const-fy regcache::m_aspace
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
4
5 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
6 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "value.h"
28 #include "gdbcmd.h"
29 #include "language.h"
30 #include "gdbcore.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdbtypes.h"
34 #include "target.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "osabi.h"
38 #include "mips-tdep.h"
39 #include "block.h"
40 #include "reggroups.h"
41 #include "opcode/mips.h"
42 #include "elf/mips.h"
43 #include "elf-bfd.h"
44 #include "symcat.h"
45 #include "sim-regno.h"
46 #include "dis-asm.h"
47 #include "disasm.h"
48 #include "frame-unwind.h"
49 #include "frame-base.h"
50 #include "trad-frame.h"
51 #include "infcall.h"
52 #include "remote.h"
53 #include "target-descriptions.h"
54 #include "dwarf2-frame.h"
55 #include "user-regs.h"
56 #include "valprint.h"
57 #include "ax.h"
58 #include <algorithm>
59
60 static const struct objfile_data *mips_pdr_data;
61
62 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
63
64 static int mips32_instruction_has_delay_slot (struct gdbarch *gdbarch,
65 ULONGEST inst);
66 static int micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32);
67 static int mips16_instruction_has_delay_slot (unsigned short inst,
68 int mustbe32);
69
70 static int mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
71 CORE_ADDR addr);
72 static int micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
73 CORE_ADDR addr, int mustbe32);
74 static int mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
75 CORE_ADDR addr, int mustbe32);
76
77 static void mips_print_float_info (struct gdbarch *, struct ui_file *,
78 struct frame_info *, const char *);
79
80 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
81 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
82 #define ST0_FR (1 << 26)
83
84 /* The sizes of floating point registers. */
85
86 enum
87 {
88 MIPS_FPU_SINGLE_REGSIZE = 4,
89 MIPS_FPU_DOUBLE_REGSIZE = 8
90 };
91
92 enum
93 {
94 MIPS32_REGSIZE = 4,
95 MIPS64_REGSIZE = 8
96 };
97
98 static const char *mips_abi_string;
99
100 static const char *const mips_abi_strings[] = {
101 "auto",
102 "n32",
103 "o32",
104 "n64",
105 "o64",
106 "eabi32",
107 "eabi64",
108 NULL
109 };
110
111 /* Enum describing the different kinds of breakpoints. */
112
113 enum mips_breakpoint_kind
114 {
115 /* 16-bit MIPS16 mode breakpoint. */
116 MIPS_BP_KIND_MIPS16 = 2,
117
118 /* 16-bit microMIPS mode breakpoint. */
119 MIPS_BP_KIND_MICROMIPS16 = 3,
120
121 /* 32-bit standard MIPS mode breakpoint. */
122 MIPS_BP_KIND_MIPS32 = 4,
123
124 /* 32-bit microMIPS mode breakpoint. */
125 MIPS_BP_KIND_MICROMIPS32 = 5,
126 };
127
128 /* For backwards compatibility we default to MIPS16. This flag is
129 overridden as soon as unambiguous ELF file flags tell us the
130 compressed ISA encoding used. */
131 static const char mips_compression_mips16[] = "mips16";
132 static const char mips_compression_micromips[] = "micromips";
133 static const char *const mips_compression_strings[] =
134 {
135 mips_compression_mips16,
136 mips_compression_micromips,
137 NULL
138 };
139
140 static const char *mips_compression_string = mips_compression_mips16;
141
142 /* The standard register names, and all the valid aliases for them. */
143 struct register_alias
144 {
145 const char *name;
146 int regnum;
147 };
148
149 /* Aliases for o32 and most other ABIs. */
150 const struct register_alias mips_o32_aliases[] = {
151 { "ta0", 12 },
152 { "ta1", 13 },
153 { "ta2", 14 },
154 { "ta3", 15 }
155 };
156
157 /* Aliases for n32 and n64. */
158 const struct register_alias mips_n32_n64_aliases[] = {
159 { "ta0", 8 },
160 { "ta1", 9 },
161 { "ta2", 10 },
162 { "ta3", 11 }
163 };
164
165 /* Aliases for ABI-independent registers. */
166 const struct register_alias mips_register_aliases[] = {
167 /* The architecture manuals specify these ABI-independent names for
168 the GPRs. */
169 #define R(n) { "r" #n, n }
170 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
171 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
172 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
173 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
174 #undef R
175
176 /* k0 and k1 are sometimes called these instead (for "kernel
177 temp"). */
178 { "kt0", 26 },
179 { "kt1", 27 },
180
181 /* This is the traditional GDB name for the CP0 status register. */
182 { "sr", MIPS_PS_REGNUM },
183
184 /* This is the traditional GDB name for the CP0 BadVAddr register. */
185 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
186
187 /* This is the traditional GDB name for the FCSR. */
188 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
189 };
190
191 const struct register_alias mips_numeric_register_aliases[] = {
192 #define R(n) { #n, n }
193 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
194 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
195 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
196 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
197 #undef R
198 };
199
200 #ifndef MIPS_DEFAULT_FPU_TYPE
201 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
202 #endif
203 static int mips_fpu_type_auto = 1;
204 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
205
206 static unsigned int mips_debug = 0;
207
208 /* Properties (for struct target_desc) describing the g/G packet
209 layout. */
210 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
211 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
212
213 struct target_desc *mips_tdesc_gp32;
214 struct target_desc *mips_tdesc_gp64;
215
216 const struct mips_regnum *
217 mips_regnum (struct gdbarch *gdbarch)
218 {
219 return gdbarch_tdep (gdbarch)->regnum;
220 }
221
222 static int
223 mips_fpa0_regnum (struct gdbarch *gdbarch)
224 {
225 return mips_regnum (gdbarch)->fp0 + 12;
226 }
227
228 /* Return 1 if REGNUM refers to a floating-point general register, raw
229 or cooked. Otherwise return 0. */
230
231 static int
232 mips_float_register_p (struct gdbarch *gdbarch, int regnum)
233 {
234 int rawnum = regnum % gdbarch_num_regs (gdbarch);
235
236 return (rawnum >= mips_regnum (gdbarch)->fp0
237 && rawnum < mips_regnum (gdbarch)->fp0 + 32);
238 }
239
240 #define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
241 == MIPS_ABI_EABI32 \
242 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
243
244 #define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
245 (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
246
247 #define MIPS_LAST_ARG_REGNUM(gdbarch) \
248 (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
249
250 #define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
251
252 /* Return the MIPS ABI associated with GDBARCH. */
253 enum mips_abi
254 mips_abi (struct gdbarch *gdbarch)
255 {
256 return gdbarch_tdep (gdbarch)->mips_abi;
257 }
258
259 int
260 mips_isa_regsize (struct gdbarch *gdbarch)
261 {
262 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
263
264 /* If we know how big the registers are, use that size. */
265 if (tdep->register_size_valid_p)
266 return tdep->register_size;
267
268 /* Fall back to the previous behavior. */
269 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
270 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
271 }
272
273 /* Max saved register size. */
274 #define MAX_MIPS_ABI_REGSIZE 8
275
276 /* Return the currently configured (or set) saved register size. */
277
278 unsigned int
279 mips_abi_regsize (struct gdbarch *gdbarch)
280 {
281 switch (mips_abi (gdbarch))
282 {
283 case MIPS_ABI_EABI32:
284 case MIPS_ABI_O32:
285 return 4;
286 case MIPS_ABI_N32:
287 case MIPS_ABI_N64:
288 case MIPS_ABI_O64:
289 case MIPS_ABI_EABI64:
290 return 8;
291 case MIPS_ABI_UNKNOWN:
292 case MIPS_ABI_LAST:
293 default:
294 internal_error (__FILE__, __LINE__, _("bad switch"));
295 }
296 }
297
298 /* MIPS16/microMIPS function addresses are odd (bit 0 is set). Here
299 are some functions to handle addresses associated with compressed
300 code including but not limited to testing, setting, or clearing
301 bit 0 of such addresses. */
302
303 /* Return one iff compressed code is the MIPS16 instruction set. */
304
305 static int
306 is_mips16_isa (struct gdbarch *gdbarch)
307 {
308 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MIPS16;
309 }
310
311 /* Return one iff compressed code is the microMIPS instruction set. */
312
313 static int
314 is_micromips_isa (struct gdbarch *gdbarch)
315 {
316 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MICROMIPS;
317 }
318
319 /* Return one iff ADDR denotes compressed code. */
320
321 static int
322 is_compact_addr (CORE_ADDR addr)
323 {
324 return ((addr) & 1);
325 }
326
327 /* Return one iff ADDR denotes standard ISA code. */
328
329 static int
330 is_mips_addr (CORE_ADDR addr)
331 {
332 return !is_compact_addr (addr);
333 }
334
335 /* Return one iff ADDR denotes MIPS16 code. */
336
337 static int
338 is_mips16_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
339 {
340 return is_compact_addr (addr) && is_mips16_isa (gdbarch);
341 }
342
343 /* Return one iff ADDR denotes microMIPS code. */
344
345 static int
346 is_micromips_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
347 {
348 return is_compact_addr (addr) && is_micromips_isa (gdbarch);
349 }
350
351 /* Strip the ISA (compression) bit off from ADDR. */
352
353 static CORE_ADDR
354 unmake_compact_addr (CORE_ADDR addr)
355 {
356 return ((addr) & ~(CORE_ADDR) 1);
357 }
358
359 /* Add the ISA (compression) bit to ADDR. */
360
361 static CORE_ADDR
362 make_compact_addr (CORE_ADDR addr)
363 {
364 return ((addr) | (CORE_ADDR) 1);
365 }
366
367 /* Extern version of unmake_compact_addr; we use a separate function
368 so that unmake_compact_addr can be inlined throughout this file. */
369
370 CORE_ADDR
371 mips_unmake_compact_addr (CORE_ADDR addr)
372 {
373 return unmake_compact_addr (addr);
374 }
375
376 /* Functions for setting and testing a bit in a minimal symbol that
377 marks it as MIPS16 or microMIPS function. The MSB of the minimal
378 symbol's "info" field is used for this purpose.
379
380 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
381 "special", i.e. refers to a MIPS16 or microMIPS function, and sets
382 one of the "special" bits in a minimal symbol to mark it accordingly.
383 The test checks an ELF-private flag that is valid for true function
384 symbols only; for synthetic symbols such as for PLT stubs that have
385 no ELF-private part at all the MIPS BFD backend arranges for this
386 information to be carried in the asymbol's udata field instead.
387
388 msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
389 in a minimal symbol. */
390
391 static void
392 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
393 {
394 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
395 unsigned char st_other;
396
397 if ((sym->flags & BSF_SYNTHETIC) == 0)
398 st_other = elfsym->internal_elf_sym.st_other;
399 else if ((sym->flags & BSF_FUNCTION) != 0)
400 st_other = sym->udata.i;
401 else
402 return;
403
404 if (ELF_ST_IS_MICROMIPS (st_other))
405 {
406 MSYMBOL_TARGET_FLAG_MICROMIPS (msym) = 1;
407 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
408 }
409 else if (ELF_ST_IS_MIPS16 (st_other))
410 {
411 MSYMBOL_TARGET_FLAG_MIPS16 (msym) = 1;
412 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
413 }
414 }
415
416 /* Return one iff MSYM refers to standard ISA code. */
417
418 static int
419 msymbol_is_mips (struct minimal_symbol *msym)
420 {
421 return !(MSYMBOL_TARGET_FLAG_MIPS16 (msym)
422 | MSYMBOL_TARGET_FLAG_MICROMIPS (msym));
423 }
424
425 /* Return one iff MSYM refers to MIPS16 code. */
426
427 static int
428 msymbol_is_mips16 (struct minimal_symbol *msym)
429 {
430 return MSYMBOL_TARGET_FLAG_MIPS16 (msym);
431 }
432
433 /* Return one iff MSYM refers to microMIPS code. */
434
435 static int
436 msymbol_is_micromips (struct minimal_symbol *msym)
437 {
438 return MSYMBOL_TARGET_FLAG_MICROMIPS (msym);
439 }
440
441 /* Set the ISA bit in the main symbol too, complementing the corresponding
442 minimal symbol setting and reflecting the run-time value of the symbol.
443 The need for comes from the ISA bit having been cleared as code in
444 `_bfd_mips_elf_symbol_processing' separated it into the ELF symbol's
445 `st_other' STO_MIPS16 or STO_MICROMIPS annotation, making the values
446 of symbols referring to compressed code different in GDB to the values
447 used by actual code. That in turn makes them evaluate incorrectly in
448 expressions, producing results different to what the same expressions
449 yield when compiled into the program being debugged. */
450
451 static void
452 mips_make_symbol_special (struct symbol *sym, struct objfile *objfile)
453 {
454 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
455 {
456 /* We are in symbol reading so it is OK to cast away constness. */
457 struct block *block = (struct block *) SYMBOL_BLOCK_VALUE (sym);
458 CORE_ADDR compact_block_start;
459 struct bound_minimal_symbol msym;
460
461 compact_block_start = BLOCK_START (block) | 1;
462 msym = lookup_minimal_symbol_by_pc (compact_block_start);
463 if (msym.minsym && !msymbol_is_mips (msym.minsym))
464 {
465 BLOCK_START (block) = compact_block_start;
466 }
467 }
468 }
469
470 /* XFER a value from the big/little/left end of the register.
471 Depending on the size of the value it might occupy the entire
472 register or just part of it. Make an allowance for this, aligning
473 things accordingly. */
474
475 static void
476 mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
477 int reg_num, int length,
478 enum bfd_endian endian, gdb_byte *in,
479 const gdb_byte *out, int buf_offset)
480 {
481 int reg_offset = 0;
482
483 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
484 /* Need to transfer the left or right part of the register, based on
485 the targets byte order. */
486 switch (endian)
487 {
488 case BFD_ENDIAN_BIG:
489 reg_offset = register_size (gdbarch, reg_num) - length;
490 break;
491 case BFD_ENDIAN_LITTLE:
492 reg_offset = 0;
493 break;
494 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
495 reg_offset = 0;
496 break;
497 default:
498 internal_error (__FILE__, __LINE__, _("bad switch"));
499 }
500 if (mips_debug)
501 fprintf_unfiltered (gdb_stderr,
502 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
503 reg_num, reg_offset, buf_offset, length);
504 if (mips_debug && out != NULL)
505 {
506 int i;
507 fprintf_unfiltered (gdb_stdlog, "out ");
508 for (i = 0; i < length; i++)
509 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
510 }
511 if (in != NULL)
512 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
513 in + buf_offset);
514 if (out != NULL)
515 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
516 out + buf_offset);
517 if (mips_debug && in != NULL)
518 {
519 int i;
520 fprintf_unfiltered (gdb_stdlog, "in ");
521 for (i = 0; i < length; i++)
522 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
523 }
524 if (mips_debug)
525 fprintf_unfiltered (gdb_stdlog, "\n");
526 }
527
528 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
529 compatiblity mode. A return value of 1 means that we have
530 physical 64-bit registers, but should treat them as 32-bit registers. */
531
532 static int
533 mips2_fp_compat (struct frame_info *frame)
534 {
535 struct gdbarch *gdbarch = get_frame_arch (frame);
536 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
537 meaningful. */
538 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
539 return 0;
540
541 #if 0
542 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
543 in all the places we deal with FP registers. PR gdb/413. */
544 /* Otherwise check the FR bit in the status register - it controls
545 the FP compatiblity mode. If it is clear we are in compatibility
546 mode. */
547 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
548 return 1;
549 #endif
550
551 return 0;
552 }
553
554 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
555
556 static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
557
558 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
559
560 /* The list of available "set mips " and "show mips " commands. */
561
562 static struct cmd_list_element *setmipscmdlist = NULL;
563 static struct cmd_list_element *showmipscmdlist = NULL;
564
565 /* Integer registers 0 thru 31 are handled explicitly by
566 mips_register_name(). Processor specific registers 32 and above
567 are listed in the following tables. */
568
569 enum
570 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
571
572 /* Generic MIPS. */
573
574 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
575 "sr", "lo", "hi", "bad", "cause", "pc",
576 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
577 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
578 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
579 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
580 "fsr", "fir",
581 };
582
583 /* Names of tx39 registers. */
584
585 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
586 "sr", "lo", "hi", "bad", "cause", "pc",
587 "", "", "", "", "", "", "", "",
588 "", "", "", "", "", "", "", "",
589 "", "", "", "", "", "", "", "",
590 "", "", "", "", "", "", "", "",
591 "", "", "", "",
592 "", "", "", "", "", "", "", "",
593 "", "", "config", "cache", "debug", "depc", "epc",
594 };
595
596 /* Names of registers with Linux kernels. */
597 static const char *mips_linux_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
598 "sr", "lo", "hi", "bad", "cause", "pc",
599 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
600 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
601 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
602 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
603 "fsr", "fir"
604 };
605
606
607 /* Return the name of the register corresponding to REGNO. */
608 static const char *
609 mips_register_name (struct gdbarch *gdbarch, int regno)
610 {
611 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
612 /* GPR names for all ABIs other than n32/n64. */
613 static const char *mips_gpr_names[] = {
614 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
615 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
616 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
617 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
618 };
619
620 /* GPR names for n32 and n64 ABIs. */
621 static const char *mips_n32_n64_gpr_names[] = {
622 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
623 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
624 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
625 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
626 };
627
628 enum mips_abi abi = mips_abi (gdbarch);
629
630 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
631 but then don't make the raw register names visible. This (upper)
632 range of user visible register numbers are the pseudo-registers.
633
634 This approach was adopted accommodate the following scenario:
635 It is possible to debug a 64-bit device using a 32-bit
636 programming model. In such instances, the raw registers are
637 configured to be 64-bits wide, while the pseudo registers are
638 configured to be 32-bits wide. The registers that the user
639 sees - the pseudo registers - match the users expectations
640 given the programming model being used. */
641 int rawnum = regno % gdbarch_num_regs (gdbarch);
642 if (regno < gdbarch_num_regs (gdbarch))
643 return "";
644
645 /* The MIPS integer registers are always mapped from 0 to 31. The
646 names of the registers (which reflects the conventions regarding
647 register use) vary depending on the ABI. */
648 if (0 <= rawnum && rawnum < 32)
649 {
650 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
651 return mips_n32_n64_gpr_names[rawnum];
652 else
653 return mips_gpr_names[rawnum];
654 }
655 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
656 return tdesc_register_name (gdbarch, rawnum);
657 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
658 {
659 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
660 if (tdep->mips_processor_reg_names[rawnum - 32])
661 return tdep->mips_processor_reg_names[rawnum - 32];
662 return "";
663 }
664 else
665 internal_error (__FILE__, __LINE__,
666 _("mips_register_name: bad register number %d"), rawnum);
667 }
668
669 /* Return the groups that a MIPS register can be categorised into. */
670
671 static int
672 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
673 struct reggroup *reggroup)
674 {
675 int vector_p;
676 int float_p;
677 int raw_p;
678 int rawnum = regnum % gdbarch_num_regs (gdbarch);
679 int pseudo = regnum / gdbarch_num_regs (gdbarch);
680 if (reggroup == all_reggroup)
681 return pseudo;
682 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
683 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
684 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
685 (gdbarch), as not all architectures are multi-arch. */
686 raw_p = rawnum < gdbarch_num_regs (gdbarch);
687 if (gdbarch_register_name (gdbarch, regnum) == NULL
688 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
689 return 0;
690 if (reggroup == float_reggroup)
691 return float_p && pseudo;
692 if (reggroup == vector_reggroup)
693 return vector_p && pseudo;
694 if (reggroup == general_reggroup)
695 return (!vector_p && !float_p) && pseudo;
696 /* Save the pseudo registers. Need to make certain that any code
697 extracting register values from a saved register cache also uses
698 pseudo registers. */
699 if (reggroup == save_reggroup)
700 return raw_p && pseudo;
701 /* Restore the same pseudo register. */
702 if (reggroup == restore_reggroup)
703 return raw_p && pseudo;
704 return 0;
705 }
706
707 /* Return the groups that a MIPS register can be categorised into.
708 This version is only used if we have a target description which
709 describes real registers (and their groups). */
710
711 static int
712 mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
713 struct reggroup *reggroup)
714 {
715 int rawnum = regnum % gdbarch_num_regs (gdbarch);
716 int pseudo = regnum / gdbarch_num_regs (gdbarch);
717 int ret;
718
719 /* Only save, restore, and display the pseudo registers. Need to
720 make certain that any code extracting register values from a
721 saved register cache also uses pseudo registers.
722
723 Note: saving and restoring the pseudo registers is slightly
724 strange; if we have 64 bits, we should save and restore all
725 64 bits. But this is hard and has little benefit. */
726 if (!pseudo)
727 return 0;
728
729 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
730 if (ret != -1)
731 return ret;
732
733 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
734 }
735
736 /* Map the symbol table registers which live in the range [1 *
737 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
738 registers. Take care of alignment and size problems. */
739
740 static enum register_status
741 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
742 int cookednum, gdb_byte *buf)
743 {
744 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
745 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
746 && cookednum < 2 * gdbarch_num_regs (gdbarch));
747 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
748 return regcache_raw_read (regcache, rawnum, buf);
749 else if (register_size (gdbarch, rawnum) >
750 register_size (gdbarch, cookednum))
751 {
752 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
753 return regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
754 else
755 {
756 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
757 LONGEST regval;
758 enum register_status status;
759
760 status = regcache_raw_read_signed (regcache, rawnum, &regval);
761 if (status == REG_VALID)
762 store_signed_integer (buf, 4, byte_order, regval);
763 return status;
764 }
765 }
766 else
767 internal_error (__FILE__, __LINE__, _("bad register size"));
768 }
769
770 static void
771 mips_pseudo_register_write (struct gdbarch *gdbarch,
772 struct regcache *regcache, int cookednum,
773 const gdb_byte *buf)
774 {
775 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
776 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
777 && cookednum < 2 * gdbarch_num_regs (gdbarch));
778 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
779 regcache_raw_write (regcache, rawnum, buf);
780 else if (register_size (gdbarch, rawnum) >
781 register_size (gdbarch, cookednum))
782 {
783 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
784 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
785 else
786 {
787 /* Sign extend the shortened version of the register prior
788 to placing it in the raw register. This is required for
789 some mips64 parts in order to avoid unpredictable behavior. */
790 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
791 LONGEST regval = extract_signed_integer (buf, 4, byte_order);
792 regcache_raw_write_signed (regcache, rawnum, regval);
793 }
794 }
795 else
796 internal_error (__FILE__, __LINE__, _("bad register size"));
797 }
798
799 static int
800 mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
801 struct agent_expr *ax, int reg)
802 {
803 int rawnum = reg % gdbarch_num_regs (gdbarch);
804 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
805 && reg < 2 * gdbarch_num_regs (gdbarch));
806
807 ax_reg_mask (ax, rawnum);
808
809 return 0;
810 }
811
812 static int
813 mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
814 struct agent_expr *ax, int reg)
815 {
816 int rawnum = reg % gdbarch_num_regs (gdbarch);
817 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
818 && reg < 2 * gdbarch_num_regs (gdbarch));
819 if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
820 {
821 ax_reg (ax, rawnum);
822
823 if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
824 {
825 if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
826 || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
827 {
828 ax_const_l (ax, 32);
829 ax_simple (ax, aop_lsh);
830 }
831 ax_const_l (ax, 32);
832 ax_simple (ax, aop_rsh_signed);
833 }
834 }
835 else
836 internal_error (__FILE__, __LINE__, _("bad register size"));
837
838 return 0;
839 }
840
841 /* Table to translate 3-bit register field to actual register number. */
842 static const signed char mips_reg3_to_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
843
844 /* Heuristic_proc_start may hunt through the text section for a long
845 time across a 2400 baud serial line. Allows the user to limit this
846 search. */
847
848 static int heuristic_fence_post = 0;
849
850 /* Number of bytes of storage in the actual machine representation for
851 register N. NOTE: This defines the pseudo register type so need to
852 rebuild the architecture vector. */
853
854 static int mips64_transfers_32bit_regs_p = 0;
855
856 static void
857 set_mips64_transfers_32bit_regs (char *args, int from_tty,
858 struct cmd_list_element *c)
859 {
860 struct gdbarch_info info;
861 gdbarch_info_init (&info);
862 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
863 instead of relying on globals. Doing that would let generic code
864 handle the search for this specific architecture. */
865 if (!gdbarch_update_p (info))
866 {
867 mips64_transfers_32bit_regs_p = 0;
868 error (_("32-bit compatibility mode not supported"));
869 }
870 }
871
872 /* Convert to/from a register and the corresponding memory value. */
873
874 /* This predicate tests for the case of an 8 byte floating point
875 value that is being transferred to or from a pair of floating point
876 registers each of which are (or are considered to be) only 4 bytes
877 wide. */
878 static int
879 mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
880 struct type *type)
881 {
882 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
883 && register_size (gdbarch, regnum) == 4
884 && mips_float_register_p (gdbarch, regnum)
885 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
886 }
887
888 /* This predicate tests for the case of a value of less than 8
889 bytes in width that is being transfered to or from an 8 byte
890 general purpose register. */
891 static int
892 mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
893 struct type *type)
894 {
895 int num_regs = gdbarch_num_regs (gdbarch);
896
897 return (register_size (gdbarch, regnum) == 8
898 && regnum % num_regs > 0 && regnum % num_regs < 32
899 && TYPE_LENGTH (type) < 8);
900 }
901
902 static int
903 mips_convert_register_p (struct gdbarch *gdbarch,
904 int regnum, struct type *type)
905 {
906 return (mips_convert_register_float_case_p (gdbarch, regnum, type)
907 || mips_convert_register_gpreg_case_p (gdbarch, regnum, type));
908 }
909
910 static int
911 mips_register_to_value (struct frame_info *frame, int regnum,
912 struct type *type, gdb_byte *to,
913 int *optimizedp, int *unavailablep)
914 {
915 struct gdbarch *gdbarch = get_frame_arch (frame);
916
917 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
918 {
919 get_frame_register (frame, regnum + 0, to + 4);
920 get_frame_register (frame, regnum + 1, to + 0);
921
922 if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
923 optimizedp, unavailablep))
924 return 0;
925
926 if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
927 optimizedp, unavailablep))
928 return 0;
929 *optimizedp = *unavailablep = 0;
930 return 1;
931 }
932 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
933 {
934 int len = TYPE_LENGTH (type);
935 CORE_ADDR offset;
936
937 offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
938 if (!get_frame_register_bytes (frame, regnum, offset, len, to,
939 optimizedp, unavailablep))
940 return 0;
941
942 *optimizedp = *unavailablep = 0;
943 return 1;
944 }
945 else
946 {
947 internal_error (__FILE__, __LINE__,
948 _("mips_register_to_value: unrecognized case"));
949 }
950 }
951
952 static void
953 mips_value_to_register (struct frame_info *frame, int regnum,
954 struct type *type, const gdb_byte *from)
955 {
956 struct gdbarch *gdbarch = get_frame_arch (frame);
957
958 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
959 {
960 put_frame_register (frame, regnum + 0, from + 4);
961 put_frame_register (frame, regnum + 1, from + 0);
962 }
963 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
964 {
965 gdb_byte fill[8];
966 int len = TYPE_LENGTH (type);
967
968 /* Sign extend values, irrespective of type, that are stored to
969 a 64-bit general purpose register. (32-bit unsigned values
970 are stored as signed quantities within a 64-bit register.
971 When performing an operation, in compiled code, that combines
972 a 32-bit unsigned value with a signed 64-bit value, a type
973 conversion is first performed that zeroes out the high 32 bits.) */
974 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
975 {
976 if (from[0] & 0x80)
977 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
978 else
979 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
980 put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
981 put_frame_register_bytes (frame, regnum, 8 - len, len, from);
982 }
983 else
984 {
985 if (from[len-1] & 0x80)
986 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
987 else
988 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
989 put_frame_register_bytes (frame, regnum, 0, len, from);
990 put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
991 }
992 }
993 else
994 {
995 internal_error (__FILE__, __LINE__,
996 _("mips_value_to_register: unrecognized case"));
997 }
998 }
999
1000 /* Return the GDB type object for the "standard" data type of data in
1001 register REG. */
1002
1003 static struct type *
1004 mips_register_type (struct gdbarch *gdbarch, int regnum)
1005 {
1006 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
1007 if (mips_float_register_p (gdbarch, regnum))
1008 {
1009 /* The floating-point registers raw, or cooked, always match
1010 mips_isa_regsize(), and also map 1:1, byte for byte. */
1011 if (mips_isa_regsize (gdbarch) == 4)
1012 return builtin_type (gdbarch)->builtin_float;
1013 else
1014 return builtin_type (gdbarch)->builtin_double;
1015 }
1016 else if (regnum < gdbarch_num_regs (gdbarch))
1017 {
1018 /* The raw or ISA registers. These are all sized according to
1019 the ISA regsize. */
1020 if (mips_isa_regsize (gdbarch) == 4)
1021 return builtin_type (gdbarch)->builtin_int32;
1022 else
1023 return builtin_type (gdbarch)->builtin_int64;
1024 }
1025 else
1026 {
1027 int rawnum = regnum - gdbarch_num_regs (gdbarch);
1028
1029 /* The cooked or ABI registers. These are sized according to
1030 the ABI (with a few complications). */
1031 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1032 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1033 return builtin_type (gdbarch)->builtin_int32;
1034 else if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1035 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1036 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1037 /* The pseudo/cooked view of the embedded registers is always
1038 32-bit. The raw view is handled below. */
1039 return builtin_type (gdbarch)->builtin_int32;
1040 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
1041 /* The target, while possibly using a 64-bit register buffer,
1042 is only transfering 32-bits of each integer register.
1043 Reflect this in the cooked/pseudo (ABI) register value. */
1044 return builtin_type (gdbarch)->builtin_int32;
1045 else if (mips_abi_regsize (gdbarch) == 4)
1046 /* The ABI is restricted to 32-bit registers (the ISA could be
1047 32- or 64-bit). */
1048 return builtin_type (gdbarch)->builtin_int32;
1049 else
1050 /* 64-bit ABI. */
1051 return builtin_type (gdbarch)->builtin_int64;
1052 }
1053 }
1054
1055 /* Return the GDB type for the pseudo register REGNUM, which is the
1056 ABI-level view. This function is only called if there is a target
1057 description which includes registers, so we know precisely the
1058 types of hardware registers. */
1059
1060 static struct type *
1061 mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
1062 {
1063 const int num_regs = gdbarch_num_regs (gdbarch);
1064 int rawnum = regnum % num_regs;
1065 struct type *rawtype;
1066
1067 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
1068
1069 /* Absent registers are still absent. */
1070 rawtype = gdbarch_register_type (gdbarch, rawnum);
1071 if (TYPE_LENGTH (rawtype) == 0)
1072 return rawtype;
1073
1074 /* Present the floating point registers however the hardware did;
1075 do not try to convert between FPU layouts. */
1076 if (mips_float_register_p (gdbarch, rawnum))
1077 return rawtype;
1078
1079 /* Floating-point control registers are always 32-bit even though for
1080 backwards compatibility reasons 64-bit targets will transfer them
1081 as 64-bit quantities even if using XML descriptions. */
1082 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1083 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1084 return builtin_type (gdbarch)->builtin_int32;
1085
1086 /* Use pointer types for registers if we can. For n32 we can not,
1087 since we do not have a 64-bit pointer type. */
1088 if (mips_abi_regsize (gdbarch)
1089 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
1090 {
1091 if (rawnum == MIPS_SP_REGNUM
1092 || rawnum == mips_regnum (gdbarch)->badvaddr)
1093 return builtin_type (gdbarch)->builtin_data_ptr;
1094 else if (rawnum == mips_regnum (gdbarch)->pc)
1095 return builtin_type (gdbarch)->builtin_func_ptr;
1096 }
1097
1098 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
1099 && ((rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_PS_REGNUM)
1100 || rawnum == mips_regnum (gdbarch)->lo
1101 || rawnum == mips_regnum (gdbarch)->hi
1102 || rawnum == mips_regnum (gdbarch)->badvaddr
1103 || rawnum == mips_regnum (gdbarch)->cause
1104 || rawnum == mips_regnum (gdbarch)->pc
1105 || (mips_regnum (gdbarch)->dspacc != -1
1106 && rawnum >= mips_regnum (gdbarch)->dspacc
1107 && rawnum < mips_regnum (gdbarch)->dspacc + 6)))
1108 return builtin_type (gdbarch)->builtin_int32;
1109
1110 /* The pseudo/cooked view of embedded registers is always
1111 32-bit, even if the target transfers 64-bit values for them.
1112 New targets relying on XML descriptions should only transfer
1113 the necessary 32 bits, but older versions of GDB expected 64,
1114 so allow the target to provide 64 bits without interfering
1115 with the displayed type. */
1116 if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1117 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1118 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1119 return builtin_type (gdbarch)->builtin_int32;
1120
1121 /* For all other registers, pass through the hardware type. */
1122 return rawtype;
1123 }
1124
1125 /* Should the upper word of 64-bit addresses be zeroed? */
1126 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
1127
1128 static int
1129 mips_mask_address_p (struct gdbarch_tdep *tdep)
1130 {
1131 switch (mask_address_var)
1132 {
1133 case AUTO_BOOLEAN_TRUE:
1134 return 1;
1135 case AUTO_BOOLEAN_FALSE:
1136 return 0;
1137 break;
1138 case AUTO_BOOLEAN_AUTO:
1139 return tdep->default_mask_address_p;
1140 default:
1141 internal_error (__FILE__, __LINE__,
1142 _("mips_mask_address_p: bad switch"));
1143 return -1;
1144 }
1145 }
1146
1147 static void
1148 show_mask_address (struct ui_file *file, int from_tty,
1149 struct cmd_list_element *c, const char *value)
1150 {
1151 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
1152
1153 deprecated_show_value_hack (file, from_tty, c, value);
1154 switch (mask_address_var)
1155 {
1156 case AUTO_BOOLEAN_TRUE:
1157 printf_filtered ("The 32 bit mips address mask is enabled\n");
1158 break;
1159 case AUTO_BOOLEAN_FALSE:
1160 printf_filtered ("The 32 bit mips address mask is disabled\n");
1161 break;
1162 case AUTO_BOOLEAN_AUTO:
1163 printf_filtered
1164 ("The 32 bit address mask is set automatically. Currently %s\n",
1165 mips_mask_address_p (tdep) ? "enabled" : "disabled");
1166 break;
1167 default:
1168 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
1169 break;
1170 }
1171 }
1172
1173 /* Tell if the program counter value in MEMADDR is in a standard ISA
1174 function. */
1175
1176 int
1177 mips_pc_is_mips (CORE_ADDR memaddr)
1178 {
1179 struct bound_minimal_symbol sym;
1180
1181 /* Flags indicating that this is a MIPS16 or microMIPS function is
1182 stored by elfread.c in the high bit of the info field. Use this
1183 to decide if the function is standard MIPS. Otherwise if bit 0
1184 of the address is clear, then this is a standard MIPS function. */
1185 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1186 if (sym.minsym)
1187 return msymbol_is_mips (sym.minsym);
1188 else
1189 return is_mips_addr (memaddr);
1190 }
1191
1192 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
1193
1194 int
1195 mips_pc_is_mips16 (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1196 {
1197 struct bound_minimal_symbol sym;
1198
1199 /* A flag indicating that this is a MIPS16 function is stored by
1200 elfread.c in the high bit of the info field. Use this to decide
1201 if the function is MIPS16. Otherwise if bit 0 of the address is
1202 set, then ELF file flags will tell if this is a MIPS16 function. */
1203 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1204 if (sym.minsym)
1205 return msymbol_is_mips16 (sym.minsym);
1206 else
1207 return is_mips16_addr (gdbarch, memaddr);
1208 }
1209
1210 /* Tell if the program counter value in MEMADDR is in a microMIPS function. */
1211
1212 int
1213 mips_pc_is_micromips (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1214 {
1215 struct bound_minimal_symbol sym;
1216
1217 /* A flag indicating that this is a microMIPS function is stored by
1218 elfread.c in the high bit of the info field. Use this to decide
1219 if the function is microMIPS. Otherwise if bit 0 of the address
1220 is set, then ELF file flags will tell if this is a microMIPS
1221 function. */
1222 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1223 if (sym.minsym)
1224 return msymbol_is_micromips (sym.minsym);
1225 else
1226 return is_micromips_addr (gdbarch, memaddr);
1227 }
1228
1229 /* Tell the ISA type of the function the program counter value in MEMADDR
1230 is in. */
1231
1232 static enum mips_isa
1233 mips_pc_isa (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1234 {
1235 struct bound_minimal_symbol sym;
1236
1237 /* A flag indicating that this is a MIPS16 or a microMIPS function
1238 is stored by elfread.c in the high bit of the info field. Use
1239 this to decide if the function is MIPS16 or microMIPS or normal
1240 MIPS. Otherwise if bit 0 of the address is set, then ELF file
1241 flags will tell if this is a MIPS16 or a microMIPS function. */
1242 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1243 if (sym.minsym)
1244 {
1245 if (msymbol_is_micromips (sym.minsym))
1246 return ISA_MICROMIPS;
1247 else if (msymbol_is_mips16 (sym.minsym))
1248 return ISA_MIPS16;
1249 else
1250 return ISA_MIPS;
1251 }
1252 else
1253 {
1254 if (is_mips_addr (memaddr))
1255 return ISA_MIPS;
1256 else if (is_micromips_addr (gdbarch, memaddr))
1257 return ISA_MICROMIPS;
1258 else
1259 return ISA_MIPS16;
1260 }
1261 }
1262
1263 /* Set the ISA bit correctly in the PC, used by DWARF-2 machinery.
