPS boards don't support floating point while others only
107 support single-precision floating-point operations. */
108
109 enum mips_fpu_type
110 {
111 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
112 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
113 MIPS_FPU_NONE /* No floating point. */
114 };
115
116 #ifndef MIPS_DEFAULT_FPU_TYPE
117 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
118 #endif
119 static int mips_fpu_type_auto = 1;
120 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
121
122 static int mips_debug = 0;
123
124 /* Properties (for struct target_desc) describing the g/G packet
125 layout. */
126 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
127 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
128
129 /* MIPS specific per-architecture information */
130 struct gdbarch_tdep
131 {
132 /* from the elf header */
133 int elf_flags;
134
135 /* mips options */
136 enum mips_abi mips_abi;
137 enum mips_abi found_abi;
138 enum mips_fpu_type mips_fpu_type;
139 int mips_last_arg_regnum;
140 int mips_last_fp_arg_regnum;
141 int default_mask_address_p;
142 /* Is the target using 64-bit raw integer registers but only
143 storing a left-aligned 32-bit value in each? */
144 int mips64_transfers_32bit_regs_p;
145 /* Indexes for various registers. IRIX and embedded have
146 different values. This contains the "public" fields. Don't
147 add any that do not need to be public. */
148 const struct mips_regnum *regnum;
149 /* Register names table for the current register set. */
150 const char **mips_processor_reg_names;
151
152 /* The size of register data available from the target, if known.
153 This doesn't quite obsolete the manual
154 mips64_transfers_32bit_regs_p, since that is documented to force
155 left alignment even for big endian (very strange). */
156 int register_size_valid_p;
157 int register_size;
158 };
159
160 static int
161 n32n64_floatformat_always_valid (const struct floatformat *fmt,
162 const void *from)
163 {
164 return 1;
165 }
166
167 /* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
168 They are implemented as a pair of 64bit doubles where the high
169 part holds the result of the operation rounded to double, and
170 the low double holds the difference between the exact result and
171 the rounded result. So "high" + "low" contains the result with
172 added precision. Unfortunately, the floatformat structure used
173 by GDB is not powerful enough to describe this format. As a temporary
174 measure, we define a 128bit floatformat that only uses the high part.
175 We lose a bit of precision but that's probably the best we can do
176 for now with the current infrastructure. */
177
178 static const struct floatformat floatformat_n32n64_long_double_big =
179 {
180 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
181 floatformat_intbit_no,
182 "floatformat_n32n64_long_double_big",
183 n32n64_floatformat_always_valid
184 };
185
186 static const struct floatformat *floatformats_n32n64_long[BFD_ENDIAN_UNKNOWN] =
187 {
188 &floatformat_n32n64_long_double_big,
189 &floatformat_n32n64_long_double_big
190 };
191
192 const struct mips_regnum *
193 mips_regnum (struct gdbarch *gdbarch)
194 {
195 return gdbarch_tdep (gdbarch)->regnum;
196 }
197
198 static int
199 mips_fpa0_regnum (struct gdbarch *gdbarch)
200 {
201 return mips_regnum (gdbarch)->fp0 + 12;
202 }
203
204 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
205 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
206
207 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
208
209 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
210
211 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
212
213 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
214 functions to test, set, or clear bit 0 of addresses. */
215
216 static CORE_ADDR
217 is_mips16_addr (CORE_ADDR addr)
218 {
219 return ((addr) & 1);
220 }
221
222 static CORE_ADDR
223 unmake_mips16_addr (CORE_ADDR addr)
224 {
225 return ((addr) & ~(CORE_ADDR) 1);
226 }
227
228 /* Return the contents of register REGNUM as a signed integer. */
229
230 static LONGEST
231 read_signed_register (int regnum)
232 {
233 LONGEST val;
234 regcache_cooked_read_signed (current_regcache, regnum, &val);
235 return val;
236 }
237
238 static LONGEST
239 read_signed_register_pid (int regnum, ptid_t ptid)
240 {
241 ptid_t save_ptid;
242 LONGEST retval;
243
244 if (ptid_equal (ptid, inferior_ptid))
245 return read_signed_register (regnum);
246
247 save_ptid = inferior_ptid;
248
249 inferior_ptid = ptid;
250
251 retval = read_signed_register (regnum);
252
253 inferior_ptid = save_ptid;
254
255 return retval;
256 }
257
258 /* Return the MIPS ABI associated with GDBARCH. */
259 enum mips_abi
260 mips_abi (struct gdbarch *gdbarch)
261 {
262 return gdbarch_tdep (gdbarch)->mips_abi;
263 }
264
265 int
266 mips_isa_regsize (struct gdbarch *gdbarch)
267 {
268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
269
270 /* If we know how big the registers are, use that size. */
271 if (tdep->register_size_valid_p)
272 return tdep->register_size;
273
274 /* Fall back to the previous behavior. */
275 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
276 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
277 }
278
279 /* Return the currently configured (or set) saved register size. */
280
281 static const char *mips_abi_regsize_string = size_auto;
282
283 unsigned int
284 mips_abi_regsize (struct gdbarch *gdbarch)
285 {
286 if (mips_abi_regsize_string == size_auto)
287 switch (mips_abi (gdbarch))
288 {
289 case MIPS_ABI_EABI32:
290 case MIPS_ABI_O32:
291 return 4;
292 case MIPS_ABI_N32:
293 case MIPS_ABI_N64:
294 case MIPS_ABI_O64:
295 case MIPS_ABI_EABI64:
296 return 8;
297 case MIPS_ABI_UNKNOWN:
298 case MIPS_ABI_LAST:
299 default:
300 internal_error (__FILE__, __LINE__, _("bad switch"));
301 }
302 else if (mips_abi_regsize_string == size_64)
303 return 8;
304 else /* if (mips_abi_regsize_string == size_32) */
305 return 4;
306 }
307
308 /* Functions for setting and testing a bit in a minimal symbol that
309 marks it as 16-bit function. The MSB of the minimal symbol's
310 "info" field is used for this purpose.
311
312 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
313 i.e. refers to a 16-bit function, and sets a "special" bit in a
314 minimal symbol to mark it as a 16-bit function
315
316 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
317
318 static void
319 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
320 {
321 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
322 {
323 MSYMBOL_INFO (msym) = (char *)
324 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
325 SYMBOL_VALUE_ADDRESS (msym) |= 1;
326 }
327 }
328
329 static int
330 msymbol_is_special (struct minimal_symbol *msym)
331 {
332 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
333 }
334
335 /* XFER a value from the big/little/left end of the register.
336 Depending on the size of the value it might occupy the entire
337 register or just part of it. Make an allowance for this, aligning
338 things accordingly. */
339
340 static void
341 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
342 enum bfd_endian endian, gdb_byte *in,
343 const gdb_byte *out, int buf_offset)
344 {
345 int reg_offset = 0;
346 gdb_assert (reg_num >= NUM_REGS);
347 /* Need to transfer the left or right part of the register, based on
348 the targets byte order. */
349 switch (endian)
350 {
351 case BFD_ENDIAN_BIG:
352 reg_offset = register_size (current_gdbarch, reg_num) - length;
353 break;
354 case BFD_ENDIAN_LITTLE:
355 reg_offset = 0;
356 break;
357 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
358 reg_offset = 0;
359 break;
360 default:
361 internal_error (__FILE__, __LINE__, _("bad switch"));
362 }
363 if (mips_debug)
364 fprintf_unfiltered (gdb_stderr,
365 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
366 reg_num, reg_offset, buf_offset, length);
367 if (mips_debug && out != NULL)
368 {
369 int i;
370 fprintf_unfiltered (gdb_stdlog, "out ");
371 for (i = 0; i < length; i++)
372 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
373 }
374 if (in != NULL)
375 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
376 in + buf_offset);
377 if (out != NULL)
378 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
379 out + buf_offset);
380 if (mips_debug && in != NULL)
381 {
382 int i;
383 fprintf_unfiltered (gdb_stdlog, "in ");
384 for (i = 0; i < length; i++)
385 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
386 }
387 if (mips_debug)
388 fprintf_unfiltered (gdb_stdlog, "\n");
389 }
390
391 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
392 compatiblity mode. A return value of 1 means that we have
393 physical 64-bit registers, but should treat them as 32-bit registers. */
394
395 static int
396 mips2_fp_compat (void)
397 {
398 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
399 meaningful. */
400 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) ==
401 4)
402 return 0;
403
404 #if 0
405 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
406 in all the places we deal with FP registers. PR gdb/413. */
407 /* Otherwise check the FR bit in the status register - it controls
408 the FP compatiblity mode. If it is clear we are in compatibility
409 mode. */
410 if ((read_register (MIPS_PS_REGNUM) & ST0_FR) == 0)
411 return 1;
412 #endif
413
414 return 0;
415 }
416
417 /* The amount of space reserved on the stack for registers. This is
418 different to MIPS_ABI_REGSIZE as it determines the alignment of
419 data allocated after the registers have run out. */
420
421 static const char *mips_stack_argsize_string = size_auto;
422
423 static unsigned int
424 mips_stack_argsize (struct gdbarch *gdbarch)
425 {
426 if (mips_stack_argsize_string == size_auto)
427 return mips_abi_regsize (gdbarch);
428 else if (mips_stack_argsize_string == size_64)
429 return 8;
430 else /* if (mips_stack_argsize_string == size_32) */
431 return 4;
432 }
433
434 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
435
436 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
437
438 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
439
440 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
441
442 static struct type *mips_float_register_type (void);
443 static struct type *mips_double_register_type (void);
444
445 /* The list of available "set mips " and "show mips " commands */
446
447 static struct cmd_list_element *setmipscmdlist = NULL;
448 static struct cmd_list_element *showmipscmdlist = NULL;
449
450 /* Integer registers 0 thru 31 are handled explicitly by
451 mips_register_name(). Processor specific registers 32 and above
452 are listed in the following tables. */
453
454 enum
455 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
456
457 /* Generic MIPS. */
458
459 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
460 "sr", "lo", "hi", "bad", "cause", "pc",
461 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
462 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
463 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
464 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
465 "fsr", "fir", "" /*"fp" */ , "",
466 "", "", "", "", "", "", "", "",
467 "", "", "", "", "", "", "", "",
468 };
469
470 /* Names of IDT R3041 registers. */
471
472 static const char *mips_r3041_reg_names[] = {
473 "sr", "lo", "hi", "bad", "cause", "pc",
474 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
475 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
476 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
477 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
478 "fsr", "fir", "", /*"fp" */ "",
479 "", "", "bus", "ccfg", "", "", "", "",
480 "", "", "port", "cmp", "", "", "epc", "prid",
481 };
482
483 /* Names of tx39 registers. */
484
485 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
486 "sr", "lo", "hi", "bad", "cause", "pc",
487 "", "", "", "", "", "", "", "",
488 "", "", "", "", "", "", "", "",
489 "", "", "", "", "", "", "", "",
490 "", "", "", "", "", "", "", "",
491 "", "", "", "",
492 "", "", "", "", "", "", "", "",
493 "", "", "config", "cache", "debug", "depc", "epc", ""
494 };
495
496 /* Names of IRIX registers. */
497 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
498 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
499 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
500 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
501 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
502 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
503 };
504
505
506 /* Return the name of the register corresponding to REGNO. */
507 static const char *
508 mips_register_name (int regno)
509 {
510 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
511 /* GPR names for all ABIs other than n32/n64. */
512 static char *mips_gpr_names[] = {
513 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
514 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
515 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
516 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
517 };
518
519 /* GPR names for n32 and n64 ABIs. */
520 static char *mips_n32_n64_gpr_names[] = {
521 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
522 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
523 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
524 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
525 };
526
527 enum mips_abi abi = mips_abi (current_gdbarch);
528
529 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
530 don't make the raw register names visible. */
531 int rawnum = regno % NUM_REGS;
532 if (regno < NUM_REGS)
533 return "";
534
535 /* The MIPS integer registers are always mapped from 0 to 31. The
536 names of the registers (which reflects the conventions regarding
537 register use) vary depending on the ABI. */
538 if (0 <= rawnum && rawnum < 32)
539 {
540 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
541 return mips_n32_n64_gpr_names[rawnum];
542 else
543 return mips_gpr_names[rawnum];
544 }
545 else if (32 <= rawnum && rawnum < NUM_REGS)
546 {
547 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
548 return tdep->mips_processor_reg_names[rawnum - 32];
549 }
550 else
551 internal_error (__FILE__, __LINE__,
552 _("mips_register_name: bad register number %d"), rawnum);
553 }
554
555 /* Return the groups that a MIPS register can be categorised into. */
556
557 static int
558 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
559 struct reggroup *reggroup)
560 {
561 int vector_p;
562 int float_p;
563 int raw_p;
564 int rawnum = regnum % NUM_REGS;
565 int pseudo = regnum / NUM_REGS;
566 if (reggroup == all_reggroup)
567 return pseudo;
568 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
569 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
570 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
571 (gdbarch), as not all architectures are multi-arch. */
572 raw_p = rawnum < NUM_REGS;
573 if (REGISTER_NAME (regnum) == NULL || REGISTER_NAME (regnum)[0] == '\0')
574 return 0;
575 if (reggroup == float_reggroup)
576 return float_p && pseudo;
577 if (reggroup == vector_reggroup)
578 return vector_p && pseudo;
579 if (reggroup == general_reggroup)
580 return (!vector_p && !float_p) && pseudo;
581 /* Save the pseudo registers. Need to make certain that any code
582 extracting register values from a saved register cache also uses
583 pseudo registers. */
584 if (reggroup == save_reggroup)
585 return raw_p && pseudo;
586 /* Restore the same pseudo register. */
587 if (reggroup == restore_reggroup)
588 return raw_p && pseudo;
589 return 0;
590 }
591
592 /* Map the symbol table registers which live in the range [1 *
593 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
594 registers. Take care of alignment and size problems. */
595
596 static void
597 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
598 int cookednum, gdb_byte *buf)
599 {
600 int rawnum = cookednum % NUM_REGS;
601 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
602 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
603 regcache_raw_read (regcache, rawnum, buf);
604 else if (register_size (gdbarch, rawnum) >
605 register_size (gdbarch, cookednum))
606 {
607 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
608 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
609 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
610 else
611 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
612 }
613 else
614 internal_error (__FILE__, __LINE__, _("bad register size"));
615 }
616
617 static void
618 mips_pseudo_register_write (struct gdbarch *gdbarch,
619 struct regcache *regcache, int cookednum,
620 const gdb_byte *buf)
621 {
622 int rawnum = cookednum % NUM_REGS;
623 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
624 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
625 regcache_raw_write (regcache, rawnum, buf);
626 else if (register_size (gdbarch, rawnum) >
627 register_size (gdbarch, cookednum))
628 {
629 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
630 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
631 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
632 else
633 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
634 }
635 else
636 internal_error (__FILE__, __LINE__, _("bad register size"));
637 }
638
639 /* Table to translate MIPS16 register field to actual register number. */
640 static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
641
642 /* Heuristic_proc_start may hunt through the text section for a long
643 time across a 2400 baud serial line. Allows the user to limit this
644 search. */
645
646 static unsigned int heuristic_fence_post = 0;
647
648 /* Number of bytes of storage in the actual machine representation for
649 register N. NOTE: This defines the pseudo register type so need to
650 rebuild the architecture vector. */
651
652 static int mips64_transfers_32bit_regs_p = 0;
653
654 static void
655 set_mips64_transfers_32bit_regs (char *args, int from_tty,
656 struct cmd_list_element *c)
657 {
658 struct gdbarch_info info;
659 gdbarch_info_init (&info);
660 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
661 instead of relying on globals. Doing that would let generic code
662 handle the search for this specific architecture. */
663 if (!gdbarch_update_p (info))
664 {
665 mips64_transfers_32bit_regs_p = 0;
666 error (_("32-bit compatibility mode not supported"));
667 }
668 }
669
670 /* Convert to/from a register and the corresponding memory value. */
671
672 static int
673 mips_convert_register_p (int regnum, struct type *type)
674 {
675 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
676 && register_size (current_gdbarch, regnum) == 4
677 && (regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
678 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32
679 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
680 }
681
682 static void
683 mips_register_to_value (struct frame_info *frame, int regnum,
684 struct type *type, gdb_byte *to)
685 {
686 get_frame_register (frame, regnum + 0, to + 4);
687 get_frame_register (frame, regnum + 1, to + 0);
688 }
689
690 static void
691 mips_value_to_register (struct frame_info *frame, int regnum,
692 struct type *type, const gdb_byte *from)
693 {
694 put_frame_register (frame, regnum + 0, from + 4);
695 put_frame_register (frame, regnum + 1, from + 0);
696 }
697
698 /* Return the GDB type object for the "standard" data type of data in
699 register REG. */
700
701 static struct type *
702 mips_register_type (struct gdbarch *gdbarch, int regnum)
703 {
704 gdb_assert (regnum >= 0 && regnum < 2 * NUM_REGS);
705 if ((regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
706 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32)
707 {
708 /* The floating-point registers raw, or cooked, always match
709 mips_isa_regsize(), and also map 1:1, byte for byte. */
710 if (mips_isa_regsize (gdbarch) == 4)
711 return builtin_type_ieee_single;
712 else
713 return builtin_type_ieee_double;
714 }
715 else if (regnum < NUM_REGS)
716 {
717 /* The raw or ISA registers. These are all sized according to
718 the ISA regsize. */
719 if (mips_isa_regsize (gdbarch) == 4)
720 return builtin_type_int32;
721 else
722 return builtin_type_int64;
723 }
724 else
725 {
726 /* The cooked or ABI registers. These are sized according to
727 the ABI (with a few complications). */
728 if (regnum >= (NUM_REGS
729 + mips_regnum (current_gdbarch)->fp_control_status)
730 && regnum <= NUM_REGS + MIPS_LAST_EMBED_REGNUM)
731 /* The pseudo/cooked view of the embedded registers is always
732 32-bit. The raw view is handled below. */
733 return builtin_type_int32;
734 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
735 /* The target, while possibly using a 64-bit register buffer,
736 is only transfering 32-bits of each integer register.