1264 The need for comes from the ISA bit having been cleared, making
1265 addresses in FDE, range records, etc. referring to compressed code
1266 different to those in line information, the symbol table and finally
1267 the PC register. That in turn confuses many operations. */
1268
1269 static CORE_ADDR
1270 mips_adjust_dwarf2_addr (CORE_ADDR pc)
1271 {
1272 pc = unmake_compact_addr (pc);
1273 return mips_pc_is_mips (pc) ? pc : make_compact_addr (pc);
1274 }
1275
1276 /* Recalculate the line record requested so that the resulting PC has
1277 the ISA bit set correctly, used by DWARF-2 machinery. The need for
1278 this adjustment comes from some records associated with compressed
1279 code having the ISA bit cleared, most notably at function prologue
1280 ends. The ISA bit is in this context retrieved from the minimal
1281 symbol covering the address requested, which in turn has been
1282 constructed from the binary's symbol table rather than DWARF-2
1283 information. The correct setting of the ISA bit is required for
1284 breakpoint addresses to correctly match against the stop PC.
1285
1286 As line entries can specify relative address adjustments we need to
1287 keep track of the absolute value of the last line address recorded
1288 in line information, so that we can calculate the actual address to
1289 apply the ISA bit adjustment to. We use PC for this tracking and
1290 keep the original address there.
1291
1292 As such relative address adjustments can be odd within compressed
1293 code we need to keep track of the last line address with the ISA
1294 bit adjustment applied too, as the original address may or may not
1295 have had the ISA bit set. We use ADJ_PC for this tracking and keep
1296 the adjusted address there.
1297
1298 For relative address adjustments we then use these variables to
1299 calculate the address intended by line information, which will be
1300 PC-relative, and return an updated adjustment carrying ISA bit
1301 information, which will be ADJ_PC-relative. For absolute address
1302 adjustments we just return the same address that we store in ADJ_PC
1303 too.
1304
1305 As the first line entry can be relative to an implied address value
1306 of 0 we need to have the initial address set up that we store in PC
1307 and ADJ_PC. This is arranged with a call from `dwarf_decode_lines_1'
1308 that sets PC to 0 and ADJ_PC accordingly, usually 0 as well. */
1309
1310 static CORE_ADDR
1311 mips_adjust_dwarf2_line (CORE_ADDR addr, int rel)
1312 {
1313 static CORE_ADDR adj_pc;
1314 static CORE_ADDR pc;
1315 CORE_ADDR isa_pc;
1316
1317 pc = rel ? pc + addr : addr;
1318 isa_pc = mips_adjust_dwarf2_addr (pc);
1319 addr = rel ? isa_pc - adj_pc : isa_pc;
1320 adj_pc = isa_pc;
1321 return addr;
1322 }
1323
1324 /* Various MIPS16 thunk (aka stub or trampoline) names. */
1325
1326 static const char mips_str_mips16_call_stub[] = "__mips16_call_stub_";
1327 static const char mips_str_mips16_ret_stub[] = "__mips16_ret_";
1328 static const char mips_str_call_fp_stub[] = "__call_stub_fp_";
1329 static const char mips_str_call_stub[] = "__call_stub_";
1330 static const char mips_str_fn_stub[] = "__fn_stub_";
1331
1332 /* This is used as a PIC thunk prefix. */
1333
1334 static const char mips_str_pic[] = ".pic.";
1335
1336 /* Return non-zero if the PC is inside a call thunk (aka stub or
1337 trampoline) that should be treated as a temporary frame. */
1338
1339 static int
1340 mips_in_frame_stub (CORE_ADDR pc)
1341 {
1342 CORE_ADDR start_addr;
1343 const char *name;
1344
1345 /* Find the starting address of the function containing the PC. */
1346 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
1347 return 0;
1348
1349 /* If the PC is in __mips16_call_stub_*, this is a call/return stub. */
1350 if (startswith (name, mips_str_mips16_call_stub))
1351 return 1;
1352 /* If the PC is in __call_stub_*, this is a call/return or a call stub. */
1353 if (startswith (name, mips_str_call_stub))
1354 return 1;
1355 /* If the PC is in __fn_stub_*, this is a call stub. */
1356 if (startswith (name, mips_str_fn_stub))
1357 return 1;
1358
1359 return 0; /* Not a stub. */
1360 }
1361
1362 /* MIPS believes that the PC has a sign extended value. Perhaps the
1363 all registers should be sign extended for simplicity? */
1364
1365 static CORE_ADDR
1366 mips_read_pc (struct regcache *regcache)
1367 {
1368 int regnum = gdbarch_pc_regnum (regcache->arch ());
1369 LONGEST pc;
1370
1371 regcache_cooked_read_signed (regcache, regnum, &pc);
1372 return pc;
1373 }
1374
1375 static CORE_ADDR
1376 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1377 {
1378 CORE_ADDR pc;
1379
1380 pc = frame_unwind_register_signed (next_frame, gdbarch_pc_regnum (gdbarch));
1381 /* macro/2012-04-20: This hack skips over MIPS16 call thunks as
1382 intermediate frames. In this case we can get the caller's address
1383 from $ra, or if $ra contains an address within a thunk as well, then
1384 it must be in the return path of __mips16_call_stub_{s,d}{f,c}_{0..10}
1385 and thus the caller's address is in $s2. */
1386 if (frame_relative_level (next_frame) >= 0 && mips_in_frame_stub (pc))
1387 {
1388 pc = frame_unwind_register_signed
1389 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
1390 if (mips_in_frame_stub (pc))
1391 pc = frame_unwind_register_signed
1392 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
1393 }
1394 return pc;
1395 }
1396
1397 static CORE_ADDR
1398 mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1399 {
1400 return frame_unwind_register_signed
1401 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
1402 }
1403
1404 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
1405 dummy frame. The frame ID's base needs to match the TOS value
1406 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1407 breakpoint. */
1408
1409 static struct frame_id
1410 mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1411 {
1412 return frame_id_build
1413 (get_frame_register_signed (this_frame,
1414 gdbarch_num_regs (gdbarch)
1415 + MIPS_SP_REGNUM),
1416 get_frame_pc (this_frame));
1417 }
1418
1419 /* Implement the "write_pc" gdbarch method. */
1420
1421 void
1422 mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
1423 {
1424 int regnum = gdbarch_pc_regnum (regcache->arch ());
1425
1426 regcache_cooked_write_unsigned (regcache, regnum, pc);
1427 }
1428
1429 /* Fetch and return instruction from the specified location. Handle
1430 MIPS16/microMIPS as appropriate. */
1431
1432 static ULONGEST
1433 mips_fetch_instruction (struct gdbarch *gdbarch,
1434 enum mips_isa isa, CORE_ADDR addr, int *errp)
1435 {
1436 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1437 gdb_byte buf[MIPS_INSN32_SIZE];
1438 int instlen;
1439 int err;
1440
1441 switch (isa)
1442 {
1443 case ISA_MICROMIPS:
1444 case ISA_MIPS16:
1445 instlen = MIPS_INSN16_SIZE;
1446 addr = unmake_compact_addr (addr);
1447 break;
1448 case ISA_MIPS:
1449 instlen = MIPS_INSN32_SIZE;
1450 break;
1451 default:
1452 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1453 break;
1454 }
1455 err = target_read_memory (addr, buf, instlen);
1456 if (errp != NULL)
1457 *errp = err;
1458 if (err != 0)
1459 {
1460 if (errp == NULL)
1461 memory_error (TARGET_XFER_E_IO, addr);
1462 return 0;
1463 }
1464 return extract_unsigned_integer (buf, instlen, byte_order);
1465 }
1466
1467 /* These are the fields of 32 bit mips instructions. */
1468 #define mips32_op(x) (x >> 26)
1469 #define itype_op(x) (x >> 26)
1470 #define itype_rs(x) ((x >> 21) & 0x1f)
1471 #define itype_rt(x) ((x >> 16) & 0x1f)
1472 #define itype_immediate(x) (x & 0xffff)
1473
1474 #define jtype_op(x) (x >> 26)
1475 #define jtype_target(x) (x & 0x03ffffff)
1476
1477 #define rtype_op(x) (x >> 26)
1478 #define rtype_rs(x) ((x >> 21) & 0x1f)
1479 #define rtype_rt(x) ((x >> 16) & 0x1f)
1480 #define rtype_rd(x) ((x >> 11) & 0x1f)
1481 #define rtype_shamt(x) ((x >> 6) & 0x1f)
1482 #define rtype_funct(x) (x & 0x3f)
1483
1484 /* MicroMIPS instruction fields. */
1485 #define micromips_op(x) ((x) >> 10)
1486
1487 /* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
1488 bit and the size respectively of the field extracted. */
1489 #define b0s4_imm(x) ((x) & 0xf)
1490 #define b0s5_imm(x) ((x) & 0x1f)
1491 #define b0s5_reg(x) ((x) & 0x1f)
1492 #define b0s7_imm(x) ((x) & 0x7f)
1493 #define b0s10_imm(x) ((x) & 0x3ff)
1494 #define b1s4_imm(x) (((x) >> 1) & 0xf)
1495 #define b1s9_imm(x) (((x) >> 1) & 0x1ff)
1496 #define b2s3_cc(x) (((x) >> 2) & 0x7)
1497 #define b4s2_regl(x) (((x) >> 4) & 0x3)
1498 #define b5s5_op(x) (((x) >> 5) & 0x1f)
1499 #define b5s5_reg(x) (((x) >> 5) & 0x1f)
1500 #define b6s4_op(x) (((x) >> 6) & 0xf)
1501 #define b7s3_reg(x) (((x) >> 7) & 0x7)
1502
1503 /* 32-bit instruction formats, B and S refer to the lowest bit and the size
1504 respectively of the field extracted. */
1505 #define b0s6_op(x) ((x) & 0x3f)
1506 #define b0s11_op(x) ((x) & 0x7ff)
1507 #define b0s12_imm(x) ((x) & 0xfff)
1508 #define b0s16_imm(x) ((x) & 0xffff)
1509 #define b0s26_imm(x) ((x) & 0x3ffffff)
1510 #define b6s10_ext(x) (((x) >> 6) & 0x3ff)
1511 #define b11s5_reg(x) (((x) >> 11) & 0x1f)
1512 #define b12s4_op(x) (((x) >> 12) & 0xf)
1513
1514 /* Return the size in bytes of the instruction INSN encoded in the ISA
1515 instruction set. */
1516
1517 static int
1518 mips_insn_size (enum mips_isa isa, ULONGEST insn)
1519 {
1520 switch (isa)
1521 {
1522 case ISA_MICROMIPS:
1523 if ((micromips_op (insn) & 0x4) == 0x4
1524 || (micromips_op (insn) & 0x7) == 0x0)
1525 return 2 * MIPS_INSN16_SIZE;
1526 else
1527 return MIPS_INSN16_SIZE;
1528 case ISA_MIPS16:
1529 if ((insn & 0xf800) == 0xf000)
1530 return 2 * MIPS_INSN16_SIZE;
1531 else
1532 return MIPS_INSN16_SIZE;
1533 case ISA_MIPS:
1534 return MIPS_INSN32_SIZE;
1535 }
1536 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1537 }
1538
1539 static LONGEST
1540 mips32_relative_offset (ULONGEST inst)
1541 {
1542 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
1543 }
1544
1545 /* Determine the address of the next instruction executed after the INST
1546 floating condition branch instruction at PC. COUNT specifies the
1547 number of the floating condition bits tested by the branch. */
1548
1549 static CORE_ADDR
1550 mips32_bc1_pc (struct gdbarch *gdbarch, struct regcache *regcache,
1551 ULONGEST inst, CORE_ADDR pc, int count)
1552 {
1553 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1554 int cnum = (itype_rt (inst) >> 2) & (count - 1);
1555 int tf = itype_rt (inst) & 1;
1556 int mask = (1 << count) - 1;
1557 ULONGEST fcs;
1558 int cond;
1559
1560 if (fcsr == -1)
1561 /* No way to handle; it'll most likely trap anyway. */
1562 return pc;
1563
1564 fcs = regcache_raw_get_unsigned (regcache, fcsr);
1565 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1566
1567 if (((cond >> cnum) & mask) != mask * !tf)
1568 pc += mips32_relative_offset (inst);
1569 else
1570 pc += 4;
1571
1572 return pc;
1573 }
1574
1575 /* Return nonzero if the gdbarch is an Octeon series. */
1576
1577 static int
1578 is_octeon (struct gdbarch *gdbarch)
1579 {
1580 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
1581
1582 return (info->mach == bfd_mach_mips_octeon
1583 || info->mach == bfd_mach_mips_octeonp
1584 || info->mach == bfd_mach_mips_octeon2);
1585 }
1586
1587 /* Return true if the OP represents the Octeon's BBIT instruction. */
1588
1589 static int
1590 is_octeon_bbit_op (int op, struct gdbarch *gdbarch)
1591 {
1592 if (!is_octeon (gdbarch))
1593 return 0;
1594 /* BBIT0 is encoded as LWC2: 110 010. */
1595 /* BBIT032 is encoded as LDC2: 110 110. */
1596 /* BBIT1 is encoded as SWC2: 111 010. */
1597 /* BBIT132 is encoded as SDC2: 111 110. */
1598 if (op == 50 || op == 54 || op == 58 || op == 62)
1599 return 1;
1600 return 0;
1601 }
1602
1603
1604 /* Determine where to set a single step breakpoint while considering
1605 branch prediction. */
1606
1607 static CORE_ADDR
1608 mips32_next_pc (struct regcache *regcache, CORE_ADDR pc)
1609 {
1610 struct gdbarch *gdbarch = regcache->arch ();
1611 unsigned long inst;
1612 int op;
1613 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
1614 op = itype_op (inst);
1615 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch
1616 instruction. */
1617 {
1618 if (op >> 2 == 5)
1619 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1620 {
1621 switch (op & 0x03)
1622 {
1623 case 0: /* BEQL */
1624 goto equal_branch;
1625 case 1: /* BNEL */
1626 goto neq_branch;
1627 case 2: /* BLEZL */
1628 goto less_branch;
1629 case 3: /* BGTZL */
1630 goto greater_branch;
1631 default:
1632 pc += 4;
1633 }
1634 }
1635 else if (op == 17 && itype_rs (inst) == 8)
1636 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1637 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 1);
1638 else if (op == 17 && itype_rs (inst) == 9
1639 && (itype_rt (inst) & 2) == 0)
1640 /* BC1ANY2F, BC1ANY2T: 010001 01001 xxx0x */
1641 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 2);
1642 else if (op == 17 && itype_rs (inst) == 10
1643 && (itype_rt (inst) & 2) == 0)
1644 /* BC1ANY4F, BC1ANY4T: 010001 01010 xxx0x */
1645 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 4);
1646 else if (op == 29)
1647 /* JALX: 011101 */
1648 /* The new PC will be alternate mode. */
1649 {
1650 unsigned long reg;
1651
1652 reg = jtype_target (inst) << 2;
1653 /* Add 1 to indicate 16-bit mode -- invert ISA mode. */
1654 pc = ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + reg + 1;
1655 }
1656 else if (is_octeon_bbit_op (op, gdbarch))
1657 {
1658 int bit, branch_if;
1659
1660 branch_if = op == 58 || op == 62;
1661 bit = itype_rt (inst);
1662
1663 /* Take into account the *32 instructions. */
1664 if (op == 54 || op == 62)
1665 bit += 32;
1666
1667 if (((regcache_raw_get_signed (regcache,
1668 itype_rs (inst)) >> bit) & 1)
1669 == branch_if)
1670 pc += mips32_relative_offset (inst) + 4;
1671 else
1672 pc += 8; /* After the delay slot. */
1673 }
1674
1675 else
1676 pc += 4; /* Not a branch, next instruction is easy. */
1677 }
1678 else
1679 { /* This gets way messy. */
1680
1681 /* Further subdivide into SPECIAL, REGIMM and other. */
1682 switch (op & 0x07) /* Extract bits 28,27,26. */
1683 {
1684 case 0: /* SPECIAL */
1685 op = rtype_funct (inst);
1686 switch (op)
1687 {
1688 case 8: /* JR */
1689 case 9: /* JALR */
1690 /* Set PC to that address. */
1691 pc = regcache_raw_get_signed (regcache, rtype_rs (inst));
1692 break;
1693 case 12: /* SYSCALL */
1694 {
1695 struct gdbarch_tdep *tdep;
1696
1697 tdep = gdbarch_tdep (gdbarch);
1698 if (tdep->syscall_next_pc != NULL)
1699 pc = tdep->syscall_next_pc (get_current_frame ());
1700 else
1701 pc += 4;
1702 }
1703 break;
1704 default:
1705 pc += 4;
1706 }
1707
1708 break; /* end SPECIAL */
1709 case 1: /* REGIMM */
1710 {
1711 op = itype_rt (inst); /* branch condition */
1712 switch (op)
1713 {
1714 case 0: /* BLTZ */
1715 case 2: /* BLTZL */
1716 case 16: /* BLTZAL */
1717 case 18: /* BLTZALL */
1718 less_branch:
1719 if (regcache_raw_get_signed (regcache, itype_rs (inst)) < 0)
1720 pc += mips32_relative_offset (inst) + 4;
1721 else
1722 pc += 8; /* after the delay slot */
1723 break;
1724 case 1: /* BGEZ */
1725 case 3: /* BGEZL */
1726 case 17: /* BGEZAL */
1727 case 19: /* BGEZALL */
1728 if (regcache_raw_get_signed (regcache, itype_rs (inst)) >= 0)
1729 pc += mips32_relative_offset (inst) + 4;
1730 else
1731 pc += 8; /* after the delay slot */
1732 break;
1733 case 0x1c: /* BPOSGE32 */
1734 case 0x1e: /* BPOSGE64 */
1735 pc += 4;
1736 if (itype_rs (inst) == 0)
1737 {
1738 unsigned int pos = (op & 2) ? 64 : 32;
1739 int dspctl = mips_regnum (gdbarch)->dspctl;
1740
1741 if (dspctl == -1)
1742 /* No way to handle; it'll most likely trap anyway. */
1743 break;
1744
1745 if ((regcache_raw_get_unsigned (regcache,
1746 dspctl) & 0x7f) >= pos)
1747 pc += mips32_relative_offset (inst);
1748 else
1749 pc += 4;
1750 }
1751 break;
1752 /* All of the other instructions in the REGIMM category */
1753 default:
1754 pc += 4;
1755 }
1756 }
1757 break; /* end REGIMM */
1758 case 2: /* J */
1759 case 3: /* JAL */
1760 {
1761 unsigned long reg;
1762 reg = jtype_target (inst) << 2;
1763 /* Upper four bits get never changed... */
1764 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1765 }
1766 break;
1767 case 4: /* BEQ, BEQL */
1768 equal_branch:
1769 if (regcache_raw_get_signed (regcache, itype_rs (inst)) ==
1770 regcache_raw_get_signed (regcache, itype_rt (inst)))
1771 pc += mips32_relative_offset (inst) + 4;
1772 else
1773 pc += 8;
1774 break;
1775 case 5: /* BNE, BNEL */
1776 neq_branch:
1777 if (regcache_raw_get_signed (regcache, itype_rs (inst)) !=
1778 regcache_raw_get_signed (regcache, itype_rt (inst)))
1779 pc += mips32_relative_offset (inst) + 4;
1780 else
1781 pc += 8;
1782 break;
1783 case 6: /* BLEZ, BLEZL */
1784 if (regcache_raw_get_signed (regcache, itype_rs (inst)) <= 0)
1785 pc += mips32_relative_offset (inst) + 4;
1786 else
1787 pc += 8;
1788 break;
1789 case 7:
1790 default:
1791 greater_branch: /* BGTZ, BGTZL */
1792 if (regcache_raw_get_signed (regcache, itype_rs (inst)) > 0)
1793 pc += mips32_relative_offset (inst) + 4;
1794 else
1795 pc += 8;
1796 break;
1797 } /* switch */
1798 } /* else */
1799 return pc;
1800 } /* mips32_next_pc */
1801
1802 /* Extract the 7-bit signed immediate offset from the microMIPS instruction
1803 INSN. */
1804
1805 static LONGEST
1806 micromips_relative_offset7 (ULONGEST insn)
1807 {
1808 return ((b0s7_imm (insn) ^ 0x40) - 0x40) << 1;
1809 }
1810
1811 /* Extract the 10-bit signed immediate offset from the microMIPS instruction
1812 INSN. */
1813
1814 static LONGEST
1815 micromips_relative_offset10 (ULONGEST insn)
1816 {
1817 return ((b0s10_imm (insn) ^ 0x200) - 0x200) << 1;
1818 }
1819
1820 /* Extract the 16-bit signed immediate offset from the microMIPS instruction
1821 INSN. */
1822
1823 static LONGEST
1824 micromips_relative_offset16 (ULONGEST insn)
1825 {
1826 return ((b0s16_imm (insn) ^ 0x8000) - 0x8000) << 1;
1827 }
1828
1829 /* Return the size in bytes of the microMIPS instruction at the address PC. */
1830
1831 static int
1832 micromips_pc_insn_size (struct gdbarch *gdbarch, CORE_ADDR pc)
1833 {
1834 ULONGEST insn;
1835
1836 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1837 return mips_insn_size (ISA_MICROMIPS, insn);
1838 }
1839
1840 /* Calculate the address of the next microMIPS instruction to execute
1841 after the INSN coprocessor 1 conditional branch instruction at the
1842 address PC. COUNT denotes the number of coprocessor condition bits
1843 examined by the branch. */
1844
1845 static CORE_ADDR
1846 micromips_bc1_pc (struct gdbarch *gdbarch, struct regcache *regcache,
1847 ULONGEST insn, CORE_ADDR pc, int count)
1848 {
1849 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1850 int cnum = b2s3_cc (insn >> 16) & (count - 1);
1851 int tf = b5s5_op (insn >> 16) & 1;
1852 int mask = (1 << count) - 1;
1853 ULONGEST fcs;
1854 int cond;
1855
1856 if (fcsr == -1)
1857 /* No way to handle; it'll most likely trap anyway. */
1858 return pc;
1859
1860 fcs = regcache_raw_get_unsigned (regcache, fcsr);
1861 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1862
1863 if (((cond >> cnum) & mask) != mask * !tf)
1864 pc += micromips_relative_offset16 (insn);
1865 else
1866 pc += micromips_pc_insn_size (gdbarch, pc);
1867
1868 return pc;
1869 }
1870
1871 /* Calculate the address of the next microMIPS instruction to execute
1872 after the instruction at the address PC. */
1873
1874 static CORE_ADDR
1875 micromips_next_pc (struct regcache *regcache, CORE_ADDR pc)
1876 {
1877 struct gdbarch *gdbarch = regcache->arch ();
1878 ULONGEST insn;
1879
1880 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1881 pc += MIPS_INSN16_SIZE;
1882 switch (mips_insn_size (ISA_MICROMIPS, insn))
1883 {
1884 /* 32-bit instructions. */
1885 case 2 * MIPS_INSN16_SIZE:
1886 insn <<= 16;
1887 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1888 pc += MIPS_INSN16_SIZE;
1889 switch (micromips_op (insn >> 16))
1890 {
1891 case 0x00: /* POOL32A: bits 000000 */
1892 if (b0s6_op (insn) == 0x3c
1893 /* POOL32Axf: bits 000000 ... 111100 */
1894 && (b6s10_ext (insn) & 0x2bf) == 0x3c)
1895 /* JALR, JALR.HB: 000000 000x111100 111100 */
1896 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
1897 pc = regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16));
1898 break;
1899
1900 case 0x10: /* POOL32I: bits 010000 */
1901 switch (b5s5_op (insn >> 16))
1902 {
1903 case 0x00: /* BLTZ: bits 010000 00000 */
1904 case 0x01: /* BLTZAL: bits 010000 00001 */
1905 case 0x11: /* BLTZALS: bits 010000 10001 */
1906 if (regcache_raw_get_signed (regcache,
1907 b0s5_reg (insn >> 16)) < 0)
1908 pc += micromips_relative_offset16 (insn);
1909 else
1910 pc += micromips_pc_insn_size (gdbarch, pc);
1911 break;
1912
1913 case 0x02: /* BGEZ: bits 010000 00010 */
1914 case 0x03: /* BGEZAL: bits 010000 00011 */
1915 case 0x13: /* BGEZALS: bits 010000 10011 */
1916 if (regcache_raw_get_signed (regcache,
1917 b0s5_reg (insn >> 16)) >= 0)
1918 pc += micromips_relative_offset16 (insn);
1919 else
1920 pc += micromips_pc_insn_size (gdbarch, pc);
1921 break;
1922
1923 case 0x04: /* BLEZ: bits 010000 00100 */
1924 if (regcache_raw_get_signed (regcache,
1925 b0s5_reg (insn >> 16)) <= 0)
1926 pc += micromips_relative_offset16 (insn);
1927 else
1928 pc += micromips_pc_insn_size (gdbarch, pc);
1929 break;
1930
1931 case 0x05: /* BNEZC: bits 010000 00101 */
1932 if (regcache_raw_get_signed (regcache,
1933 b0s5_reg (insn >> 16)) != 0)
1934 pc += micromips_relative_offset16 (insn);
1935 break;
1936
1937 case 0x06: /* BGTZ: bits 010000 00110 */
1938 if (regcache_raw_get_signed (regcache,
1939 b0s5_reg (insn >> 16)) > 0)
1940 pc += micromips_relative_offset16 (insn);
1941 else
1942 pc += micromips_pc_insn_size (gdbarch, pc);
1943 break;
1944
1945 case 0x07: /* BEQZC: bits 010000 00111 */
1946 if (regcache_raw_get_signed (regcache,
1947 b0s5_reg (insn >> 16)) == 0)
1948 pc += micromips_relative_offset16 (insn);
1949 break;
1950
1951 case 0x14: /* BC2F: bits 010000 10100 xxx00 */
1952 case 0x15: /* BC2T: bits 010000 10101 xxx00 */
1953 if (((insn >> 16) & 0x3) == 0x0)
1954 /* BC2F, BC2T: don't know how to handle these. */
1955 break;
1956 break;
1957
1958 case 0x1a: /* BPOSGE64: bits 010000 11010 */
1959 case 0x1b: /* BPOSGE32: bits 010000 11011 */
1960 {
1961 unsigned int pos = (b5s5_op (insn >> 16) & 1) ? 32 : 64;
1962 int dspctl = mips_regnum (gdbarch)->dspctl;
1963
1964 if (dspctl == -1)
1965 /* No way to handle; it'll most likely trap anyway. */
1966 break;
1967
1968 if ((regcache_raw_get_unsigned (regcache,
1969 dspctl) & 0x7f) >= pos)
1970 pc += micromips_relative_offset16 (insn);
1971 else
1972 pc += micromips_pc_insn_size (gdbarch, pc);
1973 }
1974 break;
1975
1976 case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
1977 /* BC1ANY2F: bits 010000 11100 xxx01 */
1978 case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
1979 /* BC1ANY2T: bits 010000 11101 xxx01 */
1980 if (((insn >> 16) & 0x2) == 0x0)
1981 pc = micromips_bc1_pc (gdbarch, regcache, insn, pc,
1982 ((insn >> 16) & 0x1) + 1);
1983 break;
1984
1985 case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
1986 case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
1987 if (((insn >> 16) & 0x3) == 0x1)
1988 pc = micromips_bc1_pc (gdbarch, regcache, insn, pc, 4);
1989 break;
1990 }
1991 break;
1992
1993 case 0x1d: /* JALS: bits 011101 */
1994 case 0x35: /* J: bits 110101 */
1995 case 0x3d: /* JAL: bits 111101 */
1996 pc = ((pc | 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn) << 1);
1997 break;
1998
1999 case 0x25: /* BEQ: bits 100101 */
2000 if (regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16))
2001 == regcache_raw_get_signed (regcache, b5s5_reg (insn >> 16)))
2002 pc += micromips_relative_offset16 (insn);
2003 else
2004 pc += micromips_pc_insn_size (gdbarch, pc);
2005 break;
2006
2007 case 0x2d: /* BNE: bits 101101 */
2008 if (regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16))
2009 != regcache_raw_get_signed (regcache, b5s5_reg (insn >> 16)))
2010 pc += micromips_relative_offset16 (insn);
2011 else
2012 pc += micromips_pc_insn_size (gdbarch, pc);
2013 break;
2014
2015 case 0x3c: /* JALX: bits 111100 */
2016 pc = ((pc | 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn) << 2);
2017 break;
2018 }
2019 break;
2020
2021 /* 16-bit instructions. */
2022 case MIPS_INSN16_SIZE:
2023 switch (micromips_op (insn))
2024 {
2025 case 0x11: /* POOL16C: bits 010001 */
2026 if ((b5s5_op (insn) & 0x1c) == 0xc)
2027 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
2028 pc = regcache_raw_get_signed (regcache, b0s5_reg (insn));
2029 else if (b5s5_op (insn) == 0x18)
2030 /* JRADDIUSP: bits 010001 11000 */
2031 pc = regcache_raw_get_signed (regcache, MIPS_RA_REGNUM);
2032 break;
2033
2034 case 0x23: /* BEQZ16: bits 100011 */
2035 {
2036 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2037
2038 if (regcache_raw_get_signed (regcache, rs) == 0)
2039 pc += micromips_relative_offset7 (insn);
2040 else
2041 pc += micromips_pc_insn_size (gdbarch, pc);
2042 }
2043 break;
2044
2045 case 0x2b: /* BNEZ16: bits 101011 */
2046 {
2047 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2048
2049 if (regcache_raw_get_signed (regcache, rs) != 0)
2050 pc += micromips_relative_offset7 (insn);
2051 else
2052 pc += micromips_pc_insn_size (gdbarch, pc);
2053 }
2054 break;
2055
2056 case 0x33: /* B16: bits 110011 */
2057 pc += micromips_relative_offset10 (insn);
2058 break;
2059 }
2060 break;
2061 }
2062
2063 return pc;
2064 }
2065
2066 /* Decoding the next place to set a breakpoint is irregular for the
2067 mips 16 variant, but fortunately, there fewer instructions. We have
2068 to cope ith extensions for 16 bit instructions and a pair of actual
2069 32 bit instructions. We dont want to set a single step instruction
2070 on the extend instruction either. */
2071
2072 /* Lots of mips16 instruction formats */
2073 /* Predicting jumps requires itype,ritype,i8type
2074 and their extensions extItype,extritype,extI8type. */
2075 enum mips16_inst_fmts
2076 {
2077 itype, /* 0 immediate 5,10 */
2078 ritype, /* 1 5,3,8 */
2079 rrtype, /* 2 5,3,3,5 */
2080 rritype, /* 3 5,3,3,5 */
2081 rrrtype, /* 4 5,3,3,3,2 */
2082 rriatype, /* 5 5,3,3,1,4 */
2083 shifttype, /* 6 5,3,3,3,2 */
2084 i8type, /* 7 5,3,8 */
2085 i8movtype, /* 8 5,3,3,5 */
2086 i8mov32rtype, /* 9 5,3,5,3 */
2087 i64type, /* 10 5,3,8 */
2088 ri64type, /* 11 5,3,3,5 */
2089 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
2090 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
2091 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
2092 extRRItype, /* 15 5,5,5,5,3,3,5 */
2093 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
2094 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
2095 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
2096 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
2097 extRi64type, /* 20 5,6,5,5,3,3,5 */
2098 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
2099 };
2100 /* I am heaping all the fields of the formats into one structure and
2101 then, only the fields which are involved in instruction extension. */
2102 struct upk_mips16
2103 {
2104 CORE_ADDR offset;
2105 unsigned int regx; /* Function in i8 type. */
2106 unsigned int regy;
2107 };
2108
2109
2110 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
2111 for the bits which make up the immediate extension. */
2112
2113 static CORE_ADDR
2114 extended_offset (unsigned int extension)
2115 {
2116 CORE_ADDR value;
2117
2118 value = (extension >> 16) & 0x1f; /* Extract 15:11. */
2119 value = value << 6;
2120 value |= (extension >> 21) & 0x3f; /* Extract 10:5. */
2121 value = value << 5;
2122 value |= extension & 0x1f; /* Extract 4:0. */
2123
2124 return value;
2125 }
2126
2127 /* Only call this function if you know that this is an extendable
2128 instruction. It won't malfunction, but why make excess remote memory
2129 references? If the immediate operands get sign extended or something,
2130 do it after the extension is performed. */
2131 /* FIXME: Every one of these cases needs to worry about sign extension
2132 when the offset is to be used in relative addressing. */
2133
2134 static unsigned int
2135 fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
2136 {
2137 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2138 gdb_byte buf[8];
2139
2140 pc = unmake_compact_addr (pc); /* Clear the low order bit. */
2141 target_read_memory (pc, buf, 2);
2142 return extract_unsigned_integer (buf, 2, byte_order);
2143 }
2144
2145 static void
2146 unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
2147 unsigned int extension,
2148 unsigned int inst,
2149 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
2150 {
2151 CORE_ADDR offset;
2152 int regx;
2153 int regy;
2154 switch (insn_format)
2155 {
2156 case itype:
2157 {
2158 CORE_ADDR value;
2159 if (extension)
2160 {
2161 value = extended_offset ((extension << 16) | inst);
2162 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2163 }
2164 else
2165 {
2166 value = inst & 0x7ff;
2167 value = (value ^ 0x400) - 0x400; /* Sign-extend. */
2168 }
2169 offset = value;
2170 regx = -1;
2171 regy = -1;
2172 }
2173 break;
2174 case ritype:
2175 case i8type:
2176 { /* A register identifier and an offset. */
2177 /* Most of the fields are the same as I type but the
2178 immediate value is of a different length. */
2179 CORE_ADDR value;
2180 if (extension)
2181 {
2182 value = extended_offset ((extension << 16) | inst);
2183 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2184 }
2185 else
2186 {
2187 value = inst & 0xff; /* 8 bits */
2188 value = (value ^ 0x80) - 0x80; /* Sign-extend. */
2189 }
2190 offset = value;
2191 regx = (inst >> 8) & 0x07; /* i8 funct */
2192 regy = -1;
2193 break;
2194 }
2195 case jalxtype:
2196 {
2197 unsigned long value;
2198 unsigned int nexthalf;
2199 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
2200 value = value << 16;
2201 nexthalf = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc + 2, NULL);
2202 /* Low bit still set. */
2203 value |= nexthalf;
2204 offset = value;
2205 regx = -1;
2206 regy = -1;
2207 break;
2208 }
2209 default:
2210 internal_error (__FILE__, __LINE__, _("bad switch"));
2211 }
2212 upk->offset = offset;
2213 upk->regx = regx;
2214 upk->regy = regy;
2215 }
2216
2217
2218 /* Calculate the destination of a branch whose 16-bit opcode word is at PC,
2219 and having a signed 16-bit OFFSET. */
2220
2221 static CORE_ADDR
2222 add_offset_16 (CORE_ADDR pc, int offset)
2223 {
2224 return pc + (offset << 1) + 2;
2225 }
2226
2227 static CORE_ADDR
2228 extended_mips16_next_pc (regcache *regcache, CORE_ADDR pc,
2229 unsigned int extension, unsigned int insn)
2230 {
2231 struct gdbarch *gdbarch = regcache->arch ();
2232 int op = (insn >> 11);
2233 switch (op)
2234 {
2235 case 2: /* Branch */
2236 {
2237 struct upk_mips16 upk;
2238 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
2239 pc = add_offset_16 (pc, upk.offset);
2240 break;
2241 }
2242 case 3: /* JAL , JALX - Watch out, these are 32 bit
2243 instructions. */
2244 {
2245 struct upk_mips16 upk;
2246 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
2247 pc = ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)) | (upk.offset << 2);
2248 if ((insn >> 10) & 0x01) /* Exchange mode */
2249 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode. */
2250 else
2251 pc |= 0x01;
2252 break;
2253 }
2254 case 4: /* beqz */
2255 {
2256 struct upk_mips16 upk;
2257 int reg;
2258 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2259 reg = regcache_raw_get_signed (regcache, mips_reg3_to_reg[upk.regx]);
2260 if (reg == 0)
2261 pc = add_offset_16 (pc, upk.offset);
2262 else
2263 pc += 2;
2264 break;
2265 }
2266 case 5: /* bnez */
2267 {
2268 struct upk_mips16 upk;
2269 int reg;
2270 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2271 reg = regcache_raw_get_signed (regcache, mips_reg3_to_reg[upk.regx]);
2272 if (reg != 0)
2273 pc = add_offset_16 (pc, upk.offset);
2274 else
2275 pc += 2;
2276 break;
2277 }
2278 case 12: /* I8 Formats btez btnez */
2279 {
2280 struct upk_mips16 upk;
2281 int reg;
2282 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
2283 /* upk.regx contains the opcode */
2284 /* Test register is 24 */
2285 reg = regcache_raw_get_signed (regcache, 24);
2286 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
2287 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
2288 pc = add_offset_16 (pc, upk.offset);
2289 else
2290 pc += 2;
2291 break;
2292 }
2293 case 29: /* RR Formats JR, JALR, JALR-RA */
2294 {
2295 struct upk_mips16 upk;
2296 /* upk.fmt = rrtype; */
2297 op = insn & 0x1f;
2298 if (op == 0)
2299 {
2300 int reg;
2301 upk.regx = (insn >> 8) & 0x07;
2302 upk.regy = (insn >> 5) & 0x07;
2303 if ((upk.regy & 1) == 0)
2304 reg = mips_reg3_to_reg[upk.regx];
2305 else
2306 reg = 31; /* Function return instruction. */
2307 pc = regcache_raw_get_signed (regcache, reg);
2308 }
2309 else
2310 pc += 2;
2311 break;
2312 }
2313 case 30:
2314 /* This is an instruction extension. Fetch the real instruction
2315 (which follows the extension) and decode things based on
2316 that. */
2317 {
2318 pc += 2;
2319 pc = extended_mips16_next_pc (regcache, pc, insn,
2320 fetch_mips_16 (gdbarch, pc));
2321 break;
2322 }
2323 default:
2324 {
2325 pc += 2;
2326 break;
2327 }
2328 }
2329 return pc;
2330 }
2331
2332 static CORE_ADDR
2333 mips16_next_pc (struct regcache *regcache, CORE_ADDR pc)
2334 {
2335 struct gdbarch *gdbarch = regcache->arch ();
2336 unsigned int insn = fetch_mips_16 (gdbarch, pc);
2337 return extended_mips16_next_pc (regcache, pc, 0, insn);
2338 }
2339
2340 /* The mips_next_pc function supports single_step when the remote
2341 target monitor or stub is not developed enough to do a single_step.
2342 It works by decoding the current instruction and predicting where a
2343 branch will go. This isn't hard because all the data is available.
2344 The MIPS32, MIPS16 and microMIPS variants are quite different. */
2345 static CORE_ADDR
2346 mips_next_pc (struct regcache *regcache, CORE_ADDR pc)
2347 {
2348 struct gdbarch *gdbarch = regcache->arch ();
2349
2350 if (mips_pc_is_mips16 (gdbarch, pc))
2351 return mips16_next_pc (regcache, pc);
2352 else if (mips_pc_is_micromips (gdbarch, pc))
2353 return micromips_next_pc (regcache, pc);
2354 else
2355 return mips32_next_pc (regcache, pc);
2356 }
2357
2358 /* Return non-zero if the MIPS16 instruction INSN is a compact branch
2359 or jump. */
2360
2361 static int
2362 mips16_instruction_is_compact_branch (unsigned short insn)
2363 {
2364 switch (insn & 0xf800)
2365 {
2366 case 0xe800:
2367 return (insn & 0x009f) == 0x80; /* JALRC/JRC */
2368 case 0x6000:
2369 return (insn & 0x0600) == 0; /* BTNEZ/BTEQZ */
2370 case 0x2800: /* BNEZ */
2371 case 0x2000: /* BEQZ */
2372 case 0x1000: /* B */
2373 return 1;
2374 default:
2375 return 0;
2376 }
2377 }
2378
2379 /* Return non-zero if the microMIPS instruction INSN is a compact branch
2380 or jump. */
2381
2382 static int
2383 micromips_instruction_is_compact_branch (unsigned short insn)
2384 {
2385 switch (micromips_op (insn))
2386 {
2387 case 0x11: /* POOL16C: bits 010001 */
2388 return (b5s5_op (insn) == 0x18
2389 /* JRADDIUSP: bits 010001 11000 */
2390 || b5s5_op (insn) == 0xd);
2391 /* JRC: bits 010011 01101 */
2392 case 0x10: /* POOL32I: bits 010000 */
2393 return (b5s5_op (insn) & 0x1d) == 0x5;
2394 /* BEQZC/BNEZC: bits 010000 001x1 */
2395 default:
2396 return 0;
2397 }
2398 }
2399
2400 struct mips_frame_cache
2401 {
2402 CORE_ADDR base;
2403 struct trad_frame_saved_reg *saved_regs;
2404 };
2405
2406 /* Set a register's saved stack address in temp_saved_regs. If an
2407 address has already been set for this register, do nothing; this
2408 way we will only recognize the first save of a given register in a
2409 function prologue.
2410
2411 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
2412 [gdbarch_num_regs .. 2*gdbarch_num_regs).
2413 Strictly speaking, only the second range is used as it is only second
2414 range (the ABI instead of ISA registers) that comes into play when finding
2415 saved registers in a frame. */
2416
2417 static void
2418 set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
2419 int regnum, CORE_ADDR offset)
2420 {
2421 if (this_cache != NULL
2422 && this_cache->saved_regs[regnum].addr == -1)
2423 {
2424 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
2425 = offset;
2426 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
2427 = offset;
2428 }
2429 }
2430
2431
2432 /* Fetch the immediate value from a MIPS16 instruction.
2433 If the previous instruction was an EXTEND, use it to extend
2434 the upper bits of the immediate value. This is a helper function
2435 for mips16_scan_prologue. */
2436
2437 static int
2438 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2439 unsigned short inst, /* current instruction */
2440 int nbits, /* number of bits in imm field */
2441 int scale, /* scale factor to be applied to imm */
2442 int is_signed) /* is the imm field signed? */
2443 {
2444 int offset;
2445
2446 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2447 {
2448 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2449 if (offset & 0x8000) /* check for negative extend */
2450 offset = 0 - (0x10000 - (offset & 0xffff));
2451 return offset | (inst & 0x1f);
2452 }
2453 else
2454 {
2455 int max_imm = 1 << nbits;
2456 int mask = max_imm - 1;
2457 int sign_bit = max_imm >> 1;
2458
2459 offset = inst & mask;
2460 if (is_signed && (offset & sign_bit))
2461 offset = 0 - (max_imm - offset);
2462 return offset * scale;
2463 }
2464 }
2465
2466
2467 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
2468 the associated FRAME_CACHE if not null.
2469 Return the address of the first instruction past the prologue. */
2470
2471 static CORE_ADDR
2472 mips16_scan_prologue (struct gdbarch *gdbarch,
2473 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2474 struct frame_info *this_frame,
2475 struct mips_frame_cache *this_cache)
2476 {
2477 int prev_non_prologue_insn = 0;
2478 int this_non_prologue_insn;
2479 int non_prologue_insns = 0;
2480 CORE_ADDR prev_pc;
2481 CORE_ADDR cur_pc;
2482 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer. */
2483 CORE_ADDR sp;
2484 long frame_offset = 0; /* Size of stack frame. */
2485 long frame_adjust = 0; /* Offset of FP from SP. */
2486 int frame_reg = MIPS_SP_REGNUM;
2487 unsigned short prev_inst = 0; /* saved copy of previous instruction. */
2488 unsigned inst = 0; /* current instruction */
2489 unsigned entry_inst = 0; /* the entry instruction */
2490 unsigned save_inst = 0; /* the save instruction */
2491 int prev_delay_slot = 0;
2492 int in_delay_slot;
2493 int reg, offset;
2494
2495 int extend_bytes = 0;
2496 int prev_extend_bytes = 0;
2497 CORE_ADDR end_prologue_addr;
2498
2499 /* Can be called when there's no process, and hence when there's no
2500 THIS_FRAME. */
2501 if (this_frame != NULL)
2502 sp = get_frame_register_signed (this_frame,
2503 gdbarch_num_regs (gdbarch)
2504 + MIPS_SP_REGNUM);
2505 else
2506 sp = 0;
2507
2508 if (limit_pc > start_pc + 200)
2509 limit_pc = start_pc + 200;
2510 prev_pc = start_pc;
2511
2512 /* Permit at most one non-prologue non-control-transfer instruction
2513 in the middle which may have been reordered by the compiler for
2514 optimisation. */
2515 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
2516 {
2517 this_non_prologue_insn = 0;
2518 in_delay_slot = 0;
2519
2520 /* Save the previous instruction. If it's an EXTEND, we'll extract
2521 the immediate offset extension from it in mips16_get_imm. */
2522 prev_inst = inst;
2523
2524 /* Fetch and decode the instruction. */
2525 inst = (unsigned short) mips_fetch_instruction (gdbarch, ISA_MIPS16,
2526 cur_pc, NULL);
2527
2528 /* Normally we ignore extend instructions. However, if it is
2529 not followed by a valid prologue instruction, then this
2530 instruction is not part of the prologue either. We must
2531 remember in this case to adjust the end_prologue_addr back
2532 over the extend. */
2533 if ((inst & 0xf800) == 0xf000) /* extend */
2534 {
2535 extend_bytes = MIPS_INSN16_SIZE;
2536 continue;
2537 }
2538
2539 prev_extend_bytes = extend_bytes;
2540 extend_bytes = 0;
2541
2542 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2543 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2544 {
2545 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
2546 if (offset < 0) /* Negative stack adjustment? */
2547 frame_offset -= offset;
2548 else
2549 /* Exit loop if a positive stack adjustment is found, which
2550 usually means that the stack cleanup code in the function
2551 epilogue is reached. */
2552 break;
2553 }
2554 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2555 {
2556 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2557 reg = mips_reg3_to_reg[(inst & 0x700) >> 8];
2558 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2559 }
2560 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2561 {
2562 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2563 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2564 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2565 }
2566 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2567 {
2568 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2569 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2570 }
2571 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2572 {
2573 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2574 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2575 }
2576 else if (inst == 0x673d) /* move $s1, $sp */
2577 {
2578 frame_addr = sp;
2579 frame_reg = 17;
2580 }
2581 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2582 {
2583 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2584 frame_addr = sp + offset;
2585 frame_reg = 17;
2586 frame_adjust = offset;
2587 }
2588 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2589 {
2590 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2591 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2592 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2593 }
2594 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2595 {
2596 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2597 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2598 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2599 }
2600 else if ((inst & 0xf81f) == 0xe809
2601 && (inst & 0x700) != 0x700) /* entry */
2602 entry_inst = inst; /* Save for later processing. */
2603 else if ((inst & 0xff80) == 0x6480) /* save */
2604 {
2605 save_inst = inst; /* Save for later processing. */
2606 if (prev_extend_bytes) /* extend */
2607 save_inst |= prev_inst << 16;
2608 }
2609 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
2610 {
2611 /* This instruction is part of the prologue, but we don't
2612 need to do anything special to handle it. */
2613 }
2614 else if (mips16_instruction_has_delay_slot (inst, 0))
2615 /* JAL/JALR/JALX/JR */
2616 {
2617 /* The instruction in the delay slot can be a part
2618 of the prologue, so move forward once more. */
2619 in_delay_slot = 1;
2620 if (mips16_instruction_has_delay_slot (inst, 1))
2621 /* JAL/JALX */
2622 {
2623 prev_extend_bytes = MIPS_INSN16_SIZE;
2624 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
2625 }
2626 }
2627 else
2628 {
2629 this_non_prologue_insn = 1;
2630 }
2631
2632 non_prologue_insns += this_non_prologue_insn;
2633
2634 /* A jump or branch, or enough non-prologue insns seen? If so,
2635 then we must have reached the end of the prologue by now. */
2636 if (prev_delay_slot || non_prologue_insns > 1
2637 || mips16_instruction_is_compact_branch (inst))
2638 break;
2639
2640 prev_non_prologue_insn = this_non_prologue_insn;
2641 prev_delay_slot = in_delay_slot;
2642 prev_pc = cur_pc - prev_extend_bytes;
2643 }
2644
2645 /* The entry instruction is typically the first instruction in a function,
2646 and it stores registers at offsets relative to the value of the old SP
2647 (before the prologue). But the value of the sp parameter to this
2648 function is the new SP (after the prologue has been executed). So we
2649 can't calculate those offsets until we've seen the entire prologue,
2650 and can calculate what the old SP must have been. */
2651 if (entry_inst != 0)
2652 {
2653 int areg_count = (entry_inst >> 8) & 7;
2654 int sreg_count = (entry_inst >> 6) & 3;
2655
2656 /* The entry instruction always subtracts 32 from the SP. */
2657 frame_offset += 32;
2658
2659 /* Now we can calculate what the SP must have been at the
2660 start of the function prologue. */
2661 sp += frame_offset;
2662
2663 /* Check if a0-a3 were saved in the caller's argument save area. */
2664 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2665 {
2666 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2667 offset += mips_abi_regsize (gdbarch);
2668 }
2669
2670 /* Check if the ra register was pushed on the stack. */
2671 offset = -4;
2672 if (entry_inst & 0x20)
2673 {
2674 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2675 offset -= mips_abi_regsize (gdbarch);
2676 }
2677
2678 /* Check if the s0 and s1 registers were pushed on the stack. */
2679 for (reg = 16; reg < sreg_count + 16; reg++)
2680 {
2681 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2682 offset -= mips_abi_regsize (gdbarch);
2683 }
2684 }
2685
2686 /* The SAVE instruction is similar to ENTRY, except that defined by the
2687 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
2688 size of the frame is specified as an immediate field of instruction
2689 and an extended variation exists which lets additional registers and
2690 frame space to be specified. The instruction always treats registers
2691 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
2692 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
2693 {
2694 static int args_table[16] = {
2695 0, 0, 0, 0, 1, 1, 1, 1,
2696 2, 2, 2, 0, 3, 3, 4, -1,
2697 };
2698 static int astatic_table[16] = {
2699 0, 1, 2, 3, 0, 1, 2, 3,
2700 0, 1, 2, 4, 0, 1, 0, -1,
2701 };
2702 int aregs = (save_inst >> 16) & 0xf;
2703 int xsregs = (save_inst >> 24) & 0x7;
2704 int args = args_table[aregs];
2705 int astatic = astatic_table[aregs];
2706 long frame_size;
2707
2708 if (args < 0)
2709 {
2710 warning (_("Invalid number of argument registers encoded in SAVE."));
2711 args = 0;
2712 }
2713 if (astatic < 0)
2714 {
2715 warning (_("Invalid number of static registers encoded in SAVE."));
2716 astatic = 0;
2717 }
2718
2719 /* For standard SAVE the frame size of 0 means 128. */
2720 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
2721 if (frame_size == 0 && (save_inst >> 16) == 0)
2722 frame_size = 16;
2723 frame_size *= 8;
2724 frame_offset += frame_size;
2725
2726 /* Now we can calculate what the SP must have been at the
2727 start of the function prologue. */
2728 sp += frame_offset;
2729
2730 /* Check if A0-A3 were saved in the caller's argument save area. */
2731 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
2732 {
2733 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2734 offset += mips_abi_regsize (gdbarch);
2735 }
2736
2737 offset = -4;
2738
2739 /* Check if the RA register was pushed on the stack. */
2740 if (save_inst & 0x40)
2741 {
2742 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2743 offset -= mips_abi_regsize (gdbarch);
2744 }
2745
2746 /* Check if the S8 register was pushed on the stack. */
2747 if (xsregs > 6)
2748 {
2749 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
2750 offset -= mips_abi_regsize (gdbarch);
2751 xsregs--;
2752 }
2753 /* Check if S2-S7 were pushed on the stack. */
2754 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
2755 {
2756 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2757 offset -= mips_abi_regsize (gdbarch);
2758 }
2759
2760 /* Check if the S1 register was pushed on the stack. */
2761 if (save_inst & 0x10)
2762 {
2763 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
2764 offset -= mips_abi_regsize (gdbarch);
2765 }
2766 /* Check if the S0 register was pushed on the stack. */
2767 if (save_inst & 0x20)
2768 {
2769 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
2770 offset -= mips_abi_regsize (gdbarch);
2771 }
2772
2773 /* Check if A0-A3 were pushed on the stack. */
2774 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
2775 {
2776 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2777 offset -= mips_abi_regsize (gdbarch);
2778 }
2779 }
2780
2781 if (this_cache != NULL)
2782 {
2783 this_cache->base =
2784 (get_frame_register_signed (this_frame,
2785 gdbarch_num_regs (gdbarch) + frame_reg)
2786 + frame_offset - frame_adjust);
2787 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
2788 be able to get rid of the assignment below, evetually. But it's
2789 still needed for now. */
2790 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2791 + mips_regnum (gdbarch)->pc]
2792 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
2793 }
2794
2795 /* Set end_prologue_addr to the address of the instruction immediately
2796 after the last one we scanned. Unless the last one looked like a
2797 non-prologue instruction (and we looked ahead), in which case use
2798 its address instead. */
2799 end_prologue_addr = (prev_non_prologue_insn || prev_delay_slot
2800 ? prev_pc : cur_pc - prev_extend_bytes);
2801
2802 return end_prologue_addr;
2803 }
2804
2805 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
2806 Procedures that use the 32-bit instruction set are handled by the
2807 mips_insn32 unwinder. */
2808
2809 static struct mips_frame_cache *
2810 mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
2811 {
2812 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2813 struct mips_frame_cache *cache;
2814
2815 if ((*this_cache) != NULL)
2816 return (struct mips_frame_cache *) (*this_cache);
2817 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2818 (*this_cache) = cache;
2819 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2820
2821 /* Analyze the function prologue. */
2822 {
2823 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2824 CORE_ADDR start_addr;
2825
2826 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2827 if (start_addr == 0)
2828 start_addr = heuristic_proc_start (gdbarch, pc);
2829 /* We can't analyze the prologue if we couldn't find the begining
2830 of the function. */
2831 if (start_addr == 0)
2832 return cache;
2833
2834 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame,
2835 (struct mips_frame_cache *) *this_cache);
2836 }
2837
2838 /* gdbarch_sp_regnum contains the value and not the address. */
2839 trad_frame_set_value (cache->saved_regs,
2840 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2841 cache->base);
2842
2843 return (struct mips_frame_cache *) (*this_cache);
2844 }
2845
2846 static void
2847 mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
2848 struct frame_id *this_id)
2849 {
2850 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2851 this_cache);
2852 /* This marks the outermost frame. */
2853 if (info->base == 0)
2854 return;
2855 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2856 }
2857
2858 static struct value *
2859 mips_insn16_frame_prev_register (struct frame_info *this_frame,
2860 void **this_cache, int regnum)
2861 {
2862 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2863 this_cache);
2864 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2865 }
2866
2867 static int
2868 mips_insn16_frame_sniffer (const struct frame_unwind *self,
2869 struct frame_info *this_frame, void **this_cache)
2870 {
2871 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2872 CORE_ADDR pc = get_frame_pc (this_frame);
2873 if (mips_pc_is_mips16 (gdbarch, pc))
2874 return 1;
2875 return 0;
2876 }
2877
2878 static const struct frame_unwind mips_insn16_frame_unwind =
2879 {
2880 NORMAL_FRAME,
2881 default_frame_unwind_stop_reason,
2882 mips_insn16_frame_this_id,
2883 mips_insn16_frame_prev_register,
2884 NULL,
2885 mips_insn16_frame_sniffer
2886 };
2887
2888 static CORE_ADDR
2889 mips_insn16_frame_base_address (struct frame_info *this_frame,
2890 void **this_cache)
2891 {
2892 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2893 this_cache);
2894 return info->base;
2895 }
2896
2897 static const struct frame_base mips_insn16_frame_base =
2898 {
2899 &mips_insn16_frame_unwind,
2900 mips_insn16_frame_base_address,
2901 mips_insn16_frame_base_address,
2902 mips_insn16_frame_base_address
2903 };
2904
2905 static const struct frame_base *
2906 mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
2907 {
2908 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2909 CORE_ADDR pc = get_frame_pc (this_frame);
2910 if (mips_pc_is_mips16 (gdbarch, pc))
2911 return &mips_insn16_frame_base;
2912 else
2913 return NULL;
2914 }
2915
2916 /* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
2917 to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
2918 interpreted directly, and then multiplied by 4. */
2919
2920 static int
2921 micromips_decode_imm9 (int imm)
2922 {
2923 imm = (imm ^ 0x100) - 0x100;
2924 if (imm > -3 && imm < 2)
2925 imm ^= 0x100;
2926 return imm << 2;
2927 }
2928
2929 /* Analyze the function prologue from START_PC to LIMIT_PC. Return
2930 the address of the first instruction past the prologue. */
2931
2932 static CORE_ADDR
2933 micromips_scan_prologue (struct gdbarch *gdbarch,
2934 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2935 struct frame_info *this_frame,
2936 struct mips_frame_cache *this_cache)
2937 {
2938 CORE_ADDR end_prologue_addr;
2939 int prev_non_prologue_insn = 0;
2940 int frame_reg = MIPS_SP_REGNUM;
2941 int this_non_prologue_insn;
2942 int non_prologue_insns = 0;
2943 long frame_offset = 0; /* Size of stack frame. */
2944 long frame_adjust = 0; /* Offset of FP from SP. */
2945 int prev_delay_slot = 0;
2946 int in_delay_slot;
2947 CORE_ADDR prev_pc;
2948 CORE_ADDR cur_pc;
2949 ULONGEST insn; /* current instruction */
2950 CORE_ADDR sp;
2951 long offset;
2952 long sp_adj;
2953 long v1_off = 0; /* The assumption is LUI will replace it. */
2954 int reglist;
2955 int breg;
2956 int dreg;
2957 int sreg;
2958 int treg;
2959 int loc;
2960 int op;
2961 int s;
2962 int i;
2963
2964 /* Can be called when there's no process, and hence when there's no
2965 THIS_FRAME. */
2966 if (this_frame != NULL)
2967 sp = get_frame_register_signed (this_frame,
2968 gdbarch_num_regs (gdbarch)
2969 + MIPS_SP_REGNUM);
2970 else
2971 sp = 0;
2972
2973 if (limit_pc > start_pc + 200)
2974 limit_pc = start_pc + 200;
2975 prev_pc = start_pc;
2976
2977 /* Permit at most one non-prologue non-control-transfer instruction
2978 in the middle which may have been reordered by the compiler for
2979 optimisation. */
2980 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += loc)
2981 {
2982 this_non_prologue_insn = 0;
2983 in_delay_slot = 0;
2984 sp_adj = 0;
2985 loc = 0;
2986 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, cur_pc, NULL);
2987 loc += MIPS_INSN16_SIZE;
2988 switch (mips_insn_size (ISA_MICROMIPS, insn))
2989 {
2990 /* 32-bit instructions. */
2991 case 2 * MIPS_INSN16_SIZE:
2992 insn <<= 16;
2993 insn |= mips_fetch_instruction (gdbarch,
2994 ISA_MICROMIPS, cur_pc + loc, NULL);
2995 loc += MIPS_INSN16_SIZE;
2996 switch (micromips_op (insn >> 16))
2997 {
2998 /* Record $sp/$fp adjustment. */
2999 /* Discard (D)ADDU $gp,$jp used for PIC code. */
3000 case 0x0: /* POOL32A: bits 000000 */
3001 case 0x16: /* POOL32S: bits 010110 */
3002 op = b0s11_op (insn);
3003 sreg = b0s5_reg (insn >> 16);
3004 treg = b5s5_reg (insn >> 16);
3005 dreg = b11s5_reg (insn);
3006 if (op == 0x1d0
3007 /* SUBU: bits 000000 00111010000 */
3008 /* DSUBU: bits 010110 00111010000 */
3009 && dreg == MIPS_SP_REGNUM && sreg == MIPS_SP_REGNUM
3010 && treg == 3)
3011 /* (D)SUBU $sp, $v1 */
3012 sp_adj = v1_off;
3013 else if (op != 0x150
3014 /* ADDU: bits 000000 00101010000 */
3015 /* DADDU: bits 010110 00101010000 */
3016 || dreg != 28 || sreg != 28 || treg != MIPS_T9_REGNUM)
3017 this_non_prologue_insn = 1;
3018 break;
3019
3020 case 0x8: /* POOL32B: bits 001000 */
3021 op = b12s4_op (insn);
3022 breg = b0s5_reg (insn >> 16);
3023 reglist = sreg = b5s5_reg (insn >> 16);
3024 offset = (b0s12_imm (insn) ^ 0x800) - 0x800;
3025 if ((op == 0x9 || op == 0xc)
3026 /* SWP: bits 001000 1001 */
3027 /* SDP: bits 001000 1100 */
3028 && breg == MIPS_SP_REGNUM && sreg < MIPS_RA_REGNUM)
3029 /* S[DW]P reg,offset($sp) */
3030 {
3031 s = 4 << ((b12s4_op (insn) & 0x4) == 0x4);
3032 set_reg_offset (gdbarch, this_cache,
3033 sreg, sp + offset);
3034 set_reg_offset (gdbarch, this_cache,
3035 sreg + 1, sp + offset + s);
3036 }
3037 else if ((op == 0xd || op == 0xf)
3038 /* SWM: bits 001000 1101 */
3039 /* SDM: bits 001000 1111 */
3040 && breg == MIPS_SP_REGNUM
3041 /* SWM reglist,offset($sp) */
3042 && ((reglist >= 1 && reglist <= 9)
3043 || (reglist >= 16 && reglist <= 25)))
3044 {
3045 int sreglist = std::min(reglist & 0xf, 8);
3046
3047 s = 4 << ((b12s4_op (insn) & 0x2) == 0x2);
3048 for (i = 0; i < sreglist; i++)
3049 set_reg_offset (gdbarch, this_cache, 16 + i, sp + s * i);
3050 if ((reglist & 0xf) > 8)
3051 set_reg_offset (gdbarch, this_cache, 30, sp + s * i++);
3052 if ((reglist & 0x10) == 0x10)
3053 set_reg_offset (gdbarch, this_cache,
3054 MIPS_RA_REGNUM, sp + s * i++);
3055 }
3056 else
3057 this_non_prologue_insn = 1;
3058 break;
3059
3060 /* Record $sp/$fp adjustment. */
3061 /* Discard (D)ADDIU $gp used for PIC code. */
3062 case 0xc: /* ADDIU: bits 001100 */
3063 case 0x17: /* DADDIU: bits 010111 */
3064 sreg = b0s5_reg (insn >> 16);
3065 dreg = b5s5_reg (insn >> 16);
3066 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3067 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM)
3068 /* (D)ADDIU $sp, imm */
3069 sp_adj = offset;
3070 else if (sreg == MIPS_SP_REGNUM && dreg == 30)
3071 /* (D)ADDIU $fp, $sp, imm */
3072 {
3073 frame_adjust = offset;
3074 frame_reg = 30;
3075 }
3076 else if (sreg != 28 || dreg != 28)
3077 /* (D)ADDIU $gp, imm */
3078 this_non_prologue_insn = 1;
3079 break;
3080
3081 /* LUI $v1 is used for larger $sp adjustments. */
3082 /* Discard LUI $gp used for PIC code. */
3083 case 0x10: /* POOL32I: bits 010000 */
3084 if (b5s5_op (insn >> 16) == 0xd
3085 /* LUI: bits 010000 001101 */
3086 && b0s5_reg (insn >> 16) == 3)
3087 /* LUI $v1, imm */
3088 v1_off = ((b0s16_imm (insn) << 16) ^ 0x80000000) - 0x80000000;
3089 else if (b5s5_op (insn >> 16) != 0xd
3090 /* LUI: bits 010000 001101 */
3091 || b0s5_reg (insn >> 16) != 28)
3092 /* LUI $gp, imm */
3093 this_non_prologue_insn = 1;
3094 break;
3095
3096 /* ORI $v1 is used for larger $sp adjustments. */
3097 case 0x14: /* ORI: bits 010100 */
3098 sreg = b0s5_reg (insn >> 16);
3099 dreg = b5s5_reg (insn >> 16);
3100 if (sreg == 3 && dreg == 3)
3101 /* ORI $v1, imm */
3102 v1_off |= b0s16_imm (insn);
3103 else
3104 this_non_prologue_insn = 1;
3105 break;
3106
3107 case 0x26: /* SWC1: bits 100110 */
3108 case 0x2e: /* SDC1: bits 101110 */
3109 breg = b0s5_reg (insn >> 16);
3110 if (breg != MIPS_SP_REGNUM)
3111 /* S[DW]C1 reg,offset($sp) */
3112 this_non_prologue_insn = 1;
3113 break;
3114
3115 case 0x36: /* SD: bits 110110 */
3116 case 0x3e: /* SW: bits 111110 */
3117 breg = b0s5_reg (insn >> 16);
3118 sreg = b5s5_reg (insn >> 16);
3119 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3120 if (breg == MIPS_SP_REGNUM)
3121 /* S[DW] reg,offset($sp) */
3122 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3123 else
3124 this_non_prologue_insn = 1;
3125 break;
3126
3127 default:
3128 /* The instruction in the delay slot can be a part
3129 of the prologue, so move forward once more. */
3130 if (micromips_instruction_has_delay_slot (insn, 0))
3131 in_delay_slot = 1;
3132 else
3133 this_non_prologue_insn = 1;
3134 break;
3135 }
3136 insn >>= 16;
3137 break;
3138
3139 /* 16-bit instructions. */
3140 case MIPS_INSN16_SIZE:
3141 switch (micromips_op (insn))
3142 {
3143 case 0x3: /* MOVE: bits 000011 */
3144 sreg = b0s5_reg (insn);
3145 dreg = b5s5_reg (insn);
3146 if (sreg == MIPS_SP_REGNUM && dreg == 30)
3147 /* MOVE $fp, $sp */
3148 frame_reg = 30;
3149 else if ((sreg & 0x1c) != 0x4)
3150 /* MOVE reg, $a0-$a3 */
3151 this_non_prologue_insn = 1;
3152 break;
3153
3154 case 0x11: /* POOL16C: bits 010001 */
3155 if (b6s4_op (insn) == 0x5)
3156 /* SWM: bits 010001 0101 */
3157 {
3158 offset = ((b0s4_imm (insn) << 2) ^ 0x20) - 0x20;
3159 reglist = b4s2_regl (insn);
3160 for (i = 0; i <= reglist; i++)
3161 set_reg_offset (gdbarch, this_cache, 16 + i, sp + 4 * i);
3162 set_reg_offset (gdbarch, this_cache,
3163 MIPS_RA_REGNUM, sp + 4 * i++);
3164 }
3165 else
3166 this_non_prologue_insn = 1;
3167 break;
3168
3169 case 0x13: /* POOL16D: bits 010011 */
3170 if ((insn & 0x1) == 0x1)
3171 /* ADDIUSP: bits 010011 1 */
3172 sp_adj = micromips_decode_imm9 (b1s9_imm (insn));
3173 else if (b5s5_reg (insn) == MIPS_SP_REGNUM)
3174 /* ADDIUS5: bits 010011 0 */
3175 /* ADDIUS5 $sp, imm */
3176 sp_adj = (b1s4_imm (insn) ^ 8) - 8;
3177 else
3178 this_non_prologue_insn = 1;
3179 break;
3180
3181 case 0x32: /* SWSP: bits 110010 */
3182 offset = b0s5_imm (insn) << 2;
3183 sreg = b5s5_reg (insn);
3184 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3185 break;
3186
3187 default:
3188 /* The instruction in the delay slot can be a part
3189 of the prologue, so move forward once more. */
3190 if (micromips_instruction_has_delay_slot (insn << 16, 0))
3191 in_delay_slot = 1;
3192 else
3193 this_non_prologue_insn = 1;
3194 break;
3195 }
3196 break;
3197 }
3198 if (sp_adj < 0)
3199 frame_offset -= sp_adj;
3200
3201 non_prologue_insns += this_non_prologue_insn;
3202
3203 /* A jump or branch, enough non-prologue insns seen or positive
3204 stack adjustment? If so, then we must have reached the end
3205 of the prologue by now. */
3206 if (prev_delay_slot || non_prologue_insns > 1 || sp_adj > 0
3207 || micromips_instruction_is_compact_branch (insn))
3208 break;
3209
3210 prev_non_prologue_insn = this_non_prologue_insn;
3211 prev_delay_slot = in_delay_slot;
3212 prev_pc = cur_pc;
3213 }
3214
3215 if (this_cache != NULL)
3216 {
3217 this_cache->base =
3218 (get_frame_register_signed (this_frame,
3219 gdbarch_num_regs (gdbarch) + frame_reg)
3220 + frame_offset - frame_adjust);
3221 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
3222 be able to get rid of the assignment below, evetually. But it's
3223 still needed for now. */
3224 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3225 + mips_regnum (gdbarch)->pc]
3226 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
3227 }
3228
3229 /* Set end_prologue_addr to the address of the instruction immediately
3230 after the last one we scanned. Unless the last one looked like a
3231 non-prologue instruction (and we looked ahead), in which case use
3232 its address instead. */
3233 end_prologue_addr
3234 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
3235
3236 return end_prologue_addr;
3237 }
3238
3239 /* Heuristic unwinder for procedures using microMIPS instructions.
3240 Procedures that use the 32-bit instruction set are handled by the
3241 mips_insn32 unwinder. Likewise MIPS16 and the mips_insn16 unwinder. */
3242
3243 static struct mips_frame_cache *
3244 mips_micro_frame_cache (struct frame_info *this_frame, void **this_cache)
3245 {
3246 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3247 struct mips_frame_cache *cache;
3248
3249 if ((*this_cache) != NULL)
3250 return (struct mips_frame_cache *) (*this_cache);
3251
3252 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3253 (*this_cache) = cache;
3254 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3255
3256 /* Analyze the function prologue. */
3257 {
3258 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3259 CORE_ADDR start_addr;
3260
3261 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3262 if (start_addr == 0)
3263 start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
3264 /* We can't analyze the prologue if we couldn't find the begining
3265 of the function. */
3266 if (start_addr == 0)
3267 return cache;
3268
3269 micromips_scan_prologue (gdbarch, start_addr, pc, this_frame,
3270 (struct mips_frame_cache *) *this_cache);
3271 }
3272
3273 /* gdbarch_sp_regnum contains the value and not the address. */
3274 trad_frame_set_value (cache->saved_regs,
3275 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3276 cache->base);
3277
3278 return (struct mips_frame_cache *) (*this_cache);
3279 }
3280
3281 static void
3282 mips_micro_frame_this_id (struct frame_info *this_frame, void **this_cache,
3283 struct frame_id *this_id)
3284 {
3285 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3286 this_cache);
3287 /* This marks the outermost frame. */
3288 if (info->base == 0)
3289 return;
3290 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3291 }
3292
3293 static struct value *
3294 mips_micro_frame_prev_register (struct frame_info *this_frame,
3295 void **this_cache, int regnum)
3296 {
3297 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3298 this_cache);
3299 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3300 }
3301
3302 static int
3303 mips_micro_frame_sniffer (const struct frame_unwind *self,
3304 struct frame_info *this_frame, void **this_cache)
3305 {
3306 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3307 CORE_ADDR pc = get_frame_pc (this_frame);
3308
3309 if (mips_pc_is_micromips (gdbarch, pc))
3310 return 1;
3311 return 0;
3312 }
3313
3314 static const struct frame_unwind mips_micro_frame_unwind =
3315 {
3316 NORMAL_FRAME,
3317 default_frame_unwind_stop_reason,
3318 mips_micro_frame_this_id,
3319 mips_micro_frame_prev_register,
3320 NULL,
3321 mips_micro_frame_sniffer
3322 };
3323
3324 static CORE_ADDR
3325 mips_micro_frame_base_address (struct frame_info *this_frame,
3326 void **this_cache)
3327 {
3328 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3329 this_cache);
3330 return info->base;
3331 }
3332
3333 static const struct frame_base mips_micro_frame_base =
3334 {
3335 &mips_micro_frame_unwind,
3336 mips_micro_frame_base_address,
3337 mips_micro_frame_base_address,
3338 mips_micro_frame_base_address
3339 };
3340
3341 static const struct frame_base *
3342 mips_micro_frame_base_sniffer (struct frame_info *this_frame)
3343 {
3344 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3345 CORE_ADDR pc = get_frame_pc (this_frame);
3346
3347 if (mips_pc_is_micromips (gdbarch, pc))
3348 return &mips_micro_frame_base;
3349 else
3350 return NULL;
3351 }
3352
3353 /* Mark all the registers as unset in the saved_regs array
3354 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
3355
3356 static void
3357 reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
3358 {
3359 if (this_cache == NULL || this_cache->saved_regs == NULL)
3360 return;
3361
3362 {
3363 const int num_regs = gdbarch_num_regs (gdbarch);
3364 int i;
3365
3366 for (i = 0; i < num_regs; i++)
3367 {
3368 this_cache->saved_regs[i].addr = -1;
3369 }
3370 }
3371 }
3372
3373 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
3374 the associated FRAME_CACHE if not null.