737 Reflect this in the cooked/pseudo (ABI) register value. */
738 return builtin_type_int32;
739 else if (mips_abi_regsize (gdbarch) == 4)
740 /* The ABI is restricted to 32-bit registers (the ISA could be
741 32- or 64-bit). */
742 return builtin_type_int32;
743 else
744 /* 64-bit ABI. */
745 return builtin_type_int64;
746 }
747 }
748
749 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
750
751 static CORE_ADDR
752 mips_read_sp (void)
753 {
754 return read_signed_register (MIPS_SP_REGNUM);
755 }
756
757 /* Should the upper word of 64-bit addresses be zeroed? */
758 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
759
760 static int
761 mips_mask_address_p (struct gdbarch_tdep *tdep)
762 {
763 switch (mask_address_var)
764 {
765 case AUTO_BOOLEAN_TRUE:
766 return 1;
767 case AUTO_BOOLEAN_FALSE:
768 return 0;
769 break;
770 case AUTO_BOOLEAN_AUTO:
771 return tdep->default_mask_address_p;
772 default:
773 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
774 return -1;
775 }
776 }
777
778 static void
779 show_mask_address (struct ui_file *file, int from_tty,
780 struct cmd_list_element *c, const char *value)
781 {
782 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
783
784 deprecated_show_value_hack (file, from_tty, c, value);
785 switch (mask_address_var)
786 {
787 case AUTO_BOOLEAN_TRUE:
788 printf_filtered ("The 32 bit mips address mask is enabled\n");
789 break;
790 case AUTO_BOOLEAN_FALSE:
791 printf_filtered ("The 32 bit mips address mask is disabled\n");
792 break;
793 case AUTO_BOOLEAN_AUTO:
794 printf_filtered
795 ("The 32 bit address mask is set automatically. Currently %s\n",
796 mips_mask_address_p (tdep) ? "enabled" : "disabled");
797 break;
798 default:
799 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
800 break;
801 }
802 }
803
804 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
805
806 int
807 mips_pc_is_mips16 (CORE_ADDR memaddr)
808 {
809 struct minimal_symbol *sym;
810
811 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
812 if (is_mips16_addr (memaddr))
813 return 1;
814
815 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
816 the high bit of the info field. Use this to decide if the function is
817 MIPS16 or normal MIPS. */
818 sym = lookup_minimal_symbol_by_pc (memaddr);
819 if (sym)
820 return msymbol_is_special (sym);
821 else
822 return 0;
823 }
824
825 /* MIPS believes that the PC has a sign extended value. Perhaps the
826 all registers should be sign extended for simplicity? */
827
828 static CORE_ADDR
829 mips_read_pc (ptid_t ptid)
830 {
831 return read_signed_register_pid (mips_regnum (current_gdbarch)->pc, ptid);
832 }
833
834 static CORE_ADDR
835 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
836 {
837 return frame_unwind_register_signed (next_frame,
838 NUM_REGS + mips_regnum (gdbarch)->pc);
839 }
840
841 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
842 dummy frame. The frame ID's base needs to match the TOS value
843 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
844 breakpoint. */
845
846 static struct frame_id
847 mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
848 {
849 return frame_id_build (frame_unwind_register_signed (next_frame, NUM_REGS + MIPS_SP_REGNUM),
850 frame_pc_unwind (next_frame));
851 }
852
853 static void
854 mips_write_pc (CORE_ADDR pc, ptid_t ptid)
855 {
856 write_register_pid (mips_regnum (current_gdbarch)->pc, pc, ptid);
857 }
858
859 /* Fetch and return instruction from the specified location. If the PC
860 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
861
862 static ULONGEST
863 mips_fetch_instruction (CORE_ADDR addr)
864 {
865 gdb_byte buf[MIPS_INSN32_SIZE];
866 int instlen;
867 int status;
868
869 if (mips_pc_is_mips16 (addr))
870 {
871 instlen = MIPS_INSN16_SIZE;
872 addr = unmake_mips16_addr (addr);
873 }
874 else
875 instlen = MIPS_INSN32_SIZE;
876 status = read_memory_nobpt (addr, buf, instlen);
877 if (status)
878 memory_error (status, addr);
879 return extract_unsigned_integer (buf, instlen);
880 }
881
882 /* These the fields of 32 bit mips instructions */
883 #define mips32_op(x) (x >> 26)
884 #define itype_op(x) (x >> 26)
885 #define itype_rs(x) ((x >> 21) & 0x1f)
886 #define itype_rt(x) ((x >> 16) & 0x1f)
887 #define itype_immediate(x) (x & 0xffff)
888
889 #define jtype_op(x) (x >> 26)
890 #define jtype_target(x) (x & 0x03ffffff)
891
892 #define rtype_op(x) (x >> 26)
893 #define rtype_rs(x) ((x >> 21) & 0x1f)
894 #define rtype_rt(x) ((x >> 16) & 0x1f)
895 #define rtype_rd(x) ((x >> 11) & 0x1f)
896 #define rtype_shamt(x) ((x >> 6) & 0x1f)
897 #define rtype_funct(x) (x & 0x3f)
898
899 static LONGEST
900 mips32_relative_offset (ULONGEST inst)
901 {
902 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
903 }
904
905 /* Determine where to set a single step breakpoint while considering
906 branch prediction. */
907 static CORE_ADDR
908 mips32_next_pc (CORE_ADDR pc)
909 {
910 unsigned long inst;
911 int op;
912 inst = mips_fetch_instruction (pc);
913 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
914 {
915 if (itype_op (inst) >> 2 == 5)
916 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
917 {
918 op = (itype_op (inst) & 0x03);
919 switch (op)
920 {
921 case 0: /* BEQL */
922 goto equal_branch;
923 case 1: /* BNEL */
924 goto neq_branch;
925 case 2: /* BLEZL */
926 goto less_branch;
927 case 3: /* BGTZ */
928 goto greater_branch;
929 default:
930 pc += 4;
931 }
932 }
933 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
934 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
935 {
936 int tf = itype_rt (inst) & 0x01;
937 int cnum = itype_rt (inst) >> 2;
938 int fcrcs =
939 read_signed_register (mips_regnum (current_gdbarch)->
940 fp_control_status);
941 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
942
943 if (((cond >> cnum) & 0x01) == tf)
944 pc += mips32_relative_offset (inst) + 4;
945 else
946 pc += 8;
947 }
948 else
949 pc += 4; /* Not a branch, next instruction is easy */
950 }
951 else
952 { /* This gets way messy */
953
954 /* Further subdivide into SPECIAL, REGIMM and other */
955 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
956 {
957 case 0: /* SPECIAL */
958 op = rtype_funct (inst);
959 switch (op)
960 {
961 case 8: /* JR */
962 case 9: /* JALR */
963 /* Set PC to that address */
964 pc = read_signed_register (rtype_rs (inst));
965 break;
966 default:
967 pc += 4;
968 }
969
970 break; /* end SPECIAL */
971 case 1: /* REGIMM */
972 {
973 op = itype_rt (inst); /* branch condition */
974 switch (op)
975 {
976 case 0: /* BLTZ */
977 case 2: /* BLTZL */
978 case 16: /* BLTZAL */
979 case 18: /* BLTZALL */
980 less_branch:
981 if (read_signed_register (itype_rs (inst)) < 0)
982 pc += mips32_relative_offset (inst) + 4;
983 else
984 pc += 8; /* after the delay slot */
985 break;
986 case 1: /* BGEZ */
987 case 3: /* BGEZL */
988 case 17: /* BGEZAL */
989 case 19: /* BGEZALL */
990 if (read_signed_register (itype_rs (inst)) >= 0)
991 pc += mips32_relative_offset (inst) + 4;
992 else
993 pc += 8; /* after the delay slot */
994 break;
995 /* All of the other instructions in the REGIMM category */
996 default:
997 pc += 4;
998 }
999 }
1000 break; /* end REGIMM */
1001 case 2: /* J */
1002 case 3: /* JAL */
1003 {
1004 unsigned long reg;
1005 reg = jtype_target (inst) << 2;
1006 /* Upper four bits get never changed... */
1007 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1008 }
1009 break;
1010 /* FIXME case JALX : */
1011 {
1012 unsigned long reg;
1013 reg = jtype_target (inst) << 2;
1014 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
1015 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1016 }
1017 break; /* The new PC will be alternate mode */
1018 case 4: /* BEQ, BEQL */
1019 equal_branch:
1020 if (read_signed_register (itype_rs (inst)) ==
1021 read_signed_register (itype_rt (inst)))
1022 pc += mips32_relative_offset (inst) + 4;
1023 else
1024 pc += 8;
1025 break;
1026 case 5: /* BNE, BNEL */
1027 neq_branch:
1028 if (read_signed_register (itype_rs (inst)) !=
1029 read_signed_register (itype_rt (inst)))
1030 pc += mips32_relative_offset (inst) + 4;
1031 else
1032 pc += 8;
1033 break;
1034 case 6: /* BLEZ, BLEZL */
1035 if (read_signed_register (itype_rs (inst)) <= 0)
1036 pc += mips32_relative_offset (inst) + 4;
1037 else
1038 pc += 8;
1039 break;
1040 case 7:
1041 default:
1042 greater_branch: /* BGTZ, BGTZL */
1043 if (read_signed_register (itype_rs (inst)) > 0)
1044 pc += mips32_relative_offset (inst) + 4;
1045 else
1046 pc += 8;
1047 break;
1048 } /* switch */
1049 } /* else */
1050 return pc;
1051 } /* mips32_next_pc */
1052
1053 /* Decoding the next place to set a breakpoint is irregular for the
1054 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1055 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1056 We dont want to set a single step instruction on the extend instruction
1057 either.
1058 */
1059
1060 /* Lots of mips16 instruction formats */
1061 /* Predicting jumps requires itype,ritype,i8type
1062 and their extensions extItype,extritype,extI8type
1063 */
1064 enum mips16_inst_fmts
1065 {
1066 itype, /* 0 immediate 5,10 */
1067 ritype, /* 1 5,3,8 */
1068 rrtype, /* 2 5,3,3,5 */
1069 rritype, /* 3 5,3,3,5 */
1070 rrrtype, /* 4 5,3,3,3,2 */
1071 rriatype, /* 5 5,3,3,1,4 */
1072 shifttype, /* 6 5,3,3,3,2 */
1073 i8type, /* 7 5,3,8 */
1074 i8movtype, /* 8 5,3,3,5 */
1075 i8mov32rtype, /* 9 5,3,5,3 */
1076 i64type, /* 10 5,3,8 */
1077 ri64type, /* 11 5,3,3,5 */
1078 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1079 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1080 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1081 extRRItype, /* 15 5,5,5,5,3,3,5 */
1082 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1083 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1084 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1085 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1086 extRi64type, /* 20 5,6,5,5,3,3,5 */
1087 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1088 };
1089 /* I am heaping all the fields of the formats into one structure and
1090 then, only the fields which are involved in instruction extension */
1091 struct upk_mips16
1092 {
1093 CORE_ADDR offset;
1094 unsigned int regx; /* Function in i8 type */
1095 unsigned int regy;
1096 };
1097
1098
1099 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1100 for the bits which make up the immediatate extension. */
1101
1102 static CORE_ADDR
1103 extended_offset (unsigned int extension)
1104 {
1105 CORE_ADDR value;
1106 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1107 value = value << 6;
1108 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1109 value = value << 5;
1110 value |= extension & 0x01f; /* extract 4:0 */
1111 return value;
1112 }
1113
1114 /* Only call this function if you know that this is an extendable
1115 instruction, It wont malfunction, but why make excess remote memory references?
1116 If the immediate operands get sign extended or somthing, do it after
1117 the extension is performed.
1118 */
1119 /* FIXME: Every one of these cases needs to worry about sign extension
1120 when the offset is to be used in relative addressing */
1121
1122
1123 static unsigned int
1124 fetch_mips_16 (CORE_ADDR pc)
1125 {
1126 gdb_byte buf[8];
1127 pc &= 0xfffffffe; /* clear the low order bit */
1128 target_read_memory (pc, buf, 2);
1129 return extract_unsigned_integer (buf, 2);
1130 }
1131
1132 static void
1133 unpack_mips16 (CORE_ADDR pc,
1134 unsigned int extension,
1135 unsigned int inst,
1136 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
1137 {
1138 CORE_ADDR offset;
1139 int regx;
1140 int regy;
1141 switch (insn_format)
1142 {
1143 case itype:
1144 {
1145 CORE_ADDR value;
1146 if (extension)
1147 {
1148 value = extended_offset (extension);
1149 value = value << 11; /* rom for the original value */
1150 value |= inst & 0x7ff; /* eleven bits from instruction */
1151 }
1152 else
1153 {
1154 value = inst & 0x7ff;
1155 /* FIXME : Consider sign extension */
1156 }
1157 offset = value;
1158 regx = -1;
1159 regy = -1;
1160 }
1161 break;
1162 case ritype:
1163 case i8type:
1164 { /* A register identifier and an offset */
1165 /* Most of the fields are the same as I type but the
1166 immediate value is of a different length */
1167 CORE_ADDR value;
1168 if (extension)
1169 {
1170 value = extended_offset (extension);
1171 value = value << 8; /* from the original instruction */
1172 value |= inst & 0xff; /* eleven bits from instruction */
1173 regx = (extension >> 8) & 0x07; /* or i8 funct */
1174 if (value & 0x4000) /* test the sign bit , bit 26 */
1175 {
1176 value &= ~0x3fff; /* remove the sign bit */
1177 value = -value;
1178 }
1179 }
1180 else
1181 {
1182 value = inst & 0xff; /* 8 bits */
1183 regx = (inst >> 8) & 0x07; /* or i8 funct */
1184 /* FIXME: Do sign extension , this format needs it */
1185 if (value & 0x80) /* THIS CONFUSES ME */
1186 {
1187 value &= 0xef; /* remove the sign bit */
1188 value = -value;
1189 }
1190 }
1191 offset = value;
1192 regy = -1;
1193 break;
1194 }
1195 case jalxtype:
1196 {
1197 unsigned long value;
1198 unsigned int nexthalf;
1199 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1200 value = value << 16;
1201 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1202 value |= nexthalf;
1203 offset = value;
1204 regx = -1;
1205 regy = -1;
1206 break;
1207 }
1208 default:
1209 internal_error (__FILE__, __LINE__, _("bad switch"));
1210 }
1211 upk->offset = offset;
1212 upk->regx = regx;
1213 upk->regy = regy;
1214 }
1215
1216
1217 static CORE_ADDR
1218 add_offset_16 (CORE_ADDR pc, int offset)
1219 {
1220 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
1221 }
1222
1223 static CORE_ADDR
1224 extended_mips16_next_pc (CORE_ADDR pc,
1225 unsigned int extension, unsigned int insn)
1226 {
1227 int op = (insn >> 11);
1228 switch (op)
1229 {
1230 case 2: /* Branch */
1231 {
1232 CORE_ADDR offset;
1233 struct upk_mips16 upk;
1234 unpack_mips16 (pc, extension, insn, itype, &upk);
1235 offset = upk.offset;
1236 if (offset & 0x800)
1237 {
1238 offset &= 0xeff;
1239 offset = -offset;
1240 }
1241 pc += (offset << 1) + 2;
1242 break;
1243 }
1244 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1245 {
1246 struct upk_mips16 upk;
1247 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1248 pc = add_offset_16 (pc, upk.offset);
1249 if ((insn >> 10) & 0x01) /* Exchange mode */
1250 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1251 else
1252 pc |= 0x01;
1253 break;
1254 }
1255 case 4: /* beqz */
1256 {
1257 struct upk_mips16 upk;
1258 int reg;
1259 unpack_mips16 (pc, extension, insn, ritype, &upk);
1260 reg = read_signed_register (upk.regx);
1261 if (reg == 0)
1262 pc += (upk.offset << 1) + 2;
1263 else
1264 pc += 2;
1265 break;
1266 }
1267 case 5: /* bnez */
1268 {
1269 struct upk_mips16 upk;
1270 int reg;
1271 unpack_mips16 (pc, extension, insn, ritype, &upk);
1272 reg = read_signed_register (upk.regx);
1273 if (reg != 0)
1274 pc += (upk.offset << 1) + 2;
1275 else
1276 pc += 2;
1277 break;
1278 }
1279 case 12: /* I8 Formats btez btnez */
1280 {
1281 struct upk_mips16 upk;
1282 int reg;
1283 unpack_mips16 (pc, extension, insn, i8type, &upk);
1284 /* upk.regx contains the opcode */
1285 reg = read_signed_register (24); /* Test register is 24 */
1286 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1287 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1288 /* pc = add_offset_16(pc,upk.offset) ; */
1289 pc += (upk.offset << 1) + 2;
1290 else
1291 pc += 2;
1292 break;
1293 }
1294 case 29: /* RR Formats JR, JALR, JALR-RA */
1295 {
1296 struct upk_mips16 upk;
1297 /* upk.fmt = rrtype; */
1298 op = insn & 0x1f;
1299 if (op == 0)
1300 {
1301 int reg;
1302 upk.regx = (insn >> 8) & 0x07;
1303 upk.regy = (insn >> 5) & 0x07;
1304 switch (upk.regy)
1305 {
1306 case 0:
1307 reg = upk.regx;
1308 break;
1309 case 1:
1310 reg = 31;
1311 break; /* Function return instruction */
1312 case 2:
1313 reg = upk.regx;
1314 break;
1315 default:
1316 reg = 31;
1317 break; /* BOGUS Guess */
1318 }
1319 pc = read_signed_register (reg);
1320 }
1321 else
1322 pc += 2;
1323 break;
1324 }
1325 case 30:
1326 /* This is an instruction extension. Fetch the real instruction
1327 (which follows the extension) and decode things based on
1328 that. */
1329 {
1330 pc += 2;
1331 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1332 break;
1333 }
1334 default:
1335 {
1336 pc += 2;
1337 break;
1338 }
1339 }
1340 return pc;
1341 }
1342
1343 static CORE_ADDR
1344 mips16_next_pc (CORE_ADDR pc)
1345 {
1346 unsigned int insn = fetch_mips_16 (pc);
1347 return extended_mips16_next_pc (pc, 0, insn);
1348 }
1349
1350 /* The mips_next_pc function supports single_step when the remote
1351 target monitor or stub is not developed enough to do a single_step.
1352 It works by decoding the current instruction and predicting where a
1353 branch will go. This isnt hard because all the data is available.
1354 The MIPS32 and MIPS16 variants are quite different */
1355 static CORE_ADDR
1356 mips_next_pc (CORE_ADDR pc)
1357 {
1358 if (pc & 0x01)
1359 return mips16_next_pc (pc);
1360 else
1361 return mips32_next_pc (pc);
1362 }
1363
1364 struct mips_frame_cache
1365 {
1366 CORE_ADDR base;
1367 struct trad_frame_saved_reg *saved_regs;
1368 };
1369
1370 /* Set a register's saved stack address in temp_saved_regs. If an
1371 address has already been set for this register, do nothing; this
1372 way we will only recognize the first save of a given register in a
1373 function prologue.
1374
1375 For simplicity, save the address in both [0 .. NUM_REGS) and
1376 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1377 is used as it is only second range (the ABI instead of ISA
1378 registers) that comes into play when finding saved registers in a
1379 frame. */
1380
1381 static void
1382 set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1383 CORE_ADDR offset)
1384 {
1385 if (this_cache != NULL
1386 && this_cache->saved_regs[regnum].addr == -1)
1387 {
1388 this_cache->saved_regs[regnum + 0 * NUM_REGS].addr = offset;
1389 this_cache->saved_regs[regnum + 1 * NUM_REGS].addr = offset;
1390 }
1391 }
1392
1393
1394 /* Fetch the immediate value from a MIPS16 instruction.
1395 If the previous instruction was an EXTEND, use it to extend
1396 the upper bits of the immediate value. This is a helper function
1397 for mips16_scan_prologue. */
1398
1399 static int
1400 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1401 unsigned short inst, /* current instruction */
1402 int nbits, /* number of bits in imm field */
1403 int scale, /* scale factor to be applied to imm */
1404 int is_signed) /* is the imm field signed? */
1405 {
1406 int offset;
1407
1408 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1409 {
1410 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1411 if (offset & 0x8000) /* check for negative extend */
1412 offset = 0 - (0x10000 - (offset & 0xffff));
1413 return offset | (inst & 0x1f);
1414 }
1415 else
1416 {
1417 int max_imm = 1 << nbits;
1418 int mask = max_imm - 1;
1419 int sign_bit = max_imm >> 1;
1420
1421 offset = inst & mask;
1422 if (is_signed && (offset & sign_bit))
1423 offset = 0 - (max_imm - offset);
1424 return offset * scale;
1425 }
1426 }
1427
1428
1429 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1430 the associated FRAME_CACHE if not null.