3375 Return the address of the first instruction past the prologue. */
3376
3377 static CORE_ADDR
3378 mips32_scan_prologue (struct gdbarch *gdbarch,
3379 CORE_ADDR start_pc, CORE_ADDR limit_pc,
3380 struct frame_info *this_frame,
3381 struct mips_frame_cache *this_cache)
3382 {
3383 int prev_non_prologue_insn;
3384 int this_non_prologue_insn;
3385 int non_prologue_insns;
3386 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
3387 frame-pointer. */
3388 int prev_delay_slot;
3389 CORE_ADDR prev_pc;
3390 CORE_ADDR cur_pc;
3391 CORE_ADDR sp;
3392 long frame_offset;
3393 int frame_reg = MIPS_SP_REGNUM;
3394
3395 CORE_ADDR end_prologue_addr;
3396 int seen_sp_adjust = 0;
3397 int load_immediate_bytes = 0;
3398 int in_delay_slot;
3399 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
3400
3401 /* Can be called when there's no process, and hence when there's no
3402 THIS_FRAME. */
3403 if (this_frame != NULL)
3404 sp = get_frame_register_signed (this_frame,
3405 gdbarch_num_regs (gdbarch)
3406 + MIPS_SP_REGNUM);
3407 else
3408 sp = 0;
3409
3410 if (limit_pc > start_pc + 200)
3411 limit_pc = start_pc + 200;
3412
3413 restart:
3414 prev_non_prologue_insn = 0;
3415 non_prologue_insns = 0;
3416 prev_delay_slot = 0;
3417 prev_pc = start_pc;
3418
3419 /* Permit at most one non-prologue non-control-transfer instruction
3420 in the middle which may have been reordered by the compiler for
3421 optimisation. */
3422 frame_offset = 0;
3423 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
3424 {
3425 unsigned long inst, high_word;
3426 long offset;
3427 int reg;
3428
3429 this_non_prologue_insn = 0;
3430 in_delay_slot = 0;
3431
3432 /* Fetch the instruction. */
3433 inst = (unsigned long) mips_fetch_instruction (gdbarch, ISA_MIPS,
3434 cur_pc, NULL);
3435
3436 /* Save some code by pre-extracting some useful fields. */
3437 high_word = (inst >> 16) & 0xffff;
3438 offset = ((inst & 0xffff) ^ 0x8000) - 0x8000;
3439 reg = high_word & 0x1f;
3440
3441 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
3442 || high_word == 0x23bd /* addi $sp,$sp,-i */
3443 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
3444 {
3445 if (offset < 0) /* Negative stack adjustment? */
3446 frame_offset -= offset;
3447 else
3448 /* Exit loop if a positive stack adjustment is found, which
3449 usually means that the stack cleanup code in the function
3450 epilogue is reached. */
3451 break;
3452 seen_sp_adjust = 1;
3453 }
3454 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
3455 && !regsize_is_64_bits)
3456 {
3457 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
3458 }
3459 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
3460 && regsize_is_64_bits)
3461 {
3462 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
3463 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
3464 }
3465 else if (high_word == 0x27be) /* addiu $30,$sp,size */
3466 {
3467 /* Old gcc frame, r30 is virtual frame pointer. */
3468 if (offset != frame_offset)
3469 frame_addr = sp + offset;
3470 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
3471 {
3472 unsigned alloca_adjust;
3473
3474 frame_reg = 30;
3475 frame_addr = get_frame_register_signed
3476 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3477 frame_offset = 0;
3478
3479 alloca_adjust = (unsigned) (frame_addr - (sp + offset));
3480 if (alloca_adjust > 0)
3481 {
3482 /* FP > SP + frame_size. This may be because of
3483 an alloca or somethings similar. Fix sp to
3484 "pre-alloca" value, and try again. */
3485 sp += alloca_adjust;
3486 /* Need to reset the status of all registers. Otherwise,
3487 we will hit a guard that prevents the new address
3488 for each register to be recomputed during the second
3489 pass. */
3490 reset_saved_regs (gdbarch, this_cache);
3491 goto restart;
3492 }
3493 }
3494 }
3495 /* move $30,$sp. With different versions of gas this will be either
3496 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
3497 Accept any one of these. */
3498 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3499 {
3500 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
3501 if (this_frame && frame_reg == MIPS_SP_REGNUM)
3502 {
3503 unsigned alloca_adjust;
3504
3505 frame_reg = 30;
3506 frame_addr = get_frame_register_signed
3507 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3508
3509 alloca_adjust = (unsigned) (frame_addr - sp);
3510 if (alloca_adjust > 0)
3511 {
3512 /* FP > SP + frame_size. This may be because of
3513 an alloca or somethings similar. Fix sp to
3514 "pre-alloca" value, and try again. */
3515 sp = frame_addr;
3516 /* Need to reset the status of all registers. Otherwise,
3517 we will hit a guard that prevents the new address
3518 for each register to be recomputed during the second
3519 pass. */
3520 reset_saved_regs (gdbarch, this_cache);
3521 goto restart;
3522 }
3523 }
3524 }
3525 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
3526 && !regsize_is_64_bits)
3527 {
3528 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
3529 }
3530 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
3531 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
3532 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
3533 || high_word == 0x3c1c /* lui $gp,n */
3534 || high_word == 0x279c /* addiu $gp,$gp,n */
3535 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3536 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
3537 )
3538 {
3539 /* These instructions are part of the prologue, but we don't
3540 need to do anything special to handle them. */
3541 }
3542 /* The instructions below load $at or $t0 with an immediate
3543 value in preparation for a stack adjustment via
3544 subu $sp,$sp,[$at,$t0]. These instructions could also
3545 initialize a local variable, so we accept them only before
3546 a stack adjustment instruction was seen. */
3547 else if (!seen_sp_adjust
3548 && !prev_delay_slot
3549 && (high_word == 0x3c01 /* lui $at,n */
3550 || high_word == 0x3c08 /* lui $t0,n */
3551 || high_word == 0x3421 /* ori $at,$at,n */
3552 || high_word == 0x3508 /* ori $t0,$t0,n */
3553 || high_word == 0x3401 /* ori $at,$zero,n */
3554 || high_word == 0x3408 /* ori $t0,$zero,n */
3555 ))
3556 {
3557 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
3558 }
3559 /* Check for branches and jumps. The instruction in the delay
3560 slot can be a part of the prologue, so move forward once more. */
3561 else if (mips32_instruction_has_delay_slot (gdbarch, inst))
3562 {
3563 in_delay_slot = 1;
3564 }
3565 /* This instruction is not an instruction typically found
3566 in a prologue, so we must have reached the end of the
3567 prologue. */
3568 else
3569 {
3570 this_non_prologue_insn = 1;
3571 }
3572
3573 non_prologue_insns += this_non_prologue_insn;
3574
3575 /* A jump or branch, or enough non-prologue insns seen? If so,
3576 then we must have reached the end of the prologue by now. */
3577 if (prev_delay_slot || non_prologue_insns > 1)
3578 break;
3579
3580 prev_non_prologue_insn = this_non_prologue_insn;
3581 prev_delay_slot = in_delay_slot;
3582 prev_pc = cur_pc;
3583 }
3584
3585 if (this_cache != NULL)
3586 {
3587 this_cache->base =
3588 (get_frame_register_signed (this_frame,
3589 gdbarch_num_regs (gdbarch) + frame_reg)
3590 + frame_offset);
3591 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
3592 this assignment below, eventually. But it's still needed
3593 for now. */
3594 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3595 + mips_regnum (gdbarch)->pc]
3596 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3597 + MIPS_RA_REGNUM];
3598 }
3599
3600 /* Set end_prologue_addr to the address of the instruction immediately
3601 after the last one we scanned. Unless the last one looked like a
3602 non-prologue instruction (and we looked ahead), in which case use
3603 its address instead. */
3604 end_prologue_addr
3605 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
3606
3607 /* In a frameless function, we might have incorrectly
3608 skipped some load immediate instructions. Undo the skipping
3609 if the load immediate was not followed by a stack adjustment. */
3610 if (load_immediate_bytes && !seen_sp_adjust)
3611 end_prologue_addr -= load_immediate_bytes;
3612
3613 return end_prologue_addr;
3614 }
3615
3616 /* Heuristic unwinder for procedures using 32-bit instructions (covers
3617 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
3618 instructions (a.k.a. MIPS16) are handled by the mips_insn16
3619 unwinder. Likewise microMIPS and the mips_micro unwinder. */
3620
3621 static struct mips_frame_cache *
3622 mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
3623 {
3624 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3625 struct mips_frame_cache *cache;
3626
3627 if ((*this_cache) != NULL)
3628 return (struct mips_frame_cache *) (*this_cache);
3629
3630 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3631 (*this_cache) = cache;
3632 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3633
3634 /* Analyze the function prologue. */
3635 {
3636 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3637 CORE_ADDR start_addr;
3638
3639 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3640 if (start_addr == 0)
3641 start_addr = heuristic_proc_start (gdbarch, pc);
3642 /* We can't analyze the prologue if we couldn't find the begining
3643 of the function. */
3644 if (start_addr == 0)
3645 return cache;
3646
3647 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame,
3648 (struct mips_frame_cache *) *this_cache);
3649 }
3650
3651 /* gdbarch_sp_regnum contains the value and not the address. */
3652 trad_frame_set_value (cache->saved_regs,
3653 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3654 cache->base);
3655
3656 return (struct mips_frame_cache *) (*this_cache);
3657 }
3658
3659 static void
3660 mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
3661 struct frame_id *this_id)
3662 {
3663 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3664 this_cache);
3665 /* This marks the outermost frame. */
3666 if (info->base == 0)
3667 return;
3668 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3669 }
3670
3671 static struct value *
3672 mips_insn32_frame_prev_register (struct frame_info *this_frame,
3673 void **this_cache, int regnum)
3674 {
3675 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3676 this_cache);
3677 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3678 }
3679
3680 static int
3681 mips_insn32_frame_sniffer (const struct frame_unwind *self,
3682 struct frame_info *this_frame, void **this_cache)
3683 {
3684 CORE_ADDR pc = get_frame_pc (this_frame);
3685 if (mips_pc_is_mips (pc))
3686 return 1;
3687 return 0;
3688 }
3689
3690 static const struct frame_unwind mips_insn32_frame_unwind =
3691 {
3692 NORMAL_FRAME,
3693 default_frame_unwind_stop_reason,
3694 mips_insn32_frame_this_id,
3695 mips_insn32_frame_prev_register,
3696 NULL,
3697 mips_insn32_frame_sniffer
3698 };
3699
3700 static CORE_ADDR
3701 mips_insn32_frame_base_address (struct frame_info *this_frame,
3702 void **this_cache)
3703 {
3704 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3705 this_cache);
3706 return info->base;
3707 }
3708
3709 static const struct frame_base mips_insn32_frame_base =
3710 {
3711 &mips_insn32_frame_unwind,
3712 mips_insn32_frame_base_address,
3713 mips_insn32_frame_base_address,
3714 mips_insn32_frame_base_address
3715 };
3716
3717 static const struct frame_base *
3718 mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
3719 {
3720 CORE_ADDR pc = get_frame_pc (this_frame);
3721 if (mips_pc_is_mips (pc))
3722 return &mips_insn32_frame_base;
3723 else
3724 return NULL;
3725 }
3726
3727 static struct trad_frame_cache *
3728 mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
3729 {
3730 CORE_ADDR pc;
3731 CORE_ADDR start_addr;
3732 CORE_ADDR stack_addr;
3733 struct trad_frame_cache *this_trad_cache;
3734 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3735 int num_regs = gdbarch_num_regs (gdbarch);
3736
3737 if ((*this_cache) != NULL)
3738 return (struct trad_frame_cache *) (*this_cache);
3739 this_trad_cache = trad_frame_cache_zalloc (this_frame);
3740 (*this_cache) = this_trad_cache;
3741
3742 /* The return address is in the link register. */
3743 trad_frame_set_reg_realreg (this_trad_cache,
3744 gdbarch_pc_regnum (gdbarch),
3745 num_regs + MIPS_RA_REGNUM);
3746
3747 /* Frame ID, since it's a frameless / stackless function, no stack
3748 space is allocated and SP on entry is the current SP. */
3749 pc = get_frame_pc (this_frame);
3750 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3751 stack_addr = get_frame_register_signed (this_frame,
3752 num_regs + MIPS_SP_REGNUM);
3753 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
3754
3755 /* Assume that the frame's base is the same as the
3756 stack-pointer. */
3757 trad_frame_set_this_base (this_trad_cache, stack_addr);
3758
3759 return this_trad_cache;
3760 }
3761
3762 static void
3763 mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
3764 struct frame_id *this_id)
3765 {
3766 struct trad_frame_cache *this_trad_cache
3767 = mips_stub_frame_cache (this_frame, this_cache);
3768 trad_frame_get_id (this_trad_cache, this_id);
3769 }
3770
3771 static struct value *
3772 mips_stub_frame_prev_register (struct frame_info *this_frame,
3773 void **this_cache, int regnum)
3774 {
3775 struct trad_frame_cache *this_trad_cache
3776 = mips_stub_frame_cache (this_frame, this_cache);
3777 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
3778 }
3779
3780 static int
3781 mips_stub_frame_sniffer (const struct frame_unwind *self,
3782 struct frame_info *this_frame, void **this_cache)
3783 {
3784 gdb_byte dummy[4];
3785 struct obj_section *s;
3786 CORE_ADDR pc = get_frame_address_in_block (this_frame);
3787 struct bound_minimal_symbol msym;
3788
3789 /* Use the stub unwinder for unreadable code. */
3790 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
3791 return 1;
3792
3793 if (in_plt_section (pc) || in_mips_stubs_section (pc))
3794 return 1;
3795
3796 /* Calling a PIC function from a non-PIC function passes through a
3797 stub. The stub for foo is named ".pic.foo". */
3798 msym = lookup_minimal_symbol_by_pc (pc);
3799 if (msym.minsym != NULL
3800 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL
3801 && startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
3802 return 1;
3803
3804 return 0;
3805 }
3806
3807 static const struct frame_unwind mips_stub_frame_unwind =
3808 {
3809 NORMAL_FRAME,
3810 default_frame_unwind_stop_reason,
3811 mips_stub_frame_this_id,
3812 mips_stub_frame_prev_register,
3813 NULL,
3814 mips_stub_frame_sniffer
3815 };
3816
3817 static CORE_ADDR
3818 mips_stub_frame_base_address (struct frame_info *this_frame,
3819 void **this_cache)
3820 {
3821 struct trad_frame_cache *this_trad_cache
3822 = mips_stub_frame_cache (this_frame, this_cache);
3823 return trad_frame_get_this_base (this_trad_cache);
3824 }
3825
3826 static const struct frame_base mips_stub_frame_base =
3827 {
3828 &mips_stub_frame_unwind,
3829 mips_stub_frame_base_address,
3830 mips_stub_frame_base_address,
3831 mips_stub_frame_base_address
3832 };
3833
3834 static const struct frame_base *
3835 mips_stub_frame_base_sniffer (struct frame_info *this_frame)
3836 {
3837 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
3838 return &mips_stub_frame_base;
3839 else
3840 return NULL;
3841 }
3842
3843 /* mips_addr_bits_remove - remove useless address bits */
3844
3845 static CORE_ADDR
3846 mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
3847 {
3848 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3849
3850 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
3851 /* This hack is a work-around for existing boards using PMON, the
3852 simulator, and any other 64-bit targets that doesn't have true
3853 64-bit addressing. On these targets, the upper 32 bits of
3854 addresses are ignored by the hardware. Thus, the PC or SP are
3855 likely to have been sign extended to all 1s by instruction
3856 sequences that load 32-bit addresses. For example, a typical
3857 piece of code that loads an address is this:
3858
3859 lui $r2, <upper 16 bits>
3860 ori $r2, <lower 16 bits>
3861
3862 But the lui sign-extends the value such that the upper 32 bits
3863 may be all 1s. The workaround is simply to mask off these
3864 bits. In the future, gcc may be changed to support true 64-bit
3865 addressing, and this masking will have to be disabled. */
3866 return addr &= 0xffffffffUL;
3867 else
3868 return addr;
3869 }
3870
3871
3872 /* Checks for an atomic sequence of instructions beginning with a LL/LLD
3873 instruction and ending with a SC/SCD instruction. If such a sequence
3874 is found, attempt to step through it. A breakpoint is placed at the end of
3875 the sequence. */
3876
3877 /* Instructions used during single-stepping of atomic sequences, standard
3878 ISA version. */
3879 #define LL_OPCODE 0x30
3880 #define LLD_OPCODE 0x34
3881 #define SC_OPCODE 0x38
3882 #define SCD_OPCODE 0x3c
3883
3884 static std::vector<CORE_ADDR>
3885 mips_deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
3886 {
3887 CORE_ADDR breaks[2] = {-1, -1};
3888 CORE_ADDR loc = pc;
3889 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
3890 ULONGEST insn;
3891 int insn_count;
3892 int index;
3893 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3894 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3895
3896 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3897 /* Assume all atomic sequences start with a ll/lld instruction. */
3898 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
3899 return {};
3900
3901 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
3902 instructions. */
3903 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
3904 {
3905 int is_branch = 0;
3906 loc += MIPS_INSN32_SIZE;
3907 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3908
3909 /* Assume that there is at most one branch in the atomic
3910 sequence. If a branch is found, put a breakpoint in its
3911 destination address. */
3912 switch (itype_op (insn))
3913 {
3914 case 0: /* SPECIAL */
3915 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
3916 return {}; /* fallback to the standard single-step code. */
3917 break;
3918 case 1: /* REGIMM */
3919 is_branch = ((itype_rt (insn) & 0xc) == 0 /* B{LT,GE}Z* */
3920 || ((itype_rt (insn) & 0x1e) == 0
3921 && itype_rs (insn) == 0)); /* BPOSGE* */
3922 break;
3923 case 2: /* J */
3924 case 3: /* JAL */
3925 return {}; /* fallback to the standard single-step code. */
3926 case 4: /* BEQ */
3927 case 5: /* BNE */
3928 case 6: /* BLEZ */
3929 case 7: /* BGTZ */
3930 case 20: /* BEQL */
3931 case 21: /* BNEL */
3932 case 22: /* BLEZL */
3933 case 23: /* BGTTL */
3934 is_branch = 1;
3935 break;
3936 case 17: /* COP1 */
3937 is_branch = ((itype_rs (insn) == 9 || itype_rs (insn) == 10)
3938 && (itype_rt (insn) & 0x2) == 0);
3939 if (is_branch) /* BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T */
3940 break;
3941 /* Fall through. */
3942 case 18: /* COP2 */
3943 case 19: /* COP3 */
3944 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
3945 break;
3946 }
3947 if (is_branch)
3948 {
3949 branch_bp = loc + mips32_relative_offset (insn) + 4;
3950 if (last_breakpoint >= 1)
3951 return {}; /* More than one branch found, fallback to the
3952 standard single-step code. */
3953 breaks[1] = branch_bp;
3954 last_breakpoint++;
3955 }
3956
3957 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
3958 break;
3959 }
3960
3961 /* Assume that the atomic sequence ends with a sc/scd instruction. */
3962 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
3963 return {};
3964
3965 loc += MIPS_INSN32_SIZE;
3966
3967 /* Insert a breakpoint right after the end of the atomic sequence. */
3968 breaks[0] = loc;
3969
3970 /* Check for duplicated breakpoints. Check also for a breakpoint
3971 placed (branch instruction's destination) in the atomic sequence. */
3972 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3973 last_breakpoint = 0;
3974
3975 std::vector<CORE_ADDR> next_pcs;
3976
3977 /* Effectively inserts the breakpoints. */
3978 for (index = 0; index <= last_breakpoint; index++)
3979 next_pcs.push_back (breaks[index]);
3980
3981 return next_pcs;
3982 }
3983
3984 static std::vector<CORE_ADDR>
3985 micromips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
3986 CORE_ADDR pc)
3987 {
3988 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3989 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3990 CORE_ADDR breaks[2] = {-1, -1};
3991 CORE_ADDR branch_bp = 0; /* Breakpoint at branch instruction's
3992 destination. */
3993 CORE_ADDR loc = pc;
3994 int sc_found = 0;
3995 ULONGEST insn;
3996 int insn_count;
3997 int index;
3998
3999 /* Assume all atomic sequences start with a ll/lld instruction. */
4000 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4001 if (micromips_op (insn) != 0x18) /* POOL32C: bits 011000 */
4002 return {};
4003 loc += MIPS_INSN16_SIZE;
4004 insn <<= 16;
4005 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4006 if ((b12s4_op (insn) & 0xb) != 0x3) /* LL, LLD: bits 011000 0x11 */
4007 return {};
4008 loc += MIPS_INSN16_SIZE;
4009
4010 /* Assume all atomic sequences end with an sc/scd instruction. Assume
4011 that no atomic sequence is longer than "atomic_sequence_length"
4012 instructions. */
4013 for (insn_count = 0;
4014 !sc_found && insn_count < atomic_sequence_length;
4015 ++insn_count)
4016 {
4017 int is_branch = 0;
4018
4019 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4020 loc += MIPS_INSN16_SIZE;
4021
4022 /* Assume that there is at most one conditional branch in the
4023 atomic sequence. If a branch is found, put a breakpoint in
4024 its destination address. */
4025 switch (mips_insn_size (ISA_MICROMIPS, insn))
4026 {
4027 /* 32-bit instructions. */
4028 case 2 * MIPS_INSN16_SIZE:
4029 switch (micromips_op (insn))
4030 {
4031 case 0x10: /* POOL32I: bits 010000 */
4032 if ((b5s5_op (insn) & 0x18) != 0x0
4033 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
4034 /* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
4035 && (b5s5_op (insn) & 0x1d) != 0x11
4036 /* BLTZALS, BGEZALS: bits 010000 100x1 */
4037 && ((b5s5_op (insn) & 0x1e) != 0x14
4038 || (insn & 0x3) != 0x0)
4039 /* BC2F, BC2T: bits 010000 1010x xxx00 */
4040 && (b5s5_op (insn) & 0x1e) != 0x1a
4041 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
4042 && ((b5s5_op (insn) & 0x1e) != 0x1c
4043 || (insn & 0x3) != 0x0)
4044 /* BC1F, BC1T: bits 010000 1110x xxx00 */
4045 && ((b5s5_op (insn) & 0x1c) != 0x1c
4046 || (insn & 0x3) != 0x1))
4047 /* BC1ANY*: bits 010000 111xx xxx01 */
4048 break;
4049 /* Fall through. */
4050
4051 case 0x25: /* BEQ: bits 100101 */
4052 case 0x2d: /* BNE: bits 101101 */
4053 insn <<= 16;
4054 insn |= mips_fetch_instruction (gdbarch,
4055 ISA_MICROMIPS, loc, NULL);
4056 branch_bp = (loc + MIPS_INSN16_SIZE
4057 + micromips_relative_offset16 (insn));
4058 is_branch = 1;
4059 break;
4060
4061 case 0x00: /* POOL32A: bits 000000 */
4062 insn <<= 16;
4063 insn |= mips_fetch_instruction (gdbarch,
4064 ISA_MICROMIPS, loc, NULL);
4065 if (b0s6_op (insn) != 0x3c
4066 /* POOL32Axf: bits 000000 ... 111100 */
4067 || (b6s10_ext (insn) & 0x2bf) != 0x3c)
4068 /* JALR, JALR.HB: 000000 000x111100 111100 */
4069 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
4070 break;
4071 /* Fall through. */
4072
4073 case 0x1d: /* JALS: bits 011101 */
4074 case 0x35: /* J: bits 110101 */
4075 case 0x3d: /* JAL: bits 111101 */
4076 case 0x3c: /* JALX: bits 111100 */
4077 return {}; /* Fall back to the standard single-step code. */
4078
4079 case 0x18: /* POOL32C: bits 011000 */
4080 if ((b12s4_op (insn) & 0xb) == 0xb)
4081 /* SC, SCD: bits 011000 1x11 */
4082 sc_found = 1;
4083 break;
4084 }
4085 loc += MIPS_INSN16_SIZE;
4086 break;
4087
4088 /* 16-bit instructions. */
4089 case MIPS_INSN16_SIZE:
4090 switch (micromips_op (insn))
4091 {
4092 case 0x23: /* BEQZ16: bits 100011 */
4093 case 0x2b: /* BNEZ16: bits 101011 */
4094 branch_bp = loc + micromips_relative_offset7 (insn);
4095 is_branch = 1;
4096 break;
4097
4098 case 0x11: /* POOL16C: bits 010001 */
4099 if ((b5s5_op (insn) & 0x1c) != 0xc
4100 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
4101 && b5s5_op (insn) != 0x18)
4102 /* JRADDIUSP: bits 010001 11000 */
4103 break;
4104 return {}; /* Fall back to the standard single-step code. */
4105
4106 case 0x33: /* B16: bits 110011 */
4107 return {}; /* Fall back to the standard single-step code. */
4108 }
4109 break;
4110 }
4111 if (is_branch)
4112 {
4113 if (last_breakpoint >= 1)
4114 return {}; /* More than one branch found, fallback to the
4115 standard single-step code. */
4116 breaks[1] = branch_bp;
4117 last_breakpoint++;
4118 }
4119 }
4120 if (!sc_found)
4121 return {};
4122
4123 /* Insert a breakpoint right after the end of the atomic sequence. */
4124 breaks[0] = loc;
4125
4126 /* Check for duplicated breakpoints. Check also for a breakpoint
4127 placed (branch instruction's destination) in the atomic sequence */
4128 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
4129 last_breakpoint = 0;
4130
4131 std::vector<CORE_ADDR> next_pcs;
4132
4133 /* Effectively inserts the breakpoints. */
4134 for (index = 0; index <= last_breakpoint; index++)
4135 next_pcs.push_back (breaks[index]);
4136
4137 return next_pcs;
4138 }
4139
4140 static std::vector<CORE_ADDR>
4141 deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
4142 {
4143 if (mips_pc_is_mips (pc))
4144 return mips_deal_with_atomic_sequence (gdbarch, pc);
4145 else if (mips_pc_is_micromips (gdbarch, pc))
4146 return micromips_deal_with_atomic_sequence (gdbarch, pc);
4147 else
4148 return {};
4149 }
4150
4151 /* mips_software_single_step() is called just before we want to resume
4152 the inferior, if we want to single-step it but there is no hardware
4153 or kernel single-step support (MIPS on GNU/Linux for example). We find
4154 the target of the coming instruction and breakpoint it. */
4155
4156 std::vector<CORE_ADDR>
4157 mips_software_single_step (struct regcache *regcache)
4158 {
4159 struct gdbarch *gdbarch = regcache->arch ();
4160 CORE_ADDR pc, next_pc;
4161
4162 pc = regcache_read_pc (regcache);
4163 std::vector<CORE_ADDR> next_pcs = deal_with_atomic_sequence (gdbarch, pc);
4164
4165 if (!next_pcs.empty ())
4166 return next_pcs;
4167
4168 next_pc = mips_next_pc (regcache, pc);
4169
4170 return {next_pc};
4171 }
4172
4173 /* Test whether the PC points to the return instruction at the
4174 end of a function. */
4175
4176 static int
4177 mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
4178 {
4179 ULONGEST insn;
4180 ULONGEST hint;
4181
4182 /* This used to check for MIPS16, but this piece of code is never
4183 called for MIPS16 functions. And likewise microMIPS ones. */
4184 gdb_assert (mips_pc_is_mips (pc));
4185
4186 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
4187 hint = 0x7c0;
4188 return (insn & ~hint) == 0x3e00008; /* jr(.hb) $ra */
4189 }
4190
4191
4192 /* This fencepost looks highly suspicious to me. Removing it also
4193 seems suspicious as it could affect remote debugging across serial
4194 lines. */
4195
4196 static CORE_ADDR
4197 heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
4198 {
4199 CORE_ADDR start_pc;
4200 CORE_ADDR fence;
4201 int instlen;
4202 int seen_adjsp = 0;
4203 struct inferior *inf;
4204
4205 pc = gdbarch_addr_bits_remove (gdbarch, pc);
4206 start_pc = pc;
4207 fence = start_pc - heuristic_fence_post;
4208 if (start_pc == 0)
4209 return 0;
4210
4211 if (heuristic_fence_post == -1 || fence < VM_MIN_ADDRESS)
4212 fence = VM_MIN_ADDRESS;
4213
4214 instlen = mips_pc_is_mips (pc) ? MIPS_INSN32_SIZE : MIPS_INSN16_SIZE;
4215
4216 inf = current_inferior ();
4217
4218 /* Search back for previous return. */
4219 for (start_pc -= instlen;; start_pc -= instlen)
4220 if (start_pc < fence)
4221 {
4222 /* It's not clear to me why we reach this point when
4223 stop_soon, but with this test, at least we
4224 don't print out warnings for every child forked (eg, on
4225 decstation). 22apr93 rich@cygnus.com. */
4226 if (inf->control.stop_soon == NO_STOP_QUIETLY)
4227 {
4228 static int blurb_printed = 0;
4229
4230 warning (_("GDB can't find the start of the function at %s."),
4231 paddress (gdbarch, pc));
4232
4233 if (!blurb_printed)
4234 {
4235 /* This actually happens frequently in embedded
4236 development, when you first connect to a board
4237 and your stack pointer and pc are nowhere in
4238 particular. This message needs to give people
4239 in that situation enough information to
4240 determine that it's no big deal. */
4241 printf_filtered ("\n\
4242 GDB is unable to find the start of the function at %s\n\
4243 and thus can't determine the size of that function's stack frame.\n\
4244 This means that GDB may be unable to access that stack frame, or\n\
4245 the frames below it.\n\
4246 This problem is most likely caused by an invalid program counter or\n\
4247 stack pointer.\n\
4248 However, if you think GDB should simply search farther back\n\
4249 from %s for code which looks like the beginning of a\n\
4250 function, you can increase the range of the search using the `set\n\
4251 heuristic-fence-post' command.\n",
4252 paddress (gdbarch, pc), paddress (gdbarch, pc));
4253 blurb_printed = 1;
4254 }
4255 }
4256
4257 return 0;
4258 }
4259 else if (mips_pc_is_mips16 (gdbarch, start_pc))
4260 {
4261 unsigned short inst;
4262
4263 /* On MIPS16, any one of the following is likely to be the
4264 start of a function:
4265 extend save
4266 save
4267 entry
4268 addiu sp,-n
4269 daddiu sp,-n
4270 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
4271 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, start_pc, NULL);
4272 if ((inst & 0xff80) == 0x6480) /* save */
4273 {
4274 if (start_pc - instlen >= fence)
4275 {
4276 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16,
4277 start_pc - instlen, NULL);
4278 if ((inst & 0xf800) == 0xf000) /* extend */
4279 start_pc -= instlen;
4280 }
4281 break;
4282 }
4283 else if (((inst & 0xf81f) == 0xe809
4284 && (inst & 0x700) != 0x700) /* entry */
4285 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
4286 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
4287 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
4288 break;
4289 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
4290 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
4291 seen_adjsp = 1;
4292 else
4293 seen_adjsp = 0;
4294 }
4295 else if (mips_pc_is_micromips (gdbarch, start_pc))
4296 {
4297 ULONGEST insn;
4298 int stop = 0;
4299 long offset;
4300 int dreg;
4301 int sreg;
4302
4303 /* On microMIPS, any one of the following is likely to be the
4304 start of a function:
4305 ADDIUSP -imm
4306 (D)ADDIU $sp, -imm
4307 LUI $gp, imm */
4308 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
4309 switch (micromips_op (insn))
4310 {
4311 case 0xc: /* ADDIU: bits 001100 */
4312 case 0x17: /* DADDIU: bits 010111 */
4313 sreg = b0s5_reg (insn);
4314 dreg = b5s5_reg (insn);
4315 insn <<= 16;
4316 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS,
4317 pc + MIPS_INSN16_SIZE, NULL);
4318 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
4319 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
4320 /* (D)ADDIU $sp, imm */
4321 && offset < 0)
4322 stop = 1;
4323 break;
4324
4325 case 0x10: /* POOL32I: bits 010000 */
4326 if (b5s5_op (insn) == 0xd
4327 /* LUI: bits 010000 001101 */
4328 && b0s5_reg (insn >> 16) == 28)
4329 /* LUI $gp, imm */
4330 stop = 1;
4331 break;
4332
4333 case 0x13: /* POOL16D: bits 010011 */
4334 if ((insn & 0x1) == 0x1)
4335 /* ADDIUSP: bits 010011 1 */
4336 {
4337 offset = micromips_decode_imm9 (b1s9_imm (insn));
4338 if (offset < 0)
4339 /* ADDIUSP -imm */
4340 stop = 1;
4341 }
4342 else
4343 /* ADDIUS5: bits 010011 0 */
4344 {
4345 dreg = b5s5_reg (insn);
4346 offset = (b1s4_imm (insn) ^ 8) - 8;
4347 if (dreg == MIPS_SP_REGNUM && offset < 0)
4348 /* ADDIUS5 $sp, -imm */
4349 stop = 1;
4350 }
4351 break;
4352 }
4353 if (stop)
4354 break;
4355 }
4356 else if (mips_about_to_return (gdbarch, start_pc))
4357 {
4358 /* Skip return and its delay slot. */
4359 start_pc += 2 * MIPS_INSN32_SIZE;
4360 break;
4361 }
4362
4363 return start_pc;
4364 }
4365
4366 struct mips_objfile_private
4367 {
4368 bfd_size_type size;
4369 char *contents;
4370 };
4371
4372 /* According to the current ABI, should the type be passed in a
4373 floating-point register (assuming that there is space)? When there
4374 is no FPU, FP are not even considered as possible candidates for
4375 FP registers and, consequently this returns false - forces FP
4376 arguments into integer registers. */
4377
4378 static int
4379 fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
4380 struct type *arg_type)
4381 {
4382 return ((typecode == TYPE_CODE_FLT
4383 || (MIPS_EABI (gdbarch)
4384 && (typecode == TYPE_CODE_STRUCT
4385 || typecode == TYPE_CODE_UNION)
4386 && TYPE_NFIELDS (arg_type) == 1
4387 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
4388 == TYPE_CODE_FLT))
4389 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
4390 }
4391
4392 /* On o32, argument passing in GPRs depends on the alignment of the type being
4393 passed. Return 1 if this type must be aligned to a doubleword boundary. */
4394
4395 static int
4396 mips_type_needs_double_align (struct type *type)
4397 {
4398 enum type_code typecode = TYPE_CODE (type);
4399
4400 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
4401 return 1;
4402 else if (typecode == TYPE_CODE_STRUCT)
4403 {
4404 if (TYPE_NFIELDS (type) < 1)
4405 return 0;
4406 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
4407 }
4408 else if (typecode == TYPE_CODE_UNION)
4409 {
4410 int i, n;
4411
4412 n = TYPE_NFIELDS (type);
4413 for (i = 0; i < n; i++)
4414 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
4415 return 1;
4416 return 0;
4417 }
4418 return 0;
4419 }
4420
4421 /* Adjust the address downward (direction of stack growth) so that it
4422 is correctly aligned for a new stack frame. */
4423 static CORE_ADDR
4424 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
4425 {
4426 return align_down (addr, 16);
4427 }
4428
4429 /* Implement the "push_dummy_code" gdbarch method. */
4430
4431 static CORE_ADDR
4432 mips_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
4433 CORE_ADDR funaddr, struct value **args,
4434 int nargs, struct type *value_type,
4435 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
4436 struct regcache *regcache)
4437 {
4438 static gdb_byte nop_insn[] = { 0, 0, 0, 0 };
4439 CORE_ADDR nop_addr;
4440 CORE_ADDR bp_slot;
4441
4442 /* Reserve enough room on the stack for our breakpoint instruction. */
4443 bp_slot = sp - sizeof (nop_insn);
4444
4445 /* Return to microMIPS mode if calling microMIPS code to avoid
4446 triggering an address error exception on processors that only
4447 support microMIPS execution. */
4448 *bp_addr = (mips_pc_is_micromips (gdbarch, funaddr)
4449 ? make_compact_addr (bp_slot) : bp_slot);
4450
4451 /* The breakpoint layer automatically adjusts the address of
4452 breakpoints inserted in a branch delay slot. With enough
4453 bad luck, the 4 bytes located just before our breakpoint
4454 instruction could look like a branch instruction, and thus
4455 trigger the adjustement, and break the function call entirely.
4456 So, we reserve those 4 bytes and write a nop instruction
4457 to prevent that from happening. */
4458 nop_addr = bp_slot - sizeof (nop_insn);
4459 write_memory (nop_addr, nop_insn, sizeof (nop_insn));
4460 sp = mips_frame_align (gdbarch, nop_addr);
4461
4462 /* Inferior resumes at the function entry point. */
4463 *real_pc = funaddr;
4464
4465 return sp;
4466 }
4467
4468 static CORE_ADDR
4469 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4470 struct regcache *regcache, CORE_ADDR bp_addr,
4471 int nargs, struct value **args, CORE_ADDR sp,
4472 int struct_return, CORE_ADDR struct_addr)
4473 {
4474 int argreg;
4475 int float_argreg;
4476 int argnum;
4477 int len = 0;
4478 int stack_offset = 0;
4479 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4480 CORE_ADDR func_addr = find_function_addr (function, NULL);
4481 int abi_regsize = mips_abi_regsize (gdbarch);
4482
4483 /* For shared libraries, "t9" needs to point at the function
4484 address. */
4485 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4486
4487 /* Set the return address register to point to the entry point of
4488 the program, where a breakpoint lies in wait. */
4489 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4490
4491 /* First ensure that the stack and structure return address (if any)
4492 are properly aligned. The stack has to be at least 64-bit
4493 aligned even on 32-bit machines, because doubles must be 64-bit
4494 aligned. For n32 and n64, stack frames need to be 128-bit
4495 aligned, so we round to this widest known alignment. */
4496
4497 sp = align_down (sp, 16);
4498 struct_addr = align_down (struct_addr, 16);
4499
4500 /* Now make space on the stack for the args. We allocate more
4501 than necessary for EABI, because the first few arguments are
4502 passed in registers, but that's OK. */
4503 for (argnum = 0; argnum < nargs; argnum++)
4504 len += align_up (TYPE_LENGTH (value_type (args[argnum])), abi_regsize);
4505 sp -= align_up (len, 16);
4506
4507 if (mips_debug)
4508 fprintf_unfiltered (gdb_stdlog,
4509 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
4510 paddress (gdbarch, sp), (long) align_up (len, 16));
4511
4512 /* Initialize the integer and float register pointers. */
4513 argreg = MIPS_A0_REGNUM;
4514 float_argreg = mips_fpa0_regnum (gdbarch);
4515
4516 /* The struct_return pointer occupies the first parameter-passing reg. */
4517 if (struct_return)
4518 {
4519 if (mips_debug)
4520 fprintf_unfiltered (gdb_stdlog,
4521 "mips_eabi_push_dummy_call: "
4522 "struct_return reg=%d %s\n",
4523 argreg, paddress (gdbarch, struct_addr));
4524 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4525 }
4526
4527 /* Now load as many as possible of the first arguments into
4528 registers, and push the rest onto the stack. Loop thru args
4529 from first to last. */
4530 for (argnum = 0; argnum < nargs; argnum++)
4531 {
4532 const gdb_byte *val;
4533 /* This holds the address of structures that are passed by
4534 reference. */
4535 gdb_byte ref_valbuf[MAX_MIPS_ABI_REGSIZE];
4536 struct value *arg = args[argnum];
4537 struct type *arg_type = check_typedef (value_type (arg));
4538 int len = TYPE_LENGTH (arg_type);
4539 enum type_code typecode = TYPE_CODE (arg_type);
4540
4541 if (mips_debug)
4542 fprintf_unfiltered (gdb_stdlog,
4543 "mips_eabi_push_dummy_call: %d len=%d type=%d",
4544 argnum + 1, len, (int) typecode);
4545
4546 /* The EABI passes structures that do not fit in a register by
4547 reference. */
4548 if (len > abi_regsize
4549 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
4550 {
4551 gdb_assert (abi_regsize <= ARRAY_SIZE (ref_valbuf));
4552 store_unsigned_integer (ref_valbuf, abi_regsize, byte_order,
4553 value_address (arg));
4554 typecode = TYPE_CODE_PTR;
4555 len = abi_regsize;
4556 val = ref_valbuf;
4557 if (mips_debug)
4558 fprintf_unfiltered (gdb_stdlog, " push");
4559 }
4560 else
4561 val = value_contents (arg);
4562
4563 /* 32-bit ABIs always start floating point arguments in an
4564 even-numbered floating point register. Round the FP register
4565 up before the check to see if there are any FP registers
4566 left. Non MIPS_EABI targets also pass the FP in the integer
4567 registers so also round up normal registers. */
4568 if (abi_regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
4569 {
4570 if ((float_argreg & 1))
4571 float_argreg++;
4572 }
4573
4574 /* Floating point arguments passed in registers have to be
4575 treated specially. On 32-bit architectures, doubles
4576 are passed in register pairs; the even register gets
4577 the low word, and the odd register gets the high word.