1431 Return the address of the first instruction past the prologue. */
1432
1433 static CORE_ADDR
1434 mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1435 struct frame_info *next_frame,
1436 struct mips_frame_cache *this_cache)
1437 {
1438 CORE_ADDR cur_pc;
1439 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1440 CORE_ADDR sp;
1441 long frame_offset = 0; /* Size of stack frame. */
1442 long frame_adjust = 0; /* Offset of FP from SP. */
1443 int frame_reg = MIPS_SP_REGNUM;
1444 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1445 unsigned inst = 0; /* current instruction */
1446 unsigned entry_inst = 0; /* the entry instruction */
1447 int reg, offset;
1448
1449 int extend_bytes = 0;
1450 int prev_extend_bytes;
1451 CORE_ADDR end_prologue_addr = 0;
1452
1453 /* Can be called when there's no process, and hence when there's no
1454 NEXT_FRAME. */
1455 if (next_frame != NULL)
1456 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
1457 else
1458 sp = 0;
1459
1460 if (limit_pc > start_pc + 200)
1461 limit_pc = start_pc + 200;
1462
1463 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
1464 {
1465 /* Save the previous instruction. If it's an EXTEND, we'll extract
1466 the immediate offset extension from it in mips16_get_imm. */
1467 prev_inst = inst;
1468
1469 /* Fetch and decode the instruction. */
1470 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1471
1472 /* Normally we ignore extend instructions. However, if it is
1473 not followed by a valid prologue instruction, then this
1474 instruction is not part of the prologue either. We must
1475 remember in this case to adjust the end_prologue_addr back
1476 over the extend. */
1477 if ((inst & 0xf800) == 0xf000) /* extend */
1478 {
1479 extend_bytes = MIPS_INSN16_SIZE;
1480 continue;
1481 }
1482
1483 prev_extend_bytes = extend_bytes;
1484 extend_bytes = 0;
1485
1486 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1487 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1488 {
1489 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1490 if (offset < 0) /* negative stack adjustment? */
1491 frame_offset -= offset;
1492 else
1493 /* Exit loop if a positive stack adjustment is found, which
1494 usually means that the stack cleanup code in the function
1495 epilogue is reached. */
1496 break;
1497 }
1498 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1499 {
1500 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1501 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1502 set_reg_offset (this_cache, reg, sp + offset);
1503 }
1504 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1505 {
1506 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1507 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1508 set_reg_offset (this_cache, reg, sp + offset);
1509 }
1510 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1511 {
1512 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1513 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1514 }
1515 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1516 {
1517 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1518 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1519 }
1520 else if (inst == 0x673d) /* move $s1, $sp */
1521 {
1522 frame_addr = sp;
1523 frame_reg = 17;
1524 }
1525 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1526 {
1527 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1528 frame_addr = sp + offset;
1529 frame_reg = 17;
1530 frame_adjust = offset;
1531 }
1532 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1533 {
1534 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1535 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1536 set_reg_offset (this_cache, reg, frame_addr + offset);
1537 }
1538 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1539 {
1540 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1541 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1542 set_reg_offset (this_cache, reg, frame_addr + offset);
1543 }
1544 else if ((inst & 0xf81f) == 0xe809
1545 && (inst & 0x700) != 0x700) /* entry */
1546 entry_inst = inst; /* save for later processing */
1547 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1548 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
1549 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1550 {
1551 /* This instruction is part of the prologue, but we don't
1552 need to do anything special to handle it. */
1553 }
1554 else
1555 {
1556 /* This instruction is not an instruction typically found
1557 in a prologue, so we must have reached the end of the
1558 prologue. */
1559 if (end_prologue_addr == 0)
1560 end_prologue_addr = cur_pc - prev_extend_bytes;
1561 }
1562 }
1563
1564 /* The entry instruction is typically the first instruction in a function,
1565 and it stores registers at offsets relative to the value of the old SP
1566 (before the prologue). But the value of the sp parameter to this
1567 function is the new SP (after the prologue has been executed). So we
1568 can't calculate those offsets until we've seen the entire prologue,
1569 and can calculate what the old SP must have been. */
1570 if (entry_inst != 0)
1571 {
1572 int areg_count = (entry_inst >> 8) & 7;
1573 int sreg_count = (entry_inst >> 6) & 3;
1574
1575 /* The entry instruction always subtracts 32 from the SP. */
1576 frame_offset += 32;
1577
1578 /* Now we can calculate what the SP must have been at the
1579 start of the function prologue. */
1580 sp += frame_offset;
1581
1582 /* Check if a0-a3 were saved in the caller's argument save area. */
1583 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1584 {
1585 set_reg_offset (this_cache, reg, sp + offset);
1586 offset += mips_abi_regsize (current_gdbarch);
1587 }
1588
1589 /* Check if the ra register was pushed on the stack. */
1590 offset = -4;
1591 if (entry_inst & 0x20)
1592 {
1593 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1594 offset -= mips_abi_regsize (current_gdbarch);
1595 }
1596
1597 /* Check if the s0 and s1 registers were pushed on the stack. */
1598 for (reg = 16; reg < sreg_count + 16; reg++)
1599 {
1600 set_reg_offset (this_cache, reg, sp + offset);
1601 offset -= mips_abi_regsize (current_gdbarch);
1602 }
1603 }
1604
1605 if (this_cache != NULL)
1606 {
1607 this_cache->base =
1608 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1609 + frame_offset - frame_adjust);
1610 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1611 be able to get rid of the assignment below, evetually. But it's
1612 still needed for now. */
1613 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
1614 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
1615 }
1616
1617 /* If we didn't reach the end of the prologue when scanning the function
1618 instructions, then set end_prologue_addr to the address of the
1619 instruction immediately after the last one we scanned. */
1620 if (end_prologue_addr == 0)
1621 end_prologue_addr = cur_pc;
1622
1623 return end_prologue_addr;
1624 }
1625
1626 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1627 Procedures that use the 32-bit instruction set are handled by the
1628 mips_insn32 unwinder. */
1629
1630 static struct mips_frame_cache *
1631 mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
1632 {
1633 struct mips_frame_cache *cache;
1634
1635 if ((*this_cache) != NULL)
1636 return (*this_cache);
1637 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1638 (*this_cache) = cache;
1639 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1640
1641 /* Analyze the function prologue. */
1642 {
1643 const CORE_ADDR pc =
1644 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1645 CORE_ADDR start_addr;
1646
1647 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1648 if (start_addr == 0)
1649 start_addr = heuristic_proc_start (pc);
1650 /* We can't analyze the prologue if we couldn't find the begining
1651 of the function. */
1652 if (start_addr == 0)
1653 return cache;
1654
1655 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1656 }
1657
1658 /* SP_REGNUM, contains the value and not the address. */
1659 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
1660
1661 return (*this_cache);
1662 }
1663
1664 static void
1665 mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1666 struct frame_id *this_id)
1667 {
1668 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1669 this_cache);
1670 (*this_id) = frame_id_build (info->base,
1671 frame_func_unwind (next_frame, NORMAL_FRAME));
1672 }
1673
1674 static void
1675 mips_insn16_frame_prev_register (struct frame_info *next_frame,
1676 void **this_cache,
1677 int regnum, int *optimizedp,
1678 enum lval_type *lvalp, CORE_ADDR *addrp,
1679 int *realnump, gdb_byte *valuep)
1680 {
1681 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1682 this_cache);
1683 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1684 optimizedp, lvalp, addrp, realnump, valuep);
1685 }
1686
1687 static const struct frame_unwind mips_insn16_frame_unwind =
1688 {
1689 NORMAL_FRAME,
1690 mips_insn16_frame_this_id,
1691 mips_insn16_frame_prev_register
1692 };
1693
1694 static const struct frame_unwind *
1695 mips_insn16_frame_sniffer (struct frame_info *next_frame)
1696 {
1697 CORE_ADDR pc = frame_pc_unwind (next_frame);
1698 if (mips_pc_is_mips16 (pc))
1699 return &mips_insn16_frame_unwind;
1700 return NULL;
1701 }
1702
1703 static CORE_ADDR
1704 mips_insn16_frame_base_address (struct frame_info *next_frame,
1705 void **this_cache)
1706 {
1707 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1708 this_cache);
1709 return info->base;
1710 }
1711
1712 static const struct frame_base mips_insn16_frame_base =
1713 {
1714 &mips_insn16_frame_unwind,
1715 mips_insn16_frame_base_address,
1716 mips_insn16_frame_base_address,
1717 mips_insn16_frame_base_address
1718 };
1719
1720 static const struct frame_base *
1721 mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
1722 {
1723 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1724 return &mips_insn16_frame_base;
1725 else
1726 return NULL;
1727 }
1728
1729 /* Mark all the registers as unset in the saved_regs array
1730 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1731
1732 void
1733 reset_saved_regs (struct mips_frame_cache *this_cache)
1734 {
1735 if (this_cache == NULL || this_cache->saved_regs == NULL)
1736 return;
1737
1738 {
1739 const int num_regs = NUM_REGS;
1740 int i;
1741
1742 for (i = 0; i < num_regs; i++)
1743 {
1744 this_cache->saved_regs[i].addr = -1;
1745 }
1746 }
1747 }
1748
1749 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1750 the associated FRAME_CACHE if not null.
1751 Return the address of the first instruction past the prologue. */
1752
1753 static CORE_ADDR
1754 mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1755 struct frame_info *next_frame,
1756 struct mips_frame_cache *this_cache)
1757 {
1758 CORE_ADDR cur_pc;
1759 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1760 CORE_ADDR sp;
1761 long frame_offset;
1762 int frame_reg = MIPS_SP_REGNUM;
1763
1764 CORE_ADDR end_prologue_addr = 0;
1765 int seen_sp_adjust = 0;
1766 int load_immediate_bytes = 0;
1767
1768 /* Can be called when there's no process, and hence when there's no
1769 NEXT_FRAME. */
1770 if (next_frame != NULL)
1771 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
1772 else
1773 sp = 0;
1774
1775 if (limit_pc > start_pc + 200)
1776 limit_pc = start_pc + 200;
1777
1778 restart:
1779
1780 frame_offset = 0;
1781 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
1782 {
1783 unsigned long inst, high_word, low_word;
1784 int reg;
1785
1786 /* Fetch the instruction. */
1787 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1788
1789 /* Save some code by pre-extracting some useful fields. */
1790 high_word = (inst >> 16) & 0xffff;
1791 low_word = inst & 0xffff;
1792 reg = high_word & 0x1f;
1793
1794 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1795 || high_word == 0x23bd /* addi $sp,$sp,-i */
1796 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1797 {
1798 if (low_word & 0x8000) /* negative stack adjustment? */
1799 frame_offset += 0x10000 - low_word;
1800 else
1801 /* Exit loop if a positive stack adjustment is found, which
1802 usually means that the stack cleanup code in the function
1803 epilogue is reached. */
1804 break;
1805 seen_sp_adjust = 1;
1806 }
1807 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1808 {
1809 set_reg_offset (this_cache, reg, sp + low_word);
1810 }
1811 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1812 {
1813 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1814 set_reg_offset (this_cache, reg, sp + low_word);
1815 }
1816 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1817 {
1818 /* Old gcc frame, r30 is virtual frame pointer. */
1819 if ((long) low_word != frame_offset)
1820 frame_addr = sp + low_word;
1821 else if (frame_reg == MIPS_SP_REGNUM)
1822 {
1823 unsigned alloca_adjust;
1824
1825 frame_reg = 30;
1826 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1827 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1828 if (alloca_adjust > 0)
1829 {
1830 /* FP > SP + frame_size. This may be because of
1831 an alloca or somethings similar. Fix sp to
1832 "pre-alloca" value, and try again. */
1833 sp += alloca_adjust;
1834 /* Need to reset the status of all registers. Otherwise,
1835 we will hit a guard that prevents the new address
1836 for each register to be recomputed during the second
1837 pass. */
1838 reset_saved_regs (this_cache);
1839 goto restart;
1840 }
1841 }
1842 }
1843 /* move $30,$sp. With different versions of gas this will be either
1844 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1845 Accept any one of these. */
1846 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1847 {
1848 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1849 if (frame_reg == MIPS_SP_REGNUM)
1850 {
1851 unsigned alloca_adjust;
1852
1853 frame_reg = 30;
1854 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1855 alloca_adjust = (unsigned) (frame_addr - sp);
1856 if (alloca_adjust > 0)
1857 {
1858 /* FP > SP + frame_size. This may be because of
1859 an alloca or somethings similar. Fix sp to
1860 "pre-alloca" value, and try again. */
1861 sp = frame_addr;
1862 /* Need to reset the status of all registers. Otherwise,
1863 we will hit a guard that prevents the new address
1864 for each register to be recomputed during the second
1865 pass. */
1866 reset_saved_regs (this_cache);
1867 goto restart;
1868 }
1869 }
1870 }
1871 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1872 {
1873 set_reg_offset (this_cache, reg, frame_addr + low_word);
1874 }
1875 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1876 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1877 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1878 || high_word == 0x3c1c /* lui $gp,n */
1879 || high_word == 0x279c /* addiu $gp,$gp,n */
1880 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1881 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1882 )
1883 {
1884 /* These instructions are part of the prologue, but we don't
1885 need to do anything special to handle them. */
1886 }
1887 /* The instructions below load $at or $t0 with an immediate
1888 value in preparation for a stack adjustment via
1889 subu $sp,$sp,[$at,$t0]. These instructions could also
1890 initialize a local variable, so we accept them only before
1891 a stack adjustment instruction was seen. */
1892 else if (!seen_sp_adjust
1893 && (high_word == 0x3c01 /* lui $at,n */
1894 || high_word == 0x3c08 /* lui $t0,n */
1895 || high_word == 0x3421 /* ori $at,$at,n */
1896 || high_word == 0x3508 /* ori $t0,$t0,n */
1897 || high_word == 0x3401 /* ori $at,$zero,n */
1898 || high_word == 0x3408 /* ori $t0,$zero,n */
1899 ))
1900 {
1901 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
1902 }
1903 else
1904 {
1905 /* This instruction is not an instruction typically found
1906 in a prologue, so we must have reached the end of the
1907 prologue. */
1908 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
1909 loop now? Why would we need to continue scanning the function
1910 instructions? */
1911 if (end_prologue_addr == 0)
1912 end_prologue_addr = cur_pc;
1913 }
1914 }
1915
1916 if (this_cache != NULL)
1917 {
1918 this_cache->base =
1919 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1920 + frame_offset);
1921 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
1922 this assignment below, eventually. But it's still needed
1923 for now. */
1924 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
1925 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
1926 }
1927
1928 /* If we didn't reach the end of the prologue when scanning the function
1929 instructions, then set end_prologue_addr to the address of the
1930 instruction immediately after the last one we scanned. */
1931 /* brobecker/2004-10-10: I don't think this would ever happen, but
1932 we may as well be careful and do our best if we have a null
1933 end_prologue_addr. */
1934 if (end_prologue_addr == 0)
1935 end_prologue_addr = cur_pc;
1936
1937 /* In a frameless function, we might have incorrectly
1938 skipped some load immediate instructions. Undo the skipping
1939 if the load immediate was not followed by a stack adjustment. */
1940 if (load_immediate_bytes && !seen_sp_adjust)
1941 end_prologue_addr -= load_immediate_bytes;
1942
1943 return end_prologue_addr;
1944 }
1945
1946 /* Heuristic unwinder for procedures using 32-bit instructions (covers
1947 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
1948 instructions (a.k.a. MIPS16) are handled by the mips_insn16
1949 unwinder. */
1950
1951 static struct mips_frame_cache *
1952 mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
1953 {
1954 struct mips_frame_cache *cache;
1955
1956 if ((*this_cache) != NULL)
1957 return (*this_cache);
1958
1959 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1960 (*this_cache) = cache;
1961 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1962
1963 /* Analyze the function prologue. */
1964 {
1965 const CORE_ADDR pc =
1966 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1967 CORE_ADDR start_addr;
1968
1969 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1970 if (start_addr == 0)
1971 start_addr = heuristic_proc_start (pc);
1972 /* We can't analyze the prologue if we couldn't find the begining
1973 of the function. */
1974 if (start_addr == 0)
1975 return cache;
1976
1977 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
1978 }
1979
1980 /* SP_REGNUM, contains the value and not the address. */
1981 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
1982
1983 return (*this_cache);
1984 }
1985
1986 static void
1987 mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
1988 struct frame_id *this_id)
1989 {
1990 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
1991 this_cache);
1992 (*this_id) = frame_id_build (info->base,
1993 frame_func_unwind (next_frame, NORMAL_FRAME));
1994 }
1995
1996 static void
1997 mips_insn32_frame_prev_register (struct frame_info *next_frame,
1998 void **this_cache,
1999 int regnum, int *optimizedp,
2000 enum lval_type *lvalp, CORE_ADDR *addrp,
2001 int *realnump, gdb_byte *valuep)
2002 {
2003 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2004 this_cache);
2005 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2006 optimizedp, lvalp, addrp, realnump, valuep);
2007 }
2008
2009 static const struct frame_unwind mips_insn32_frame_unwind =
2010 {
2011 NORMAL_FRAME,
2012 mips_insn32_frame_this_id,
2013 mips_insn32_frame_prev_register
2014 };
2015
2016 static const struct frame_unwind *
2017 mips_insn32_frame_sniffer (struct frame_info *next_frame)
2018 {
2019 CORE_ADDR pc = frame_pc_unwind (next_frame);
2020 if (! mips_pc_is_mips16 (pc))
2021 return &mips_insn32_frame_unwind;
2022 return NULL;
2023 }
2024
2025 static CORE_ADDR
2026 mips_insn32_frame_base_address (struct frame_info *next_frame,
2027 void **this_cache)
2028 {
2029 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2030 this_cache);
2031 return info->base;
2032 }
2033
2034 static const struct frame_base mips_insn32_frame_base =
2035 {
2036 &mips_insn32_frame_unwind,
2037 mips_insn32_frame_base_address,
2038 mips_insn32_frame_base_address,
2039 mips_insn32_frame_base_address
2040 };
2041
2042 static const struct frame_base *
2043 mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2044 {
2045 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2046 return &mips_insn32_frame_base;
2047 else
2048 return NULL;
2049 }
2050
2051 static struct trad_frame_cache *
2052 mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2053 {
2054 CORE_ADDR pc;
2055 CORE_ADDR start_addr;
2056 CORE_ADDR stack_addr;
2057 struct trad_frame_cache *this_trad_cache;
2058
2059 if ((*this_cache) != NULL)
2060 return (*this_cache);
2061 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2062 (*this_cache) = this_trad_cache;
2063
2064 /* The return address is in the link register. */
2065 trad_frame_set_reg_realreg (this_trad_cache, PC_REGNUM, MIPS_RA_REGNUM);
2066
2067 /* Frame ID, since it's a frameless / stackless function, no stack
2068 space is allocated and SP on entry is the current SP. */
2069 pc = frame_pc_unwind (next_frame);
2070 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2071 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
2072 trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
2073
2074 /* Assume that the frame's base is the same as the
2075 stack-pointer. */
2076 trad_frame_set_this_base (this_trad_cache, stack_addr);
2077
2078 return this_trad_cache;
2079 }
2080
2081 static void
2082 mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2083 struct frame_id *this_id)
2084 {
2085 struct trad_frame_cache *this_trad_cache
2086 = mips_stub_frame_cache (next_frame, this_cache);
2087 trad_frame_get_id (this_trad_cache, this_id);
2088 }
2089
2090 static void
2091 mips_stub_frame_prev_register (struct frame_info *next_frame,
2092 void **this_cache,
2093 int regnum, int *optimizedp,
2094 enum lval_type *lvalp, CORE_ADDR *addrp,
2095 int *realnump, gdb_byte *valuep)
2096 {
2097 struct trad_frame_cache *this_trad_cache
2098 = mips_stub_frame_cache (next_frame, this_cache);
2099 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2100 lvalp, addrp, realnump, valuep);
2101 }
2102
2103 static const struct frame_unwind mips_stub_frame_unwind =
2104 {
2105 NORMAL_FRAME,
2106 mips_stub_frame_this_id,
2107 mips_stub_frame_prev_register
2108 };
2109
2110 static const struct frame_unwind *
2111 mips_stub_frame_sniffer (struct frame_info *next_frame)
2112 {
2113 struct obj_section *s;
2114 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
2115
2116 if (in_plt_section (pc, NULL))
2117 return &mips_stub_frame_unwind;
2118
2119 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2120 s = find_pc_section (pc);
2121
2122 if (s != NULL
2123 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2124 ".MIPS.stubs") == 0)
2125 return &mips_stub_frame_unwind;
2126
2127 return NULL;
2128 }
2129
2130 static CORE_ADDR
2131 mips_stub_frame_base_address (struct frame_info *next_frame,
2132 void **this_cache)
2133 {
2134 struct trad_frame_cache *this_trad_cache
2135 = mips_stub_frame_cache (next_frame, this_cache);
2136 return trad_frame_get_this_base (this_trad_cache);
2137 }
2138
2139 static const struct frame_base mips_stub_frame_base =
2140 {
2141 &mips_stub_frame_unwind,
2142 mips_stub_frame_base_address,
2143 mips_stub_frame_base_address,
2144 mips_stub_frame_base_address
2145 };
2146
2147 static const struct frame_base *
2148 mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2149 {
2150 if (mips_stub_frame_sniffer (next_frame) != NULL)
2151 return &mips_stub_frame_base;
2152 else
2153 return NULL;
2154 }
2155
2156 static CORE_ADDR
2157 read_next_frame_reg (struct frame_info *fi, int regno)
2158 {
2159 /* Always a pseudo. */
2160 gdb_assert (regno >= NUM_REGS);
2161 if (fi == NULL)
2162 {
2163 LONGEST val;
2164 regcache_cooked_read_signed (current_regcache, regno, &val);
2165 return val;
2166 }
2167 else