4578 On non-EABI processors, the first two floating point arguments are
4579 also copied to general registers, because MIPS16 functions
4580 don't use float registers for arguments. This duplication of
4581 arguments in general registers can't hurt non-MIPS16 functions
4582 because those registers are normally skipped. */
4583 /* MIPS_EABI squeezes a struct that contains a single floating
4584 point value into an FP register instead of pushing it onto the
4585 stack. */
4586 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4587 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
4588 {
4589 /* EABI32 will pass doubles in consecutive registers, even on
4590 64-bit cores. At one time, we used to check the size of
4591 `float_argreg' to determine whether or not to pass doubles
4592 in consecutive registers, but this is not sufficient for
4593 making the ABI determination. */
4594 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
4595 {
4596 int low_offset = gdbarch_byte_order (gdbarch)
4597 == BFD_ENDIAN_BIG ? 4 : 0;
4598 long regval;
4599
4600 /* Write the low word of the double to the even register(s). */
4601 regval = extract_signed_integer (val + low_offset,
4602 4, byte_order);
4603 if (mips_debug)
4604 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4605 float_argreg, phex (regval, 4));
4606 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4607
4608 /* Write the high word of the double to the odd register(s). */
4609 regval = extract_signed_integer (val + 4 - low_offset,
4610 4, byte_order);
4611 if (mips_debug)
4612 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4613 float_argreg, phex (regval, 4));
4614 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4615 }
4616 else
4617 {
4618 /* This is a floating point value that fits entirely
4619 in a single register. */
4620 /* On 32 bit ABI's the float_argreg is further adjusted
4621 above to ensure that it is even register aligned. */
4622 LONGEST regval = extract_signed_integer (val, len, byte_order);
4623 if (mips_debug)
4624 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4625 float_argreg, phex (regval, len));
4626 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4627 }
4628 }
4629 else
4630 {
4631 /* Copy the argument to general registers or the stack in
4632 register-sized pieces. Large arguments are split between
4633 registers and stack. */
4634 /* Note: structs whose size is not a multiple of abi_regsize
4635 are treated specially: Irix cc passes
4636 them in registers where gcc sometimes puts them on the
4637 stack. For maximum compatibility, we will put them in
4638 both places. */
4639 int odd_sized_struct = (len > abi_regsize && len % abi_regsize != 0);
4640
4641 /* Note: Floating-point values that didn't fit into an FP
4642 register are only written to memory. */
4643 while (len > 0)
4644 {
4645 /* Remember if the argument was written to the stack. */
4646 int stack_used_p = 0;
4647 int partial_len = (len < abi_regsize ? len : abi_regsize);
4648
4649 if (mips_debug)
4650 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4651 partial_len);
4652
4653 /* Write this portion of the argument to the stack. */
4654 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
4655 || odd_sized_struct
4656 || fp_register_arg_p (gdbarch, typecode, arg_type))
4657 {
4658 /* Should shorter than int integer values be
4659 promoted to int before being stored? */
4660 int longword_offset = 0;
4661 CORE_ADDR addr;
4662 stack_used_p = 1;
4663 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4664 {
4665 if (abi_regsize == 8
4666 && (typecode == TYPE_CODE_INT
4667 || typecode == TYPE_CODE_PTR
4668 || typecode == TYPE_CODE_FLT) && len <= 4)
4669 longword_offset = abi_regsize - len;
4670 else if ((typecode == TYPE_CODE_STRUCT
4671 || typecode == TYPE_CODE_UNION)
4672 && TYPE_LENGTH (arg_type) < abi_regsize)
4673 longword_offset = abi_regsize - len;
4674 }
4675
4676 if (mips_debug)
4677 {
4678 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4679 paddress (gdbarch, stack_offset));
4680 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4681 paddress (gdbarch, longword_offset));
4682 }
4683
4684 addr = sp + stack_offset + longword_offset;
4685
4686 if (mips_debug)
4687 {
4688 int i;
4689 fprintf_unfiltered (gdb_stdlog, " @%s ",
4690 paddress (gdbarch, addr));
4691 for (i = 0; i < partial_len; i++)
4692 {
4693 fprintf_unfiltered (gdb_stdlog, "%02x",
4694 val[i] & 0xff);
4695 }
4696 }
4697 write_memory (addr, val, partial_len);
4698 }
4699
4700 /* Note!!! This is NOT an else clause. Odd sized
4701 structs may go thru BOTH paths. Floating point
4702 arguments will not. */
4703 /* Write this portion of the argument to a general
4704 purpose register. */
4705 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
4706 && !fp_register_arg_p (gdbarch, typecode, arg_type))
4707 {
4708 LONGEST regval =
4709 extract_signed_integer (val, partial_len, byte_order);
4710
4711 if (mips_debug)
4712 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
4713 argreg,
4714 phex (regval, abi_regsize));
4715 regcache_cooked_write_signed (regcache, argreg, regval);
4716 argreg++;
4717 }
4718
4719 len -= partial_len;
4720 val += partial_len;
4721
4722 /* Compute the offset into the stack at which we will
4723 copy the next parameter.
4724
4725 In the new EABI (and the NABI32), the stack_offset
4726 only needs to be adjusted when it has been used. */
4727
4728 if (stack_used_p)
4729 stack_offset += align_up (partial_len, abi_regsize);
4730 }
4731 }
4732 if (mips_debug)
4733 fprintf_unfiltered (gdb_stdlog, "\n");
4734 }
4735
4736 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
4737
4738 /* Return adjusted stack pointer. */
4739 return sp;
4740 }
4741
4742 /* Determine the return value convention being used. */
4743
4744 static enum return_value_convention
4745 mips_eabi_return_value (struct gdbarch *gdbarch, struct value *function,
4746 struct type *type, struct regcache *regcache,
4747 gdb_byte *readbuf, const gdb_byte *writebuf)
4748 {
4749 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4750 int fp_return_type = 0;
4751 int offset, regnum, xfer;
4752
4753 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
4754 return RETURN_VALUE_STRUCT_CONVENTION;
4755
4756 /* Floating point type? */
4757 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
4758 {
4759 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4760 fp_return_type = 1;
4761 /* Structs with a single field of float type
4762 are returned in a floating point register. */
4763 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
4764 || TYPE_CODE (type) == TYPE_CODE_UNION)
4765 && TYPE_NFIELDS (type) == 1)
4766 {
4767 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
4768
4769 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
4770 fp_return_type = 1;
4771 }
4772 }
4773
4774 if (fp_return_type)
4775 {
4776 /* A floating-point value belongs in the least significant part
4777 of FP0/FP1. */
4778 if (mips_debug)
4779 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4780 regnum = mips_regnum (gdbarch)->fp0;
4781 }
4782 else
4783 {
4784 /* An integer value goes in V0/V1. */
4785 if (mips_debug)
4786 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
4787 regnum = MIPS_V0_REGNUM;
4788 }
4789 for (offset = 0;
4790 offset < TYPE_LENGTH (type);
4791 offset += mips_abi_regsize (gdbarch), regnum++)
4792 {
4793 xfer = mips_abi_regsize (gdbarch);
4794 if (offset + xfer > TYPE_LENGTH (type))
4795 xfer = TYPE_LENGTH (type) - offset;
4796 mips_xfer_register (gdbarch, regcache,
4797 gdbarch_num_regs (gdbarch) + regnum, xfer,
4798 gdbarch_byte_order (gdbarch), readbuf, writebuf,
4799 offset);
4800 }
4801
4802 return RETURN_VALUE_REGISTER_CONVENTION;
4803 }
4804
4805
4806 /* N32/N64 ABI stuff. */
4807
4808 /* Search for a naturally aligned double at OFFSET inside a struct
4809 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
4810 registers. */
4811
4812 static int
4813 mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
4814 int offset)
4815 {
4816 int i;
4817
4818 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
4819 return 0;
4820
4821 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
4822 return 0;
4823
4824 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
4825 return 0;
4826
4827 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
4828 {
4829 int pos;
4830 struct type *field_type;
4831
4832 /* We're only looking at normal fields. */
4833 if (field_is_static (&TYPE_FIELD (arg_type, i))
4834 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
4835 continue;
4836
4837 /* If we have gone past the offset, there is no double to pass. */
4838 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
4839 if (pos > offset)
4840 return 0;
4841
4842 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
4843
4844 /* If this field is entirely before the requested offset, go
4845 on to the next one. */
4846 if (pos + TYPE_LENGTH (field_type) <= offset)
4847 continue;
4848
4849 /* If this is our special aligned double, we can stop. */
4850 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
4851 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
4852 return 1;
4853
4854 /* This field starts at or before the requested offset, and
4855 overlaps it. If it is a structure, recurse inwards. */
4856 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
4857 }
4858
4859 return 0;
4860 }
4861
4862 static CORE_ADDR
4863 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4864 struct regcache *regcache, CORE_ADDR bp_addr,
4865 int nargs, struct value **args, CORE_ADDR sp,
4866 int struct_return, CORE_ADDR struct_addr)
4867 {
4868 int argreg;
4869 int float_argreg;
4870 int argnum;
4871 int len = 0;
4872 int stack_offset = 0;
4873 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4874 CORE_ADDR func_addr = find_function_addr (function, NULL);
4875
4876 /* For shared libraries, "t9" needs to point at the function
4877 address. */
4878 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4879
4880 /* Set the return address register to point to the entry point of
4881 the program, where a breakpoint lies in wait. */
4882 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4883
4884 /* First ensure that the stack and structure return address (if any)
4885 are properly aligned. The stack has to be at least 64-bit
4886 aligned even on 32-bit machines, because doubles must be 64-bit
4887 aligned. For n32 and n64, stack frames need to be 128-bit
4888 aligned, so we round to this widest known alignment. */
4889
4890 sp = align_down (sp, 16);
4891 struct_addr = align_down (struct_addr, 16);
4892
4893 /* Now make space on the stack for the args. */
4894 for (argnum = 0; argnum < nargs; argnum++)
4895 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
4896 sp -= align_up (len, 16);
4897
4898 if (mips_debug)
4899 fprintf_unfiltered (gdb_stdlog,
4900 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
4901 paddress (gdbarch, sp), (long) align_up (len, 16));
4902
4903 /* Initialize the integer and float register pointers. */
4904 argreg = MIPS_A0_REGNUM;
4905 float_argreg = mips_fpa0_regnum (gdbarch);
4906
4907 /* The struct_return pointer occupies the first parameter-passing reg. */
4908 if (struct_return)
4909 {
4910 if (mips_debug)
4911 fprintf_unfiltered (gdb_stdlog,
4912 "mips_n32n64_push_dummy_call: "
4913 "struct_return reg=%d %s\n",
4914 argreg, paddress (gdbarch, struct_addr));
4915 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4916 }
4917
4918 /* Now load as many as possible of the first arguments into
4919 registers, and push the rest onto the stack. Loop thru args
4920 from first to last. */
4921 for (argnum = 0; argnum < nargs; argnum++)
4922 {
4923 const gdb_byte *val;
4924 struct value *arg = args[argnum];
4925 struct type *arg_type = check_typedef (value_type (arg));
4926 int len = TYPE_LENGTH (arg_type);
4927 enum type_code typecode = TYPE_CODE (arg_type);
4928
4929 if (mips_debug)
4930 fprintf_unfiltered (gdb_stdlog,
4931 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
4932 argnum + 1, len, (int) typecode);
4933
4934 val = value_contents (arg);
4935
4936 /* A 128-bit long double value requires an even-odd pair of
4937 floating-point registers. */
4938 if (len == 16
4939 && fp_register_arg_p (gdbarch, typecode, arg_type)
4940 && (float_argreg & 1))
4941 {
4942 float_argreg++;
4943 argreg++;
4944 }
4945
4946 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4947 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
4948 {
4949 /* This is a floating point value that fits entirely
4950 in a single register or a pair of registers. */
4951 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4952 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
4953 if (mips_debug)
4954 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4955 float_argreg, phex (regval, reglen));
4956 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4957
4958 if (mips_debug)
4959 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4960 argreg, phex (regval, reglen));
4961 regcache_cooked_write_unsigned (regcache, argreg, regval);
4962 float_argreg++;
4963 argreg++;
4964 if (len == 16)
4965 {
4966 regval = extract_unsigned_integer (val + reglen,
4967 reglen, byte_order);
4968 if (mips_debug)
4969 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4970 float_argreg, phex (regval, reglen));
4971 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4972
4973 if (mips_debug)
4974 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4975 argreg, phex (regval, reglen));
4976 regcache_cooked_write_unsigned (regcache, argreg, regval);
4977 float_argreg++;
4978 argreg++;
4979 }
4980 }
4981 else
4982 {
4983 /* Copy the argument to general registers or the stack in
4984 register-sized pieces. Large arguments are split between
4985 registers and stack. */
4986 /* For N32/N64, structs, unions, or other composite types are
4987 treated as a sequence of doublewords, and are passed in integer
4988 or floating point registers as though they were simple scalar
4989 parameters to the extent that they fit, with any excess on the
4990 stack packed according to the normal memory layout of the
4991 object.
4992 The caller does not reserve space for the register arguments;
4993 the callee is responsible for reserving it if required. */
4994 /* Note: Floating-point values that didn't fit into an FP
4995 register are only written to memory. */
4996 while (len > 0)
4997 {
4998 /* Remember if the argument was written to the stack. */
4999 int stack_used_p = 0;
5000 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
5001
5002 if (mips_debug)
5003 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5004 partial_len);
5005
5006 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5007 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
5008
5009 /* Write this portion of the argument to the stack. */
5010 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
5011 {
5012 /* Should shorter than int integer values be
5013 promoted to int before being stored? */
5014 int longword_offset = 0;
5015 CORE_ADDR addr;
5016 stack_used_p = 1;
5017 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5018 {
5019 if ((typecode == TYPE_CODE_INT
5020 || typecode == TYPE_CODE_PTR)
5021 && len <= 4)
5022 longword_offset = MIPS64_REGSIZE - len;
5023 }
5024
5025 if (mips_debug)
5026 {
5027 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5028 paddress (gdbarch, stack_offset));
5029 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5030 paddress (gdbarch, longword_offset));
5031 }
5032
5033 addr = sp + stack_offset + longword_offset;
5034
5035 if (mips_debug)
5036 {
5037 int i;
5038 fprintf_unfiltered (gdb_stdlog, " @%s ",
5039 paddress (gdbarch, addr));
5040 for (i = 0; i < partial_len; i++)
5041 {
5042 fprintf_unfiltered (gdb_stdlog, "%02x",
5043 val[i] & 0xff);
5044 }
5045 }
5046 write_memory (addr, val, partial_len);
5047 }
5048
5049 /* Note!!! This is NOT an else clause. Odd sized
5050 structs may go thru BOTH paths. */
5051 /* Write this portion of the argument to a general
5052 purpose register. */
5053 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5054 {
5055 LONGEST regval;
5056
5057 /* Sign extend pointers, 32-bit integers and signed
5058 16-bit and 8-bit integers; everything else is taken
5059 as is. */
5060
5061 if ((partial_len == 4
5062 && (typecode == TYPE_CODE_PTR
5063 || typecode == TYPE_CODE_INT))
5064 || (partial_len < 4
5065 && typecode == TYPE_CODE_INT
5066 && !TYPE_UNSIGNED (arg_type)))
5067 regval = extract_signed_integer (val, partial_len,
5068 byte_order);
5069 else
5070 regval = extract_unsigned_integer (val, partial_len,
5071 byte_order);
5072
5073 /* A non-floating-point argument being passed in a
5074 general register. If a struct or union, and if
5075 the remaining length is smaller than the register
5076 size, we have to adjust the register value on
5077 big endian targets.
5078
5079 It does not seem to be necessary to do the
5080 same for integral types. */
5081
5082 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5083 && partial_len < MIPS64_REGSIZE
5084 && (typecode == TYPE_CODE_STRUCT
5085 || typecode == TYPE_CODE_UNION))
5086 regval <<= ((MIPS64_REGSIZE - partial_len)
5087 * TARGET_CHAR_BIT);
5088
5089 if (mips_debug)
5090 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5091 argreg,
5092 phex (regval, MIPS64_REGSIZE));
5093 regcache_cooked_write_unsigned (regcache, argreg, regval);
5094
5095 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
5096 TYPE_LENGTH (arg_type) - len))
5097 {
5098 if (mips_debug)
5099 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
5100 float_argreg,
5101 phex (regval, MIPS64_REGSIZE));
5102 regcache_cooked_write_unsigned (regcache, float_argreg,
5103 regval);
5104 }
5105
5106 float_argreg++;
5107 argreg++;
5108 }
5109
5110 len -= partial_len;
5111 val += partial_len;
5112
5113 /* Compute the offset into the stack at which we will
5114 copy the next parameter.
5115
5116 In N32 (N64?), the stack_offset only needs to be
5117 adjusted when it has been used. */
5118
5119 if (stack_used_p)
5120 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
5121 }
5122 }
5123 if (mips_debug)
5124 fprintf_unfiltered (gdb_stdlog, "\n");
5125 }
5126
5127 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5128
5129 /* Return adjusted stack pointer. */
5130 return sp;
5131 }
5132
5133 static enum return_value_convention
5134 mips_n32n64_return_value (struct gdbarch *gdbarch, struct value *function,
5135 struct type *type, struct regcache *regcache,
5136 gdb_byte *readbuf, const gdb_byte *writebuf)
5137 {
5138 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5139
5140 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
5141
5142 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
5143 if needed), as appropriate for the type. Composite results (struct,
5144 union, or array) are returned in $2/$f0 and $3/$f2 according to the
5145 following rules:
5146
5147 * A struct with only one or two floating point fields is returned in $f0
5148 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
5149 case.
5150
5151 * Any other composite results of at most 128 bits are returned in
5152 $2 (first 64 bits) and $3 (remainder, if necessary).
5153
5154 * Larger composite results are handled by converting the function to a
5155 procedure with an implicit first parameter, which is a pointer to an area
5156 reserved by the caller to receive the result. [The o32-bit ABI requires
5157 that all composite results be handled by conversion to implicit first
5158 parameters. The MIPS/SGI Fortran implementation has always made a
5159 specific exception to return COMPLEX results in the floating point
5160 registers.] */
5161
5162 if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
5163 return RETURN_VALUE_STRUCT_CONVENTION;
5164 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5165 && TYPE_LENGTH (type) == 16
5166 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5167 {
5168 /* A 128-bit floating-point value fills both $f0 and $f2. The
5169 two registers are used in the same as memory order, so the
5170 eight bytes with the lower memory address are in $f0. */
5171 if (mips_debug)
5172 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
5173 mips_xfer_register (gdbarch, regcache,
5174 (gdbarch_num_regs (gdbarch)
5175 + mips_regnum (gdbarch)->fp0),
5176 8, gdbarch_byte_order (gdbarch),
5177 readbuf, writebuf, 0);
5178 mips_xfer_register (gdbarch, regcache,
5179 (gdbarch_num_regs (gdbarch)
5180 + mips_regnum (gdbarch)->fp0 + 2),
5181 8, gdbarch_byte_order (gdbarch),
5182 readbuf ? readbuf + 8 : readbuf,
5183 writebuf ? writebuf + 8 : writebuf, 0);
5184 return RETURN_VALUE_REGISTER_CONVENTION;
5185 }
5186 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5187 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5188 {
5189 /* A single or double floating-point value that fits in FP0. */
5190 if (mips_debug)
5191 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5192 mips_xfer_register (gdbarch, regcache,
5193 (gdbarch_num_regs (gdbarch)
5194 + mips_regnum (gdbarch)->fp0),
5195 TYPE_LENGTH (type),
5196 gdbarch_byte_order (gdbarch),
5197 readbuf, writebuf, 0);
5198 return RETURN_VALUE_REGISTER_CONVENTION;
5199 }
5200 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5201 && TYPE_NFIELDS (type) <= 2
5202 && TYPE_NFIELDS (type) >= 1
5203 && ((TYPE_NFIELDS (type) == 1
5204 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5205 == TYPE_CODE_FLT))
5206 || (TYPE_NFIELDS (type) == 2
5207 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5208 == TYPE_CODE_FLT)
5209 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
5210 == TYPE_CODE_FLT))))
5211 {
5212 /* A struct that contains one or two floats. Each value is part
5213 in the least significant part of their floating point
5214 register (or GPR, for soft float). */
5215 int regnum;
5216 int field;
5217 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
5218 ? mips_regnum (gdbarch)->fp0
5219 : MIPS_V0_REGNUM);
5220 field < TYPE_NFIELDS (type); field++, regnum += 2)
5221 {
5222 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5223 / TARGET_CHAR_BIT);
5224 if (mips_debug)
5225 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5226 offset);
5227 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
5228 {
5229 /* A 16-byte long double field goes in two consecutive
5230 registers. */
5231 mips_xfer_register (gdbarch, regcache,
5232 gdbarch_num_regs (gdbarch) + regnum,
5233 8,
5234 gdbarch_byte_order (gdbarch),
5235 readbuf, writebuf, offset);
5236 mips_xfer_register (gdbarch, regcache,
5237 gdbarch_num_regs (gdbarch) + regnum + 1,
5238 8,
5239 gdbarch_byte_order (gdbarch),
5240 readbuf, writebuf, offset + 8);
5241 }
5242 else
5243 mips_xfer_register (gdbarch, regcache,
5244 gdbarch_num_regs (gdbarch) + regnum,
5245 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5246 gdbarch_byte_order (gdbarch),
5247 readbuf, writebuf, offset);
5248 }
5249 return RETURN_VALUE_REGISTER_CONVENTION;
5250 }
5251 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5252 || TYPE_CODE (type) == TYPE_CODE_UNION
5253 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5254 {
5255 /* A composite type. Extract the left justified value,
5256 regardless of the byte order. I.e. DO NOT USE
5257 mips_xfer_lower. */
5258 int offset;
5259 int regnum;
5260 for (offset = 0, regnum = MIPS_V0_REGNUM;
5261 offset < TYPE_LENGTH (type);
5262 offset += register_size (gdbarch, regnum), regnum++)
5263 {
5264 int xfer = register_size (gdbarch, regnum);
5265 if (offset + xfer > TYPE_LENGTH (type))
5266 xfer = TYPE_LENGTH (type) - offset;
5267 if (mips_debug)
5268 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5269 offset, xfer, regnum);
5270 mips_xfer_register (gdbarch, regcache,
5271 gdbarch_num_regs (gdbarch) + regnum,
5272 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
5273 offset);
5274 }
5275 return RETURN_VALUE_REGISTER_CONVENTION;
5276 }
5277 else
5278 {
5279 /* A scalar extract each part but least-significant-byte
5280 justified. */
5281 int offset;
5282 int regnum;
5283 for (offset = 0, regnum = MIPS_V0_REGNUM;
5284 offset < TYPE_LENGTH (type);
5285 offset += register_size (gdbarch, regnum), regnum++)
5286 {
5287 int xfer = register_size (gdbarch, regnum);
5288 if (offset + xfer > TYPE_LENGTH (type))
5289 xfer = TYPE_LENGTH (type) - offset;
5290 if (mips_debug)
5291 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5292 offset, xfer, regnum);
5293 mips_xfer_register (gdbarch, regcache,
5294 gdbarch_num_regs (gdbarch) + regnum,
5295 xfer, gdbarch_byte_order (gdbarch),
5296 readbuf, writebuf, offset);
5297 }
5298 return RETURN_VALUE_REGISTER_CONVENTION;
5299 }
5300 }
5301
5302 /* Which registers to use for passing floating-point values between
5303 function calls, one of floating-point, general and both kinds of
5304 registers. O32 and O64 use different register kinds for standard
5305 MIPS and MIPS16 code; to make the handling of cases where we may
5306 not know what kind of code is being used (e.g. no debug information)
5307 easier we sometimes use both kinds. */
5308
5309 enum mips_fval_reg
5310 {
5311 mips_fval_fpr,
5312 mips_fval_gpr,
5313 mips_fval_both
5314 };
5315
5316 /* O32 ABI stuff. */
5317
5318 static CORE_ADDR
5319 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5320 struct regcache *regcache, CORE_ADDR bp_addr,
5321 int nargs, struct value **args, CORE_ADDR sp,
5322 int struct_return, CORE_ADDR struct_addr)
5323 {
5324 int argreg;
5325 int float_argreg;
5326 int argnum;
5327 int len = 0;
5328 int stack_offset = 0;
5329 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5330 CORE_ADDR func_addr = find_function_addr (function, NULL);
5331
5332 /* For shared libraries, "t9" needs to point at the function
5333 address. */
5334 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5335
5336 /* Set the return address register to point to the entry point of
5337 the program, where a breakpoint lies in wait. */
5338 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5339
5340 /* First ensure that the stack and structure return address (if any)
5341 are properly aligned. The stack has to be at least 64-bit
5342 aligned even on 32-bit machines, because doubles must be 64-bit
5343 aligned. For n32 and n64, stack frames need to be 128-bit
5344 aligned, so we round to this widest known alignment. */
5345
5346 sp = align_down (sp, 16);
5347 struct_addr = align_down (struct_addr, 16);
5348
5349 /* Now make space on the stack for the args. */
5350 for (argnum = 0; argnum < nargs; argnum++)
5351 {
5352 struct type *arg_type = check_typedef (value_type (args[argnum]));
5353
5354 /* Align to double-word if necessary. */
5355 if (mips_type_needs_double_align (arg_type))
5356 len = align_up (len, MIPS32_REGSIZE * 2);
5357 /* Allocate space on the stack. */
5358 len += align_up (TYPE_LENGTH (arg_type), MIPS32_REGSIZE);
5359 }
5360 sp -= align_up (len, 16);
5361
5362 if (mips_debug)
5363 fprintf_unfiltered (gdb_stdlog,
5364 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
5365 paddress (gdbarch, sp), (long) align_up (len, 16));
5366
5367 /* Initialize the integer and float register pointers. */
5368 argreg = MIPS_A0_REGNUM;
5369 float_argreg = mips_fpa0_regnum (gdbarch);
5370
5371 /* The struct_return pointer occupies the first parameter-passing reg. */
5372 if (struct_return)
5373 {
5374 if (mips_debug)
5375 fprintf_unfiltered (gdb_stdlog,
5376 "mips_o32_push_dummy_call: "
5377 "struct_return reg=%d %s\n",
5378 argreg, paddress (gdbarch, struct_addr));
5379 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5380 stack_offset += MIPS32_REGSIZE;
5381 }
5382
5383 /* Now load as many as possible of the first arguments into
5384 registers, and push the rest onto the stack. Loop thru args
5385 from first to last. */
5386 for (argnum = 0; argnum < nargs; argnum++)
5387 {
5388 const gdb_byte *val;
5389 struct value *arg = args[argnum];
5390 struct type *arg_type = check_typedef (value_type (arg));
5391 int len = TYPE_LENGTH (arg_type);
5392 enum type_code typecode = TYPE_CODE (arg_type);
5393
5394 if (mips_debug)
5395 fprintf_unfiltered (gdb_stdlog,
5396 "mips_o32_push_dummy_call: %d len=%d type=%d",
5397 argnum + 1, len, (int) typecode);
5398
5399 val = value_contents (arg);
5400
5401 /* 32-bit ABIs always start floating point arguments in an
5402 even-numbered floating point register. Round the FP register
5403 up before the check to see if there are any FP registers
5404 left. O32 targets also pass the FP in the integer registers
5405 so also round up normal registers. */
5406 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5407 {
5408 if ((float_argreg & 1))
5409 float_argreg++;
5410 }
5411
5412 /* Floating point arguments passed in registers have to be
5413 treated specially. On 32-bit architectures, doubles are
5414 passed in register pairs; the even FP register gets the
5415 low word, and the odd FP register gets the high word.
5416 On O32, the first two floating point arguments are also
5417 copied to general registers, following their memory order,
5418 because MIPS16 functions don't use float registers for
5419 arguments. This duplication of arguments in general
5420 registers can't hurt non-MIPS16 functions, because those
5421 registers are normally skipped. */
5422
5423 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5424 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5425 {
5426 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
5427 {
5428 int freg_offset = gdbarch_byte_order (gdbarch)
5429 == BFD_ENDIAN_BIG ? 1 : 0;
5430 unsigned long regval;
5431
5432 /* First word. */
5433 regval = extract_unsigned_integer (val, 4, byte_order);
5434 if (mips_debug)
5435 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5436 float_argreg + freg_offset,
5437 phex (regval, 4));
5438 regcache_cooked_write_unsigned (regcache,
5439 float_argreg++ + freg_offset,
5440 regval);
5441 if (mips_debug)
5442 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5443 argreg, phex (regval, 4));
5444 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5445
5446 /* Second word. */
5447 regval = extract_unsigned_integer (val + 4, 4, byte_order);
5448 if (mips_debug)
5449 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5450 float_argreg - freg_offset,
5451 phex (regval, 4));
5452 regcache_cooked_write_unsigned (regcache,
5453 float_argreg++ - freg_offset,
5454 regval);
5455 if (mips_debug)
5456 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5457 argreg, phex (regval, 4));
5458 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5459 }
5460 else
5461 {
5462 /* This is a floating point value that fits entirely
5463 in a single register. */
5464 /* On 32 bit ABI's the float_argreg is further adjusted
5465 above to ensure that it is even register aligned. */
5466 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5467 if (mips_debug)
5468 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5469 float_argreg, phex (regval, len));
5470 regcache_cooked_write_unsigned (regcache,
5471 float_argreg++, regval);
5472 /* Although two FP registers are reserved for each
5473 argument, only one corresponding integer register is
5474 reserved. */
5475 if (mips_debug)
5476 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5477 argreg, phex (regval, len));
5478 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5479 }
5480 /* Reserve space for the FP register. */
5481 stack_offset += align_up (len, MIPS32_REGSIZE);
5482 }
5483 else
5484 {
5485 /* Copy the argument to general registers or the stack in
5486 register-sized pieces. Large arguments are split between
5487 registers and stack. */
5488 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
5489 are treated specially: Irix cc passes
5490 them in registers where gcc sometimes puts them on the
5491 stack. For maximum compatibility, we will put them in
5492 both places. */
5493 int odd_sized_struct = (len > MIPS32_REGSIZE
5494 && len % MIPS32_REGSIZE != 0);
5495 /* Structures should be aligned to eight bytes (even arg registers)
5496 on MIPS_ABI_O32, if their first member has double precision. */
5497 if (mips_type_needs_double_align (arg_type))
5498 {
5499 if ((argreg & 1))
5500 {
5501 argreg++;
5502 stack_offset += MIPS32_REGSIZE;
5503 }
5504 }
5505 while (len > 0)
5506 {
5507 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
5508
5509 if (mips_debug)
5510 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5511 partial_len);
5512
5513 /* Write this portion of the argument to the stack. */
5514 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5515 || odd_sized_struct)
5516 {
5517 /* Should shorter than int integer values be
5518 promoted to int before being stored? */
5519 int longword_offset = 0;
5520 CORE_ADDR addr;
5521
5522 if (mips_debug)
5523 {
5524 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5525 paddress (gdbarch, stack_offset));
5526 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5527 paddress (gdbarch, longword_offset));
5528 }
5529
5530 addr = sp + stack_offset + longword_offset;
5531
5532 if (mips_debug)
5533 {
5534 int i;
5535 fprintf_unfiltered (gdb_stdlog, " @%s ",
5536 paddress (gdbarch, addr));
5537 for (i = 0; i < partial_len; i++)
5538 {
5539 fprintf_unfiltered (gdb_stdlog, "%02x",
5540 val[i] & 0xff);
5541 }
5542 }
5543 write_memory (addr, val, partial_len);
5544 }
5545
5546 /* Note!!! This is NOT an else clause. Odd sized
5547 structs may go thru BOTH paths. */
5548 /* Write this portion of the argument to a general
5549 purpose register. */
5550 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5551 {
5552 LONGEST regval = extract_signed_integer (val, partial_len,
5553 byte_order);
5554 /* Value may need to be sign extended, because
5555 mips_isa_regsize() != mips_abi_regsize(). */
5556
5557 /* A non-floating-point argument being passed in a
5558 general register. If a struct or union, and if
5559 the remaining length is smaller than the register
5560 size, we have to adjust the register value on
5561 big endian targets.
5562
5563 It does not seem to be necessary to do the
5564 same for integral types.
5565
5566 Also don't do this adjustment on O64 binaries.
5567
5568 cagney/2001-07-23: gdb/179: Also, GCC, when
5569 outputting LE O32 with sizeof (struct) <
5570 mips_abi_regsize(), generates a left shift
5571 as part of storing the argument in a register
5572 (the left shift isn't generated when
5573 sizeof (struct) >= mips_abi_regsize()). Since
5574 it is quite possible that this is GCC
5575 contradicting the LE/O32 ABI, GDB has not been
5576 adjusted to accommodate this. Either someone
5577 needs to demonstrate that the LE/O32 ABI
5578 specifies such a left shift OR this new ABI gets
5579 identified as such and GDB gets tweaked
5580 accordingly. */
5581
5582 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5583 && partial_len < MIPS32_REGSIZE
5584 && (typecode == TYPE_CODE_STRUCT
5585 || typecode == TYPE_CODE_UNION))
5586 regval <<= ((MIPS32_REGSIZE - partial_len)
5587 * TARGET_CHAR_BIT);
5588
5589 if (mips_debug)
5590 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5591 argreg,
5592 phex (regval, MIPS32_REGSIZE));
5593 regcache_cooked_write_unsigned (regcache, argreg, regval);
5594 argreg++;
5595
5596 /* Prevent subsequent floating point arguments from
5597 being passed in floating point registers. */
5598 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
5599 }
5600
5601 len -= partial_len;
5602 val += partial_len;
5603
5604 /* Compute the offset into the stack at which we will
5605 copy the next parameter.
5606
5607 In older ABIs, the caller reserved space for
5608 registers that contained arguments. This was loosely
5609 refered to as their "home". Consequently, space is
5610 always allocated. */
5611
5612 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
5613 }
5614 }
5615 if (mips_debug)
5616 fprintf_unfiltered (gdb_stdlog, "\n");
5617 }
5618
5619 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5620
5621 /* Return adjusted stack pointer. */
5622 return sp;
5623 }
5624
5625 static enum return_value_convention
5626 mips_o32_return_value (struct gdbarch *gdbarch, struct value *function,
5627 struct type *type, struct regcache *regcache,
5628 gdb_byte *readbuf, const gdb_byte *writebuf)
5629 {
5630 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
5631 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
5632 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5633 enum mips_fval_reg fval_reg;
5634
5635 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
5636 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5637 || TYPE_CODE (type) == TYPE_CODE_UNION
5638 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5639 return RETURN_VALUE_STRUCT_CONVENTION;
5640 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5641 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5642 {
5643 /* A single-precision floating-point value. If reading in or copying,
5644 then we get it from/put it to FP0 for standard MIPS code or GPR2
5645 for MIPS16 code. If writing out only, then we put it to both FP0
5646 and GPR2. We do not support reading in with no function known, if
5647 this safety check ever triggers, then we'll have to try harder. */
5648 gdb_assert (function || !readbuf);
5649 if (mips_debug)
5650 switch (fval_reg)
5651 {
5652 case mips_fval_fpr:
5653 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5654 break;
5655 case mips_fval_gpr:
5656 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5657 break;
5658 case mips_fval_both:
5659 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5660 break;
5661 }
5662 if (fval_reg != mips_fval_gpr)
5663 mips_xfer_register (gdbarch, regcache,
5664 (gdbarch_num_regs (gdbarch)
5665 + mips_regnum (gdbarch)->fp0),
5666 TYPE_LENGTH (type),
5667 gdbarch_byte_order (gdbarch),
5668 readbuf, writebuf, 0);
5669 if (fval_reg != mips_fval_fpr)
5670 mips_xfer_register (gdbarch, regcache,
5671 gdbarch_num_regs (gdbarch) + 2,
5672 TYPE_LENGTH (type),
5673 gdbarch_byte_order (gdbarch),
5674 readbuf, writebuf, 0);
5675 return RETURN_VALUE_REGISTER_CONVENTION;
5676 }
5677 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5678 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5679 {
5680 /* A double-precision floating-point value. If reading in or copying,
5681 then we get it from/put it to FP1 and FP0 for standard MIPS code or
5682 GPR2 and GPR3 for MIPS16 code. If writing out only, then we put it
5683 to both FP1/FP0 and GPR2/GPR3. We do not support reading in with
5684 no function known, if this safety check ever triggers, then we'll
5685 have to try harder. */
5686 gdb_assert (function || !readbuf);
5687 if (mips_debug)
5688 switch (fval_reg)
5689 {
5690 case mips_fval_fpr:
5691 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
5692 break;
5693 case mips_fval_gpr:
5694 fprintf_unfiltered (gdb_stderr, "Return float in $2/$3\n");
5695 break;
5696 case mips_fval_both:
5697 fprintf_unfiltered (gdb_stderr,
5698 "Return float in $fp1/$fp0 and $2/$3\n");
5699 break;
5700 }
5701 if (fval_reg != mips_fval_gpr)
5702 {
5703 /* The most significant part goes in FP1, and the least significant
5704 in FP0. */
5705 switch (gdbarch_byte_order (gdbarch))
5706 {
5707 case BFD_ENDIAN_LITTLE:
5708 mips_xfer_register (gdbarch, regcache,
5709 (gdbarch_num_regs (gdbarch)
5710 + mips_regnum (gdbarch)->fp0 + 0),
5711 4, gdbarch_byte_order (gdbarch),
5712 readbuf, writebuf, 0);
5713 mips_xfer_register (gdbarch, regcache,
5714 (gdbarch_num_regs (gdbarch)
5715 + mips_regnum (gdbarch)->fp0 + 1),
5716 4, gdbarch_byte_order (gdbarch),
5717 readbuf, writebuf, 4);
5718 break;
5719 case BFD_ENDIAN_BIG:
5720 mips_xfer_register (gdbarch, regcache,
5721 (gdbarch_num_regs (gdbarch)
5722 + mips_regnum (gdbarch)->fp0 + 1),
5723 4, gdbarch_byte_order (gdbarch),
5724 readbuf, writebuf, 0);
5725 mips_xfer_register (gdbarch, regcache,
5726 (gdbarch_num_regs (gdbarch)
5727 + mips_regnum (gdbarch)->fp0 + 0),
5728 4, gdbarch_byte_order (gdbarch),
5729 readbuf, writebuf, 4);
5730 break;
5731 default:
5732 internal_error (__FILE__, __LINE__, _("bad switch"));
5733 }
5734 }
5735 if (fval_reg != mips_fval_fpr)
5736 {
5737 /* The two 32-bit parts are always placed in GPR2 and GPR3
5738 following these registers' memory order. */
5739 mips_xfer_register (gdbarch, regcache,
5740 gdbarch_num_regs (gdbarch) + 2,
5741 4, gdbarch_byte_order (gdbarch),
5742 readbuf, writebuf, 0);
5743 mips_xfer_register (gdbarch, regcache,
5744 gdbarch_num_regs (gdbarch) + 3,
5745 4, gdbarch_byte_order (gdbarch),
5746 readbuf, writebuf, 4);
5747 }
5748 return RETURN_VALUE_REGISTER_CONVENTION;
5749 }
5750 #if 0
5751 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5752 && TYPE_NFIELDS (type) <= 2
5753 && TYPE_NFIELDS (type) >= 1
5754 && ((TYPE_NFIELDS (type) == 1
5755 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5756 == TYPE_CODE_FLT))
5757 || (TYPE_NFIELDS (type) == 2
5758 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5759 == TYPE_CODE_FLT)
5760 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
5761 == TYPE_CODE_FLT)))
5762 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5763 {
5764 /* A struct that contains one or two floats. Each value is part
5765 in the least significant part of their floating point
5766 register.. */
5767 int regnum;
5768 int field;
5769 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
5770 field < TYPE_NFIELDS (type); field++, regnum += 2)
5771 {
5772 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5773 / TARGET_CHAR_BIT);
5774 if (mips_debug)
5775 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5776 offset);
5777 mips_xfer_register (gdbarch, regcache,
5778 gdbarch_num_regs (gdbarch) + regnum,
5779 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5780 gdbarch_byte_order (gdbarch),
5781 readbuf, writebuf, offset);
5782 }
5783 return RETURN_VALUE_REGISTER_CONVENTION;
5784 }
5785 #endif
5786 #if 0
5787 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5788 || TYPE_CODE (type) == TYPE_CODE_UNION)
5789 {
5790 /* A structure or union. Extract the left justified value,
5791 regardless of the byte order. I.e. DO NOT USE
5792 mips_xfer_lower. */
5793 int offset;
5794 int regnum;
5795 for (offset = 0, regnum = MIPS_V0_REGNUM;
5796 offset < TYPE_LENGTH (type);
5797 offset += register_size (gdbarch, regnum), regnum++)
5798 {
5799 int xfer = register_size (gdbarch, regnum);
5800 if (offset + xfer > TYPE_LENGTH (type))
5801 xfer = TYPE_LENGTH (type) - offset;
5802 if (mips_debug)
5803 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5804 offset, xfer, regnum);
5805 mips_xfer_register (gdbarch, regcache,
5806 gdbarch_num_regs (gdbarch) + regnum, xfer,
5807 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
5808 }
5809 return RETURN_VALUE_REGISTER_CONVENTION;
5810 }
5811 #endif
5812 else
5813 {
5814 /* A scalar extract each part but least-significant-byte
5815 justified. o32 thinks registers are 4 byte, regardless of
5816 the ISA. */
5817 int offset;
5818 int regnum;
5819 for (offset = 0, regnum = MIPS_V0_REGNUM;
5820 offset < TYPE_LENGTH (type);
5821 offset += MIPS32_REGSIZE, regnum++)
5822 {
5823 int xfer = MIPS32_REGSIZE;
5824 if (offset + xfer > TYPE_LENGTH (type))
5825 xfer = TYPE_LENGTH (type) - offset;
5826 if (mips_debug)
5827 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5828 offset, xfer, regnum);
5829 mips_xfer_register (gdbarch, regcache,
5830 gdbarch_num_regs (gdbarch) + regnum, xfer,
5831 gdbarch_byte_order (gdbarch),
5832 readbuf, writebuf, offset);
5833 }
5834 return RETURN_VALUE_REGISTER_CONVENTION;
5835 }
5836 }
5837
5838 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
5839 ABI. */
5840
5841 static CORE_ADDR
5842 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5843 struct regcache *regcache, CORE_ADDR bp_addr,
5844 int nargs,
5845 struct value **args, CORE_ADDR sp,
5846 int struct_return, CORE_ADDR struct_addr)
5847 {
5848 int argreg;
5849 int float_argreg;
5850 int argnum;
5851 int len = 0;
5852 int stack_offset = 0;
5853 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5854 CORE_ADDR func_addr = find_function_addr (function, NULL);
5855
5856 /* For shared libraries, "t9" needs to point at the function
5857 address. */
5858 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5859
5860 /* Set the return address register to point to the entry point of
5861 the program, where a breakpoint lies in wait. */
5862 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5863
5864 /* First ensure that the stack and structure return address (if any)
5865 are properly aligned. The stack has to be at least 64-bit
5866 aligned even on 32-bit machines, because doubles must be 64-bit
5867 aligned. For n32 and n64, stack frames need to be 128-bit
5868 aligned, so we round to this widest known alignment. */
5869
5870 sp = align_down (sp, 16);
5871 struct_addr = align_down (struct_addr, 16);
5872
5873 /* Now make space on the stack for the args. */
5874 for (argnum = 0; argnum < nargs; argnum++)
5875 {
5876 struct type *arg_type = check_typedef (value_type (args[argnum]));
5877
5878 /* Allocate space on the stack. */
5879 len += align_up (TYPE_LENGTH (arg_type), MIPS64_REGSIZE);
5880 }
5881 sp -= align_up (len, 16);
5882
5883 if (mips_debug)
5884 fprintf_unfiltered (gdb_stdlog,
5885 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
5886 paddress (gdbarch, sp), (long) align_up (len, 16));
5887
5888 /* Initialize the integer and float register pointers. */
5889 argreg = MIPS_A0_REGNUM;
5890 float_argreg = mips_fpa0_regnum (gdbarch);
5891
5892 /* The struct_return pointer occupies the first parameter-passing reg. */
5893 if (struct_return)
5894 {
5895 if (mips_debug)
5896 fprintf_unfiltered (gdb_stdlog,
5897 "mips_o64_push_dummy_call: "
5898 "struct_return reg=%d %s\n",
5899 argreg, paddress (gdbarch, struct_addr));
5900 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5901 stack_offset += MIPS64_REGSIZE;
5902 }
5903
5904 /* Now load as many as possible of the first arguments into
5905 registers, and push the rest onto the stack. Loop thru args
5906 from first to last. */
5907 for (argnum = 0; argnum < nargs; argnum++)
5908 {
5909 const gdb_byte *val;
5910 struct value *arg = args[argnum];
5911 struct type *arg_type = check_typedef (value_type (arg));
5912 int len = TYPE_LENGTH (arg_type);
5913 enum type_code typecode = TYPE_CODE (arg_type);
5914
5915 if (mips_debug)
5916 fprintf_unfiltered (gdb_stdlog,
5917 "mips_o64_push_dummy_call: %d len=%d type=%d",
5918 argnum + 1, len, (int) typecode);
5919
5920 val = value_contents (arg);
5921
5922 /* Floating point arguments passed in registers have to be
5923 treated specially. On 32-bit architectures, doubles are
5924 passed in register pairs; the even FP register gets the
5925 low word, and the odd FP register gets the high word.
5926 On O64, the first two floating point arguments are also
5927 copied to general registers, because MIPS16 functions
5928 don't use float registers for arguments. This duplication
5929 of arguments in general registers can't hurt non-MIPS16
5930 functions because those registers are normally skipped. */
5931
5932 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5933 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5934 {
5935 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5936 if (mips_debug)
5937 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5938 float_argreg, phex (regval, len));
5939 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
5940 if (mips_debug)
5941 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5942 argreg, phex (regval, len));
5943 regcache_cooked_write_unsigned (regcache, argreg, regval);
5944 argreg++;
5945 /* Reserve space for the FP register. */
5946 stack_offset += align_up (len, MIPS64_REGSIZE);
5947 }
5948 else
5949 {
5950 /* Copy the argument to general registers or the stack in
5951 register-sized pieces. Large arguments are split between
5952 registers and stack. */
5953 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
5954 are treated specially: Irix cc passes them in registers
5955 where gcc sometimes puts them on the stack. For maximum
5956 compatibility, we will put them in both places. */
5957 int odd_sized_struct = (len > MIPS64_REGSIZE
5958 && len % MIPS64_REGSIZE != 0);
5959 while (len > 0)
5960 {
5961 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
5962
5963 if (mips_debug)
5964 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5965 partial_len);
5966
5967 /* Write this portion of the argument to the stack. */
5968 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5969 || odd_sized_struct)
5970 {
5971 /* Should shorter than int integer values be
5972 promoted to int before being stored? */
5973 int longword_offset = 0;
5974 CORE_ADDR addr;
5975 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5976 {
5977 if ((typecode == TYPE_CODE_INT
5978 || typecode == TYPE_CODE_PTR
5979 || typecode == TYPE_CODE_FLT)
5980 && len <= 4)
5981 longword_offset = MIPS64_REGSIZE - len;
5982 }
5983
5984 if (mips_debug)
5985 {
5986 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5987 paddress (gdbarch, stack_offset));
5988 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5989 paddress (gdbarch, longword_offset));
5990 }
5991
5992 addr = sp + stack_offset + longword_offset;
5993
5994 if (mips_debug)
5995 {
5996 int i;
5997 fprintf_unfiltered (gdb_stdlog, " @%s ",
5998 paddress (gdbarch, addr));
5999 for (i = 0; i < partial_len; i++)
6000 {
6001 fprintf_unfiltered (gdb_stdlog, "%02x",
6002 val[i] & 0xff);
6003 }
6004 }
6005 write_memory (addr, val, partial_len);
6006 }
6007
6008 /* Note!!! This is NOT an else clause. Odd sized
6009 structs may go thru BOTH paths. */
6010 /* Write this portion of the argument to a general
6011 purpose register. */
6012 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
6013 {
6014 LONGEST regval = extract_signed_integer (val, partial_len,
6015 byte_order);
6016 /* Value may need to be sign extended, because
6017 mips_isa_regsize() != mips_abi_regsize(). */
6018
6019 /* A non-floating-point argument being passed in a
6020 general register. If a struct or union, and if
6021 the remaining length is smaller than the register
6022 size, we have to adjust the register value on
6023 big endian targets.
6024
6025 It does not seem to be necessary to do the
6026 same for integral types. */
6027
6028 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
6029 && partial_len < MIPS64_REGSIZE
6030 && (typecode == TYPE_CODE_STRUCT
6031 || typecode == TYPE_CODE_UNION))
6032 regval <<= ((MIPS64_REGSIZE - partial_len)
6033 * TARGET_CHAR_BIT);
6034
6035 if (mips_debug)
6036 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
6037 argreg,
6038 phex (regval, MIPS64_REGSIZE));
6039 regcache_cooked_write_unsigned (regcache, argreg, regval);
6040 argreg++;
6041
6042 /* Prevent subsequent floating point arguments from
6043 being passed in floating point registers. */
6044 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
6045 }
6046
6047 len -= partial_len;
6048 val += partial_len;
6049
6050 /* Compute the offset into the stack at which we will
6051 copy the next parameter.
6052
6053 In older ABIs, the caller reserved space for
6054 registers that contained arguments. This was loosely
6055 refered to as their "home". Consequently, space is
6056 always allocated. */
6057
6058 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
6059 }
6060 }
6061 if (mips_debug)
6062 fprintf_unfiltered (gdb_stdlog, "\n");
6063 }
6064
6065 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
6066
6067 /* Return adjusted stack pointer. */
6068 return sp;
6069 }
6070
6071 static enum return_value_convention
6072 mips_o64_return_value (struct gdbarch *gdbarch, struct value *function,
6073 struct type *type, struct regcache *regcache,
6074 gdb_byte *readbuf, const gdb_byte *writebuf)
6075 {
6076 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
6077 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
6078 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6079 enum mips_fval_reg fval_reg;
6080
6081 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
6082 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
6083 || TYPE_CODE (type) == TYPE_CODE_UNION
6084 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6085 return RETURN_VALUE_STRUCT_CONVENTION;
6086 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
6087 {
6088 /* A floating-point value. If reading in or copying, then we get it
6089 from/put it to FP0 for standard MIPS code or GPR2 for MIPS16 code.
6090 If writing out only, then we put it to both FP0 and GPR2. We do
6091 not support reading in with no function known, if this safety
6092 check ever triggers, then we'll have to try harder. */
6093 gdb_assert (function || !readbuf);
6094 if (mips_debug)
6095 switch (fval_reg)
6096 {
6097 case mips_fval_fpr:
6098 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
6099 break;
6100 case mips_fval_gpr:
6101 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
6102 break;
6103 case mips_fval_both:
6104 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
6105 break;
6106 }
6107 if (fval_reg != mips_fval_gpr)
6108 mips_xfer_register (gdbarch, regcache,
6109 (gdbarch_num_regs (gdbarch)
6110 + mips_regnum (gdbarch)->fp0),
6111 TYPE_LENGTH (type),
6112 gdbarch_byte_order (gdbarch),
6113 readbuf, writebuf, 0);
6114 if (fval_reg != mips_fval_fpr)
6115 mips_xfer_register (gdbarch, regcache,
6116 gdbarch_num_regs (gdbarch) + 2,
6117 TYPE_LENGTH (type),
6118 gdbarch_byte_order (gdbarch),
6119 readbuf, writebuf, 0);
6120 return RETURN_VALUE_REGISTER_CONVENTION;
6121 }
6122 else
6123 {
6124 /* A scalar extract each part but least-significant-byte
6125 justified. */
6126 int offset;
6127 int regnum;
6128 for (offset = 0, regnum = MIPS_V0_REGNUM;
6129 offset < TYPE_LENGTH (type);
6130 offset += MIPS64_REGSIZE, regnum++)
6131 {
6132 int xfer = MIPS64_REGSIZE;
6133 if (offset + xfer > TYPE_LENGTH (type))
6134 xfer = TYPE_LENGTH (type) - offset;
6135 if (mips_debug)
6136 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
6137 offset, xfer, regnum);
6138 mips_xfer_register (gdbarch, regcache,
6139 gdbarch_num_regs (gdbarch) + regnum,
6140 xfer, gdbarch_byte_order (gdbarch),
6141 readbuf, writebuf, offset);
6142 }
6143 return RETURN_VALUE_REGISTER_CONVENTION;
6144 }
6145 }
6146
6147 /* Floating point register management.
6148
6149 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
6150 64bit operations, these early MIPS cpus treat fp register pairs
6151 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
6152 registers and offer a compatibility mode that emulates the MIPS2 fp
6153 model. When operating in MIPS2 fp compat mode, later cpu's split
6154 double precision floats into two 32-bit chunks and store them in
6155 consecutive fp regs. To display 64-bit floats stored in this
6156 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
6157 Throw in user-configurable endianness and you have a real mess.
6158
6159 The way this works is:
6160 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
6161 double-precision value will be split across two logical registers.
6162 The lower-numbered logical register will hold the low-order bits,
6163 regardless of the processor's endianness.
6164 - If we are on a 64-bit processor, and we are looking for a
6165 single-precision value, it will be in the low ordered bits
6166 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
6167 save slot in memory.
6168 - If we are in 64-bit mode, everything is straightforward.
6169
6170 Note that this code only deals with "live" registers at the top of the
6171 stack. We will attempt to deal with saved registers later, when
6172 the raw/cooked register interface is in place. (We need a general
6173 interface that can deal with dynamic saved register sizes -- fp
6174 regs could be 32 bits wide in one frame and 64 on the frame above
6175 and below). */
6176
6177 /* Copy a 32-bit single-precision value from the current frame
6178 into rare_buffer. */
6179
6180 static void
6181 mips_read_fp_register_single (struct frame_info *frame, int regno,
6182 gdb_byte *rare_buffer)
6183 {
6184 struct gdbarch *gdbarch = get_frame_arch (frame);
6185 int raw_size = register_size (gdbarch, regno);
6186 gdb_byte *raw_buffer = (gdb_byte *) alloca (raw_size);
6187
6188 if (!deprecated_frame_register_read (frame, regno, raw_buffer))
6189 error (_("can't read register %d (%s)"),
6190 regno, gdbarch_register_name (gdbarch, regno));
6191 if (raw_size == 8)
6192 {
6193 /* We have a 64-bit value for this register. Find the low-order
6194 32 bits. */
6195 int offset;
6196
6197 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6198 offset = 4;
6199 else
6200 offset = 0;
6201
6202 memcpy (rare_buffer, raw_buffer + offset, 4);
6203 }
6204 else
6205 {
6206 memcpy (rare_buffer, raw_buffer, 4);
6207 }
6208 }
6209
6210 /* Copy a 64-bit double-precision value from the current frame into
6211 rare_buffer. This may include getting half of it from the next
6212 register. */
6213
6214 static void
6215 mips_read_fp_register_double (struct frame_info *frame, int regno,
6216 gdb_byte *rare_buffer)
6217 {
6218 struct gdbarch *gdbarch = get_frame_arch (frame);
6219 int raw_size = register_size (gdbarch, regno);
6220
6221 if (raw_size == 8 && !mips2_fp_compat (frame))
6222 {
6223 /* We have a 64-bit value for this register, and we should use
6224 all 64 bits. */
6225 if (!deprecated_frame_register_read (frame, regno, rare_buffer))
6226 error (_("can't read register %d (%s)"),
6227 regno, gdbarch_register_name (gdbarch, regno));
6228 }
6229 else
6230 {
6231 int rawnum = regno % gdbarch_num_regs (gdbarch);
6232
6233 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
6234 internal_error (__FILE__, __LINE__,
6235 _("mips_read_fp_register_double: bad access to "
6236 "odd-numbered FP register"));
6237
6238 /* mips_read_fp_register_single will find the correct 32 bits from
6239 each register. */
6240 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6241 {
6242 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
6243 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
6244 }
6245 else
6246 {
6247 mips_read_fp_register_single (frame, regno, rare_buffer);
6248 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
6249 }
6250 }
6251 }
6252
6253 static void
6254 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
6255 int regnum)
6256 { /* Do values for FP (float) regs. */
6257 struct gdbarch *gdbarch = get_frame_arch (frame);
6258 gdb_byte *raw_buffer;
6259 std::string flt_str, dbl_str;
6260
6261 const struct floatformat *flt_fmt
6262 = floatformat_from_type (builtin_type (gdbarch)->builtin_float);
6263 const struct floatformat *dbl_fmt
6264 = floatformat_from_type (builtin_type (gdbarch)->builtin_double);
6265
6266 raw_buffer
6267 = ((gdb_byte *)
6268 alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0)));
6269
6270 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
6271 fprintf_filtered (file, "%*s",
6272 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
6273 "");
6274
6275 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
6276 {
6277 struct value_print_options opts;
6278
6279 /* 4-byte registers: Print hex and floating. Also print even
6280 numbered registers as doubles. */
6281 mips_read_fp_register_single (frame, regnum, raw_buffer);
6282 flt_str = floatformat_to_string (flt_fmt, raw_buffer, "%-17.9g");
6283
6284 get_formatted_print_options (&opts, 'x');
6285 print_scalar_formatted (raw_buffer,
6286 builtin_type (gdbarch)->builtin_uint32,
6287 &opts, 'w', file);
6288
6289 fprintf_filtered (file, " flt: %s", flt_str.c_str ());
6290
6291 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
6292 {
6293 mips_read_fp_register_double (frame, regnum, raw_buffer);
6294 dbl_str = floatformat_to_string (dbl_fmt, raw_buffer, "%-24.17g");
6295
6296 fprintf_filtered (file, " dbl: %s", dbl_str.c_str ());
6297 }
6298 }
6299 else
6300 {
6301 struct value_print_options opts;
6302
6303 /* Eight byte registers: print each one as hex, float and double. */
6304 mips_read_fp_register_single (frame, regnum, raw_buffer);
6305 flt_str = floatformat_to_string (flt_fmt, raw_buffer, "%-17.9g");
6306
6307 mips_read_fp_register_double (frame, regnum, raw_buffer);
6308 dbl_str = floatformat_to_string (dbl_fmt, raw_buffer, "%-24.17g");
6309
6310 get_formatted_print_options (&opts, 'x');
6311 print_scalar_formatted (raw_buffer,
6312 builtin_type (gdbarch)->builtin_uint64,
6313 &opts, 'g', file);
6314
6315 fprintf_filtered (file, " flt: %s", flt_str.c_str ());
6316 fprintf_filtered (file, " dbl: %s", dbl_str.c_str ());
6317 }
6318 }
6319
6320 static void
6321 mips_print_register (struct ui_file *file, struct frame_info *frame,
6322 int regnum)
6323 {
6324 struct gdbarch *gdbarch = get_frame_arch (frame);
6325 struct value_print_options opts;
6326 struct value *val;
6327
6328 if (mips_float_register_p (gdbarch, regnum))
6329 {
6330 mips_print_fp_register (file, frame, regnum);
6331 return;
6332 }
6333
6334 val = get_frame_register_value (frame, regnum);
6335
6336 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
6337
6338 /* The problem with printing numeric register names (r26, etc.) is that
6339 the user can't use them on input. Probably the best solution is to
6340 fix it so that either the numeric or the funky (a2, etc.) names
6341 are accepted on input. */
6342 if (regnum < MIPS_NUMREGS)
6343 fprintf_filtered (file, "(r%d): ", regnum);
6344 else
6345 fprintf_filtered (file, ": ");
6346
6347 get_formatted_print_options (&opts, 'x');
6348 val_print_scalar_formatted (value_type (val),
6349 value_embedded_offset (val),
6350 val,
6351 &opts, 0, file);
6352 }
6353
6354 /* Print IEEE exception condition bits in FLAGS. */
6355
6356 static void
6357 print_fpu_flags (struct ui_file *file, int flags)
6358 {
6359 if (flags & (1 << 0))
6360 fputs_filtered (" inexact", file);
6361 if (flags & (1 << 1))
6362 fputs_filtered (" uflow", file);
6363 if (flags & (1 << 2))
6364 fputs_filtered (" oflow", file);
6365 if (flags & (1 << 3))
6366 fputs_filtered (" div0", file);
6367 if (flags & (1 << 4))
6368 fputs_filtered (" inval", file);
6369 if (flags & (1 << 5))
6370 fputs_filtered (" unimp", file);
6371 fputc_filtered ('\n', file);
6372 }
6373
6374 /* Print interesting information about the floating point processor
6375 (if present) or emulator. */
6376
6377 static void
6378 mips_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
6379 struct frame_info *frame, const char *args)
6380 {
6381 int fcsr = mips_regnum (gdbarch)->fp_control_status;
6382 enum mips_fpu_type type = MIPS_FPU_TYPE (gdbarch);
6383 ULONGEST fcs = 0;
6384 int i;
6385
6386 if (fcsr == -1 || !read_frame_register_unsigned (frame, fcsr, &fcs))
6387 type = MIPS_FPU_NONE;
6388
6389 fprintf_filtered (file, "fpu type: %s\n",
6390 type == MIPS_FPU_DOUBLE ? "double-precision"
6391 : type == MIPS_FPU_SINGLE ? "single-precision"
6392 : "none / unused");
6393
6394 if (type == MIPS_FPU_NONE)
6395 return;
6396
6397 fprintf_filtered (file, "reg size: %d bits\n",
6398 register_size (gdbarch, mips_regnum (gdbarch)->fp0) * 8);
6399
6400 fputs_filtered ("cond :", file);
6401 if (fcs & (1 << 23))
6402 fputs_filtered (" 0", file);
6403 for (i = 1; i <= 7; i++)
6404 if (fcs & (1 << (24 + i)))
6405 fprintf_filtered (file, " %d", i);
6406 fputc_filtered ('\n', file);
6407
6408 fputs_filtered ("cause :", file);
6409 print_fpu_flags (file, (fcs >> 12) & 0x3f);
6410 fputs ("mask :", stdout);
6411 print_fpu_flags (file, (fcs >> 7) & 0x1f);
6412 fputs ("flags :", stdout);
6413 print_fpu_flags (file, (fcs >> 2) & 0x1f);
6414
6415 fputs_filtered ("rounding: ", file);
6416 switch (fcs & 3)
6417 {
6418 case 0: fputs_filtered ("nearest\n", file); break;
6419 case 1: fputs_filtered ("zero\n", file); break;
6420 case 2: fputs_filtered ("+inf\n", file); break;
6421 case 3: fputs_filtered ("-inf\n", file); break;
6422 }
6423
6424 fputs_filtered ("flush :", file);
6425 if (fcs & (1 << 21))
6426 fputs_filtered (" nearest", file);
6427 if (fcs & (1 << 22))
6428 fputs_filtered (" override", file);
6429 if (fcs & (1 << 24))
6430 fputs_filtered (" zero", file);
6431 if ((fcs & (0xb << 21)) == 0)
6432 fputs_filtered (" no", file);
6433 fputc_filtered ('\n', file);
6434
6435 fprintf_filtered (file, "nan2008 : %s\n", fcs & (1 << 18) ? "yes" : "no");
6436 fprintf_filtered (file, "abs2008 : %s\n", fcs & (1 << 19) ? "yes" : "no");
6437 fputc_filtered ('\n', file);
6438
6439 default_print_float_info (gdbarch, file, frame, args);
6440 }
6441
6442 /* Replacement for generic do_registers_info.
6443 Print regs in pretty columns. */
6444
6445 static int
6446 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
6447 int regnum)
6448 {
6449 fprintf_filtered (file, " ");
6450 mips_print_fp_register (file, frame, regnum);
6451 fprintf_filtered (file, "\n");
6452 return regnum + 1;
6453 }
6454
6455
6456 /* Print a row's worth of GP (int) registers, with name labels above. */
6457
6458 static int
6459 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
6460 int start_regnum)
6461 {
6462 struct gdbarch *gdbarch = get_frame_arch (frame);
6463 /* Do values for GP (int) regs. */
6464 const gdb_byte *raw_buffer;
6465 struct value *value;
6466 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols
6467 per row. */
6468 int col, byte;
6469 int regnum;
6470
6471 /* For GP registers, we print a separate row of names above the vals. */
6472 for (col = 0, regnum = start_regnum;
6473 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6474 + gdbarch_num_pseudo_regs (gdbarch);
6475 regnum++)
6476 {
6477 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6478 continue; /* unused register */
6479 if (mips_float_register_p (gdbarch, regnum))
6480 break; /* End the row: reached FP register. */
6481 /* Large registers are handled separately. */
6482 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6483 {
6484 if (col > 0)
6485 break; /* End the row before this register. */
6486
6487 /* Print this register on a row by itself. */
6488 mips_print_register (file, frame, regnum);
6489 fprintf_filtered (file, "\n");
6490 return regnum + 1;
6491 }
6492 if (col == 0)
6493 fprintf_filtered (file, " ");
6494 fprintf_filtered (file,
6495 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
6496 gdbarch_register_name (gdbarch, regnum));
6497 col++;
6498 }
6499
6500 if (col == 0)
6501 return regnum;
6502
6503 /* Print the R0 to R31 names. */
6504 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
6505 fprintf_filtered (file, "\n R%-4d",
6506 start_regnum % gdbarch_num_regs (gdbarch));
6507 else
6508 fprintf_filtered (file, "\n ");
6509
6510 /* Now print the values in hex, 4 or 8 to the row. */
6511 for (col = 0, regnum = start_regnum;
6512 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6513 + gdbarch_num_pseudo_regs (gdbarch);
6514 regnum++)
6515 {
6516 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6517 continue; /* unused register */
6518 if (mips_float_register_p (gdbarch, regnum))
6519 break; /* End row: reached FP register. */
6520 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6521 break; /* End row: large register. */
6522
6523 /* OK: get the data in raw format. */
6524 value = get_frame_register_value (frame, regnum);
6525 if (value_optimized_out (value)
6526 || !value_entirely_available (value))
6527 {
6528 fprintf_filtered (file, "%*s ",
6529 (int) mips_abi_regsize (gdbarch) * 2,
6530 (mips_abi_regsize (gdbarch) == 4 ? "<unavl>"
6531 : "<unavailable>"));
6532 col++;
6533 continue;
6534 }
6535 raw_buffer = value_contents_all (value);
6536 /* pad small registers */
6537 for (byte = 0;
6538 byte < (mips_abi_regsize (gdbarch)
6539 - register_size (gdbarch, regnum)); byte++)
6540 fprintf_filtered (file, " ");
6541 /* Now print the register value in hex, endian order. */
6542 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6543 for (byte =
6544 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
6545 byte < register_size (gdbarch, regnum); byte++)
6546 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6547 else
6548 for (byte = register_size (gdbarch, regnum) - 1;
6549 byte >= 0; byte--)
6550 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6551 fprintf_filtered (file, " ");
6552 col++;
6553 }
6554 if (col > 0) /* ie. if we actually printed anything... */
6555 fprintf_filtered (file, "\n");
6556
6557 return regnum;
6558 }
6559
6560 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command. */
6561
6562 static void
6563 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
6564 struct frame_info *frame, int regnum, int all)
6565 {
6566 if (regnum != -1) /* Do one specified register. */
6567 {
6568 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
6569 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
6570 error (_("Not a valid register for the current processor type"));
6571
6572 mips_print_register (file, frame, regnum);
6573 fprintf_filtered (file, "\n");
6574 }
6575 else
6576 /* Do all (or most) registers. */
6577 {
6578 regnum = gdbarch_num_regs (gdbarch);
6579 while (regnum < gdbarch_num_regs (gdbarch)
6580 + gdbarch_num_pseudo_regs (gdbarch))
6581 {
6582 if (mips_float_register_p (gdbarch, regnum))
6583 {
6584 if (all) /* True for "INFO ALL-REGISTERS" command. */
6585 regnum = print_fp_register_row (file, frame, regnum);
6586 else
6587 regnum += MIPS_NUMREGS; /* Skip floating point regs. */
6588 }
6589 else
6590 regnum = print_gp_register_row (file, frame, regnum);
6591 }
6592 }
6593 }
6594
6595 static int
6596 mips_single_step_through_delay (struct gdbarch *gdbarch,
6597 struct frame_info *frame)
6598 {
6599 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6600 CORE_ADDR pc = get_frame_pc (frame);
6601 enum mips_isa isa;
6602 ULONGEST insn;
6603 int status;
6604 int size;
6605
6606 if ((mips_pc_is_mips (pc)
6607 && !mips32_insn_at_pc_has_delay_slot (gdbarch, pc))
6608 || (mips_pc_is_micromips (gdbarch, pc)
6609 && !micromips_insn_at_pc_has_delay_slot (gdbarch, pc, 0))
6610 || (mips_pc_is_mips16 (gdbarch, pc)
6611 && !mips16_insn_at_pc_has_delay_slot (gdbarch, pc, 0)))
6612 return 0;
6613
6614 isa = mips_pc_isa (gdbarch, pc);
6615 /* _has_delay_slot above will have validated the read. */
6616 insn = mips_fetch_instruction (gdbarch, isa, pc, NULL);
6617 size = mips_insn_size (isa, insn);
6618
6619 const address_space *aspace = get_frame_address_space (frame);
6620
6621 return breakpoint_here_p (aspace, pc + size) != no_breakpoint_here;
6622 }
6623
6624 /* To skip prologues, I use this predicate. Returns either PC itself
6625 if the code at PC does not look like a function prologue; otherwise
6626 returns an address that (if we're lucky) follows the prologue. If
6627 LENIENT, then we must skip everything which is involved in setting
6628 up the frame (it's OK to skip more, just so long as we don't skip
6629 anything which might clobber the registers which are being saved.
6630 We must skip more in the case where part of the prologue is in the
6631 delay slot of a non-prologue instruction). */
6632
6633 static CORE_ADDR
6634 mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
6635 {
6636 CORE_ADDR limit_pc;
6637 CORE_ADDR func_addr;
6638
6639 /* See if we can determine the end of the prologue via the symbol table.
6640 If so, then return either PC, or the PC after the prologue, whichever
6641 is greater. */
6642 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
6643 {
6644 CORE_ADDR post_prologue_pc
6645 = skip_prologue_using_sal (gdbarch, func_addr);
6646 if (post_prologue_pc != 0)
6647 return std::max (pc, post_prologue_pc);
6648 }
6649
6650 /* Can't determine prologue from the symbol table, need to examine
6651 instructions. */
6652
6653 /* Find an upper limit on the function prologue using the debug
6654 information. If the debug information could not be used to provide
6655 that bound, then use an arbitrary large number as the upper bound. */
6656 limit_pc = skip_prologue_using_sal (gdbarch, pc);
6657 if (limit_pc == 0)
6658 limit_pc = pc + 100; /* Magic. */
6659
6660 if (mips_pc_is_mips16 (gdbarch, pc))
6661 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6662 else if (mips_pc_is_micromips (gdbarch, pc))
6663 return micromips_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6664 else
6665 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6666 }
6667
6668 /* Implement the stack_frame_destroyed_p gdbarch method (32-bit version).
6669 This is a helper function for mips_stack_frame_destroyed_p. */
6670
6671 static int
6672 mips32_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6673 {
6674 CORE_ADDR func_addr = 0, func_end = 0;
6675
6676 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6677 {
6678 /* The MIPS epilogue is max. 12 bytes long. */
6679 CORE_ADDR addr = func_end - 12;
6680
6681 if (addr < func_addr + 4)
6682 addr = func_addr + 4;
6683 if (pc < addr)
6684 return 0;
6685
6686 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
6687 {
6688 unsigned long high_word;
6689 unsigned long inst;
6690
6691 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
6692 high_word = (inst >> 16) & 0xffff;
6693
6694 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
6695 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
6696 && inst != 0x03e00008 /* jr $ra */
6697 && inst != 0x00000000) /* nop */
6698 return 0;
6699 }
6700
6701 return 1;
6702 }
6703
6704 return 0;
6705 }
6706
6707 /* Implement the stack_frame_destroyed_p gdbarch method (microMIPS version).
6708 This is a helper function for mips_stack_frame_destroyed_p. */
6709
6710 static int
6711 micromips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6712 {
6713 CORE_ADDR func_addr = 0;
6714 CORE_ADDR func_end = 0;
6715 CORE_ADDR addr;
6716 ULONGEST insn;
6717 long offset;
6718 int dreg;
6719 int sreg;
6720 int loc;
6721
6722 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6723 return 0;
6724
6725 /* The microMIPS epilogue is max. 12 bytes long. */
6726 addr = func_end - 12;
6727
6728 if (addr < func_addr + 2)
6729 addr = func_addr + 2;
6730 if (pc < addr)
6731 return 0;
6732
6733 for (; pc < func_end; pc += loc)
6734 {
6735 loc = 0;
6736 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
6737 loc += MIPS_INSN16_SIZE;
6738 switch (mips_insn_size (ISA_MICROMIPS, insn))
6739 {
6740 /* 32-bit instructions. */
6741 case 2 * MIPS_INSN16_SIZE:
6742 insn <<= 16;
6743 insn |= mips_fetch_instruction (gdbarch,
6744 ISA_MICROMIPS, pc + loc, NULL);
6745 loc += MIPS_INSN16_SIZE;
6746 switch (micromips_op (insn >> 16))
6747 {
6748 case 0xc: /* ADDIU: bits 001100 */
6749 case 0x17: /* DADDIU: bits 010111 */
6750 sreg = b0s5_reg (insn >> 16);
6751 dreg = b5s5_reg (insn >> 16);
6752 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
6753 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
6754 /* (D)ADDIU $sp, imm */
6755 && offset >= 0)
6756 break;
6757 return 0;
6758
6759 default:
6760 return 0;
6761 }
6762 break;
6763
6764 /* 16-bit instructions. */
6765 case MIPS_INSN16_SIZE:
6766 switch (micromips_op (insn))
6767 {
6768 case 0x3: /* MOVE: bits 000011 */
6769 sreg = b0s5_reg (insn);
6770 dreg = b5s5_reg (insn);
6771 if (sreg == 0 && dreg == 0)
6772 /* MOVE $zero, $zero aka NOP */
6773 break;
6774 return 0;
6775
6776 case 0x11: /* POOL16C: bits 010001 */
6777 if (b5s5_op (insn) == 0x18
6778 /* JRADDIUSP: bits 010011 11000 */
6779 || (b5s5_op (insn) == 0xd
6780 /* JRC: bits 010011 01101 */
6781 && b0s5_reg (insn) == MIPS_RA_REGNUM))
6782 /* JRC $ra */
6783 break;
6784 return 0;
6785
6786 case 0x13: /* POOL16D: bits 010011 */
6787 offset = micromips_decode_imm9 (b1s9_imm (insn));
6788 if ((insn & 0x1) == 0x1
6789 /* ADDIUSP: bits 010011 1 */
6790 && offset > 0)
6791 break;
6792 return 0;
6793
6794 default:
6795 return 0;
6796 }
6797 }
6798 }
6799
6800 return 1;
6801 }
6802
6803 /* Implement the stack_frame_destroyed_p gdbarch method (16-bit version).
6804 This is a helper function for mips_stack_frame_destroyed_p. */
6805
6806 static int
6807 mips16_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6808 {
6809 CORE_ADDR func_addr = 0, func_end = 0;
6810
6811 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6812 {
6813 /* The MIPS epilogue is max. 12 bytes long. */
6814 CORE_ADDR addr = func_end - 12;
6815
6816 if (addr < func_addr + 4)
6817 addr = func_addr + 4;
6818 if (pc < addr)
6819 return 0;
6820
6821 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
6822 {
6823 unsigned short inst;
6824
6825 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc, NULL);
6826
6827 if ((inst & 0xf800) == 0xf000) /* extend */
6828 continue;
6829
6830 if (inst != 0x6300 /* addiu $sp,offset */
6831 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
6832 && inst != 0xe820 /* jr $ra */
6833 && inst != 0xe8a0 /* jrc $ra */
6834 && inst != 0x6500) /* nop */
6835 return 0;
6836 }
6837
6838 return 1;
6839 }
6840
6841 return 0;
6842 }
6843
6844 /* Implement the stack_frame_destroyed_p gdbarch method.