2168 return frame_unwind_register_signed (fi, regno);
2169
2170 }
2171
2172 /* mips_addr_bits_remove - remove useless address bits */
2173
2174 static CORE_ADDR
2175 mips_addr_bits_remove (CORE_ADDR addr)
2176 {
2177 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2178 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2179 /* This hack is a work-around for existing boards using PMON, the
2180 simulator, and any other 64-bit targets that doesn't have true
2181 64-bit addressing. On these targets, the upper 32 bits of
2182 addresses are ignored by the hardware. Thus, the PC or SP are
2183 likely to have been sign extended to all 1s by instruction
2184 sequences that load 32-bit addresses. For example, a typical
2185 piece of code that loads an address is this:
2186
2187 lui $r2, <upper 16 bits>
2188 ori $r2, <lower 16 bits>
2189
2190 But the lui sign-extends the value such that the upper 32 bits
2191 may be all 1s. The workaround is simply to mask off these
2192 bits. In the future, gcc may be changed to support true 64-bit
2193 addressing, and this masking will have to be disabled. */
2194 return addr &= 0xffffffffUL;
2195 else
2196 return addr;
2197 }
2198
2199 /* mips_software_single_step() is called just before we want to resume
2200 the inferior, if we want to single-step it but there is no hardware
2201 or kernel single-step support (MIPS on GNU/Linux for example). We find
2202 the target of the coming instruction and breakpoint it. */
2203
2204 int
2205 mips_software_single_step (struct regcache *regcache)
2206 {
2207 CORE_ADDR pc, next_pc;
2208
2209 pc = read_register (mips_regnum (current_gdbarch)->pc);
2210 next_pc = mips_next_pc (pc);
2211
2212 insert_single_step_breakpoint (next_pc);
2213 return 1;
2214 }
2215
2216 /* Test whether the PC points to the return instruction at the
2217 end of a function. */
2218
2219 static int
2220 mips_about_to_return (CORE_ADDR pc)
2221 {
2222 if (mips_pc_is_mips16 (pc))
2223 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2224 generates a "jr $ra"; other times it generates code to load
2225 the return address from the stack to an accessible register (such
2226 as $a3), then a "jr" using that register. This second case
2227 is almost impossible to distinguish from an indirect jump
2228 used for switch statements, so we don't even try. */
2229 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2230 else
2231 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2232 }
2233
2234
2235 /* This fencepost looks highly suspicious to me. Removing it also
2236 seems suspicious as it could affect remote debugging across serial
2237 lines. */
2238
2239 static CORE_ADDR
2240 heuristic_proc_start (CORE_ADDR pc)
2241 {
2242 CORE_ADDR start_pc;
2243 CORE_ADDR fence;
2244 int instlen;
2245 int seen_adjsp = 0;
2246
2247 pc = ADDR_BITS_REMOVE (pc);
2248 start_pc = pc;
2249 fence = start_pc - heuristic_fence_post;
2250 if (start_pc == 0)
2251 return 0;
2252
2253 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2254 fence = VM_MIN_ADDRESS;
2255
2256 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
2257
2258 /* search back for previous return */
2259 for (start_pc -= instlen;; start_pc -= instlen)
2260 if (start_pc < fence)
2261 {
2262 /* It's not clear to me why we reach this point when
2263 stop_soon, but with this test, at least we
2264 don't print out warnings for every child forked (eg, on
2265 decstation). 22apr93 rich@cygnus.com. */
2266 if (stop_soon == NO_STOP_QUIETLY)
2267 {
2268 static int blurb_printed = 0;
2269
2270 warning (_("GDB can't find the start of the function at 0x%s."),
2271 paddr_nz (pc));
2272
2273 if (!blurb_printed)
2274 {
2275 /* This actually happens frequently in embedded
2276 development, when you first connect to a board
2277 and your stack pointer and pc are nowhere in
2278 particular. This message needs to give people
2279 in that situation enough information to
2280 determine that it's no big deal. */
2281 printf_filtered ("\n\
2282 GDB is unable to find the start of the function at 0x%s\n\
2283 and thus can't determine the size of that function's stack frame.\n\
2284 This means that GDB may be unable to access that stack frame, or\n\
2285 the frames below it.\n\
2286 This problem is most likely caused by an invalid program counter or\n\
2287 stack pointer.\n\
2288 However, if you think GDB should simply search farther back\n\
2289 from 0x%s for code which looks like the beginning of a\n\
2290 function, you can increase the range of the search using the `set\n\
2291 heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2292 blurb_printed = 1;
2293 }
2294 }
2295
2296 return 0;
2297 }
2298 else if (mips_pc_is_mips16 (start_pc))
2299 {
2300 unsigned short inst;
2301
2302 /* On MIPS16, any one of the following is likely to be the
2303 start of a function:
2304 entry
2305 addiu sp,-n
2306 daddiu sp,-n
2307 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2308 inst = mips_fetch_instruction (start_pc);
2309 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2310 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2311 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2312 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2313 break;
2314 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2315 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2316 seen_adjsp = 1;
2317 else
2318 seen_adjsp = 0;
2319 }
2320 else if (mips_about_to_return (start_pc))
2321 {
2322 /* Skip return and its delay slot. */
2323 start_pc += 2 * MIPS_INSN32_SIZE;
2324 break;
2325 }
2326
2327 return start_pc;
2328 }
2329
2330 struct mips_objfile_private
2331 {
2332 bfd_size_type size;
2333 char *contents;
2334 };
2335
2336 /* According to the current ABI, should the type be passed in a
2337 floating-point register (assuming that there is space)? When there
2338 is no FPU, FP are not even considered as possible candidates for
2339 FP registers and, consequently this returns false - forces FP
2340 arguments into integer registers. */
2341
2342 static int
2343 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2344 {
2345 return ((typecode == TYPE_CODE_FLT
2346 || (MIPS_EABI
2347 && (typecode == TYPE_CODE_STRUCT
2348 || typecode == TYPE_CODE_UNION)
2349 && TYPE_NFIELDS (arg_type) == 1
2350 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
2351 == TYPE_CODE_FLT))
2352 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2353 }
2354
2355 /* On o32, argument passing in GPRs depends on the alignment of the type being
2356 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2357
2358 static int
2359 mips_type_needs_double_align (struct type *type)
2360 {
2361 enum type_code typecode = TYPE_CODE (type);
2362
2363 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2364 return 1;
2365 else if (typecode == TYPE_CODE_STRUCT)
2366 {
2367 if (TYPE_NFIELDS (type) < 1)
2368 return 0;
2369 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2370 }
2371 else if (typecode == TYPE_CODE_UNION)
2372 {
2373 int i, n;
2374
2375 n = TYPE_NFIELDS (type);
2376 for (i = 0; i < n; i++)
2377 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2378 return 1;
2379 return 0;
2380 }
2381 return 0;
2382 }
2383
2384 /* Adjust the address downward (direction of stack growth) so that it
2385 is correctly aligned for a new stack frame. */
2386 static CORE_ADDR
2387 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2388 {
2389 return align_down (addr, 16);
2390 }
2391
2392 static CORE_ADDR
2393 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2394 struct regcache *regcache, CORE_ADDR bp_addr,
2395 int nargs, struct value **args, CORE_ADDR sp,
2396 int struct_return, CORE_ADDR struct_addr)
2397 {
2398 int argreg;
2399 int float_argreg;
2400 int argnum;
2401 int len = 0;
2402 int stack_offset = 0;
2403 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2404 CORE_ADDR func_addr = find_function_addr (function, NULL);
2405
2406 /* For shared libraries, "t9" needs to point at the function
2407 address. */
2408 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2409
2410 /* Set the return address register to point to the entry point of
2411 the program, where a breakpoint lies in wait. */
2412 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2413
2414 /* First ensure that the stack and structure return address (if any)
2415 are properly aligned. The stack has to be at least 64-bit
2416 aligned even on 32-bit machines, because doubles must be 64-bit
2417 aligned. For n32 and n64, stack frames need to be 128-bit
2418 aligned, so we round to this widest known alignment. */
2419
2420 sp = align_down (sp, 16);
2421 struct_addr = align_down (struct_addr, 16);
2422
2423 /* Now make space on the stack for the args. We allocate more
2424 than necessary for EABI, because the first few arguments are
2425 passed in registers, but that's OK. */
2426 for (argnum = 0; argnum < nargs; argnum++)
2427 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
2428 mips_stack_argsize (gdbarch));
2429 sp -= align_up (len, 16);
2430
2431 if (mips_debug)
2432 fprintf_unfiltered (gdb_stdlog,
2433 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2434 paddr_nz (sp), (long) align_up (len, 16));
2435
2436 /* Initialize the integer and float register pointers. */
2437 argreg = MIPS_A0_REGNUM;
2438 float_argreg = mips_fpa0_regnum (current_gdbarch);
2439
2440 /* The struct_return pointer occupies the first parameter-passing reg. */
2441 if (struct_return)
2442 {
2443 if (mips_debug)
2444 fprintf_unfiltered (gdb_stdlog,
2445 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2446 argreg, paddr_nz (struct_addr));
2447 write_register (argreg++, struct_addr);
2448 }
2449
2450 /* Now load as many as possible of the first arguments into
2451 registers, and push the rest onto the stack. Loop thru args
2452 from first to last. */
2453 for (argnum = 0; argnum < nargs; argnum++)
2454 {
2455 const gdb_byte *val;
2456 gdb_byte valbuf[MAX_REGISTER_SIZE];
2457 struct value *arg = args[argnum];
2458 struct type *arg_type = check_typedef (value_type (arg));
2459 int len = TYPE_LENGTH (arg_type);
2460 enum type_code typecode = TYPE_CODE (arg_type);
2461
2462 if (mips_debug)
2463 fprintf_unfiltered (gdb_stdlog,
2464 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2465 argnum + 1, len, (int) typecode);
2466
2467 /* The EABI passes structures that do not fit in a register by
2468 reference. */
2469 if (len > mips_abi_regsize (gdbarch)
2470 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2471 {
2472 store_unsigned_integer (valbuf, mips_abi_regsize (gdbarch),
2473 VALUE_ADDRESS (arg));
2474 typecode = TYPE_CODE_PTR;
2475 len = mips_abi_regsize (gdbarch);
2476 val = valbuf;
2477 if (mips_debug)
2478 fprintf_unfiltered (gdb_stdlog, " push");
2479 }
2480 else
2481 val = value_contents (arg);
2482
2483 /* 32-bit ABIs always start floating point arguments in an
2484 even-numbered floating point register. Round the FP register
2485 up before the check to see if there are any FP registers
2486 left. Non MIPS_EABI targets also pass the FP in the integer
2487 registers so also round up normal registers. */
2488 if (mips_abi_regsize (gdbarch) < 8
2489 && fp_register_arg_p (typecode, arg_type))
2490 {
2491 if ((float_argreg & 1))
2492 float_argreg++;
2493 }
2494
2495 /* Floating point arguments passed in registers have to be
2496 treated specially. On 32-bit architectures, doubles
2497 are passed in register pairs; the even register gets
2498 the low word, and the odd register gets the high word.
2499 On non-EABI processors, the first two floating point arguments are
2500 also copied to general registers, because MIPS16 functions
2501 don't use float registers for arguments. This duplication of
2502 arguments in general registers can't hurt non-MIPS16 functions
2503 because those registers are normally skipped. */
2504 /* MIPS_EABI squeezes a struct that contains a single floating
2505 point value into an FP register instead of pushing it onto the
2506 stack. */
2507 if (fp_register_arg_p (typecode, arg_type)
2508 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2509 {
2510 /* EABI32 will pass doubles in consecutive registers, even on
2511 64-bit cores. At one time, we used to check the size of
2512 `float_argreg' to determine whether or not to pass doubles
2513 in consecutive registers, but this is not sufficient for
2514 making the ABI determination. */
2515 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
2516 {
2517 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2518 unsigned long regval;
2519
2520 /* Write the low word of the double to the even register(s). */
2521 regval = extract_unsigned_integer (val + low_offset, 4);
2522 if (mips_debug)
2523 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2524 float_argreg, phex (regval, 4));
2525 write_register (float_argreg++, regval);
2526
2527 /* Write the high word of the double to the odd register(s). */
2528 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2529 if (mips_debug)
2530 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2531 float_argreg, phex (regval, 4));
2532 write_register (float_argreg++, regval);
2533 }
2534 else
2535 {
2536 /* This is a floating point value that fits entirely
2537 in a single register. */
2538 /* On 32 bit ABI's the float_argreg is further adjusted
2539 above to ensure that it is even register aligned. */
2540 LONGEST regval = extract_unsigned_integer (val, len);
2541 if (mips_debug)
2542 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2543 float_argreg, phex (regval, len));
2544 write_register (float_argreg++, regval);
2545 }
2546 }
2547 else
2548 {
2549 /* Copy the argument to general registers or the stack in
2550 register-sized pieces. Large arguments are split between
2551 registers and stack. */
2552 /* Note: structs whose size is not a multiple of
2553 mips_abi_regsize() are treated specially: Irix cc passes
2554 them in registers where gcc sometimes puts them on the
2555 stack. For maximum compatibility, we will put them in
2556 both places. */
2557 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2558 && (len % mips_abi_regsize (gdbarch) != 0));
2559
2560 /* Note: Floating-point values that didn't fit into an FP
2561 register are only written to memory. */
2562 while (len > 0)
2563 {
2564 /* Remember if the argument was written to the stack. */
2565 int stack_used_p = 0;
2566 int partial_len = (len < mips_abi_regsize (gdbarch)
2567 ? len : mips_abi_regsize (gdbarch));
2568
2569 if (mips_debug)
2570 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2571 partial_len);
2572
2573 /* Write this portion of the argument to the stack. */
2574 if (argreg > MIPS_LAST_ARG_REGNUM
2575 || odd_sized_struct
2576 || fp_register_arg_p (typecode, arg_type))
2577 {
2578 /* Should shorter than int integer values be
2579 promoted to int before being stored? */
2580 int longword_offset = 0;
2581 CORE_ADDR addr;
2582 stack_used_p = 1;
2583 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2584 {
2585 if (mips_stack_argsize (gdbarch) == 8
2586 && (typecode == TYPE_CODE_INT
2587 || typecode == TYPE_CODE_PTR
2588 || typecode == TYPE_CODE_FLT) && len <= 4)
2589 longword_offset = mips_stack_argsize (gdbarch) - len;
2590 else if ((typecode == TYPE_CODE_STRUCT
2591 || typecode == TYPE_CODE_UNION)
2592 && (TYPE_LENGTH (arg_type)
2593 < mips_stack_argsize (gdbarch)))
2594 longword_offset = mips_stack_argsize (gdbarch) - len;
2595 }
2596
2597 if (mips_debug)
2598 {
2599 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2600 paddr_nz (stack_offset));
2601 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2602 paddr_nz (longword_offset));
2603 }
2604
2605 addr = sp + stack_offset + longword_offset;
2606
2607 if (mips_debug)
2608 {
2609 int i;
2610 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2611 paddr_nz (addr));
2612 for (i = 0; i < partial_len; i++)
2613 {
2614 fprintf_unfiltered (gdb_stdlog, "%02x",
2615 val[i] & 0xff);
2616 }
2617 }
2618 write_memory (addr, val, partial_len);
2619 }
2620
2621 /* Note!!! This is NOT an else clause. Odd sized
2622 structs may go thru BOTH paths. Floating point
2623 arguments will not. */
2624 /* Write this portion of the argument to a general
2625 purpose register. */
2626 if (argreg <= MIPS_LAST_ARG_REGNUM
2627 && !fp_register_arg_p (typecode, arg_type))
2628 {
2629 LONGEST regval =
2630 extract_unsigned_integer (val, partial_len);
2631
2632 if (mips_debug)
2633 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2634 argreg,
2635 phex (regval,
2636 mips_abi_regsize (gdbarch)));
2637 write_register (argreg, regval);
2638 argreg++;
2639 }
2640
2641 len -= partial_len;
2642 val += partial_len;
2643
2644 /* Compute the the offset into the stack at which we
2645 will copy the next parameter.
2646
2647 In the new EABI (and the NABI32), the stack_offset
2648 only needs to be adjusted when it has been used. */
2649
2650 if (stack_used_p)
2651 stack_offset += align_up (partial_len,
2652 mips_stack_argsize (gdbarch));
2653 }
2654 }
2655 if (mips_debug)
2656 fprintf_unfiltered (gdb_stdlog, "\n");
2657 }
2658
2659 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2660
2661 /* Return adjusted stack pointer. */
2662 return sp;
2663 }
2664
2665 /* Determine the return value convention being used. */
2666
2667 static enum return_value_convention
2668 mips_eabi_return_value (struct gdbarch *gdbarch,
2669 struct type *type, struct regcache *regcache,
2670 gdb_byte *readbuf, const gdb_byte *writebuf)
2671 {
2672 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2673 return RETURN_VALUE_STRUCT_CONVENTION;
2674 if (readbuf)
2675 memset (readbuf, 0, TYPE_LENGTH (type));
2676 return RETURN_VALUE_REGISTER_CONVENTION;
2677 }
2678
2679
2680 /* N32/N64 ABI stuff. */
2681
2682 static CORE_ADDR
2683 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2684 struct regcache *regcache, CORE_ADDR bp_addr,
2685 int nargs, struct value **args, CORE_ADDR sp,
2686 int struct_return, CORE_ADDR struct_addr)
2687 {
2688 int argreg;
2689 int float_argreg;
2690 int argnum;
2691 int len = 0;
2692 int stack_offset = 0;
2693 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2694 CORE_ADDR func_addr = find_function_addr (function, NULL);
2695
2696 /* For shared libraries, "t9" needs to point at the function
2697 address. */
2698 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2699
2700 /* Set the return address register to point to the entry point of
2701 the program, where a breakpoint lies in wait. */
2702 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2703
2704 /* First ensure that the stack and structure return address (if any)
2705 are properly aligned. The stack has to be at least 64-bit
2706 aligned even on 32-bit machines, because doubles must be 64-bit
2707 aligned. For n32 and n64, stack frames need to be 128-bit
2708 aligned, so we round to this widest known alignment. */
2709
2710 sp = align_down (sp, 16);
2711 struct_addr = align_down (struct_addr, 16);
2712
2713 /* Now make space on the stack for the args. */
2714 for (argnum = 0; argnum < nargs; argnum++)
2715 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
2716 mips_stack_argsize (gdbarch));
2717 sp -= align_up (len, 16);
2718
2719 if (mips_debug)
2720 fprintf_unfiltered (gdb_stdlog,
2721 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2722 paddr_nz (sp), (long) align_up (len, 16));
2723
2724 /* Initialize the integer and float register pointers. */
2725 argreg = MIPS_A0_REGNUM;
2726 float_argreg = mips_fpa0_regnum (current_gdbarch);
2727
2728 /* The struct_return pointer occupies the first parameter-passing reg. */
2729 if (struct_return)
2730 {
2731 if (mips_debug)
2732 fprintf_unfiltered (gdb_stdlog,
2733 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
2734 argreg, paddr_nz (struct_addr));
2735 write_register (argreg++, struct_addr);
2736 }
2737
2738 /* Now load as many as possible of the first arguments into
2739 registers, and push the rest onto the stack. Loop thru args
2740 from first to last. */
2741 for (argnum = 0; argnum < nargs; argnum++)
2742 {
2743 const gdb_byte *val;
2744 struct value *arg = args[argnum];
2745 struct type *arg_type = check_typedef (value_type (arg));
2746 int len = TYPE_LENGTH (arg_type);
2747 enum type_code typecode = TYPE_CODE (arg_type);
2748
2749 if (mips_debug)
2750 fprintf_unfiltered (gdb_stdlog,
2751 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
2752 argnum + 1, len, (int) typecode);
2753
2754 val = value_contents (arg);
2755
2756 if (fp_register_arg_p (typecode, arg_type)
2757 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2758 {
2759 /* This is a floating point value that fits entirely
2760 in a single register. */
2761 /* On 32 bit ABI's the float_argreg is further adjusted
2762 above to ensure that it is even register aligned. */
2763 LONGEST regval = extract_unsigned_integer (val, len);
2764 if (mips_debug)
2765 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2766 float_argreg, phex (regval, len));
2767 write_register (float_argreg++, regval);
2768
2769 if (mips_debug)
2770 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2771 argreg, phex (regval, len));
2772 write_register (argreg, regval);
2773 argreg += 1;
2774 }
2775 else
2776 {
2777 /* Copy the argument to general registers or the stack in
2778 register-sized pieces. Large arguments are split between
2779 registers and stack. */
2780 /* Note: structs whose size is not a multiple of
2781 mips_abi_regsize() are treated specially: Irix cc passes
2782 them in registers where gcc sometimes puts them on the
2783 stack. For maximum compatibility, we will put them in
2784 both places. */
2785 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2786 && (len % mips_abi_regsize (gdbarch) != 0));
2787 /* Note: Floating-point values that didn't fit into an FP
2788 register are only written to memory. */
2789 while (len > 0)
2790 {
2791 /* Remember if the argument was written to the stack. */
2792 int stack_used_p = 0;
2793 int partial_len = (len < mips_abi_regsize (gdbarch)
2794 ? len : mips_abi_regsize (gdbarch));
2795
2796 if (mips_debug)
2797 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2798 partial_len);
2799
2800 /* Write this portion of the argument to the stack. */
2801 if (argreg > MIPS_LAST_ARG_REGNUM
2802 || odd_sized_struct
2803 || fp_register_arg_p (typecode, arg_type))
2804 {
2805 /* Should shorter than int integer values be
2806 promoted to int before being stored? */
2807 int longword_offset = 0;
2808 CORE_ADDR addr;
2809 stack_used_p = 1;
2810 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2811 {
2812 if (mips_stack_argsize (gdbarch) == 8
2813 && (typecode == TYPE_CODE_INT
2814 || typecode == TYPE_CODE_PTR
2815 || typecode == TYPE_CODE_FLT) && len <= 4)
2816 longword_offset = mips_stack_argsize (gdbarch) - len;
2817 }
2818
2819 if (mips_debug)
2820 {
2821 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2822 paddr_nz (stack_offset));
2823 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2824 paddr_nz (longword_offset));
2825 }
2826
2827 addr = sp + stack_offset + longword_offset;
2828
2829 if (mips_debug)
2830 {
2831 int i;
2832 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2833 paddr_nz (addr));
2834 for (i = 0; i < partial_len; i++)
2835 {
2836 fprintf_unfiltered (gdb_stdlog, "%02x",
2837 val[i] & 0xff);
2838 }
2839 }
2840 write_memory (addr, val, partial_len);
2841 }
2842
2843 /* Note!!! This is NOT an else clause. Odd sized
2844 structs may go thru BOTH paths. Floating point
2845 arguments will not. */
2846 /* Write this portion of the argument to a general
2847 purpose register. */
2848 if (argreg <= MIPS_LAST_ARG_REGNUM
2849 && !fp_register_arg_p (typecode, arg_type))
2850 {
2851 LONGEST regval =
2852 extract_unsigned_integer (val, partial_len);
2853
2854 /* A non-floating-point argument being passed in a
2855 general register. If a struct or union, and if
2856 the remaining length is smaller than the register
2857 size, we have to adjust the register value on
2858 big endian targets.
2859
2860 It does not seem to be necessary to do the
2861 same for integral types.