6845
6846 The epilogue is defined here as the area at the end of a function,
6847 after an instruction which destroys the function's stack frame. */
6848
6849 static int
6850 mips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6851 {
6852 if (mips_pc_is_mips16 (gdbarch, pc))
6853 return mips16_stack_frame_destroyed_p (gdbarch, pc);
6854 else if (mips_pc_is_micromips (gdbarch, pc))
6855 return micromips_stack_frame_destroyed_p (gdbarch, pc);
6856 else
6857 return mips32_stack_frame_destroyed_p (gdbarch, pc);
6858 }
6859
6860 /* Root of all "set mips "/"show mips " commands. This will eventually be
6861 used for all MIPS-specific commands. */
6862
6863 static void
6864 show_mips_command (const char *args, int from_tty)
6865 {
6866 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
6867 }
6868
6869 static void
6870 set_mips_command (const char *args, int from_tty)
6871 {
6872 printf_unfiltered
6873 ("\"set mips\" must be followed by an appropriate subcommand.\n");
6874 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
6875 }
6876
6877 /* Commands to show/set the MIPS FPU type. */
6878
6879 static void
6880 show_mipsfpu_command (const char *args, int from_tty)
6881 {
6882 const char *fpu;
6883
6884 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
6885 {
6886 printf_unfiltered
6887 ("The MIPS floating-point coprocessor is unknown "
6888 "because the current architecture is not MIPS.\n");
6889 return;
6890 }
6891
6892 switch (MIPS_FPU_TYPE (target_gdbarch ()))
6893 {
6894 case MIPS_FPU_SINGLE:
6895 fpu = "single-precision";
6896 break;
6897 case MIPS_FPU_DOUBLE:
6898 fpu = "double-precision";
6899 break;
6900 case MIPS_FPU_NONE:
6901 fpu = "absent (none)";
6902 break;
6903 default:
6904 internal_error (__FILE__, __LINE__, _("bad switch"));
6905 }
6906 if (mips_fpu_type_auto)
6907 printf_unfiltered ("The MIPS floating-point coprocessor "
6908 "is set automatically (currently %s)\n",
6909 fpu);
6910 else
6911 printf_unfiltered
6912 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
6913 }
6914
6915
6916 static void
6917 set_mipsfpu_command (const char *args, int from_tty)
6918 {
6919 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
6920 "\"single\",\"none\" or \"auto\".\n");
6921 show_mipsfpu_command (args, from_tty);
6922 }
6923
6924 static void
6925 set_mipsfpu_single_command (const char *args, int from_tty)
6926 {
6927 struct gdbarch_info info;
6928 gdbarch_info_init (&info);
6929 mips_fpu_type = MIPS_FPU_SINGLE;
6930 mips_fpu_type_auto = 0;
6931 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6932 instead of relying on globals. Doing that would let generic code
6933 handle the search for this specific architecture. */
6934 if (!gdbarch_update_p (info))
6935 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6936 }
6937
6938 static void
6939 set_mipsfpu_double_command (const char *args, int from_tty)
6940 {
6941 struct gdbarch_info info;
6942 gdbarch_info_init (&info);
6943 mips_fpu_type = MIPS_FPU_DOUBLE;
6944 mips_fpu_type_auto = 0;
6945 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6946 instead of relying on globals. Doing that would let generic code
6947 handle the search for this specific architecture. */
6948 if (!gdbarch_update_p (info))
6949 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6950 }
6951
6952 static void
6953 set_mipsfpu_none_command (const char *args, int from_tty)
6954 {
6955 struct gdbarch_info info;
6956 gdbarch_info_init (&info);
6957 mips_fpu_type = MIPS_FPU_NONE;
6958 mips_fpu_type_auto = 0;
6959 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6960 instead of relying on globals. Doing that would let generic code
6961 handle the search for this specific architecture. */
6962 if (!gdbarch_update_p (info))
6963 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6964 }
6965
6966 static void
6967 set_mipsfpu_auto_command (const char *args, int from_tty)
6968 {
6969 mips_fpu_type_auto = 1;
6970 }
6971
6972 /* Just like reinit_frame_cache, but with the right arguments to be
6973 callable as an sfunc. */
6974
6975 static void
6976 reinit_frame_cache_sfunc (char *args, int from_tty,
6977 struct cmd_list_element *c)
6978 {
6979 reinit_frame_cache ();
6980 }
6981
6982 static int
6983 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
6984 {
6985 gdb_disassembler *di
6986 = static_cast<gdb_disassembler *>(info->application_data);
6987 struct gdbarch *gdbarch = di->arch ();
6988
6989 /* FIXME: cagney/2003-06-26: Is this even necessary? The
6990 disassembler needs to be able to locally determine the ISA, and
6991 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
6992 work. */
6993 if (mips_pc_is_mips16 (gdbarch, memaddr))
6994 info->mach = bfd_mach_mips16;
6995 else if (mips_pc_is_micromips (gdbarch, memaddr))
6996 info->mach = bfd_mach_mips_micromips;
6997
6998 /* Round down the instruction address to the appropriate boundary. */
6999 memaddr &= (info->mach == bfd_mach_mips16
7000 || info->mach == bfd_mach_mips_micromips) ? ~1 : ~3;
7001
7002 /* Set the disassembler options. */
7003 if (!info->disassembler_options)
7004 /* This string is not recognized explicitly by the disassembler,
7005 but it tells the disassembler to not try to guess the ABI from
7006 the bfd elf headers, such that, if the user overrides the ABI
7007 of a program linked as NewABI, the disassembly will follow the
7008 register naming conventions specified by the user. */
7009 info->disassembler_options = "gpr-names=32";
7010
7011 return default_print_insn (memaddr, info);
7012 }
7013
7014 static int
7015 gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
7016 {
7017 /* Set up the disassembler info, so that we get the right
7018 register names from libopcodes. */
7019 info->disassembler_options = "gpr-names=n32";
7020 info->flavour = bfd_target_elf_flavour;
7021
7022 return gdb_print_insn_mips (memaddr, info);
7023 }
7024
7025 static int
7026 gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
7027 {
7028 /* Set up the disassembler info, so that we get the right
7029 register names from libopcodes. */
7030 info->disassembler_options = "gpr-names=64";
7031 info->flavour = bfd_target_elf_flavour;
7032
7033 return gdb_print_insn_mips (memaddr, info);
7034 }
7035
7036 /* Implement the breakpoint_kind_from_pc gdbarch method. */
7037
7038 static int
7039 mips_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
7040 {
7041 CORE_ADDR pc = *pcptr;
7042
7043 if (mips_pc_is_mips16 (gdbarch, pc))
7044 {
7045 *pcptr = unmake_compact_addr (pc);
7046 return MIPS_BP_KIND_MIPS16;
7047 }
7048 else if (mips_pc_is_micromips (gdbarch, pc))
7049 {
7050 ULONGEST insn;
7051 int status;
7052
7053 *pcptr = unmake_compact_addr (pc);
7054 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
7055 if (status || (mips_insn_size (ISA_MICROMIPS, insn) == 2))
7056 return MIPS_BP_KIND_MICROMIPS16;
7057 else
7058 return MIPS_BP_KIND_MICROMIPS32;
7059 }
7060 else
7061 return MIPS_BP_KIND_MIPS32;
7062 }
7063
7064 /* Implement the sw_breakpoint_from_kind gdbarch method. */
7065
7066 static const gdb_byte *
7067 mips_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
7068 {
7069 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7070
7071 switch (kind)
7072 {
7073 case MIPS_BP_KIND_MIPS16:
7074 {
7075 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
7076 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
7077
7078 *size = 2;
7079 if (byte_order_for_code == BFD_ENDIAN_BIG)
7080 return mips16_big_breakpoint;
7081 else
7082 return mips16_little_breakpoint;
7083 }
7084 case MIPS_BP_KIND_MICROMIPS16:
7085 {
7086 static gdb_byte micromips16_big_breakpoint[] = { 0x46, 0x85 };
7087 static gdb_byte micromips16_little_breakpoint[] = { 0x85, 0x46 };
7088
7089 *size = 2;
7090
7091 if (byte_order_for_code == BFD_ENDIAN_BIG)
7092 return micromips16_big_breakpoint;
7093 else
7094 return micromips16_little_breakpoint;
7095 }
7096 case MIPS_BP_KIND_MICROMIPS32:
7097 {
7098 static gdb_byte micromips32_big_breakpoint[] = { 0, 0x5, 0, 0x7 };
7099 static gdb_byte micromips32_little_breakpoint[] = { 0x5, 0, 0x7, 0 };
7100
7101 *size = 4;
7102 if (byte_order_for_code == BFD_ENDIAN_BIG)
7103 return micromips32_big_breakpoint;
7104 else
7105 return micromips32_little_breakpoint;
7106 }
7107 case MIPS_BP_KIND_MIPS32:
7108 {
7109 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
7110 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
7111
7112 *size = 4;
7113 if (byte_order_for_code == BFD_ENDIAN_BIG)
7114 return big_breakpoint;
7115 else
7116 return little_breakpoint;
7117 }
7118 default:
7119 gdb_assert_not_reached ("unexpected mips breakpoint kind");
7120 };
7121 }
7122
7123 /* Return non-zero if the standard MIPS instruction INST has a branch
7124 delay slot (i.e. it is a jump or branch instruction). This function
7125 is based on mips32_next_pc. */
7126
7127 static int
7128 mips32_instruction_has_delay_slot (struct gdbarch *gdbarch, ULONGEST inst)
7129 {
7130 int op;
7131 int rs;
7132 int rt;
7133
7134 op = itype_op (inst);
7135 if ((inst & 0xe0000000) != 0)
7136 {
7137 rs = itype_rs (inst);
7138 rt = itype_rt (inst);
7139 return (is_octeon_bbit_op (op, gdbarch)
7140 || op >> 2 == 5 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
7141 || op == 29 /* JALX: bits 011101 */
7142 || (op == 17
7143 && (rs == 8
7144 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
7145 || (rs == 9 && (rt & 0x2) == 0)
7146 /* BC1ANY2F, BC1ANY2T: bits 010001 01001 */
7147 || (rs == 10 && (rt & 0x2) == 0))));
7148 /* BC1ANY4F, BC1ANY4T: bits 010001 01010 */
7149 }
7150 else
7151 switch (op & 0x07) /* extract bits 28,27,26 */
7152 {
7153 case 0: /* SPECIAL */
7154 op = rtype_funct (inst);
7155 return (op == 8 /* JR */
7156 || op == 9); /* JALR */
7157 break; /* end SPECIAL */
7158 case 1: /* REGIMM */
7159 rs = itype_rs (inst);
7160 rt = itype_rt (inst); /* branch condition */
7161 return ((rt & 0xc) == 0
7162 /* BLTZ, BLTZL, BGEZ, BGEZL: bits 000xx */
7163 /* BLTZAL, BLTZALL, BGEZAL, BGEZALL: 100xx */
7164 || ((rt & 0x1e) == 0x1c && rs == 0));
7165 /* BPOSGE32, BPOSGE64: bits 1110x */
7166 break; /* end REGIMM */
7167 default: /* J, JAL, BEQ, BNE, BLEZ, BGTZ */
7168 return 1;
7169 break;
7170 }
7171 }
7172
7173 /* Return non-zero if a standard MIPS instruction at ADDR has a branch
7174 delay slot (i.e. it is a jump or branch instruction). */
7175
7176 static int
7177 mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr)
7178 {
7179 ULONGEST insn;
7180 int status;
7181
7182 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, addr, &status);
7183 if (status)
7184 return 0;
7185
7186 return mips32_instruction_has_delay_slot (gdbarch, insn);
7187 }
7188
7189 /* Return non-zero if the microMIPS instruction INSN, comprising the
7190 16-bit major opcode word in the high 16 bits and any second word
7191 in the low 16 bits, has a branch delay slot (i.e. it is a non-compact
7192 jump or branch instruction). The instruction must be 32-bit if
7193 MUSTBE32 is set or can be any instruction otherwise. */
7194
7195 static int
7196 micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32)
7197 {
7198 ULONGEST major = insn >> 16;
7199
7200 switch (micromips_op (major))
7201 {
7202 /* 16-bit instructions. */
7203 case 0x33: /* B16: bits 110011 */
7204 case 0x2b: /* BNEZ16: bits 101011 */
7205 case 0x23: /* BEQZ16: bits 100011 */
7206 return !mustbe32;
7207 case 0x11: /* POOL16C: bits 010001 */
7208 return (!mustbe32
7209 && ((b5s5_op (major) == 0xc
7210 /* JR16: bits 010001 01100 */
7211 || (b5s5_op (major) & 0x1e) == 0xe)));
7212 /* JALR16, JALRS16: bits 010001 0111x */
7213 /* 32-bit instructions. */
7214 case 0x3d: /* JAL: bits 111101 */
7215 case 0x3c: /* JALX: bits 111100 */
7216 case 0x35: /* J: bits 110101 */
7217 case 0x2d: /* BNE: bits 101101 */
7218 case 0x25: /* BEQ: bits 100101 */
7219 case 0x1d: /* JALS: bits 011101 */
7220 return 1;
7221 case 0x10: /* POOL32I: bits 010000 */
7222 return ((b5s5_op (major) & 0x1c) == 0x0
7223 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
7224 || (b5s5_op (major) & 0x1d) == 0x4
7225 /* BLEZ, BGTZ: bits 010000 001x0 */
7226 || (b5s5_op (major) & 0x1d) == 0x11
7227 /* BLTZALS, BGEZALS: bits 010000 100x1 */
7228 || ((b5s5_op (major) & 0x1e) == 0x14
7229 && (major & 0x3) == 0x0)
7230 /* BC2F, BC2T: bits 010000 1010x xxx00 */
7231 || (b5s5_op (major) & 0x1e) == 0x1a
7232 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
7233 || ((b5s5_op (major) & 0x1e) == 0x1c
7234 && (major & 0x3) == 0x0)
7235 /* BC1F, BC1T: bits 010000 1110x xxx00 */
7236 || ((b5s5_op (major) & 0x1c) == 0x1c
7237 && (major & 0x3) == 0x1));
7238 /* BC1ANY*: bits 010000 111xx xxx01 */
7239 case 0x0: /* POOL32A: bits 000000 */
7240 return (b0s6_op (insn) == 0x3c
7241 /* POOL32Axf: bits 000000 ... 111100 */
7242 && (b6s10_ext (insn) & 0x2bf) == 0x3c);
7243 /* JALR, JALR.HB: 000000 000x111100 111100 */
7244 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7245 default:
7246 return 0;
7247 }
7248 }
7249
7250 /* Return non-zero if a microMIPS instruction at ADDR has a branch delay
7251 slot (i.e. it is a non-compact jump instruction). The instruction
7252 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7253
7254 static int
7255 micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7256 CORE_ADDR addr, int mustbe32)
7257 {
7258 ULONGEST insn;
7259 int status;
7260 int size;
7261
7262 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7263 if (status)
7264 return 0;
7265 size = mips_insn_size (ISA_MICROMIPS, insn);
7266 insn <<= 16;
7267 if (size == 2 * MIPS_INSN16_SIZE)
7268 {
7269 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7270 if (status)
7271 return 0;
7272 }
7273
7274 return micromips_instruction_has_delay_slot (insn, mustbe32);
7275 }
7276
7277 /* Return non-zero if the MIPS16 instruction INST, which must be
7278 a 32-bit instruction if MUSTBE32 is set or can be any instruction
7279 otherwise, has a branch delay slot (i.e. it is a non-compact jump
7280 instruction). This function is based on mips16_next_pc. */
7281
7282 static int
7283 mips16_instruction_has_delay_slot (unsigned short inst, int mustbe32)
7284 {
7285 if ((inst & 0xf89f) == 0xe800) /* JR/JALR (16-bit instruction) */
7286 return !mustbe32;
7287 return (inst & 0xf800) == 0x1800; /* JAL/JALX (32-bit instruction) */
7288 }
7289
7290 /* Return non-zero if a MIPS16 instruction at ADDR has a branch delay
7291 slot (i.e. it is a non-compact jump instruction). The instruction
7292 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7293
7294 static int
7295 mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7296 CORE_ADDR addr, int mustbe32)
7297 {
7298 unsigned short insn;
7299 int status;
7300
7301 insn = mips_fetch_instruction (gdbarch, ISA_MIPS16, addr, &status);
7302 if (status)
7303 return 0;
7304
7305 return mips16_instruction_has_delay_slot (insn, mustbe32);
7306 }
7307
7308 /* Calculate the starting address of the MIPS memory segment BPADDR is in.
7309 This assumes KSSEG exists. */
7310
7311 static CORE_ADDR
7312 mips_segment_boundary (CORE_ADDR bpaddr)
7313 {
7314 CORE_ADDR mask = CORE_ADDR_MAX;
7315 int segsize;
7316
7317 if (sizeof (CORE_ADDR) == 8)
7318 /* Get the topmost two bits of bpaddr in a 32-bit safe manner (avoid
7319 a compiler warning produced where CORE_ADDR is a 32-bit type even
7320 though in that case this is dead code). */
7321 switch (bpaddr >> ((sizeof (CORE_ADDR) << 3) - 2) & 3)
7322 {
7323 case 3:
7324 if (bpaddr == (bfd_signed_vma) (int32_t) bpaddr)
7325 segsize = 29; /* 32-bit compatibility segment */
7326 else
7327 segsize = 62; /* xkseg */
7328 break;
7329 case 2: /* xkphys */
7330 segsize = 59;
7331 break;
7332 default: /* xksseg (1), xkuseg/kuseg (0) */
7333 segsize = 62;
7334 break;
7335 }
7336 else if (bpaddr & 0x80000000) /* kernel segment */
7337 segsize = 29;
7338 else
7339 segsize = 31; /* user segment */
7340 mask <<= segsize;
7341 return bpaddr & mask;
7342 }
7343
7344 /* Move the breakpoint at BPADDR out of any branch delay slot by shifting
7345 it backwards if necessary. Return the address of the new location. */
7346
7347 static CORE_ADDR
7348 mips_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
7349 {
7350 CORE_ADDR prev_addr;
7351 CORE_ADDR boundary;
7352 CORE_ADDR func_addr;
7353
7354 /* If a breakpoint is set on the instruction in a branch delay slot,
7355 GDB gets confused. When the breakpoint is hit, the PC isn't on
7356 the instruction in the branch delay slot, the PC will point to
7357 the branch instruction. Since the PC doesn't match any known
7358 breakpoints, GDB reports a trap exception.
7359
7360 There are two possible fixes for this problem.
7361
7362 1) When the breakpoint gets hit, see if the BD bit is set in the
7363 Cause register (which indicates the last exception occurred in a
7364 branch delay slot). If the BD bit is set, fix the PC to point to
7365 the instruction in the branch delay slot.
7366
7367 2) When the user sets the breakpoint, don't allow him to set the
7368 breakpoint on the instruction in the branch delay slot. Instead
7369 move the breakpoint to the branch instruction (which will have
7370 the same result).
7371
7372 The problem with the first solution is that if the user then
7373 single-steps the processor, the branch instruction will get
7374 skipped (since GDB thinks the PC is on the instruction in the
7375 branch delay slot).
7376
7377 So, we'll use the second solution. To do this we need to know if
7378 the instruction we're trying to set the breakpoint on is in the
7379 branch delay slot. */
7380
7381 boundary = mips_segment_boundary (bpaddr);
7382
7383 /* Make sure we don't scan back before the beginning of the current
7384 function, since we may fetch constant data or insns that look like
7385 a jump. Of course we might do that anyway if the compiler has
7386 moved constants inline. :-( */
7387 if (find_pc_partial_function (bpaddr, NULL, &func_addr, NULL)
7388 && func_addr > boundary && func_addr <= bpaddr)
7389 boundary = func_addr;
7390
7391 if (mips_pc_is_mips (bpaddr))
7392 {
7393 if (bpaddr == boundary)
7394 return bpaddr;
7395
7396 /* If the previous instruction has a branch delay slot, we have
7397 to move the breakpoint to the branch instruction. */
7398 prev_addr = bpaddr - 4;
7399 if (mips32_insn_at_pc_has_delay_slot (gdbarch, prev_addr))
7400 bpaddr = prev_addr;
7401 }
7402 else
7403 {
7404 int (*insn_at_pc_has_delay_slot) (struct gdbarch *, CORE_ADDR, int);
7405 CORE_ADDR addr, jmpaddr;
7406 int i;
7407
7408 boundary = unmake_compact_addr (boundary);
7409
7410 /* The only MIPS16 instructions with delay slots are JAL, JALX,
7411 JALR and JR. An absolute JAL/JALX is always 4 bytes long,
7412 so try for that first, then try the 2 byte JALR/JR.
7413 The microMIPS ASE has a whole range of jumps and branches
7414 with delay slots, some of which take 4 bytes and some take
7415 2 bytes, so the idea is the same.
7416 FIXME: We have to assume that bpaddr is not the second half
7417 of an extended instruction. */
7418 insn_at_pc_has_delay_slot = (mips_pc_is_micromips (gdbarch, bpaddr)
7419 ? micromips_insn_at_pc_has_delay_slot
7420 : mips16_insn_at_pc_has_delay_slot);
7421
7422 jmpaddr = 0;
7423 addr = bpaddr;
7424 for (i = 1; i < 4; i++)
7425 {
7426 if (unmake_compact_addr (addr) == boundary)
7427 break;
7428 addr -= MIPS_INSN16_SIZE;
7429 if (i == 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 0))
7430 /* Looks like a JR/JALR at [target-1], but it could be
7431 the second word of a previous JAL/JALX, so record it
7432 and check back one more. */
7433 jmpaddr = addr;
7434 else if (i > 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 1))
7435 {
7436 if (i == 2)
7437 /* Looks like a JAL/JALX at [target-2], but it could also
7438 be the second word of a previous JAL/JALX, record it,
7439 and check back one more. */
7440 jmpaddr = addr;
7441 else
7442 /* Looks like a JAL/JALX at [target-3], so any previously
7443 recorded JAL/JALX or JR/JALR must be wrong, because:
7444
7445 >-3: JAL
7446 -2: JAL-ext (can't be JAL/JALX)
7447 -1: bdslot (can't be JR/JALR)
7448 0: target insn
7449
7450 Of course it could be another JAL-ext which looks
7451 like a JAL, but in that case we'd have broken out
7452 of this loop at [target-2]:
7453
7454 -4: JAL
7455 >-3: JAL-ext
7456 -2: bdslot (can't be jmp)
7457 -1: JR/JALR
7458 0: target insn */
7459 jmpaddr = 0;
7460 }
7461 else
7462 {
7463 /* Not a jump instruction: if we're at [target-1] this
7464 could be the second word of a JAL/JALX, so continue;
7465 otherwise we're done. */
7466 if (i > 1)
7467 break;
7468 }
7469 }
7470
7471 if (jmpaddr)
7472 bpaddr = jmpaddr;
7473 }
7474
7475 return bpaddr;
7476 }
7477
7478 /* Return non-zero if SUFFIX is one of the numeric suffixes used for MIPS16
7479 call stubs, one of 1, 2, 5, 6, 9, 10, or, if ZERO is non-zero, also 0. */
7480
7481 static int
7482 mips_is_stub_suffix (const char *suffix, int zero)
7483 {
7484 switch (suffix[0])
7485 {
7486 case '0':
7487 return zero && suffix[1] == '\0';
7488 case '1':
7489 return suffix[1] == '\0' || (suffix[1] == '0' && suffix[2] == '\0');
7490 case '2':
7491 case '5':
7492 case '6':
7493 case '9':
7494 return suffix[1] == '\0';
7495 default:
7496 return 0;
7497 }
7498 }
7499
7500 /* Return non-zero if MODE is one of the mode infixes used for MIPS16
7501 call stubs, one of sf, df, sc, or dc. */
7502
7503 static int
7504 mips_is_stub_mode (const char *mode)
7505 {
7506 return ((mode[0] == 's' || mode[0] == 'd')
7507 && (mode[1] == 'f' || mode[1] == 'c'));
7508 }
7509
7510 /* Code at PC is a compiler-generated stub. Such a stub for a function
7511 bar might have a name like __fn_stub_bar, and might look like this:
7512
7513 mfc1 $4, $f13
7514 mfc1 $5, $f12
7515 mfc1 $6, $f15
7516 mfc1 $7, $f14
7517
7518 followed by (or interspersed with):
7519
7520 j bar
7521
7522 or:
7523
7524 lui $25, %hi(bar)
7525 addiu $25, $25, %lo(bar)
7526 jr $25
7527
7528 ($1 may be used in old code; for robustness we accept any register)
7529 or, in PIC code:
7530
7531 lui $28, %hi(_gp_disp)
7532 addiu $28, $28, %lo(_gp_disp)
7533 addu $28, $28, $25
7534 lw $25, %got(bar)
7535 addiu $25, $25, %lo(bar)
7536 jr $25
7537
7538 In the case of a __call_stub_bar stub, the sequence to set up
7539 arguments might look like this:
7540
7541 mtc1 $4, $f13
7542 mtc1 $5, $f12
7543 mtc1 $6, $f15
7544 mtc1 $7, $f14
7545
7546 followed by (or interspersed with) one of the jump sequences above.
7547
7548 In the case of a __call_stub_fp_bar stub, JAL or JALR is used instead
7549 of J or JR, respectively, followed by:
7550
7551 mfc1 $2, $f0
7552 mfc1 $3, $f1
7553 jr $18
7554
7555 We are at the beginning of the stub here, and scan down and extract
7556 the target address from the jump immediate instruction or, if a jump
7557 register instruction is used, from the register referred. Return
7558 the value of PC calculated or 0 if inconclusive.
7559
7560 The limit on the search is arbitrarily set to 20 instructions. FIXME. */
7561
7562 static CORE_ADDR
7563 mips_get_mips16_fn_stub_pc (struct frame_info *frame, CORE_ADDR pc)
7564 {
7565 struct gdbarch *gdbarch = get_frame_arch (frame);
7566 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7567 int addrreg = MIPS_ZERO_REGNUM;
7568 CORE_ADDR start_pc = pc;
7569 CORE_ADDR target_pc = 0;
7570 CORE_ADDR addr = 0;
7571 CORE_ADDR gp = 0;
7572 int status = 0;
7573 int i;
7574
7575 for (i = 0;
7576 status == 0 && target_pc == 0 && i < 20;
7577 i++, pc += MIPS_INSN32_SIZE)
7578 {
7579 ULONGEST inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
7580 CORE_ADDR imm;
7581 int rt;
7582 int rs;
7583 int rd;
7584
7585 switch (itype_op (inst))
7586 {
7587 case 0: /* SPECIAL */
7588 switch (rtype_funct (inst))
7589 {
7590 case 8: /* JR */
7591 case 9: /* JALR */
7592 rs = rtype_rs (inst);
7593 if (rs == MIPS_GP_REGNUM)
7594 target_pc = gp; /* Hmm... */
7595 else if (rs == addrreg)
7596 target_pc = addr;
7597 break;
7598
7599 case 0x21: /* ADDU */
7600 rt = rtype_rt (inst);
7601 rs = rtype_rs (inst);
7602 rd = rtype_rd (inst);
7603 if (rd == MIPS_GP_REGNUM
7604 && ((rs == MIPS_GP_REGNUM && rt == MIPS_T9_REGNUM)
7605 || (rs == MIPS_T9_REGNUM && rt == MIPS_GP_REGNUM)))
7606 gp += start_pc;
7607 break;
7608 }
7609 break;
7610
7611 case 2: /* J */
7612 case 3: /* JAL */
7613 target_pc = jtype_target (inst) << 2;
7614 target_pc += ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
7615 break;
7616
7617 case 9: /* ADDIU */
7618 rt = itype_rt (inst);
7619 rs = itype_rs (inst);
7620 if (rt == rs)
7621 {
7622 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7623 if (rt == MIPS_GP_REGNUM)
7624 gp += imm;
7625 else if (rt == addrreg)
7626 addr += imm;
7627 }
7628 break;
7629
7630 case 0xf: /* LUI */
7631 rt = itype_rt (inst);
7632 imm = ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 16;
7633 if (rt == MIPS_GP_REGNUM)
7634 gp = imm;
7635 else if (rt != MIPS_ZERO_REGNUM)
7636 {
7637 addrreg = rt;
7638 addr = imm;
7639 }
7640 break;
7641
7642 case 0x23: /* LW */
7643 rt = itype_rt (inst);
7644 rs = itype_rs (inst);
7645 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7646 if (gp != 0 && rs == MIPS_GP_REGNUM)
7647 {
7648 gdb_byte buf[4];
7649
7650 memset (buf, 0, sizeof (buf));
7651 status = target_read_memory (gp + imm, buf, sizeof (buf));
7652 addrreg = rt;
7653 addr = extract_signed_integer (buf, sizeof (buf), byte_order);
7654 }
7655 break;
7656 }
7657 }
7658
7659 return target_pc;
7660 }
7661
7662 /* If PC is in a MIPS16 call or return stub, return the address of the
7663 target PC, which is either the callee or the caller. There are several
7664 cases which must be handled:
7665
7666 * If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7667 and the target PC is in $31 ($ra).
7668 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7669 and the target PC is in $2.
7670 * If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7671 i.e. before the JALR instruction, this is effectively a call stub
7672 and the target PC is in $2. Otherwise this is effectively
7673 a return stub and the target PC is in $18.
7674 * If the PC is at the start of __call_stub_fp_*, i.e. before the
7675 JAL or JALR instruction, this is effectively a call stub and the
7676 target PC is buried in the instruction stream. Otherwise this
7677 is effectively a return stub and the target PC is in $18.
7678 * If the PC is in __call_stub_* or in __fn_stub_*, this is a call
7679 stub and the target PC is buried in the instruction stream.
7680
7681 See the source code for the stubs in gcc/config/mips/mips16.S, or the
7682 stub builder in gcc/config/mips/mips.c (mips16_build_call_stub) for the
7683 gory details. */
7684
7685 static CORE_ADDR
7686 mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7687 {
7688 struct gdbarch *gdbarch = get_frame_arch (frame);
7689 CORE_ADDR start_addr;
7690 const char *name;
7691 size_t prefixlen;
7692
7693 /* Find the starting address and name of the function containing the PC. */
7694 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
7695 return 0;
7696
7697 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7698 and the target PC is in $31 ($ra). */
7699 prefixlen = strlen (mips_str_mips16_ret_stub);
7700 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7701 && mips_is_stub_mode (name + prefixlen)
7702 && name[prefixlen + 2] == '\0')
7703 return get_frame_register_signed
7704 (frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
7705
7706 /* If the PC is in __mips16_call_stub_*, this is one of the call
7707 call/return stubs. */
7708 prefixlen = strlen (mips_str_mips16_call_stub);
7709 if (strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0)
7710 {
7711 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7712 and the target PC is in $2. */
7713 if (mips_is_stub_suffix (name + prefixlen, 0))
7714 return get_frame_register_signed
7715 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7716
7717 /* If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7718 i.e. before the JALR instruction, this is effectively a call stub
7719 and the target PC is in $2. Otherwise this is effectively
7720 a return stub and the target PC is in $18. */
7721 else if (mips_is_stub_mode (name + prefixlen)
7722 && name[prefixlen + 2] == '_'
7723 && mips_is_stub_suffix (name + prefixlen + 3, 0))
7724 {
7725 if (pc == start_addr)
7726 /* This is the 'call' part of a call stub. The return
7727 address is in $2. */
7728 return get_frame_register_signed
7729 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7730 else
7731 /* This is the 'return' part of a call stub. The return
7732 address is in $18. */
7733 return get_frame_register_signed
7734 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7735 }
7736 else
7737 return 0; /* Not a stub. */
7738 }
7739
7740 /* If the PC is in __call_stub_* or __fn_stub*, this is one of the
7741 compiler-generated call or call/return stubs. */
7742 if (startswith (name, mips_str_fn_stub)
7743 || startswith (name, mips_str_call_stub))
7744 {
7745 if (pc == start_addr)
7746 /* This is the 'call' part of a call stub. Call this helper
7747 to scan through this code for interesting instructions
7748 and determine the final PC. */
7749 return mips_get_mips16_fn_stub_pc (frame, pc);
7750 else
7751 /* This is the 'return' part of a call stub. The return address
7752 is in $18. */
7753 return get_frame_register_signed
7754 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7755 }
7756
7757 return 0; /* Not a stub. */
7758 }
7759
7760 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
7761 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
7762
7763 static int
7764 mips_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name)
7765 {
7766 CORE_ADDR start_addr;
7767 size_t prefixlen;
7768
7769 /* Find the starting address of the function containing the PC. */
7770 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
7771 return 0;
7772
7773 /* If the PC is in __mips16_call_stub_{s,d}{f,c}_{0..10} but not at
7774 the start, i.e. after the JALR instruction, this is effectively
7775 a return stub. */
7776 prefixlen = strlen (mips_str_mips16_call_stub);
7777 if (pc != start_addr
7778 && strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0
7779 && mips_is_stub_mode (name + prefixlen)
7780 && name[prefixlen + 2] == '_'
7781 && mips_is_stub_suffix (name + prefixlen + 3, 1))
7782 return 1;
7783
7784 /* If the PC is in __call_stub_fp_* but not at the start, i.e. after
7785 the JAL or JALR instruction, this is effectively a return stub. */
7786 prefixlen = strlen (mips_str_call_fp_stub);
7787 if (pc != start_addr
7788 && strncmp (name, mips_str_call_fp_stub, prefixlen) == 0)
7789 return 1;
7790
7791 /* Consume the .pic. prefix of any PIC stub, this function must return
7792 true when the PC is in a PIC stub of a __mips16_ret_{d,s}{f,c} stub
7793 or the call stub path will trigger in handle_inferior_event causing
7794 it to go astray. */
7795 prefixlen = strlen (mips_str_pic);
7796 if (strncmp (name, mips_str_pic, prefixlen) == 0)
7797 name += prefixlen;
7798
7799 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub. */
7800 prefixlen = strlen (mips_str_mips16_ret_stub);
7801 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7802 && mips_is_stub_mode (name + prefixlen)
7803 && name[prefixlen + 2] == '\0')
7804 return 1;
7805
7806 return 0; /* Not a stub. */
7807 }
7808
7809 /* If the current PC is the start of a non-PIC-to-PIC stub, return the
7810 PC of the stub target. The stub just loads $t9 and jumps to it,
7811 so that $t9 has the correct value at function entry. */
7812
7813 static CORE_ADDR
7814 mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7815 {
7816 struct gdbarch *gdbarch = get_frame_arch (frame);
7817 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7818 struct bound_minimal_symbol msym;
7819 int i;
7820 gdb_byte stub_code[16];
7821 int32_t stub_words[4];
7822
7823 /* The stub for foo is named ".pic.foo", and is either two
7824 instructions inserted before foo or a three instruction sequence
7825 which jumps to foo. */
7826 msym = lookup_minimal_symbol_by_pc (pc);
7827 if (msym.minsym == NULL
7828 || BMSYMBOL_VALUE_ADDRESS (msym) != pc
7829 || MSYMBOL_LINKAGE_NAME (msym.minsym) == NULL
7830 || !startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
7831 return 0;
7832
7833 /* A two-instruction header. */
7834 if (MSYMBOL_SIZE (msym.minsym) == 8)
7835 return pc + 8;
7836
7837 /* A three-instruction (plus delay slot) trampoline. */
7838 if (MSYMBOL_SIZE (msym.minsym) == 16)
7839 {
7840 if (target_read_memory (pc, stub_code, 16) != 0)
7841 return 0;
7842 for (i = 0; i < 4; i++)
7843 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
7844 4, byte_order);
7845
7846 /* A stub contains these instructions:
7847 lui t9, %hi(target)
7848 j target
7849 addiu t9, t9, %lo(target)
7850 nop
7851
7852 This works even for N64, since stubs are only generated with
7853 -msym32. */
7854 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
7855 && (stub_words[1] & 0xfc000000U) == 0x08000000
7856 && (stub_words[2] & 0xffff0000U) == 0x27390000
7857 && stub_words[3] == 0x00000000)
7858 return ((((stub_words[0] & 0x0000ffff) << 16)
7859 + (stub_words[2] & 0x0000ffff)) ^ 0x8000) - 0x8000;
7860 }
7861
7862 /* Not a recognized stub. */
7863 return 0;
7864 }
7865
7866 static CORE_ADDR
7867 mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7868 {
7869 CORE_ADDR requested_pc = pc;
7870 CORE_ADDR target_pc;
7871 CORE_ADDR new_pc;
7872
7873 do
7874 {
7875 target_pc = pc;
7876
7877 new_pc = mips_skip_mips16_trampoline_code (frame, pc);
7878 if (new_pc)
7879 pc = new_pc;
7880
7881 new_pc = find_solib_trampoline_target (frame, pc);
7882 if (new_pc)
7883 pc = new_pc;
7884
7885 new_pc = mips_skip_pic_trampoline_code (frame, pc);
7886 if (new_pc)
7887 pc = new_pc;
7888 }
7889 while (pc != target_pc);
7890
7891 return pc != requested_pc ? pc : 0;
7892 }
7893
7894 /* Convert a dbx stab register number (from `r' declaration) to a GDB
7895 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7896
7897 static int
7898 mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
7899 {
7900 int regnum;
7901 if (num >= 0 && num < 32)
7902 regnum = num;
7903 else if (num >= 38 && num < 70)
7904 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
7905 else if (num == 70)
7906 regnum = mips_regnum (gdbarch)->hi;
7907 else if (num == 71)
7908 regnum = mips_regnum (gdbarch)->lo;
7909 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 72 && num < 78)
7910 regnum = num + mips_regnum (gdbarch)->dspacc - 72;
7911 else
7912 return -1;
7913 return gdbarch_num_regs (gdbarch) + regnum;
7914 }
7915
7916
7917 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
7918 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7919
7920 static int
7921 mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
7922 {
7923 int regnum;
7924 if (num >= 0 && num < 32)
7925 regnum = num;
7926 else if (num >= 32 && num < 64)
7927 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
7928 else if (num == 64)
7929 regnum = mips_regnum (gdbarch)->hi;
7930 else if (num == 65)
7931 regnum = mips_regnum (gdbarch)->lo;
7932 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 66 && num < 72)
7933 regnum = num + mips_regnum (gdbarch)->dspacc - 66;
7934 else
7935 return -1;
7936 return gdbarch_num_regs (gdbarch) + regnum;
7937 }
7938
7939 static int
7940 mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
7941 {
7942 /* Only makes sense to supply raw registers. */
7943 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
7944 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
7945 decide if it is valid. Should instead define a standard sim/gdb
7946 register numbering scheme. */
7947 if (gdbarch_register_name (gdbarch,
7948 gdbarch_num_regs (gdbarch) + regnum) != NULL
7949 && gdbarch_register_name (gdbarch,
7950 gdbarch_num_regs (gdbarch)
7951 + regnum)[0] != '\0')
7952 return regnum;
7953 else
7954 return LEGACY_SIM_REGNO_IGNORE;
7955 }
7956
7957
7958 /* Convert an integer into an address. Extracting the value signed
7959 guarantees a correctly sign extended address. */
7960
7961 static CORE_ADDR
7962 mips_integer_to_address (struct gdbarch *gdbarch,
7963 struct type *type, const gdb_byte *buf)
7964 {
7965 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7966 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
7967 }
7968
7969 /* Dummy virtual frame pointer method. This is no more or less accurate
7970 than most other architectures; we just need to be explicit about it,
7971 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
7972 an assertion failure. */
7973
7974 static void
7975 mips_virtual_frame_pointer (struct gdbarch *gdbarch,
7976 CORE_ADDR pc, int *reg, LONGEST *offset)
7977 {
7978 *reg = MIPS_SP_REGNUM;
7979 *offset = 0;
7980 }
7981
7982 static void
7983 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
7984 {
7985 enum mips_abi *abip = (enum mips_abi *) obj;
7986 const char *name = bfd_get_section_name (abfd, sect);
7987
7988 if (*abip != MIPS_ABI_UNKNOWN)
7989 return;
7990
7991 if (!startswith (name, ".mdebug."))