2862
2863 cagney/2001-07-23: gdb/179: Also, GCC, when
2864 outputting LE O32 with sizeof (struct) <
2865 mips_abi_regsize(), generates a left shift
2866 as part of storing the argument in a register
2867 (the left shift isn't generated when
2868 sizeof (struct) >= mips_abi_regsize()). Since
2869 it is quite possible that this is GCC
2870 contradicting the LE/O32 ABI, GDB has not been
2871 adjusted to accommodate this. Either someone
2872 needs to demonstrate that the LE/O32 ABI
2873 specifies such a left shift OR this new ABI gets
2874 identified as such and GDB gets tweaked
2875 accordingly. */
2876
2877 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
2878 && partial_len < mips_abi_regsize (gdbarch)
2879 && (typecode == TYPE_CODE_STRUCT
2880 || typecode == TYPE_CODE_UNION))
2881 regval <<= ((mips_abi_regsize (gdbarch) - partial_len)
2882 * TARGET_CHAR_BIT);
2883
2884 if (mips_debug)
2885 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2886 argreg,
2887 phex (regval,
2888 mips_abi_regsize (gdbarch)));
2889 write_register (argreg, regval);
2890 argreg++;
2891 }
2892
2893 len -= partial_len;
2894 val += partial_len;
2895
2896 /* Compute the the offset into the stack at which we
2897 will copy the next parameter.
2898
2899 In N32 (N64?), the stack_offset only needs to be
2900 adjusted when it has been used. */
2901
2902 if (stack_used_p)
2903 stack_offset += align_up (partial_len,
2904 mips_stack_argsize (gdbarch));
2905 }
2906 }
2907 if (mips_debug)
2908 fprintf_unfiltered (gdb_stdlog, "\n");
2909 }
2910
2911 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2912
2913 /* Return adjusted stack pointer. */
2914 return sp;
2915 }
2916
2917 static enum return_value_convention
2918 mips_n32n64_return_value (struct gdbarch *gdbarch,
2919 struct type *type, struct regcache *regcache,
2920 gdb_byte *readbuf, const gdb_byte *writebuf)
2921 {
2922 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2923 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2924 || TYPE_CODE (type) == TYPE_CODE_UNION
2925 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2926 || TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2927 return RETURN_VALUE_STRUCT_CONVENTION;
2928 else if (TYPE_CODE (type) == TYPE_CODE_FLT
2929 && TYPE_LENGTH (type) == 16
2930 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2931 {
2932 /* A 128-bit floating-point value fills both $f0 and $f2. The
2933 two registers are used in the same as memory order, so the
2934 eight bytes with the lower memory address are in $f0. */
2935 if (mips_debug)
2936 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
2937 mips_xfer_register (regcache,
2938 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
2939 8, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
2940 mips_xfer_register (regcache,
2941 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 2,
2942 8, TARGET_BYTE_ORDER, readbuf ? readbuf + 8 : readbuf,
2943 writebuf ? writebuf + 8 : writebuf, 0);
2944 return RETURN_VALUE_REGISTER_CONVENTION;
2945 }
2946 else if (TYPE_CODE (type) == TYPE_CODE_FLT
2947 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2948 {
2949 /* A floating-point value belongs in the least significant part
2950 of FP0. */
2951 if (mips_debug)
2952 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
2953 mips_xfer_register (regcache,
2954 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
2955 TYPE_LENGTH (type),
2956 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
2957 return RETURN_VALUE_REGISTER_CONVENTION;
2958 }
2959 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2960 && TYPE_NFIELDS (type) <= 2
2961 && TYPE_NFIELDS (type) >= 1
2962 && ((TYPE_NFIELDS (type) == 1
2963 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2964 == TYPE_CODE_FLT))
2965 || (TYPE_NFIELDS (type) == 2
2966 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2967 == TYPE_CODE_FLT)
2968 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
2969 == TYPE_CODE_FLT)))
2970 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2971 {
2972 /* A struct that contains one or two floats. Each value is part
2973 in the least significant part of their floating point
2974 register.. */
2975 int regnum;
2976 int field;
2977 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
2978 field < TYPE_NFIELDS (type); field++, regnum += 2)
2979 {
2980 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
2981 / TARGET_CHAR_BIT);
2982 if (mips_debug)
2983 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
2984 offset);
2985 mips_xfer_register (regcache, NUM_REGS + regnum,
2986 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
2987 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
2988 }
2989 return RETURN_VALUE_REGISTER_CONVENTION;
2990 }
2991 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2992 || TYPE_CODE (type) == TYPE_CODE_UNION)
2993 {
2994 /* A structure or union. Extract the left justified value,
2995 regardless of the byte order. I.e. DO NOT USE
2996 mips_xfer_lower. */
2997 int offset;
2998 int regnum;
2999 for (offset = 0, regnum = MIPS_V0_REGNUM;
3000 offset < TYPE_LENGTH (type);
3001 offset += register_size (current_gdbarch, regnum), regnum++)
3002 {
3003 int xfer = register_size (current_gdbarch, regnum);
3004 if (offset + xfer > TYPE_LENGTH (type))
3005 xfer = TYPE_LENGTH (type) - offset;
3006 if (mips_debug)
3007 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3008 offset, xfer, regnum);
3009 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3010 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3011 }
3012 return RETURN_VALUE_REGISTER_CONVENTION;
3013 }
3014 else
3015 {
3016 /* A scalar extract each part but least-significant-byte
3017 justified. */
3018 int offset;
3019 int regnum;
3020 for (offset = 0, regnum = MIPS_V0_REGNUM;
3021 offset < TYPE_LENGTH (type);
3022 offset += register_size (current_gdbarch, regnum), regnum++)
3023 {
3024 int xfer = register_size (current_gdbarch, regnum);
3025 if (offset + xfer > TYPE_LENGTH (type))
3026 xfer = TYPE_LENGTH (type) - offset;
3027 if (mips_debug)
3028 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3029 offset, xfer, regnum);
3030 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3031 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3032 }
3033 return RETURN_VALUE_REGISTER_CONVENTION;
3034 }
3035 }
3036
3037 /* O32 ABI stuff. */
3038
3039 static CORE_ADDR
3040 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3041 struct regcache *regcache, CORE_ADDR bp_addr,
3042 int nargs, struct value **args, CORE_ADDR sp,
3043 int struct_return, CORE_ADDR struct_addr)
3044 {
3045 int argreg;
3046 int float_argreg;
3047 int argnum;
3048 int len = 0;
3049 int stack_offset = 0;
3050 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3051 CORE_ADDR func_addr = find_function_addr (function, NULL);
3052
3053 /* For shared libraries, "t9" needs to point at the function
3054 address. */
3055 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3056
3057 /* Set the return address register to point to the entry point of
3058 the program, where a breakpoint lies in wait. */
3059 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3060
3061 /* First ensure that the stack and structure return address (if any)
3062 are properly aligned. The stack has to be at least 64-bit
3063 aligned even on 32-bit machines, because doubles must be 64-bit
3064 aligned. For n32 and n64, stack frames need to be 128-bit
3065 aligned, so we round to this widest known alignment. */
3066
3067 sp = align_down (sp, 16);
3068 struct_addr = align_down (struct_addr, 16);
3069
3070 /* Now make space on the stack for the args. */
3071 for (argnum = 0; argnum < nargs; argnum++)
3072 {
3073 struct type *arg_type = check_typedef (value_type (args[argnum]));
3074 int arglen = TYPE_LENGTH (arg_type);
3075
3076 /* Align to double-word if necessary. */
3077 if (mips_type_needs_double_align (arg_type))
3078 len = align_up (len, mips_stack_argsize (gdbarch) * 2);
3079 /* Allocate space on the stack. */
3080 len += align_up (arglen, mips_stack_argsize (gdbarch));
3081 }
3082 sp -= align_up (len, 16);
3083
3084 if (mips_debug)
3085 fprintf_unfiltered (gdb_stdlog,
3086 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3087 paddr_nz (sp), (long) align_up (len, 16));
3088
3089 /* Initialize the integer and float register pointers. */
3090 argreg = MIPS_A0_REGNUM;
3091 float_argreg = mips_fpa0_regnum (current_gdbarch);
3092
3093 /* The struct_return pointer occupies the first parameter-passing reg. */
3094 if (struct_return)
3095 {
3096 if (mips_debug)
3097 fprintf_unfiltered (gdb_stdlog,
3098 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3099 argreg, paddr_nz (struct_addr));
3100 write_register (argreg++, struct_addr);
3101 stack_offset += mips_stack_argsize (gdbarch);
3102 }
3103
3104 /* Now load as many as possible of the first arguments into
3105 registers, and push the rest onto the stack. Loop thru args
3106 from first to last. */
3107 for (argnum = 0; argnum < nargs; argnum++)
3108 {
3109 const gdb_byte *val;
3110 struct value *arg = args[argnum];
3111 struct type *arg_type = check_typedef (value_type (arg));
3112 int len = TYPE_LENGTH (arg_type);
3113 enum type_code typecode = TYPE_CODE (arg_type);
3114
3115 if (mips_debug)
3116 fprintf_unfiltered (gdb_stdlog,
3117 "mips_o32_push_dummy_call: %d len=%d type=%d",
3118 argnum + 1, len, (int) typecode);
3119
3120 val = value_contents (arg);
3121
3122 /* 32-bit ABIs always start floating point arguments in an
3123 even-numbered floating point register. Round the FP register
3124 up before the check to see if there are any FP registers
3125 left. O32/O64 targets also pass the FP in the integer
3126 registers so also round up normal registers. */
3127 if (fp_register_arg_p (typecode, arg_type))
3128 {
3129 if ((float_argreg & 1))
3130 float_argreg++;
3131 }
3132
3133 /* Floating point arguments passed in registers have to be
3134 treated specially. On 32-bit architectures, doubles
3135 are passed in register pairs; the even register gets
3136 the low word, and the odd register gets the high word.
3137 On O32/O64, the first two floating point arguments are
3138 also copied to general registers, because MIPS16 functions
3139 don't use float registers for arguments. This duplication of
3140 arguments in general registers can't hurt non-MIPS16 functions
3141 because those registers are normally skipped. */
3142
3143 if (fp_register_arg_p (typecode, arg_type)
3144 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3145 {
3146 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
3147 {
3148 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3149 unsigned long regval;
3150
3151 /* Write the low word of the double to the even register(s). */
3152 regval = extract_unsigned_integer (val + low_offset, 4);
3153 if (mips_debug)
3154 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3155 float_argreg, phex (regval, 4));
3156 write_register (float_argreg++, regval);
3157 if (mips_debug)
3158 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3159 argreg, phex (regval, 4));
3160 write_register (argreg++, regval);
3161
3162 /* Write the high word of the double to the odd register(s). */
3163 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3164 if (mips_debug)
3165 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3166 float_argreg, phex (regval, 4));
3167 write_register (float_argreg++, regval);
3168
3169 if (mips_debug)
3170 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3171 argreg, phex (regval, 4));
3172 write_register (argreg++, regval);
3173 }
3174 else
3175 {
3176 /* This is a floating point value that fits entirely
3177 in a single register. */
3178 /* On 32 bit ABI's the float_argreg is further adjusted
3179 above to ensure that it is even register aligned. */
3180 LONGEST regval = extract_unsigned_integer (val, len);
3181 if (mips_debug)
3182 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3183 float_argreg, phex (regval, len));
3184 write_register (float_argreg++, regval);
3185 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3186 registers for each argument. The below is (my
3187 guess) to ensure that the corresponding integer
3188 register has reserved the same space. */
3189 if (mips_debug)
3190 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3191 argreg, phex (regval, len));
3192 write_register (argreg, regval);
3193 argreg += 2;
3194 }
3195 /* Reserve space for the FP register. */
3196 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
3197 }
3198 else
3199 {
3200 /* Copy the argument to general registers or the stack in
3201 register-sized pieces. Large arguments are split between
3202 registers and stack. */
3203 /* Note: structs whose size is not a multiple of
3204 mips_abi_regsize() are treated specially: Irix cc passes
3205 them in registers where gcc sometimes puts them on the
3206 stack. For maximum compatibility, we will put them in
3207 both places. */
3208 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3209 && (len % mips_abi_regsize (gdbarch) != 0));
3210 /* Structures should be aligned to eight bytes (even arg registers)
3211 on MIPS_ABI_O32, if their first member has double precision. */
3212 if (mips_type_needs_double_align (arg_type))
3213 {
3214 if ((argreg & 1))
3215 {
3216 argreg++;
3217 stack_offset += mips_abi_regsize (gdbarch);
3218 }
3219 }
3220 while (len > 0)
3221 {
3222 /* Remember if the argument was written to the stack. */
3223 int stack_used_p = 0;
3224 int partial_len = (len < mips_abi_regsize (gdbarch)
3225 ? len : mips_abi_regsize (gdbarch));
3226
3227 if (mips_debug)
3228 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3229 partial_len);
3230
3231 /* Write this portion of the argument to the stack. */
3232 if (argreg > MIPS_LAST_ARG_REGNUM
3233 || odd_sized_struct)
3234 {
3235 /* Should shorter than int integer values be
3236 promoted to int before being stored? */
3237 int longword_offset = 0;
3238 CORE_ADDR addr;
3239 stack_used_p = 1;
3240 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3241 {
3242 if (mips_stack_argsize (gdbarch) == 8
3243 && (typecode == TYPE_CODE_INT
3244 || typecode == TYPE_CODE_PTR
3245 || typecode == TYPE_CODE_FLT) && len <= 4)
3246 longword_offset = mips_stack_argsize (gdbarch) - len;
3247 }
3248
3249 if (mips_debug)
3250 {
3251 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3252 paddr_nz (stack_offset));
3253 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3254 paddr_nz (longword_offset));
3255 }
3256
3257 addr = sp + stack_offset + longword_offset;
3258
3259 if (mips_debug)
3260 {
3261 int i;
3262 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3263 paddr_nz (addr));
3264 for (i = 0; i < partial_len; i++)
3265 {
3266 fprintf_unfiltered (gdb_stdlog, "%02x",
3267 val[i] & 0xff);
3268 }
3269 }
3270 write_memory (addr, val, partial_len);
3271 }
3272
3273 /* Note!!! This is NOT an else clause. Odd sized
3274 structs may go thru BOTH paths. */
3275 /* Write this portion of the argument to a general
3276 purpose register. */
3277 if (argreg <= MIPS_LAST_ARG_REGNUM)
3278 {
3279 LONGEST regval = extract_signed_integer (val, partial_len);
3280 /* Value may need to be sign extended, because
3281 mips_isa_regsize() != mips_abi_regsize(). */
3282
3283 /* A non-floating-point argument being passed in a
3284 general register. If a struct or union, and if
3285 the remaining length is smaller than the register
3286 size, we have to adjust the register value on
3287 big endian targets.
3288
3289 It does not seem to be necessary to do the
3290 same for integral types.
3291
3292 Also don't do this adjustment on O64 binaries.
3293
3294 cagney/2001-07-23: gdb/179: Also, GCC, when
3295 outputting LE O32 with sizeof (struct) <
3296 mips_abi_regsize(), generates a left shift
3297 as part of storing the argument in a register
3298 (the left shift isn't generated when
3299 sizeof (struct) >= mips_abi_regsize()). Since
3300 it is quite possible that this is GCC
3301 contradicting the LE/O32 ABI, GDB has not been
3302 adjusted to accommodate this. Either someone
3303 needs to demonstrate that the LE/O32 ABI
3304 specifies such a left shift OR this new ABI gets
3305 identified as such and GDB gets tweaked
3306 accordingly. */
3307
3308 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3309 && partial_len < mips_abi_regsize (gdbarch)
3310 && (typecode == TYPE_CODE_STRUCT
3311 || typecode == TYPE_CODE_UNION))
3312 regval <<= ((mips_abi_regsize (gdbarch) - partial_len)
3313 * TARGET_CHAR_BIT);
3314
3315 if (mips_debug)
3316 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3317 argreg,
3318 phex (regval,
3319 mips_abi_regsize (gdbarch)));
3320 write_register (argreg, regval);
3321 argreg++;
3322
3323 /* Prevent subsequent floating point arguments from
3324 being passed in floating point registers. */
3325 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3326 }
3327
3328 len -= partial_len;
3329 val += partial_len;
3330
3331 /* Compute the the offset into the stack at which we
3332 will copy the next parameter.
3333
3334 In older ABIs, the caller reserved space for
3335 registers that contained arguments. This was loosely
3336 refered to as their "home". Consequently, space is
3337 always allocated. */
3338
3339 stack_offset += align_up (partial_len,
3340 mips_stack_argsize (gdbarch));
3341 }
3342 }
3343 if (mips_debug)
3344 fprintf_unfiltered (gdb_stdlog, "\n");
3345 }
3346
3347 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3348
3349 /* Return adjusted stack pointer. */
3350 return sp;
3351 }
3352
3353 static enum return_value_convention
3354 mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3355 struct regcache *regcache,
3356 gdb_byte *readbuf, const gdb_byte *writebuf)
3357 {
3358 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3359
3360 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3361 || TYPE_CODE (type) == TYPE_CODE_UNION
3362 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3363 return RETURN_VALUE_STRUCT_CONVENTION;
3364 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3365 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3366 {
3367 /* A single-precision floating-point value. It fits in the
3368 least significant part of FP0. */
3369 if (mips_debug)
3370 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3371 mips_xfer_register (regcache,
3372 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
3373 TYPE_LENGTH (type),
3374 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3375 return RETURN_VALUE_REGISTER_CONVENTION;
3376 }
3377 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3378 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3379 {
3380 /* A double-precision floating-point value. The most
3381 significant part goes in FP1, and the least significant in
3382 FP0. */
3383 if (mips_debug)
3384 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
3385 switch (TARGET_BYTE_ORDER)
3386 {
3387 case BFD_ENDIAN_LITTLE:
3388 mips_xfer_register (regcache,
3389 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3390 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3391 mips_xfer_register (regcache,
3392 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3393 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3394 break;
3395 case BFD_ENDIAN_BIG:
3396 mips_xfer_register (regcache,
3397 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3398 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3399 mips_xfer_register (regcache,
3400 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3401 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3402 break;
3403 default:
3404 internal_error (__FILE__, __LINE__, _("bad switch"));
3405 }
3406 return RETURN_VALUE_REGISTER_CONVENTION;
3407 }
3408 #if 0
3409 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3410 && TYPE_NFIELDS (type) <= 2
3411 && TYPE_NFIELDS (type) >= 1
3412 && ((TYPE_NFIELDS (type) == 1
3413 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3414 == TYPE_CODE_FLT))
3415 || (TYPE_NFIELDS (type) == 2
3416 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3417 == TYPE_CODE_FLT)
3418 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3419 == TYPE_CODE_FLT)))
3420 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3421 {
3422 /* A struct that contains one or two floats. Each value is part
3423 in the least significant part of their floating point
3424 register.. */
3425 gdb_byte reg[MAX_REGISTER_SIZE];
3426 int regnum;
3427 int field;
3428 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3429 field < TYPE_NFIELDS (type); field++, regnum += 2)
3430 {
3431 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3432 / TARGET_CHAR_BIT);
3433 if (mips_debug)
3434 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3435 offset);
3436 mips_xfer_register (regcache, NUM_REGS + regnum,
3437 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3438 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3439 }
3440 return RETURN_VALUE_REGISTER_CONVENTION;
3441 }
3442 #endif
3443 #if 0
3444 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3445 || TYPE_CODE (type) == TYPE_CODE_UNION)
3446 {
3447 /* A structure or union. Extract the left justified value,
3448 regardless of the byte order. I.e. DO NOT USE
3449 mips_xfer_lower. */
3450 int offset;
3451 int regnum;
3452 for (offset = 0, regnum = MIPS_V0_REGNUM;
3453 offset < TYPE_LENGTH (type);
3454 offset += register_size (current_gdbarch, regnum), regnum++)
3455 {
3456 int xfer = register_size (current_gdbarch, regnum);
3457 if (offset + xfer > TYPE_LENGTH (type))
3458 xfer = TYPE_LENGTH (type) - offset;
3459 if (mips_debug)
3460 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3461 offset, xfer, regnum);
3462 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3463 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3464 }
3465 return RETURN_VALUE_REGISTER_CONVENTION;
3466 }
3467 #endif
3468 else
3469 {
3470 /* A scalar extract each part but least-significant-byte
3471 justified. o32 thinks registers are 4 byte, regardless of
3472 the ISA. mips_stack_argsize controls this. */
3473 int offset;
3474 int regnum;
3475 for (offset = 0, regnum = MIPS_V0_REGNUM;
3476 offset < TYPE_LENGTH (type);
3477 offset += mips_stack_argsize (gdbarch), regnum++)
3478 {
3479 int xfer = mips_stack_argsize (gdbarch);
3480 if (offset + xfer > TYPE_LENGTH (type))
3481 xfer = TYPE_LENGTH (type) - offset;
3482 if (mips_debug)
3483 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3484 offset, xfer, regnum);
3485 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3486 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3487 }
3488 return RETURN_VALUE_REGISTER_CONVENTION;
3489 }
3490 }
3491
3492 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3493 ABI. */
3494
3495 static CORE_ADDR
3496 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3497 struct regcache *regcache, CORE_ADDR bp_addr,
3498 int nargs,
3499 struct value **args, CORE_ADDR sp,
3500 int struct_return, CORE_ADDR struct_addr)
3501 {
3502 int argreg;
3503 int float_argreg;
3504 int argnum;
3505 int len = 0;
3506 int stack_offset = 0;
3507 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3508 CORE_ADDR func_addr = find_function_addr (function, NULL);
3509
3510 /* For shared libraries, "t9" needs to point at the function
3511 address. */
3512 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3513
3514 /* Set the return address register to point to the entry point of
3515 the program, where a breakpoint lies in wait. */
3516 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3517
3518 /* First ensure that the stack and structure return address (if any)
3519 are properly aligned. The stack has to be at least 64-bit
3520 aligned even on 32-bit machines, because doubles must be 64-bit
3521 aligned. For n32 and n64, stack frames need to be 128-bit
3522 aligned, so we round to this widest known alignment. */
3523
3524 sp = align_down (sp, 16);
3525 struct_addr = align_down (struct_addr, 16);
3526
3527 /* Now make space on the stack for the args. */
3528 for (argnum = 0; argnum < nargs; argnum++)
3529 {
3530 struct type *arg_type = check_typedef (value_type (args[argnum]));
3531 int arglen = TYPE_LENGTH (arg_type);
3532
3533 /* Allocate space on the stack. */
3534 len += align_up (arglen, mips_stack_argsize (gdbarch));
3535 }
3536 sp -= align_up (len, 16);
3537
3538 if (mips_debug)
3539 fprintf_unfiltered (gdb_stdlog,
3540 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3541 paddr_nz (sp), (long) align_up (len, 16));
3542
3543 /* Initialize the integer and float register pointers. */
3544 argreg = MIPS_A0_REGNUM;
3545 float_argreg = mips_fpa0_regnum (current_gdbarch);
3546
3547 /* The struct_return pointer occupies the first parameter-passing reg. */
3548 if (struct_return)
3549 {
3550 if (mips_debug)
3551 fprintf_unfiltered (gdb_stdlog,
3552 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3553 argreg, paddr_nz (struct_addr));
3554 write_register (argreg++, struct_addr);
3555 stack_offset += mips_stack_argsize (gdbarch);
3556 }
3557
3558 /* Now load as many as possible of the first arguments into
3559 registers, and push the rest onto the stack. Loop thru args
3560 from first to last. */
3561 for (argnum = 0; argnum < nargs; argnum++)
3562 {
3563 const gdb_byte *val;
3564 struct value *arg = args[argnum];
3565 struct type *arg_type = check_typedef (value_type (arg));
3566 int len = TYPE_LENGTH (arg_type);
3567 enum type_code typecode = TYPE_CODE (arg_type);
3568
3569 if (mips_debug)
3570 fprintf_unfiltered (gdb_stdlog,
3571 "mips_o64_push_dummy_call: %d len=%d type=%d",
3572 argnum + 1, len, (int) typecode);
3573
3574 val = value_contents (arg);
3575
3576 /* Floating point arguments passed in registers have to be
3577 treated specially. On 32-bit architectures, doubles
3578 are passed in register pairs; the even register gets
3579 the low word, and the odd register gets the high word.
3580 On O32/O64, the first two floating point arguments are
3581 also copied to general registers, because MIPS16 functions
3582 don't use float registers for arguments. This duplication of
3583 arguments in general registers can't hurt non-MIPS16 functions
3584 because those registers are normally skipped. */
3585
3586 if (fp_register_arg_p (typecode, arg_type)
3587 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3588 {
3589 LONGEST regval = extract_unsigned_integer (val, len);
3590 if (mips_debug)
3591 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3592 float_argreg, phex (regval, len));
3593 write_register (float_argreg++, regval);
3594 if (mips_debug)
3595 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3596 argreg, phex (regval, len));
3597 write_register (argreg, regval);
3598 argreg++;
3599 /* Reserve space for the FP register. */
3600 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
3601 }
3602 else
3603 {
3604 /* Copy the argument to general registers or the stack in
3605 register-sized pieces. Large arguments are split between
3606 registers and stack. */
3607 /* Note: structs whose size is not a multiple of
3608 mips_abi_regsize() are treated specially: Irix cc passes
3609 them in registers where gcc sometimes puts them on the
3610 stack. For maximum compatibility, we will put them in
3611 both places. */
3612 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3613 && (len % mips_abi_regsize (gdbarch) != 0));
3614 while (len > 0)
3615 {
3616 /* Remember if the argument was written to the stack. */
3617 int stack_used_p = 0;
3618 int partial_len = (len < mips_abi_regsize (gdbarch)
3619 ? len : mips_abi_regsize (gdbarch));
3620
3621 if (mips_debug)
3622 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3623 partial_len);
3624
3625 /* Write this portion of the argument to the stack. */
3626 if (argreg > MIPS_LAST_ARG_REGNUM
3627 || odd_sized_struct)
3628 {
3629 /* Should shorter than int integer values be
3630 promoted to int before being stored? */
3631 int longword_offset = 0;
3632 CORE_ADDR addr;
3633 stack_used_p = 1;
3634 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3635 {
3636 if (mips_stack_argsize (gdbarch) == 8
3637 && (typecode == TYPE_CODE_INT
3638 || typecode == TYPE_CODE_PTR
3639 || typecode == TYPE_CODE_FLT) && len <= 4)
3640 longword_offset = mips_stack_argsize (gdbarch) - len;
3641 }
3642
3643 if (mips_debug)
3644 {
3645 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3646 paddr_nz (stack_offset));
3647 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3648 paddr_nz (longword_offset));
3649 }
3650
3651 addr = sp + stack_offset + longword_offset;
3652
3653 if (mips_debug)
3654 {
3655 int i;
3656 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3657 paddr_nz (addr));
3658 for (i = 0; i < partial_len; i++)
3659 {
3660 fprintf_unfiltered (gdb_stdlog, "%02x",
3661 val[i] & 0xff);
3662 }
3663 }
3664 write_memory (addr, val, partial_len);
3665 }
3666
3667 /* Note!!! This is NOT an else clause. Odd sized
3668 structs may go thru BOTH paths. */
3669 /* Write this portion of the argument to a general
3670 purpose register. */
3671 if (argreg <= MIPS_LAST_ARG_REGNUM)
3672 {
3673 LONGEST regval = extract_signed_integer (val, partial_len);
3674 /* Value may need to be sign extended, because
3675 mips_isa_regsize() != mips_abi_regsize(). */
3676
3677 /* A non-floating-point argument being passed in a
3678 general register. If a struct or union, and if
3679 the remaining length is smaller than the register
3680 size, we have to adjust the register value on
3681 big endian targets.
3682
3683 It does not seem to be necessary to do the
3684 same for integral types. */
3685
3686 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3687 && partial_len < mips_abi_regsize (gdbarch)
3688 && (typecode == TYPE_CODE_STRUCT
3689 || typecode == TYPE_CODE_UNION))
3690 regval <<= ((mips_abi_regsize (gdbarch) - partial_len)
3691 * TARGET_CHAR_BIT);
3692
3693 if (mips_debug)
3694 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3695 argreg,
3696 phex (regval,
3697 mips_abi_regsize (gdbarch)));
3698 write_register (argreg, regval);
3699 argreg++;
3700
3701 /* Prevent subsequent floating point arguments from
3702 being passed in floating point registers. */
3703 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3704 }
3705
3706 len -= partial_len;
3707 val += partial_len;
3708
3709 /* Compute the the offset into the stack at which we
3710 will copy the next parameter.
3711
3712 In older ABIs, the caller reserved space for
3713 registers that contained arguments. This was loosely
3714 refered to as their "home". Consequently, space is
3715 always allocated. */
3716
3717 stack_offset += align_up (partial_len,
3718 mips_stack_argsize (gdbarch));
3719 }
3720 }
3721 if (mips_debug)
3722 fprintf_unfiltered (gdb_stdlog, "\n");
3723 }
3724
3725 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3726
3727 /* Return adjusted stack pointer. */
3728 return sp;
3729 }
3730
3731 static enum return_value_convention
3732 mips_o64_return_value (struct gdbarch *gdbarch,
3733 struct type *type, struct regcache *regcache,
3734 gdb_byte *readbuf, const gdb_byte *writebuf)
3735 {
3736 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3737
3738 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3739 || TYPE_CODE (type) == TYPE_CODE_UNION
3740 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3741 return RETURN_VALUE_STRUCT_CONVENTION;
3742 else if (fp_register_arg_p (TYPE_CODE (type), type))
3743 {
3744 /* A floating-point value. It fits in the least significant
3745 part of FP0. */
3746 if (mips_debug)
3747 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3748 mips_xfer_register (regcache,
3749 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
3750 TYPE_LENGTH (type),
3751 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3752 return RETURN_VALUE_REGISTER_CONVENTION;
3753 }
3754 else
3755 {
3756 /* A scalar extract each part but least-significant-byte
3757 justified. */
3758 int offset;
3759 int regnum;
3760 for (offset = 0, regnum = MIPS_V0_REGNUM;
3761 offset < TYPE_LENGTH (type);
3762 offset += mips_stack_argsize (gdbarch), regnum++)
3763 {
3764 int xfer = mips_stack_argsize (gdbarch);
3765 if (offset + xfer > TYPE_LENGTH (type))
3766 xfer = TYPE_LENGTH (type) - offset;
3767 if (mips_debug)
3768 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3769 offset, xfer, regnum);
3770 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3771 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3772 }
3773 return RETURN_VALUE_REGISTER_CONVENTION;
3774 }
3775 }
3776
3777 /* Floating point register management.
3778
3779 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3780 64bit operations, these early MIPS cpus treat fp register pairs
3781 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3782 registers and offer a compatibility mode that emulates the MIPS2 fp
3783 model. When operating in MIPS2 fp compat mode, later cpu's split
3784 double precision floats into two 32-bit chunks and store them in
3785 consecutive fp regs. To display 64-bit floats stored in this
3786 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3787 Throw in user-configurable endianness and you have a real mess.
3788
3789 The way this works is:
3790 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3791 double-precision value will be split across two logical registers.
3792 The lower-numbered logical register will hold the low-order bits,
3793 regardless of the processor's endianness.
3794 - If we are on a 64-bit processor, and we are looking for a
3795 single-precision value, it will be in the low ordered bits
3796 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3797 save slot in memory.
3798 - If we are in 64-bit mode, everything is straightforward.
3799
3800 Note that this code only deals with "live" registers at the top of the
3801 stack. We will attempt to deal with saved registers later, when
3802 the raw/cooked register interface is in place. (We need a general
3803 interface that can deal with dynamic saved register sizes -- fp
3804 regs could be 32 bits wide in one frame and 64 on the frame above
3805 and below). */
3806
3807 static struct type *
3808 mips_float_register_type (void)
3809 {
3810 return builtin_type_ieee_single;
3811 }
3812
3813 static struct type *
3814 mips_double_register_type (void)
3815 {
3816 return builtin_type_ieee_double;
3817 }
3818
3819 /* Copy a 32-bit single-precision value from the current frame
3820 into rare_buffer. */
3821
3822 static void
3823 mips_read_fp_register_single (struct frame_info *frame, int regno,
3824 gdb_byte *rare_buffer)
3825 {
3826 int raw_size = register_size (current_gdbarch, regno);
3827 gdb_byte *raw_buffer = alloca (raw_size);
3828
3829 if (!frame_register_read (frame, regno, raw_buffer))
3830 error (_("can't read register %d (%s)"), regno, REGISTER_NAME (regno));
3831 if (raw_size == 8)
3832 {
3833 /* We have a 64-bit value for this register. Find the low-order
3834 32 bits. */
3835 int offset;
3836
3837 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3838 offset = 4;
3839 else
3840 offset = 0;
3841
3842 memcpy (rare_buffer, raw_buffer + offset, 4);
3843 }
3844 else
3845 {
3846 memcpy (rare_buffer, raw_buffer, 4);
3847 }
3848 }
3849
3850 /* Copy a 64-bit double-precision value from the current frame into
3851 rare_buffer. This may include getting half of it from the next
3852 register. */
3853
3854 static void
3855 mips_read_fp_register_double (struct frame_info *frame, int regno,
3856 gdb_byte *rare_buffer)
3857 {
3858 int raw_size = register_size (current_gdbarch, regno);
3859
3860 if (raw_size == 8 && !mips2_fp_compat ())
3861 {
3862 /* We have a 64-bit value for this register, and we should use
3863 all 64 bits. */
3864 if (!frame_register_read (frame, regno, rare_buffer))
3865 error (_("can't read register %d (%s)"), regno, REGISTER_NAME (regno));
3866 }
3867 else
3868 {
3869 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
3870 internal_error (__FILE__, __LINE__,
3871 _("mips_read_fp_register_double: bad access to "
3872 "odd-numbered FP register"));
3873
3874 /* mips_read_fp_register_single will find the correct 32 bits from
3875 each register. */
3876 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3877 {
3878 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
3879 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
3880 }
3881 else
3882 {
3883 mips_read_fp_register_single (frame, regno, rare_buffer);
3884 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
3885 }
3886 }
3887 }
3888
3889 static void
3890 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
3891 int regnum)
3892 { /* do values for FP (float) regs */
3893 gdb_byte *raw_buffer;
3894 double doub, flt1; /* doubles extracted from raw hex data */
3895 int inv1, inv2;
3896
3897 raw_buffer = alloca (2 * register_size (current_gdbarch,
3898 mips_regnum (current_gdbarch)->fp0));
3899
3900 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
3901 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
3902 "");
3903
3904 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat ())
3905 {
3906 /* 4-byte registers: Print hex and floating. Also print even
3907 numbered registers as doubles. */
3908 mips_read_fp_register_single (frame, regnum, raw_buffer);
3909 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
3910
3911 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
3912 file);
3913
3914 fprintf_filtered (file, " flt: ");
3915 if (inv1)
3916 fprintf_filtered (file, " <invalid float> ");
3917 else
3918 fprintf_filtered (file, "%-17.9g", flt1);
3919
3920 if (regnum % 2 == 0)
3921 {
3922 mips_read_fp_register_double (frame, regnum, raw_buffer);
3923 doub = unpack_double (mips_double_register_type (), raw_buffer,
3924 &inv2);
3925
3926 fprintf_filtered (file, " dbl: ");
3927 if (inv2)
3928 fprintf_filtered (file, "<invalid double>");
3929 else
3930 fprintf_filtered (file, "%-24.17g", doub);
3931 }
3932 }
3933 else
3934 {
3935 /* Eight byte registers: print each one as hex, float and double. */
3936 mips_read_fp_register_single (frame, regnum, raw_buffer);
3937 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
3938
3939 mips_read_fp_register_double (frame, regnum, raw_buffer);
3940 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
3941
3942
3943 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
3944 file);
3945
3946 fprintf_filtered (file, " flt: ");
3947 if (inv1)
3948 fprintf_filtered (file, "<invalid float>");
3949 else
3950 fprintf_filtered (file, "%-17.9g", flt1);
3951
3952 fprintf_filtered (file, " dbl: ");
3953 if (inv2)
3954 fprintf_filtered (file, "<invalid double>");
3955 else
3956 fprintf_filtered (file, "%-24.17g", doub);
3957 }
3958 }
3959
3960 static void
3961 mips_print_register (struct ui_file *file, struct frame_info *frame,
3962 int regnum, int all)
3963 {
3964 struct gdbarch *gdbarch = get_frame_arch (frame);
3965 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
3966 int offset;
3967
3968 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
3969 {
3970 mips_print_fp_register (file, frame, regnum);
3971 return;
3972 }
3973
3974 /* Get the data in raw format. */
3975 if (!frame_register_read (frame, regnum, raw_buffer))
3976 {
3977 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
3978 return;
3979 }
3980
3981 fputs_filtered (REGISTER_NAME (regnum), file);
3982
3983 /* The problem with printing numeric register names (r26, etc.) is that
3984 the user can't use them on input. Probably the best solution is to
3985 fix it so that either the numeric or the funky (a2, etc.) names
3986 are accepted on input. */
3987 if (regnum < MIPS_NUMREGS)
3988 fprintf_filtered (file, "(r%d): ", regnum);
3989 else
3990 fprintf_filtered (file, ": ");
3991
3992 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3993 offset =
3994 register_size (current_gdbarch,
3995 regnum) - register_size (current_gdbarch, regnum);
3996 else
3997 offset = 0;
3998
3999 print_scalar_formatted (raw_buffer + offset,
4000 register_type (gdbarch, regnum), 'x', 0,
4001 file);
4002 }
4003
4004 /* Replacement for generic do_registers_info.
4005 Print regs in pretty columns. */
4006
4007 static int
4008 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4009 int regnum)
4010 {
4011 fprintf_filtered (file, " ");
4012 mips_print_fp_register (file, frame, regnum);
4013 fprintf_filtered (file, "\n");
4014 return regnum + 1;
4015 }
4016
4017
4018 /* Print a row's worth of GP (int) registers, with name labels above */
4019
4020 static int
4021 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4022 int start_regnum)
4023 {
4024 struct gdbarch *gdbarch = get_frame_arch (frame);
4025 /* do values for GP (int) regs */
4026 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4027 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
4028 int col, byte;
4029 int regnum;
4030
4031 /* For GP registers, we print a separate row of names above the vals */
4032 for (col = 0, regnum = start_regnum;
4033 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
4034 {
4035 if (*REGISTER_NAME (regnum) == '\0')
4036 continue; /* unused register */
4037 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4038 TYPE_CODE_FLT)
4039 break; /* end the row: reached FP register */
4040 if (col == 0)
4041 fprintf_filtered (file, " ");
4042 fprintf_filtered (file,
4043 mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
4044 REGISTER_NAME (regnum));
4045 col++;
4046 }
4047
4048 if (col == 0)
4049 return regnum;
4050
4051 /* print the R0 to R31 names */
4052 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4053 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4054 else
4055 fprintf_filtered (file, "\n ");
4056
4057 /* now print the values in hex, 4 or 8 to the row */
4058 for (col = 0, regnum = start_regnum;
4059 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
4060 {
4061 if (*REGISTER_NAME (regnum) == '\0')
4062 continue; /* unused register */
4063 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4064 TYPE_CODE_FLT)
4065 break; /* end row: reached FP register */
4066 /* OK: get the data in raw format. */
4067 if (!frame_register_read (frame, regnum, raw_buffer))
4068 error (_("can't read register %d (%s)"), regnum, REGISTER_NAME (regnum));
4069 /* pad small registers */
4070 for (byte = 0;
4071 byte < (mips_abi_regsize (current_gdbarch)
4072 - register_size (current_gdbarch, regnum)); byte++)
4073 printf_filtered (" ");
4074 /* Now print the register value in hex, endian order. */
4075 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4076 for (byte =
4077 register_size (current_gdbarch,
4078 regnum) - register_size (current_gdbarch, regnum);
4079 byte < register_size (current_gdbarch, regnum); byte++)
4080 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4081 else
4082 for (byte = register_size (current_gdbarch, regnum) - 1;
4083 byte >= 0; byte--)
4084 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4085 fprintf_filtered (file, " ");
4086 col++;
4087 }
4088 if (col > 0) /* ie. if we actually printed anything... */
4089 fprintf_filtered (file, "\n");
4090
4091 return regnum;
4092 }
4093
4094 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4095
4096 static void
4097 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4098 struct frame_info *frame, int regnum, int all)
4099 {
4100 if (regnum != -1) /* do one specified register */
4101 {
4102 gdb_assert (regnum >= NUM_REGS);
4103 if (*(REGISTER_NAME (regnum)) == '\0')
4104 error (_("Not a valid register for the current processor type"));
4105
4106 mips_print_register (file, frame, regnum, 0);
4107 fprintf_filtered (file, "\n");
4108 }
4109 else
4110 /* do all (or most) registers */
4111 {
4112 regnum = NUM_REGS;
4113 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
4114 {
4115 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4116 TYPE_CODE_FLT)
4117 {
4118 if (all) /* true for "INFO ALL-REGISTERS" command */
4119 regnum = print_fp_register_row (file, frame, regnum);
4120 else
4121 regnum += MIPS_NUMREGS; /* skip floating point regs */
4122 }
4123 else
4124 regnum = print_gp_register_row (file, frame, regnum);
4125 }
4126 }
4127 }
4128
4129 /* Is this a branch with a delay slot? */
4130
4131 static int
4132 is_delayed (unsigned long insn)
4133 {
4134 int i;
4135 for (i = 0; i < NUMOPCODES; ++i)
4136 if (mips_opcodes[i].pinfo != INSN_MACRO
4137 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4138 break;
4139 return (i < NUMOPCODES
4140 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4141 | INSN_COND_BRANCH_DELAY
4142 | INSN_COND_BRANCH_LIKELY)));
4143 }
4144
4145 int
4146 mips_single_step_through_delay (struct gdbarch *gdbarch,
4147 struct frame_info *frame)
4148 {
4149 CORE_ADDR pc = get_frame_pc (frame);
4150 gdb_byte buf[MIPS_INSN32_SIZE];
4151
4152 /* There is no branch delay slot on MIPS16. */
4153 if (mips_pc_is_mips16 (pc))
4154 return 0;
4155
4156 if (!breakpoint_here_p (pc + 4))
4157 return 0;
4158
4159 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4160 /* If error reading memory, guess that it is not a delayed
4161 branch. */
4162 return 0;
4163 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
4164 }
4165
4166 /* To skip prologues, I use this predicate. Returns either PC itself
4167 if the code at PC does not look like a function prologue; otherwise
4168 returns an address that (if we're lucky) follows the prologue. If
4169 LENIENT, then we must skip everything which is involved in setting
4170 up the frame (it's OK to skip more, just so long as we don't skip
4171 anything which might clobber the registers which are being saved.
4172 We must skip more in the case where part of the prologue is in the
4173 delay slot of a non-prologue instruction). */
4174
4175 static CORE_ADDR
4176 mips_skip_prologue (CORE_ADDR pc)
4177 {
4178 CORE_ADDR limit_pc;
4179 CORE_ADDR func_addr;
4180
4181 /* See if we can determine the end of the prologue via the symbol table.
4182 If so, then return either PC, or the PC after the prologue, whichever
4183 is greater. */
4184 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4185 {
4186 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4187 if (post_prologue_pc != 0)
4188 return max (pc, post_prologue_pc);
4189 }
4190
4191 /* Can't determine prologue from the symbol table, need to examine
4192 instructions. */
4193
4194 /* Find an upper limit on the function prologue using the debug
4195 information. If the debug information could not be used to provide
4196 that bound, then use an arbitrary large number as the upper bound. */
4197 limit_pc = skip_prologue_using_sal (pc);
4198 if (limit_pc == 0)
4199 limit_pc = pc + 100; /* Magic. */
4200
4201 if (mips_pc_is_mips16 (pc))
4202 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
4203 else
4204 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
4205 }
4206
4207 /* Root of all "set mips "/"show mips " commands. This will eventually be
4208 used for all MIPS-specific commands. */
4209
4210 static void
4211 show_mips_command (char *args, int from_tty)
4212 {
4213 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4214 }
4215
4216 static void
4217 set_mips_command (char *args, int from_tty)
4218 {
4219 printf_unfiltered
4220 ("\"set mips\" must be followed by an appropriate subcommand.\n");
4221 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4222 }
4223
4224 /* Commands to show/set the MIPS FPU type. */
4225
4226 static void
4227 show_mipsfpu_command (char *args, int from_tty)
4228 {
4229 char *fpu;
4230 switch (MIPS_FPU_TYPE)
4231 {
4232 case MIPS_FPU_SINGLE:
4233 fpu = "single-precision";
4234 break;
4235 case MIPS_FPU_DOUBLE:
4236 fpu = "double-precision";
4237 break;
4238 case MIPS_FPU_NONE:
4239 fpu = "absent (none)";
4240 break;
4241 default:
4242 internal_error (__FILE__, __LINE__, _("bad switch"));
4243 }
4244 if (mips_fpu_type_auto)
4245 printf_unfiltered
4246 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4247 fpu);
4248 else
4249 printf_unfiltered
4250 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
4251 }
4252
4253
4254 static void
4255 set_mipsfpu_command (char *args, int from_tty)
4256 {
4257 printf_unfiltered
4258 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4259 show_mipsfpu_command (args, from_tty);
4260 }
4261
4262 static void
4263 set_mipsfpu_single_command (char *args, int from_tty)
4264 {
4265 struct gdbarch_info info;
4266 gdbarch_info_init (&info);
4267 mips_fpu_type = MIPS_FPU_SINGLE;
4268 mips_fpu_type_auto = 0;
4269 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4270 instead of relying on globals. Doing that would let generic code
4271 handle the search for this specific architecture. */
4272 if (!gdbarch_update_p (info))
4273 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4274 }
4275
4276 static void
4277 set_mipsfpu_double_command (char *args, int from_tty)
4278 {
4279 struct gdbarch_info info;
4280 gdbarch_info_init (&info);
4281 mips_fpu_type = MIPS_FPU_DOUBLE;
4282 mips_fpu_type_auto = 0;
4283 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4284 instead of relying on globals. Doing that would let generic code
4285 handle the search for this specific architecture. */
4286 if (!gdbarch_update_p (info))
4287 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4288 }
4289
4290 static void
4291 set_mipsfpu_none_command (char *args, int from_tty)
4292 {
4293 struct gdbarch_info info;
4294 gdbarch_info_init (&info);
4295 mips_fpu_type = MIPS_FPU_NONE;
4296 mips_fpu_type_auto = 0;
4297 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4298 instead of relying on globals. Doing that would let generic code
4299 handle the search for this specific architecture. */
4300 if (!gdbarch_update_p (info))
4301 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4302 }
4303
4304 static void
4305 set_mipsfpu_auto_command (char *args, int from_tty)
4306 {
4307 mips_fpu_type_auto = 1;
4308 }
4309
4310 /* Attempt to identify the particular processor model by reading the
4311 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4312 the relevant processor still exists (it dates back to '94) and
4313 secondly this is not the way to do this. The processor type should
4314 be set by forcing an architecture change. */
4315
4316 void
4317 deprecated_mips_set_processor_regs_hack (void)
4318 {
4319 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4320 CORE_ADDR prid;
4321
4322 prid = read_register (MIPS_PRID_REGNUM);
4323
4324 if ((prid & ~0xf) == 0x700)
4325 tdep->mips_processor_reg_names = mips_r3041_reg_names;
4326 }
4327
4328 /* Just like reinit_frame_cache, but with the right arguments to be
4329 callable as an sfunc. */
4330
4331 static void
4332 reinit_frame_cache_sfunc (char *args, int from_tty,
4333 struct cmd_list_element *c)
4334 {
4335 reinit_frame_cache ();
4336 }
4337
4338 static int
4339 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
4340 {
4341 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4342
4343 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4344 disassembler needs to be able to locally determine the ISA, and
4345 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4346 work. */
4347 if (mips_pc_is_mips16 (memaddr))
4348 info->mach = bfd_mach_mips16;
4349
4350 /* Round down the instruction address to the appropriate boundary. */
4351 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
4352
4353 /* Set the disassembler options. */
4354 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
4355 {
4356 /* Set up the disassembler info, so that we get the right
4357 register names from libopcodes. */
4358 if (tdep->mips_abi == MIPS_ABI_N32)
4359 info->disassembler_options = "gpr-names=n32";
4360 else
4361 info->disassembler_options = "gpr-names=64";
4362 info->flavour = bfd_target_elf_flavour;
4363 }
4364 else
4365 /* This string is not recognized explicitly by the disassembler,
4366 but it tells the disassembler to not try to guess the ABI from
4367 the bfd elf headers, such that, if the user overrides the ABI
4368 of a program linked as NewABI, the disassembly will follow the
4369 register naming conventions specified by the user. */
4370 info->disassembler_options = "gpr-names=32";
4371
4372 /* Call the appropriate disassembler based on the target endian-ness. */
4373 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4374 return print_insn_big_mips (memaddr, info);
4375 else
4376 return print_insn_little_mips (memaddr, info);
4377 }
4378
4379 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
4380 counter value to determine whether a 16- or 32-bit breakpoint should be
4381 used. It returns a pointer to a string of bytes that encode a breakpoint
4382 instruction, stores the length of the string to *lenptr, and adjusts pc
4383 (if necessary) to point to the actual memory location where the
4384 breakpoint should be inserted. */
4385
4386 static const gdb_byte *
4387 mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
4388 {
4389 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4390 {
4391 if (mips_pc_is_mips16 (*pcptr))
4392 {
4393 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
4394 *pcptr = unmake_mips16_addr (*pcptr);
4395 *lenptr = sizeof (mips16_big_breakpoint);
4396 return mips16_big_breakpoint;
4397 }
4398 else
4399 {
4400 /* The IDT board uses an unusual breakpoint value, and
4401 sometimes gets confused when it sees the usual MIPS
4402 breakpoint instruction. */
4403 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
4404 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4405 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
4406
4407 *lenptr = sizeof (big_breakpoint);
4408
4409 if (strcmp (target_shortname, "mips") == 0)
4410 return idt_big_breakpoint;
4411 else if (strcmp (target_shortname, "ddb") == 0
4412 || strcmp (target_shortname, "pmon") == 0
4413 || strcmp (target_shortname, "lsi") == 0)
4414 return pmon_big_breakpoint;
4415 else
4416 return big_breakpoint;
4417 }
4418 }
4419 else
4420 {
4421 if (mips_pc_is_mips16 (*pcptr))
4422 {
4423 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
4424 *pcptr = unmake_mips16_addr (*pcptr);
4425 *lenptr = sizeof (mips16_little_breakpoint);
4426 return mips16_little_breakpoint;
4427 }
4428 else
4429 {
4430 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4431 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4432 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
4433
4434 *lenptr = sizeof (little_breakpoint);
4435
4436 if (strcmp (target_shortname, "mips") == 0)
4437 return idt_little_breakpoint;
4438 else if (strcmp (target_shortname, "ddb") == 0
4439 || strcmp (target_shortname, "pmon") == 0
4440 || strcmp (target_shortname, "lsi") == 0)
4441 return pmon_little_breakpoint;
4442 else
4443 return little_breakpoint;
4444 }
4445 }
4446 }
4447
4448 /* If PC is in a mips16 call or return stub, return the address of the target
4449 PC, which is either the callee or the caller. There are several
4450 cases which must be handled:
4451
4452 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4453 target PC is in $31 ($ra).
4454 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4455 and the target PC is in $2.
4456 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4457 before the jal instruction, this is effectively a call stub
4458 and the the target PC is in $2. Otherwise this is effectively
4459 a return stub and the target PC is in $18.
4460
4461 See the source code for the stubs in gcc/config/mips/mips16.S for
4462 gory details. */
4463
4464 static CORE_ADDR
4465 mips_skip_trampoline_code (CORE_ADDR pc)
4466 {
4467 char *name;
4468 CORE_ADDR start_addr;
4469
4470 /* Find the starting address and name of the function containing the PC. */
4471 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4472 return 0;
4473
4474 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4475 target PC is in $31 ($ra). */
4476 if (strcmp (name, "__mips16_ret_sf") == 0
4477 || strcmp (name, "__mips16_ret_df") == 0)
4478 return read_signed_register (MIPS_RA_REGNUM);
4479
4480 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4481 {
4482 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4483 and the target PC is in $2. */
4484 if (name[19] >= '0' && name[19] <= '9')
4485 return read_signed_register (2);
4486
4487 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4488 before the jal instruction, this is effectively a call stub
4489 and the the target PC is in $2. Otherwise this is effectively
4490 a return stub and the target PC is in $18. */
4491 else if (name[19] == 's' || name[19] == 'd')
4492 {
4493 if (pc == start_addr)
4494 {
4495 /* Check if the target of the stub is a compiler-generated
4496 stub. Such a stub for a function bar might have a name
4497 like __fn_stub_bar, and might look like this:
4498 mfc1 $4,$f13
4499 mfc1 $5,$f12
4500 mfc1 $6,$f15
4501 mfc1 $7,$f14
4502 la $1,bar (becomes a lui/addiu pair)
4503 jr $1
4504 So scan down to the lui/addi and extract the target
4505 address from those two instructions. */
4506
4507 CORE_ADDR target_pc = read_signed_register (2);
4508 ULONGEST inst;
4509 int i;
4510
4511 /* See if the name of the target function is __fn_stub_*. */
4512 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4513 0)
4514 return target_pc;
4515 if (strncmp (name, "__fn_stub_", 10) != 0
4516 && strcmp (name, "etext") != 0
4517 && strcmp (name, "_etext") != 0)
4518 return target_pc;
4519
4520 /* Scan through this _fn_stub_ code for the lui/addiu pair.
4521 The limit on the search is arbitrarily set to 20
4522 instructions. FIXME. */
4523 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
4524 {
4525 inst = mips_fetch_instruction (target_pc);
4526 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4527 pc = (inst << 16) & 0xffff0000; /* high word */
4528 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4529 return pc | (inst & 0xffff); /* low word */
4530 }
4531
4532 /* Couldn't find the lui/addui pair, so return stub address. */
4533 return target_pc;
4534 }
4535 else
4536 /* This is the 'return' part of a call stub. The return
4537 address is in $r18. */
4538 return read_signed_register (18);
4539 }
4540 }
4541 return 0; /* not a stub */
4542 }
4543
4544 /* Convert a dbx stab register number (from `r' declaration) to a GDB
4545 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
4546
4547 static int
4548 mips_stab_reg_to_regnum (int num)
4549 {
4550 int regnum;
4551 if (num >= 0 && num < 32)
4552 regnum = num;
4553 else if (num >= 38 && num < 70)
4554 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
4555 else if (num == 70)
4556 regnum = mips_regnum (current_gdbarch)->hi;
4557 else if (num == 71)
4558 regnum = mips_regnum (current_gdbarch)->lo;
4559 else
4560 /* This will hopefully (eventually) provoke a warning. Should
4561 we be calling complaint() here? */
4562 return NUM_REGS + NUM_PSEUDO_REGS;
4563 return NUM_REGS + regnum;
4564 }
4565
4566
4567 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
4568 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
4569
4570 static int
4571 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
4572 {
4573 int regnum;
4574 if (num >= 0 && num < 32)
4575 regnum = num;
4576 else if (num >= 32 && num < 64)
4577 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
4578 else if (num == 64)
4579 regnum = mips_regnum (current_gdbarch)->hi;
4580 else if (num == 65)
4581 regnum = mips_regnum (current_gdbarch)->lo;
4582 else
4583 /* This will hopefully (eventually) provoke a warning. Should we
4584 be calling complaint() here? */
4585 return NUM_REGS + NUM_PSEUDO_REGS;
4586 return NUM_REGS + regnum;
4587 }
4588
4589 static int
4590 mips_register_sim_regno (int regnum)
4591 {
4592 /* Only makes sense to supply raw registers. */
4593 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
4594 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4595 decide if it is valid. Should instead define a standard sim/gdb
4596 register numbering scheme. */
4597 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
4598 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
4599 return regnum;
4600 else
4601 return LEGACY_SIM_REGNO_IGNORE;
4602 }
4603
4604
4605 /* Convert an integer into an address. Extracting the value signed
4606 guarantees a correctly sign extended address. */
4607
4608 static CORE_ADDR
4609 mips_integer_to_address (struct gdbarch *gdbarch,
4610 struct type *type, const gdb_byte *buf)
4611 {
4612 return (CORE_ADDR) extract_signed_integer (buf, TYPE_LENGTH (type));
4613 }
4614
4615 static void
4616 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4617 {
4618 enum mips_abi *abip = (enum mips_abi *) obj;
4619 const char *name = bfd_get_section_name (abfd, sect);
4620
4621 if (*abip != MIPS_ABI_UNKNOWN)
4622 return;
4623
4624 if (strncmp (name, ".mdebug.", 8) != 0)
4625 return;
4626
4627 if (strcmp (name, ".mdebug.abi32") == 0)
4628 *abip = MIPS_ABI_O32;
4629 else if (strcmp (name, ".mdebug.abiN32") == 0)
4630 *abip = MIPS_ABI_N32;
4631 else if (strcmp (name, ".mdebug.abi64") == 0)
4632 *abip = MIPS_ABI_N64;
4633 else if (strcmp (name, ".mdebug.abiO64") == 0)
4634 *abip = MIPS_ABI_O64;
4635 else if (strcmp (name, ".mdebug.eabi32") == 0)
4636 *abip = MIPS_ABI_EABI32;
4637 else if (strcmp (name, ".mdebug.eabi64") == 0)
4638 *abip = MIPS_ABI_EABI64;
4639 else
4640 warning (_("unsupported ABI %s."), name + 8);
4641 }
4642
4643 static void
4644 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
4645 {
4646 int *lbp = (int *) obj;
4647 const char *name = bfd_get_section_name (abfd, sect);
4648
4649 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
4650 *lbp = 32;
4651 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
4652 *lbp = 64;
4653 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
4654 warning (_("unrecognized .gcc_compiled_longXX"));
4655 }
4656
4657 static enum mips_abi
4658 global_mips_abi (void)
4659 {
4660 int i;
4661
4662 for (i = 0; mips_abi_strings[i] != NULL; i++)
4663 if (mips_abi_strings[i] == mips_abi_string)
4664 return (enum mips_abi) i;
4665
4666 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
4667 }
4668
4669 static void
4670 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
4671 {
4672 static struct target_desc *tdesc_gp32, *tdesc_gp64;
4673
4674 if (tdesc_gp32 == NULL)
4675 {
4676 /* Create feature sets with the appropriate properties. The values
4677 are not important. */
4678
4679 tdesc_gp32 = allocate_target_description ();
4680 set_tdesc_property (tdesc_gp32, PROPERTY_GP32, "");
4681
4682 tdesc_gp64 = allocate_target_description ();
4683 set_tdesc_property (tdesc_gp64, PROPERTY_GP64, "");
4684 }
4685
4686 /* If the size matches the set of 32-bit or 64-bit integer registers,
4687 assume that's what we've got. */
4688 register_remote_g_packet_guess (gdbarch, 38 * 4, tdesc_gp32);
4689 register_remote_g_packet_guess (gdbarch, 38 * 8, tdesc_gp64);
4690
4691 /* If the size matches the full set of registers GDB traditionally
4692 knows about, including floating point, for either 32-bit or
4693 64-bit, assume that's what we've got. */
4694 register_remote_g_packet_guess (gdbarch, 90 * 4, tdesc_gp32);
4695 register_remote_g_packet_guess (gdbarch, 90 * 8, tdesc_gp64);
4696
4697 /* Otherwise we don't have a useful guess. */
4698 }
4699
4700 static struct gdbarch *
4701 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4702 {
4703 struct gdbarch *gdbarch;
4704 struct gdbarch_tdep *tdep;
4705 int elf_flags;
4706 enum mips_abi mips_abi, found_abi, wanted_abi;
4707 int num_regs;
4708 enum mips_fpu_type fpu_type;
4709
4710 /* First of all, extract the elf_flags, if available. */
4711 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
4712 elf_flags = elf_elfheader (info.abfd)->e_flags;
4713 else if (arches != NULL)
4714 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
4715 else
4716 elf_flags = 0;
4717 if (gdbarch_debug)
4718 fprintf_unfiltered (gdb_stdlog,
4719 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
4720
4721 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
4722 switch ((elf_flags & EF_MIPS_ABI))
4723 {
4724 case E_MIPS_ABI_O32:
4725 found_abi = MIPS_ABI_O32;
4726 break;
4727 case E_MIPS_ABI_O64:
4728 found_abi = MIPS_ABI_O64;
4729 break;
4730 case E_MIPS_ABI_EABI32:
4731 found_abi = MIPS_ABI_EABI32;
4732 break;
4733 case E_MIPS_ABI_EABI64:
4734 found_abi = MIPS_ABI_EABI64;
4735 break;
4736 default:
4737 if ((elf_flags & EF_MIPS_ABI2))
4738 found_abi = MIPS_ABI_N32;
4739 else
4740 found_abi = MIPS_ABI_UNKNOWN;
4741 break;
4742 }
4743
4744 /* GCC creates a pseudo-section whose name describes the ABI. */
4745 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
4746 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
4747
4748 /* If we have no useful BFD information, use the ABI from the last
4749 MIPS architecture (if there is one). */
4750 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
4751 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
4752
4753 /* Try the architecture for any hint of the correct ABI. */
4754 if (found_abi == MIPS_ABI_UNKNOWN
4755 && info.bfd_arch_info != NULL
4756 && info.bfd_arch_info->arch == bfd_arch_mips)
4757 {
4758 switch (info.bfd_arch_info->mach)
4759 {
4760 case bfd_mach_mips3900:
4761 found_abi = MIPS_ABI_EABI32;
4762 break;
4763 case bfd_mach_mips4100:
4764 case bfd_mach_mips5000:
4765 found_abi = MIPS_ABI_EABI64;
4766 break;
4767 case bfd_mach_mips8000:
4768 case bfd_mach_mips10000:
4769 /* On Irix, ELF64 executables use the N64 ABI. The
4770 pseudo-sections which describe the ABI aren't present
4771 on IRIX. (Even for executables created by gcc.) */
4772 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
4773 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4774 found_abi = MIPS_ABI_N64;
4775 else
4776 found_abi = MIPS_ABI_N32;
4777 break;
4778 }
4779 }
4780
4781 /* Default 64-bit objects to N64 instead of O32. */
4782 if (found_abi == MIPS_ABI_UNKNOWN
4783 && info.abfd != NULL
4784 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
4785 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4786 found_abi = MIPS_ABI_N64;
4787
4788 if (gdbarch_debug)
4789 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
4790 found_abi);
4791
4792 /* What has the user specified from the command line? */
4793 wanted_abi = global_mips_abi ();
4794 if (gdbarch_debug)
4795 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
4796 wanted_abi);
4797
4798 /* Now that we have found what the ABI for this binary would be,
4799 check whether the user is overriding it. */
4800 if (wanted_abi != MIPS_ABI_UNKNOWN)
4801 mips_abi = wanted_abi;
4802 else if (found_abi != MIPS_ABI_UNKNOWN)
4803 mips_abi = found_abi;
4804 else
4805 mips_abi = MIPS_ABI_O32;
4806 if (gdbarch_debug)
4807 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
4808 mips_abi);
4809
4810 /* Also used when doing an architecture lookup. */
4811 if (gdbarch_debug)
4812 fprintf_unfiltered (gdb_stdlog,
4813 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
4814 mips64_transfers_32bit_regs_p);
4815
4816 /* Determine the MIPS FPU type. */
4817 if (!mips_fpu_type_auto)
4818 fpu_type = mips_fpu_type;
4819 else if (info.bfd_arch_info != NULL
4820 && info.bfd_arch_info->arch == bfd_arch_mips)
4821 switch (info.bfd_arch_info->mach)
4822 {
4823 case bfd_mach_mips3900:
4824 case bfd_mach_mips4100:
4825 case bfd_mach_mips4111:
4826 case bfd_mach_mips4120:
4827 fpu_type = MIPS_FPU_NONE;
4828 break;
4829 case bfd_mach_mips4650:
4830 fpu_type = MIPS_FPU_SINGLE;
4831 break;
4832 default:
4833 fpu_type = MIPS_FPU_DOUBLE;
4834 break;
4835 }
4836 else if (arches != NULL)
4837 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
4838 else
4839 fpu_type = MIPS_FPU_DOUBLE;
4840 if (gdbarch_debug)
4841 fprintf_unfiltered (gdb_stdlog,
4842 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
4843
4844 /* Check for blatant incompatibilities. */
4845
4846 /* If we have only 32-bit registers, then we can't debug a 64-bit
4847 ABI. */
4848 if (info.target_desc
4849 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
4850 && mips_abi != MIPS_ABI_EABI32
4851 && mips_abi != MIPS_ABI_O32)
4852 return NULL;
4853
4854 /* try to find a pre-existing architecture */
4855 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4856 arches != NULL;
4857 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4858 {
4859 /* MIPS needs to be pedantic about which ABI the object is
4860 using. */
4861 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
4862 continue;
4863 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
4864 continue;
4865 /* Need to be pedantic about which register virtual size is
4866 used. */
4867 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
4868 != mips64_transfers_32bit_regs_p)
4869 continue;
4870 /* Be pedantic about which FPU is selected. */
4871 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
4872 continue;
4873 return arches->gdbarch;
4874 }
4875
4876 /* Need a new architecture. Fill in a target specific vector. */
4877 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4878 gdbarch = gdbarch_alloc (&info, tdep);
4879 tdep->elf_flags = elf_flags;
4880 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
4881 tdep->found_abi = found_abi;
4882 tdep->mips_abi = mips_abi;
4883 tdep->mips_fpu_type = fpu_type;
4884 tdep->register_size_valid_p = 0;
4885 tdep->register_size = 0;
4886
4887 if (info.target_desc)
4888 {
4889 /* Some useful properties can be inferred from the target. */
4890 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
4891 {
4892 tdep->register_size_valid_p = 1;
4893 tdep->register_size = 4;
4894 }
4895 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
4896 {
4897 tdep->register_size_valid_p = 1;
4898 tdep->register_size = 8;
4899 }
4900 }
4901
4902 /* Initially set everything according to the default ABI/ISA. */
4903 set_gdbarch_short_bit (gdbarch, 16);
4904 set_gdbarch_int_bit (gdbarch, 32);
4905 set_gdbarch_float_bit (gdbarch, 32);
4906 set_gdbarch_double_bit (gdbarch, 64);
4907 set_gdbarch_long_double_bit (gdbarch, 64);
4908 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
4909 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
4910 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
4911
4912 set_gdbarch_elf_make_msymbol_special (gdbarch,
4913 mips_elf_make_msymbol_special);
4914
4915 /* Fill in the OS dependant register numbers and names. */
4916 {
4917 const char **reg_names;
4918 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
4919 struct mips_regnum);
4920 if (info.osabi == GDB_OSABI_IRIX)
4921 {
4922 regnum->fp0 = 32;
4923 regnum->pc = 64;
4924 regnum->cause = 65;
4925 regnum->badvaddr = 66;
4926 regnum->hi = 67;
4927 regnum->lo = 68;
4928 regnum->fp_control_status = 69;
4929 regnum->fp_implementation_revision = 70;
4930 num_regs = 71;
4931 reg_names = mips_irix_reg_names;
4932 }
4933 else
4934 {
4935 regnum->lo = MIPS_EMBED_LO_REGNUM;
4936 regnum->hi = MIPS_EMBED_HI_REGNUM;
4937 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
4938 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
4939 regnum->pc = MIPS_EMBED_PC_REGNUM;
4940 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
4941 regnum->fp_control_status = 70;
4942 regnum->fp_implementation_revision = 71;
4943 num_regs = 90;
4944 if (info.bfd_arch_info != NULL
4945 && info.bfd_arch_info->mach == bfd_mach_mips3900)
4946 reg_names = mips_tx39_reg_names;
4947 else
4948 reg_names = mips_generic_reg_names;
4949 }
4950 /* FIXME: cagney/2003-11-15: For MIPS, hasn't PC_REGNUM been
4951 replaced by read_pc? */
4952 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
4953 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
4954 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
4955 set_gdbarch_num_regs (gdbarch, num_regs);
4956 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
4957 set_gdbarch_register_name (gdbarch, mips_register_name);
4958 tdep->mips_processor_reg_names = reg_names;
4959 tdep->regnum = regnum;
4960 }
4961
4962 switch (mips_abi)
4963 {
4964 case MIPS_ABI_O32:
4965 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
4966 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4967 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
4968 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4969 tdep->default_mask_address_p = 0;
4970 set_gdbarch_long_bit (gdbarch, 32);
4971 set_gdbarch_ptr_bit (gdbarch, 32);
4972 set_gdbarch_long_long_bit (gdbarch, 64);
4973 break;
4974 case MIPS_ABI_O64:
4975 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
4976 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4977 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
4978 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4979 tdep->default_mask_address_p = 0;
4980 set_gdbarch_long_bit (gdbarch, 32);
4981 set_gdbarch_ptr_bit (gdbarch, 32);
4982 set_gdbarch_long_long_bit (gdbarch, 64);
4983 break;
4984 case MIPS_ABI_EABI32:
4985 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
4986 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4987 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
4988 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4989 tdep->default_mask_address_p = 0;
4990 set_gdbarch_long_bit (gdbarch, 32);
4991 set_gdbarch_ptr_bit (gdbarch, 32);
4992 set_gdbarch_long_long_bit (gdbarch, 64);
4993 break;
4994 case MIPS_ABI_EABI64:
4995 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
4996 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4997 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
4998 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4999 tdep->default_mask_address_p = 0;
5000 set_gdbarch_long_bit (gdbarch, 64);
5001 set_gdbarch_ptr_bit (gdbarch, 64);
5002 set_gdbarch_long_long_bit (gdbarch, 64);
5003 break;
5004 case MIPS_ABI_N32:
5005 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5006 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5007 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5008 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5009 tdep->default_mask_address_p = 0;
5010 set_gdbarch_long_bit (gdbarch, 32);
5011 set_gdbarch_ptr_bit (gdbarch, 32);
5012 set_gdbarch_long_long_bit (gdbarch, 64);
5013 set_gdbarch_long_double_bit (gdbarch, 128);
5014 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
5015 break;
5016 case MIPS_ABI_N64:
5017 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5018 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5019 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5020 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5021 tdep->default_mask_address_p = 0;
5022 set_gdbarch_long_bit (gdbarch, 64);
5023 set_gdbarch_ptr_bit (gdbarch, 64);
5024 set_gdbarch_long_long_bit (gdbarch, 64);
5025 set_gdbarch_long_double_bit (gdbarch, 128);
5026 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
5027 break;
5028 default:
5029 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5030 }
5031
5032 /* GCC creates a pseudo-section whose name specifies the size of
5033 longs, since -mlong32 or -mlong64 may be used independent of
5034 other options. How those options affect pointer sizes is ABI and
5035 architecture dependent, so use them to override the default sizes
5036 set by the ABI. This table shows the relationship between ABI,
5037 -mlongXX, and size of pointers:
5038
5039 ABI -mlongXX ptr bits
5040 --- -------- --------
5041 o32 32 32
5042 o32 64 32
5043 n32 32 32
5044 n32 64 64
5045 o64 32 32
5046 o64 64 64
5047 n64 32 32
5048 n64 64 64
5049 eabi32 32 32
5050 eabi32 64 32
5051 eabi64 32 32
5052 eabi64 64 64
5053
5054 Note that for o32 and eabi32, pointers are always 32 bits
5055 regardless of any -mlongXX option. For all others, pointers and
5056 longs are the same, as set by -mlongXX or set by defaults.
5057 */
5058
5059 if (info.abfd != NULL)
5060 {
5061 int long_bit = 0;
5062
5063 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
5064 if (long_bit)
5065 {
5066 set_gdbarch_long_bit (gdbarch, long_bit);
5067 switch (mips_abi)
5068 {
5069 case MIPS_ABI_O32:
5070 case MIPS_ABI_EABI32:
5071 break;
5072 case MIPS_ABI_N32:
5073 case MIPS_ABI_O64:
5074 case MIPS_ABI_N64:
5075 case MIPS_ABI_EABI64:
5076 set_gdbarch_ptr_bit (gdbarch, long_bit);
5077 break;
5078 default:
5079 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5080 }
5081 }
5082 }
5083
5084 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5085 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5086 comment:
5087
5088 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5089 flag in object files because to do so would make it impossible to
5090 link with libraries compiled without "-gp32". This is
5091 unnecessarily restrictive.
5092
5093 We could solve this problem by adding "-gp32" multilibs to gcc,
5094 but to set this flag before gcc is built with such multilibs will
5095 break too many systems.''
5096
5097 But even more unhelpfully, the default linker output target for
5098 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5099 for 64-bit programs - you need to change the ABI to change this,
5100 and not all gcc targets support that currently. Therefore using
5101 this flag to detect 32-bit mode would do the wrong thing given
5102 the current gcc - it would make GDB treat these 64-bit programs
5103 as 32-bit programs by default. */
5104
5105 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5106 set_gdbarch_write_pc (gdbarch, mips_write_pc);
5107 set_gdbarch_read_sp (gdbarch, mips_read_sp);
5108
5109 /* Add/remove bits from an address. The MIPS needs be careful to
5110 ensure that all 32 bit addresses are sign extended to 64 bits. */
5111 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5112
5113 /* Unwind the frame. */
5114 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
5115 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
5116
5117 /* Map debug register numbers onto internal register numbers. */
5118 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5119 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5120 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5121 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
5122 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5123 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5124 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5125 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
5126
5127 /* MIPS version of CALL_DUMMY */
5128
5129 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5130 replaced by a command, and all targets will default to on stack
5131 (regardless of the stack's execute status). */
5132 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
5133 set_gdbarch_frame_align (gdbarch, mips_frame_align);
5134
5135 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5136 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5137 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5138
5139 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5140 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5141
5142 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5143
5144 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5145 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5146 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
5147
5148 set_gdbarch_register_type (gdbarch, mips_register_type);
5149
5150 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
5151
5152 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5153
5154 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5155 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5156 need to all be folded into the target vector. Since they are
5157 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5158 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5159 is sitting on? */
5160 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5161
5162 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
5163
5164 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5165
5166 /* Virtual tables. */
5167 set_gdbarch_vbit_in_delta (gdbarch, 1);
5168
5169 mips_register_g_packet_guesses (gdbarch);
5170
5171 /* Hook in OS ABI-specific overrides, if they have been registered. */
5172 gdbarch_init_osabi (info, gdbarch);
5173
5174 /* Unwind the frame. */
5175 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
5176 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5177 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
5178 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
5179 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5180 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5181
5182 return gdbarch;
5183 }
5184
5185 static void
5186 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
5187 {
5188 struct gdbarch_info info;
5189
5190 /* Force the architecture to update, and (if it's a MIPS architecture)
5191 mips_gdbarch_init will take care of the rest. */
5192 gdbarch_info_init (&info);
5193 gdbarch_update_p (info);
5194 }
5195
5196 /* Print out which MIPS ABI is in use. */
5197
5198 static void
5199 show_mips_abi (struct ui_file *file,
5200 int from_tty,
5201 struct cmd_list_element *ignored_cmd,
5202 const char *ignored_value)
5203 {
5204 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
5205 fprintf_filtered
5206 (file,
5207 "The MIPS ABI is unknown because the current architecture "
5208 "is not MIPS.\n");
5209 else
5210 {
5211 enum mips_abi global_abi = global_mips_abi ();
5212 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5213 const char *actual_abi_str = mips_abi_strings[actual_abi];
5214
5215 if (global_abi == MIPS_ABI_UNKNOWN)
5216 fprintf_filtered
5217 (file,
5218 "The MIPS ABI is set automatically (currently \"%s\").\n",
5219 actual_abi_str);
5220 else if (global_abi == actual_abi)
5221 fprintf_filtered
5222 (file,
5223 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
5224 actual_abi_str);
5225 else
5226 {
5227 /* Probably shouldn't happen... */
5228 fprintf_filtered
5229 (file,
5230 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
5231 actual_abi_str, mips_abi_strings[global_abi]);
5232 }
5233 }
5234 }
5235
5236 static void
5237 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5238 {
5239 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5240 if (tdep != NULL)
5241 {
5242 int ef_mips_arch;
5243 int ef_mips_32bitmode;
5244 /* Determine the ISA. */
5245 switch (tdep->elf_flags & EF_MIPS_ARCH)
5246 {
5247 case E_MIPS_ARCH_1:
5248 ef_mips_arch = 1;
5249 break;
5250 case E_MIPS_ARCH_2:
5251 ef_mips_arch = 2;
5252 break;
5253 case E_MIPS_ARCH_3:
5254 ef_mips_arch = 3;
5255 break;
5256 case E_MIPS_ARCH_4:
5257 ef_mips_arch = 4;
5258 break;
5259 default:
5260 ef_mips_arch = 0;
5261 break;
5262 }
5263 /* Determine the size of a pointer. */
5264 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
5265 fprintf_unfiltered (file,
5266 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
5267 tdep->elf_flags);
5268 fprintf_unfiltered (file,
5269 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5270 ef_mips_32bitmode);
5271 fprintf_unfiltered (file,
5272 "mips_dump_tdep: ef_mips_arch = %d\n",
5273 ef_mips_arch);
5274 fprintf_unfiltered (file,
5275 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
5276 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
5277 fprintf_unfiltered (file,
5278 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
5279 mips_mask_address_p (tdep),
5280 tdep->default_mask_address_p);
5281 }
5282 fprintf_unfiltered (file,
5283 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5284 MIPS_DEFAULT_FPU_TYPE,
5285 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5286 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5287 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5288 : "???"));
5289 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
5290 fprintf_unfiltered (file,
5291 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5292 MIPS_FPU_TYPE,
5293 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5294 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5295 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5296 : "???"));
5297 fprintf_unfiltered (file,
5298 "mips_dump_tdep: mips_stack_argsize() = %d\n",
5299 mips_stack_argsize (current_gdbarch));
5300 }
5301
5302 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
5303
5304 void
5305 _initialize_mips_tdep (void)
5306 {
5307 static struct cmd_list_element *mipsfpulist = NULL;
5308 struct cmd_list_element *c;
5309
5310 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
5311 if (MIPS_ABI_LAST + 1
5312 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
5313 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
5314
5315 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
5316
5317 mips_pdr_data = register_objfile_data ();
5318
5319 /* Add root prefix command for all "set mips"/"show mips" commands */
5320 add_prefix_cmd ("mips", no_class, set_mips_command,
5321 _("Various MIPS specific commands."),
5322 &setmipscmdlist, "set mips ", 0, &setlist);
5323
5324 add_prefix_cmd ("mips", no_class, show_mips_command,
5325 _("Various MIPS specific commands."),
5326 &showmipscmdlist, "show mips ", 0, &showlist);
5327
5328 /* Allow the user to override the saved register size. */
5329 add_setshow_enum_cmd ("saved-gpreg-size", class_obscure,
5330 size_enums, &mips_abi_regsize_string, _("\
5331 Set size of general purpose registers saved on the stack."), _("\
5332 Show size of general purpose registers saved on the stack."), _("\
5333 This option can be set to one of:\n\
5334 32 - Force GDB to treat saved GP registers as 32-bit\n\
5335 64 - Force GDB to treat saved GP registers as 64-bit\n\
5336 auto - Allow GDB to use the target's default setting or autodetect the\n\
5337 saved GP register size from information contained in the\n\
5338 executable (default)."),
5339 NULL,
5340 NULL, /* FIXME: i18n: Size of general purpose registers saved on the stack is %s. */
5341 &setmipscmdlist, &showmipscmdlist);
5342
5343 /* Allow the user to override the argument stack size. */
5344 add_setshow_enum_cmd ("stack-arg-size", class_obscure,
5345 size_enums, &mips_stack_argsize_string, _("\
5346 Set the amount of stack space reserved for each argument."), _("\
5347 Show the amount of stack space reserved for each argument."), _("\
5348 This option can be set to one of:\n\
5349 32 - Force GDB to allocate 32-bit chunks per argument\n\
5350 64 - Force GDB to allocate 64-bit chunks per argument\n\
5351 auto - Allow GDB to determine the correct setting from the current\n\
5352 target and executable (default)"),
5353 NULL,
5354 NULL, /* FIXME: i18n: The amount of stack space reserved for each argument is %s. */
5355 &setmipscmdlist, &showmipscmdlist);
5356
5357 /* Allow the user to override the ABI. */
5358 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
5359 &mips_abi_string, _("\
5360 Set the MIPS ABI used by this program."), _("\
5361 Show the MIPS ABI used by this program."), _("\
5362 This option can be set to one of:\n\
5363 auto - the default ABI associated with the current binary\n\
5364 o32\n\
5365 o64\n\
5366 n32\n\
5367 n64\n\
5368 eabi32\n\
5369 eabi64"),
5370 mips_abi_update,
5371 show_mips_abi,
5372 &setmipscmdlist, &showmipscmdlist);
5373
5374 /* Let the user turn off floating point and set the fence post for
5375 heuristic_proc_start. */
5376
5377 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
5378 _("Set use of MIPS floating-point coprocessor."),
5379 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5380 add_cmd ("single", class_support, set_mipsfpu_single_command,
5381 _("Select single-precision MIPS floating-point coprocessor."),
5382 &mipsfpulist);
5383 add_cmd ("double", class_support, set_mipsfpu_double_command,
5384 _("Select double-precision MIPS floating-point coprocessor."),
5385 &mipsfpulist);
5386 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5387 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5388 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5389 add_cmd ("none", class_support, set_mipsfpu_none_command,
5390 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
5391 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5392 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5393 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5394 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
5395 _("Select MIPS floating-point coprocessor automatically."),
5396 &mipsfpulist);
5397 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
5398 _("Show current use of MIPS floating-point coprocessor target."),
5399 &showlist);
5400
5401 /* We really would like to have both "0" and "unlimited" work, but
5402 command.c doesn't deal with that. So make it a var_zinteger
5403 because the user can always use "999999" or some such for unlimited. */
5404 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
5405 &heuristic_fence_post, _("\
5406 Set the distance searched for the start of a function."), _("\
5407 Show the distance searched for the start of a function."), _("\
5408 If you are debugging a stripped executable, GDB needs to search through the\n\
5409 program for the start of a function. This command sets the distance of the\n\
5410 search. The only need to set it is when debugging a stripped executable."),
5411 reinit_frame_cache_sfunc,
5412 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
5413 &setlist, &showlist);
5414
5415 /* Allow the user to control whether the upper bits of 64-bit
5416 addresses should be zeroed. */
5417 add_setshow_auto_boolean_cmd ("mask-address", no_class,
5418 &mask_address_var, _("\
5419 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
5420 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
5421 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
5422 allow GDB to determine the correct value."),
5423 NULL, show_mask_address,
5424 &setmipscmdlist, &showmipscmdlist);
5425
5426 /* Allow the user to control the size of 32 bit registers within the
5427 raw remote packet. */
5428 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
5429 &mips64_transfers_32bit_regs_p, _("\
5430 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5431 _("\
5432 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5433 _("\
5434 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5435 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
5436 64 bits for others. Use \"off\" to disable compatibility mode"),
5437 set_mips64_transfers_32bit_regs,
5438 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
5439 &setlist, &showlist);
5440
5441 /* Debug this files internals. */
5442 add_setshow_zinteger_cmd ("mips", class_maintenance,
5443 &mips_debug, _("\
5444 Set mips debugging."), _("\
5445 Show mips debugging."), _("\
5446 When non-zero, mips specific debugging is enabled."),
5447 NULL,
5448 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
5449 &setdebuglist, &showdebuglist);
5450 }
This page took 0.173342 seconds and 5 git commands to generate.