7992 return;
7993
7994 if (strcmp (name, ".mdebug.abi32") == 0)
7995 *abip = MIPS_ABI_O32;
7996 else if (strcmp (name, ".mdebug.abiN32") == 0)
7997 *abip = MIPS_ABI_N32;
7998 else if (strcmp (name, ".mdebug.abi64") == 0)
7999 *abip = MIPS_ABI_N64;
8000 else if (strcmp (name, ".mdebug.abiO64") == 0)
8001 *abip = MIPS_ABI_O64;
8002 else if (strcmp (name, ".mdebug.eabi32") == 0)
8003 *abip = MIPS_ABI_EABI32;
8004 else if (strcmp (name, ".mdebug.eabi64") == 0)
8005 *abip = MIPS_ABI_EABI64;
8006 else
8007 warning (_("unsupported ABI %s."), name + 8);
8008 }
8009
8010 static void
8011 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
8012 {
8013 int *lbp = (int *) obj;
8014 const char *name = bfd_get_section_name (abfd, sect);
8015
8016 if (startswith (name, ".gcc_compiled_long32"))
8017 *lbp = 32;
8018 else if (startswith (name, ".gcc_compiled_long64"))
8019 *lbp = 64;
8020 else if (startswith (name, ".gcc_compiled_long"))
8021 warning (_("unrecognized .gcc_compiled_longXX"));
8022 }
8023
8024 static enum mips_abi
8025 global_mips_abi (void)
8026 {
8027 int i;
8028
8029 for (i = 0; mips_abi_strings[i] != NULL; i++)
8030 if (mips_abi_strings[i] == mips_abi_string)
8031 return (enum mips_abi) i;
8032
8033 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
8034 }
8035
8036 /* Return the default compressed instruction set, either of MIPS16
8037 or microMIPS, selected when none could have been determined from
8038 the ELF header of the binary being executed (or no binary has been
8039 selected. */
8040
8041 static enum mips_isa
8042 global_mips_compression (void)
8043 {
8044 int i;
8045
8046 for (i = 0; mips_compression_strings[i] != NULL; i++)
8047 if (mips_compression_strings[i] == mips_compression_string)
8048 return (enum mips_isa) i;
8049
8050 internal_error (__FILE__, __LINE__, _("unknown compressed ISA string"));
8051 }
8052
8053 static void
8054 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
8055 {
8056 /* If the size matches the set of 32-bit or 64-bit integer registers,
8057 assume that's what we've got. */
8058 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
8059 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
8060
8061 /* If the size matches the full set of registers GDB traditionally
8062 knows about, including floating point, for either 32-bit or
8063 64-bit, assume that's what we've got. */
8064 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
8065 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
8066
8067 /* Otherwise we don't have a useful guess. */
8068 }
8069
8070 static struct value *
8071 value_of_mips_user_reg (struct frame_info *frame, const void *baton)
8072 {
8073 const int *reg_p = (const int *) baton;
8074 return value_of_register (*reg_p, frame);
8075 }
8076
8077 static struct gdbarch *
8078 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8079 {
8080 struct gdbarch *gdbarch;
8081 struct gdbarch_tdep *tdep;
8082 int elf_flags;
8083 enum mips_abi mips_abi, found_abi, wanted_abi;
8084 int i, num_regs;
8085 enum mips_fpu_type fpu_type;
8086 struct tdesc_arch_data *tdesc_data = NULL;
8087 int elf_fpu_type = Val_GNU_MIPS_ABI_FP_ANY;
8088 const char **reg_names;
8089 struct mips_regnum mips_regnum, *regnum;
8090 enum mips_isa mips_isa;
8091 int dspacc;
8092 int dspctl;
8093
8094 /* Fill in the OS dependent register numbers and names. */
8095 if (info.osabi == GDB_OSABI_LINUX)
8096 {
8097 mips_regnum.fp0 = 38;
8098 mips_regnum.pc = 37;
8099 mips_regnum.cause = 36;
8100 mips_regnum.badvaddr = 35;
8101 mips_regnum.hi = 34;
8102 mips_regnum.lo = 33;
8103 mips_regnum.fp_control_status = 70;
8104 mips_regnum.fp_implementation_revision = 71;
8105 mips_regnum.dspacc = -1;
8106 mips_regnum.dspctl = -1;
8107 dspacc = 72;
8108 dspctl = 78;
8109 num_regs = 90;
8110 reg_names = mips_linux_reg_names;
8111 }
8112 else
8113 {
8114 mips_regnum.lo = MIPS_EMBED_LO_REGNUM;
8115 mips_regnum.hi = MIPS_EMBED_HI_REGNUM;
8116 mips_regnum.badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
8117 mips_regnum.cause = MIPS_EMBED_CAUSE_REGNUM;
8118 mips_regnum.pc = MIPS_EMBED_PC_REGNUM;
8119 mips_regnum.fp0 = MIPS_EMBED_FP0_REGNUM;
8120 mips_regnum.fp_control_status = 70;
8121 mips_regnum.fp_implementation_revision = 71;
8122 mips_regnum.dspacc = dspacc = -1;
8123 mips_regnum.dspctl = dspctl = -1;
8124 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
8125 if (info.bfd_arch_info != NULL
8126 && info.bfd_arch_info->mach == bfd_mach_mips3900)
8127 reg_names = mips_tx39_reg_names;
8128 else
8129 reg_names = mips_generic_reg_names;
8130 }
8131
8132 /* Check any target description for validity. */
8133 if (tdesc_has_registers (info.target_desc))
8134 {
8135 static const char *const mips_gprs[] = {
8136 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8137 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8138 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
8139 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
8140 };
8141 static const char *const mips_fprs[] = {
8142 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
8143 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
8144 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
8145 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
8146 };
8147
8148 const struct tdesc_feature *feature;
8149 int valid_p;
8150
8151 feature = tdesc_find_feature (info.target_desc,
8152 "org.gnu.gdb.mips.cpu");
8153 if (feature == NULL)
8154 return NULL;
8155
8156 tdesc_data = tdesc_data_alloc ();
8157
8158 valid_p = 1;
8159 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
8160 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8161 mips_gprs[i]);
8162
8163
8164 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8165 mips_regnum.lo, "lo");
8166 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8167 mips_regnum.hi, "hi");
8168 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8169 mips_regnum.pc, "pc");
8170
8171 if (!valid_p)
8172 {
8173 tdesc_data_cleanup (tdesc_data);
8174 return NULL;
8175 }
8176
8177 feature = tdesc_find_feature (info.target_desc,
8178 "org.gnu.gdb.mips.cp0");
8179 if (feature == NULL)
8180 {
8181 tdesc_data_cleanup (tdesc_data);
8182 return NULL;
8183 }
8184
8185 valid_p = 1;
8186 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8187 mips_regnum.badvaddr, "badvaddr");
8188 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8189 MIPS_PS_REGNUM, "status");
8190 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8191 mips_regnum.cause, "cause");
8192
8193 if (!valid_p)
8194 {
8195 tdesc_data_cleanup (tdesc_data);
8196 return NULL;
8197 }
8198
8199 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
8200 backend is not prepared for that, though. */
8201 feature = tdesc_find_feature (info.target_desc,
8202 "org.gnu.gdb.mips.fpu");
8203 if (feature == NULL)
8204 {
8205 tdesc_data_cleanup (tdesc_data);
8206 return NULL;
8207 }
8208
8209 valid_p = 1;
8210 for (i = 0; i < 32; i++)
8211 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8212 i + mips_regnum.fp0, mips_fprs[i]);
8213
8214 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8215 mips_regnum.fp_control_status,
8216 "fcsr");
8217 valid_p
8218 &= tdesc_numbered_register (feature, tdesc_data,
8219 mips_regnum.fp_implementation_revision,
8220 "fir");
8221
8222 if (!valid_p)
8223 {
8224 tdesc_data_cleanup (tdesc_data);
8225 return NULL;
8226 }
8227
8228 num_regs = mips_regnum.fp_implementation_revision + 1;
8229
8230 if (dspacc >= 0)
8231 {
8232 feature = tdesc_find_feature (info.target_desc,
8233 "org.gnu.gdb.mips.dsp");
8234 /* The DSP registers are optional; it's OK if they are absent. */
8235 if (feature != NULL)
8236 {
8237 i = 0;
8238 valid_p = 1;
8239 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8240 dspacc + i++, "hi1");
8241 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8242 dspacc + i++, "lo1");
8243 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8244 dspacc + i++, "hi2");
8245 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8246 dspacc + i++, "lo2");
8247 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8248 dspacc + i++, "hi3");
8249 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8250 dspacc + i++, "lo3");
8251
8252 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8253 dspctl, "dspctl");
8254
8255 if (!valid_p)
8256 {
8257 tdesc_data_cleanup (tdesc_data);
8258 return NULL;
8259 }
8260
8261 mips_regnum.dspacc = dspacc;
8262 mips_regnum.dspctl = dspctl;
8263
8264 num_regs = mips_regnum.dspctl + 1;
8265 }
8266 }
8267
8268 /* It would be nice to detect an attempt to use a 64-bit ABI
8269 when only 32-bit registers are provided. */
8270 reg_names = NULL;
8271 }
8272
8273 /* First of all, extract the elf_flags, if available. */
8274 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8275 elf_flags = elf_elfheader (info.abfd)->e_flags;
8276 else if (arches != NULL)
8277 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
8278 else
8279 elf_flags = 0;
8280 if (gdbarch_debug)
8281 fprintf_unfiltered (gdb_stdlog,
8282 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
8283
8284 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
8285 switch ((elf_flags & EF_MIPS_ABI))
8286 {
8287 case E_MIPS_ABI_O32:
8288 found_abi = MIPS_ABI_O32;
8289 break;
8290 case E_MIPS_ABI_O64:
8291 found_abi = MIPS_ABI_O64;
8292 break;
8293 case E_MIPS_ABI_EABI32:
8294 found_abi = MIPS_ABI_EABI32;
8295 break;
8296 case E_MIPS_ABI_EABI64:
8297 found_abi = MIPS_ABI_EABI64;
8298 break;
8299 default:
8300 if ((elf_flags & EF_MIPS_ABI2))
8301 found_abi = MIPS_ABI_N32;
8302 else
8303 found_abi = MIPS_ABI_UNKNOWN;
8304 break;
8305 }
8306
8307 /* GCC creates a pseudo-section whose name describes the ABI. */
8308 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
8309 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
8310
8311 /* If we have no useful BFD information, use the ABI from the last
8312 MIPS architecture (if there is one). */
8313 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
8314 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
8315
8316 /* Try the architecture for any hint of the correct ABI. */
8317 if (found_abi == MIPS_ABI_UNKNOWN
8318 && info.bfd_arch_info != NULL
8319 && info.bfd_arch_info->arch == bfd_arch_mips)
8320 {
8321 switch (info.bfd_arch_info->mach)
8322 {
8323 case bfd_mach_mips3900:
8324 found_abi = MIPS_ABI_EABI32;
8325 break;
8326 case bfd_mach_mips4100:
8327 case bfd_mach_mips5000:
8328 found_abi = MIPS_ABI_EABI64;
8329 break;
8330 case bfd_mach_mips8000:
8331 case bfd_mach_mips10000:
8332 /* On Irix, ELF64 executables use the N64 ABI. The
8333 pseudo-sections which describe the ABI aren't present
8334 on IRIX. (Even for executables created by gcc.) */
8335 if (info.abfd != NULL
8336 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8337 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8338 found_abi = MIPS_ABI_N64;
8339 else
8340 found_abi = MIPS_ABI_N32;
8341 break;
8342 }
8343 }
8344
8345 /* Default 64-bit objects to N64 instead of O32. */
8346 if (found_abi == MIPS_ABI_UNKNOWN
8347 && info.abfd != NULL
8348 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8349 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8350 found_abi = MIPS_ABI_N64;
8351
8352 if (gdbarch_debug)
8353 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
8354 found_abi);
8355
8356 /* What has the user specified from the command line? */
8357 wanted_abi = global_mips_abi ();
8358 if (gdbarch_debug)
8359 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
8360 wanted_abi);
8361
8362 /* Now that we have found what the ABI for this binary would be,
8363 check whether the user is overriding it. */
8364 if (wanted_abi != MIPS_ABI_UNKNOWN)
8365 mips_abi = wanted_abi;
8366 else if (found_abi != MIPS_ABI_UNKNOWN)
8367 mips_abi = found_abi;
8368 else
8369 mips_abi = MIPS_ABI_O32;
8370 if (gdbarch_debug)
8371 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
8372 mips_abi);
8373
8374 /* Determine the default compressed ISA. */
8375 if ((elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0
8376 && (elf_flags & EF_MIPS_ARCH_ASE_M16) == 0)
8377 mips_isa = ISA_MICROMIPS;
8378 else if ((elf_flags & EF_MIPS_ARCH_ASE_M16) != 0
8379 && (elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) == 0)
8380 mips_isa = ISA_MIPS16;
8381 else
8382 mips_isa = global_mips_compression ();
8383 mips_compression_string = mips_compression_strings[mips_isa];
8384
8385 /* Also used when doing an architecture lookup. */
8386 if (gdbarch_debug)
8387 fprintf_unfiltered (gdb_stdlog,
8388 "mips_gdbarch_init: "
8389 "mips64_transfers_32bit_regs_p = %d\n",
8390 mips64_transfers_32bit_regs_p);
8391
8392 /* Determine the MIPS FPU type. */
8393 #ifdef HAVE_ELF
8394 if (info.abfd
8395 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8396 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8397 Tag_GNU_MIPS_ABI_FP);
8398 #endif /* HAVE_ELF */
8399
8400 if (!mips_fpu_type_auto)
8401 fpu_type = mips_fpu_type;
8402 else if (elf_fpu_type != Val_GNU_MIPS_ABI_FP_ANY)
8403 {
8404 switch (elf_fpu_type)
8405 {
8406 case Val_GNU_MIPS_ABI_FP_DOUBLE:
8407 fpu_type = MIPS_FPU_DOUBLE;
8408 break;
8409 case Val_GNU_MIPS_ABI_FP_SINGLE:
8410 fpu_type = MIPS_FPU_SINGLE;
8411 break;
8412 case Val_GNU_MIPS_ABI_FP_SOFT:
8413 default:
8414 /* Soft float or unknown. */
8415 fpu_type = MIPS_FPU_NONE;
8416 break;
8417 }
8418 }
8419 else if (info.bfd_arch_info != NULL
8420 && info.bfd_arch_info->arch == bfd_arch_mips)
8421 switch (info.bfd_arch_info->mach)
8422 {
8423 case bfd_mach_mips3900:
8424 case bfd_mach_mips4100:
8425 case bfd_mach_mips4111:
8426 case bfd_mach_mips4120:
8427 fpu_type = MIPS_FPU_NONE;
8428 break;
8429 case bfd_mach_mips4650:
8430 fpu_type = MIPS_FPU_SINGLE;
8431 break;
8432 default:
8433 fpu_type = MIPS_FPU_DOUBLE;
8434 break;
8435 }
8436 else if (arches != NULL)
8437 fpu_type = MIPS_FPU_TYPE (arches->gdbarch);
8438 else
8439 fpu_type = MIPS_FPU_DOUBLE;
8440 if (gdbarch_debug)
8441 fprintf_unfiltered (gdb_stdlog,
8442 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8443
8444 /* Check for blatant incompatibilities. */
8445
8446 /* If we have only 32-bit registers, then we can't debug a 64-bit
8447 ABI. */
8448 if (info.target_desc
8449 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
8450 && mips_abi != MIPS_ABI_EABI32
8451 && mips_abi != MIPS_ABI_O32)
8452 {
8453 if (tdesc_data != NULL)
8454 tdesc_data_cleanup (tdesc_data);
8455 return NULL;
8456 }
8457
8458 /* Try to find a pre-existing architecture. */
8459 for (arches = gdbarch_list_lookup_by_info (arches, &info);
8460 arches != NULL;
8461 arches = gdbarch_list_lookup_by_info (arches->next, &info))
8462 {
8463 /* MIPS needs to be pedantic about which ABI and the compressed
8464 ISA variation the object is using. */
8465 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
8466 continue;
8467 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
8468 continue;
8469 if (gdbarch_tdep (arches->gdbarch)->mips_isa != mips_isa)
8470 continue;
8471 /* Need to be pedantic about which register virtual size is
8472 used. */
8473 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
8474 != mips64_transfers_32bit_regs_p)
8475 continue;
8476 /* Be pedantic about which FPU is selected. */
8477 if (MIPS_FPU_TYPE (arches->gdbarch) != fpu_type)
8478 continue;
8479
8480 if (tdesc_data != NULL)
8481 tdesc_data_cleanup (tdesc_data);
8482 return arches->gdbarch;
8483 }
8484
8485 /* Need a new architecture. Fill in a target specific vector. */
8486 tdep = XCNEW (struct gdbarch_tdep);
8487 gdbarch = gdbarch_alloc (&info, tdep);
8488 tdep->elf_flags = elf_flags;
8489 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
8490 tdep->found_abi = found_abi;
8491 tdep->mips_abi = mips_abi;
8492 tdep->mips_isa = mips_isa;
8493 tdep->mips_fpu_type = fpu_type;
8494 tdep->register_size_valid_p = 0;
8495 tdep->register_size = 0;
8496
8497 if (info.target_desc)
8498 {
8499 /* Some useful properties can be inferred from the target. */
8500 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
8501 {
8502 tdep->register_size_valid_p = 1;
8503 tdep->register_size = 4;
8504 }
8505 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
8506 {
8507 tdep->register_size_valid_p = 1;
8508 tdep->register_size = 8;
8509 }
8510 }
8511
8512 /* Initially set everything according to the default ABI/ISA. */
8513 set_gdbarch_short_bit (gdbarch, 16);
8514 set_gdbarch_int_bit (gdbarch, 32);
8515 set_gdbarch_float_bit (gdbarch, 32);
8516 set_gdbarch_double_bit (gdbarch, 64);
8517 set_gdbarch_long_double_bit (gdbarch, 64);
8518 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
8519 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
8520 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
8521
8522 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8523 mips_ax_pseudo_register_collect);
8524 set_gdbarch_ax_pseudo_register_push_stack
8525 (gdbarch, mips_ax_pseudo_register_push_stack);
8526
8527 set_gdbarch_elf_make_msymbol_special (gdbarch,
8528 mips_elf_make_msymbol_special);
8529 set_gdbarch_make_symbol_special (gdbarch, mips_make_symbol_special);
8530 set_gdbarch_adjust_dwarf2_addr (gdbarch, mips_adjust_dwarf2_addr);
8531 set_gdbarch_adjust_dwarf2_line (gdbarch, mips_adjust_dwarf2_line);
8532
8533 regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct mips_regnum);
8534 *regnum = mips_regnum;
8535 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
8536 set_gdbarch_num_regs (gdbarch, num_regs);
8537 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8538 set_gdbarch_register_name (gdbarch, mips_register_name);
8539 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
8540 tdep->mips_processor_reg_names = reg_names;
8541 tdep->regnum = regnum;
8542
8543 switch (mips_abi)
8544 {
8545 case MIPS_ABI_O32:
8546 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
8547 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
8548 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8549 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8550 tdep->default_mask_address_p = 0;
8551 set_gdbarch_long_bit (gdbarch, 32);
8552 set_gdbarch_ptr_bit (gdbarch, 32);
8553 set_gdbarch_long_long_bit (gdbarch, 64);
8554 break;
8555 case MIPS_ABI_O64:
8556 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
8557 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
8558 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8559 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8560 tdep->default_mask_address_p = 0;
8561 set_gdbarch_long_bit (gdbarch, 32);
8562 set_gdbarch_ptr_bit (gdbarch, 32);
8563 set_gdbarch_long_long_bit (gdbarch, 64);
8564 break;
8565 case MIPS_ABI_EABI32:
8566 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8567 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8568 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8569 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8570 tdep->default_mask_address_p = 0;
8571 set_gdbarch_long_bit (gdbarch, 32);
8572 set_gdbarch_ptr_bit (gdbarch, 32);
8573 set_gdbarch_long_long_bit (gdbarch, 64);
8574 break;
8575 case MIPS_ABI_EABI64:
8576 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8577 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8578 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8579 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8580 tdep->default_mask_address_p = 0;
8581 set_gdbarch_long_bit (gdbarch, 64);
8582 set_gdbarch_ptr_bit (gdbarch, 64);
8583 set_gdbarch_long_long_bit (gdbarch, 64);
8584 break;
8585 case MIPS_ABI_N32:
8586 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8587 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8588 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8589 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8590 tdep->default_mask_address_p = 0;
8591 set_gdbarch_long_bit (gdbarch, 32);
8592 set_gdbarch_ptr_bit (gdbarch, 32);
8593 set_gdbarch_long_long_bit (gdbarch, 64);
8594 set_gdbarch_long_double_bit (gdbarch, 128);
8595 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8596 break;
8597 case MIPS_ABI_N64:
8598 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8599 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8600 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8601 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8602 tdep->default_mask_address_p = 0;
8603 set_gdbarch_long_bit (gdbarch, 64);
8604 set_gdbarch_ptr_bit (gdbarch, 64);
8605 set_gdbarch_long_long_bit (gdbarch, 64);
8606 set_gdbarch_long_double_bit (gdbarch, 128);
8607 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8608 break;
8609 default:
8610 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8611 }
8612
8613 /* GCC creates a pseudo-section whose name specifies the size of
8614 longs, since -mlong32 or -mlong64 may be used independent of
8615 other options. How those options affect pointer sizes is ABI and
8616 architecture dependent, so use them to override the default sizes
8617 set by the ABI. This table shows the relationship between ABI,
8618 -mlongXX, and size of pointers:
8619
8620 ABI -mlongXX ptr bits
8621 --- -------- --------
8622 o32 32 32
8623 o32 64 32
8624 n32 32 32
8625 n32 64 64
8626 o64 32 32
8627 o64 64 64
8628 n64 32 32
8629 n64 64 64
8630 eabi32 32 32
8631 eabi32 64 32
8632 eabi64 32 32
8633 eabi64 64 64
8634
8635 Note that for o32 and eabi32, pointers are always 32 bits
8636 regardless of any -mlongXX option. For all others, pointers and
8637 longs are the same, as set by -mlongXX or set by defaults. */
8638
8639 if (info.abfd != NULL)
8640 {
8641 int long_bit = 0;
8642
8643 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
8644 if (long_bit)
8645 {
8646 set_gdbarch_long_bit (gdbarch, long_bit);
8647 switch (mips_abi)
8648 {
8649 case MIPS_ABI_O32:
8650 case MIPS_ABI_EABI32:
8651 break;
8652 case MIPS_ABI_N32:
8653 case MIPS_ABI_O64:
8654 case MIPS_ABI_N64:
8655 case MIPS_ABI_EABI64:
8656 set_gdbarch_ptr_bit (gdbarch, long_bit);
8657 break;
8658 default:
8659 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8660 }
8661 }
8662 }
8663
8664 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
8665 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
8666 comment:
8667
8668 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
8669 flag in object files because to do so would make it impossible to
8670 link with libraries compiled without "-gp32". This is
8671 unnecessarily restrictive.
8672
8673 We could solve this problem by adding "-gp32" multilibs to gcc,
8674 but to set this flag before gcc is built with such multilibs will
8675 break too many systems.''
8676
8677 But even more unhelpfully, the default linker output target for
8678 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
8679 for 64-bit programs - you need to change the ABI to change this,
8680 and not all gcc targets support that currently. Therefore using
8681 this flag to detect 32-bit mode would do the wrong thing given
8682 the current gcc - it would make GDB treat these 64-bit programs
8683 as 32-bit programs by default. */
8684
8685 set_gdbarch_read_pc (gdbarch, mips_read_pc);
8686 set_gdbarch_write_pc (gdbarch, mips_write_pc);
8687
8688 /* Add/remove bits from an address. The MIPS needs be careful to
8689 ensure that all 32 bit addresses are sign extended to 64 bits. */
8690 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
8691
8692 /* Unwind the frame. */
8693 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
8694 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
8695 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
8696
8697 /* Map debug register numbers onto internal register numbers. */
8698 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
8699 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
8700 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8701 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
8702 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8703 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
8704
8705 /* MIPS version of CALL_DUMMY. */
8706
8707 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8708 set_gdbarch_push_dummy_code (gdbarch, mips_push_dummy_code);
8709 set_gdbarch_frame_align (gdbarch, mips_frame_align);
8710
8711 set_gdbarch_print_float_info (gdbarch, mips_print_float_info);
8712
8713 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
8714 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
8715 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
8716
8717 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8718 set_gdbarch_breakpoint_kind_from_pc (gdbarch, mips_breakpoint_kind_from_pc);
8719 set_gdbarch_sw_breakpoint_from_kind (gdbarch, mips_sw_breakpoint_from_kind);
8720 set_gdbarch_adjust_breakpoint_address (gdbarch,
8721 mips_adjust_breakpoint_address);
8722
8723 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
8724
8725 set_gdbarch_stack_frame_destroyed_p (gdbarch, mips_stack_frame_destroyed_p);
8726
8727 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
8728 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
8729 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
8730
8731 set_gdbarch_register_type (gdbarch, mips_register_type);
8732
8733 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
8734
8735 if (mips_abi == MIPS_ABI_N32)
8736 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
8737 else if (mips_abi == MIPS_ABI_N64)
8738 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
8739 else
8740 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
8741
8742 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
8743 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
8744 need to all be folded into the target vector. Since they are
8745 being used as guards for target_stopped_by_watchpoint, why not have
8746 target_stopped_by_watchpoint return the type of watchpoint that the code
8747 is sitting on? */
8748 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8749
8750 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
8751
8752 /* NOTE drow/2012-04-25: We overload the core solib trampoline code
8753 to support MIPS16. This is a bad thing. Make sure not to do it
8754 if we have an OS ABI that actually supports shared libraries, since
8755 shared library support is more important. If we have an OS someday
8756 that supports both shared libraries and MIPS16, we'll have to find
8757 a better place for these.
8758 macro/2012-04-25: But that applies to return trampolines only and
8759 currently no MIPS OS ABI uses shared libraries that have them. */
8760 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
8761
8762 set_gdbarch_single_step_through_delay (gdbarch,
8763 mips_single_step_through_delay);
8764
8765 /* Virtual tables. */
8766 set_gdbarch_vbit_in_delta (gdbarch, 1);
8767
8768 mips_register_g_packet_guesses (gdbarch);
8769
8770 /* Hook in OS ABI-specific overrides, if they have been registered. */
8771 info.tdesc_data = tdesc_data;
8772 gdbarch_init_osabi (info, gdbarch);
8773
8774 /* The hook may have adjusted num_regs, fetch the final value and
8775 set pc_regnum and sp_regnum now that it has been fixed. */
8776 num_regs = gdbarch_num_regs (gdbarch);
8777 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
8778 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8779
8780 /* Unwind the frame. */
8781 dwarf2_append_unwinders (gdbarch);
8782 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
8783 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
8784 frame_unwind_append_unwinder (gdbarch, &mips_micro_frame_unwind);
8785 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
8786 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
8787 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
8788 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
8789 frame_base_append_sniffer (gdbarch, mips_micro_frame_base_sniffer);
8790 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
8791
8792 if (tdesc_data)
8793 {
8794 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
8795 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
8796
8797 /* Override the normal target description methods to handle our
8798 dual real and pseudo registers. */
8799 set_gdbarch_register_name (gdbarch, mips_register_name);
8800 set_gdbarch_register_reggroup_p (gdbarch,
8801 mips_tdesc_register_reggroup_p);
8802
8803 num_regs = gdbarch_num_regs (gdbarch);
8804 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8805 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
8806 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8807 }
8808
8809 /* Add ABI-specific aliases for the registers. */
8810 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
8811 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
8812 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
8813 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
8814 else
8815 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
8816 user_reg_add (gdbarch, mips_o32_aliases[i].name,
8817 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
8818
8819 /* Add some other standard aliases. */
8820 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
8821 user_reg_add (gdbarch, mips_register_aliases[i].name,
8822 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
8823
8824 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
8825 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
8826 value_of_mips_user_reg,
8827 &mips_numeric_register_aliases[i].regnum);
8828
8829 return gdbarch;
8830 }
8831
8832 static void
8833 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
8834 {
8835 struct gdbarch_info info;
8836
8837 /* Force the architecture to update, and (if it's a MIPS architecture)
8838 mips_gdbarch_init will take care of the rest. */
8839 gdbarch_info_init (&info);
8840 gdbarch_update_p (info);
8841 }
8842
8843 /* Print out which MIPS ABI is in use. */
8844
8845 static void
8846 show_mips_abi (struct ui_file *file,
8847 int from_tty,
8848 struct cmd_list_element *ignored_cmd,
8849 const char *ignored_value)
8850 {
8851 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
8852 fprintf_filtered
8853 (file,
8854 "The MIPS ABI is unknown because the current architecture "
8855 "is not MIPS.\n");
8856 else
8857 {
8858 enum mips_abi global_abi = global_mips_abi ();
8859 enum mips_abi actual_abi = mips_abi (target_gdbarch ());
8860 const char *actual_abi_str = mips_abi_strings[actual_abi];
8861
8862 if (global_abi == MIPS_ABI_UNKNOWN)
8863 fprintf_filtered
8864 (file,
8865 "The MIPS ABI is set automatically (currently \"%s\").\n",
8866 actual_abi_str);
8867 else if (global_abi == actual_abi)
8868 fprintf_filtered
8869 (file,
8870 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
8871 actual_abi_str);
8872 else
8873 {
8874 /* Probably shouldn't happen... */
8875 fprintf_filtered (file,
8876 "The (auto detected) MIPS ABI \"%s\" is in use "
8877 "even though the user setting was \"%s\".\n",
8878 actual_abi_str, mips_abi_strings[global_abi]);
8879 }
8880 }
8881 }
8882
8883 /* Print out which MIPS compressed ISA encoding is used. */
8884
8885 static void
8886 show_mips_compression (struct ui_file *file, int from_tty,
8887 struct cmd_list_element *c, const char *value)
8888 {
8889 fprintf_filtered (file, _("The compressed ISA encoding used is %s.\n"),
8890 value);
8891 }
8892
8893 /* Return a textual name for MIPS FPU type FPU_TYPE. */
8894
8895 static const char *
8896 mips_fpu_type_str (enum mips_fpu_type fpu_type)
8897 {
8898 switch (fpu_type)
8899 {
8900 case MIPS_FPU_NONE:
8901 return "none";
8902 case MIPS_FPU_SINGLE:
8903 return "single";
8904 case MIPS_FPU_DOUBLE:
8905 return "double";
8906 default:
8907 return "???";
8908 }
8909 }
8910
8911 static void
8912 mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
8913 {
8914 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8915 if (tdep != NULL)
8916 {
8917 int ef_mips_arch;
8918 int ef_mips_32bitmode;
8919 /* Determine the ISA. */
8920 switch (tdep->elf_flags & EF_MIPS_ARCH)
8921 {
8922 case E_MIPS_ARCH_1:
8923 ef_mips_arch = 1;
8924 break;
8925 case E_MIPS_ARCH_2:
8926 ef_mips_arch = 2;
8927 break;
8928 case E_MIPS_ARCH_3:
8929 ef_mips_arch = 3;
8930 break;
8931 case E_MIPS_ARCH_4:
8932 ef_mips_arch = 4;
8933 break;
8934 default:
8935 ef_mips_arch = 0;
8936 break;
8937 }
8938 /* Determine the size of a pointer. */
8939 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
8940 fprintf_unfiltered (file,
8941 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
8942 tdep->elf_flags);
8943 fprintf_unfiltered (file,
8944 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
8945 ef_mips_32bitmode);
8946 fprintf_unfiltered (file,
8947 "mips_dump_tdep: ef_mips_arch = %d\n",
8948 ef_mips_arch);
8949 fprintf_unfiltered (file,
8950 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
8951 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
8952 fprintf_unfiltered (file,
8953 "mips_dump_tdep: "
8954 "mips_mask_address_p() %d (default %d)\n",
8955 mips_mask_address_p (tdep),
8956 tdep->default_mask_address_p);
8957 }
8958 fprintf_unfiltered (file,
8959 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
8960 MIPS_DEFAULT_FPU_TYPE,
8961 mips_fpu_type_str (MIPS_DEFAULT_FPU_TYPE));
8962 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
8963 MIPS_EABI (gdbarch));
8964 fprintf_unfiltered (file,
8965 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
8966 MIPS_FPU_TYPE (gdbarch),
8967 mips_fpu_type_str (MIPS_FPU_TYPE (gdbarch)));
8968 }
8969
8970 void
8971 _initialize_mips_tdep (void)
8972 {
8973 static struct cmd_list_element *mipsfpulist = NULL;
8974 struct cmd_list_element *c;
8975
8976 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
8977 if (MIPS_ABI_LAST + 1
8978 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
8979 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
8980
8981 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
8982
8983 mips_pdr_data = register_objfile_data ();
8984
8985 /* Create feature sets with the appropriate properties. The values
8986 are not important. */
8987 mips_tdesc_gp32 = allocate_target_description ();
8988 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
8989
8990 mips_tdesc_gp64 = allocate_target_description ();
8991 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
8992
8993 /* Add root prefix command for all "set mips"/"show mips" commands. */
8994 add_prefix_cmd ("mips", no_class, set_mips_command,
8995 _("Various MIPS specific commands."),
8996 &setmipscmdlist, "set mips ", 0, &setlist);
8997
8998 add_prefix_cmd ("mips", no_class, show_mips_command,
8999 _("Various MIPS specific commands."),
9000 &showmipscmdlist, "show mips ", 0, &showlist);
9001
9002 /* Allow the user to override the ABI. */
9003 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
9004 &mips_abi_string, _("\
9005 Set the MIPS ABI used by this program."), _("\
9006 Show the MIPS ABI used by this program."), _("\
9007 This option can be set to one of:\n\
9008 auto - the default ABI associated with the current binary\n\
9009 o32\n\
9010 o64\n\
9011 n32\n\
9012 n64\n\
9013 eabi32\n\
9014 eabi64"),
9015 mips_abi_update,
9016 show_mips_abi,
9017 &setmipscmdlist, &showmipscmdlist);
9018
9019 /* Allow the user to set the ISA to assume for compressed code if ELF
9020 file flags don't tell or there is no program file selected. This
9021 setting is updated whenever unambiguous ELF file flags are interpreted,
9022 and carried over to subsequent sessions. */
9023 add_setshow_enum_cmd ("compression", class_obscure, mips_compression_strings,
9024 &mips_compression_string, _("\
9025 Set the compressed ISA encoding used by MIPS code."), _("\
9026 Show the compressed ISA encoding used by MIPS code."), _("\
9027 Select the compressed ISA encoding used in functions that have no symbol\n\
9028 information available. The encoding can be set to either of:\n\
9029 mips16\n\
9030 micromips\n\
9031 and is updated automatically from ELF file flags if available."),
9032 mips_abi_update,
9033 show_mips_compression,
9034 &setmipscmdlist, &showmipscmdlist);
9035
9036 /* Let the user turn off floating point and set the fence post for
9037 heuristic_proc_start. */
9038
9039 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
9040 _("Set use of MIPS floating-point coprocessor."),
9041 &mipsfpulist, "set mipsfpu ", 0, &setlist);
9042 add_cmd ("single", class_support, set_mipsfpu_single_command,
9043 _("Select single-precision MIPS floating-point coprocessor."),
9044 &mipsfpulist);
9045 add_cmd ("double", class_support, set_mipsfpu_double_command,
9046 _("Select double-precision MIPS floating-point coprocessor."),
9047 &mipsfpulist);
9048 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
9049 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
9050 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
9051 add_cmd ("none", class_support, set_mipsfpu_none_command,
9052 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
9053 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
9054 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
9055 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
9056 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
9057 _("Select MIPS floating-point coprocessor automatically."),
9058 &mipsfpulist);
9059 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
9060 _("Show current use of MIPS floating-point coprocessor target."),
9061 &showlist);
9062
9063 /* We really would like to have both "0" and "unlimited" work, but
9064 command.c doesn't deal with that. So make it a var_zinteger
9065 because the user can always use "999999" or some such for unlimited. */
9066 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
9067 &heuristic_fence_post, _("\
9068 Set the distance searched for the start of a function."), _("\
9069 Show the distance searched for the start of a function."), _("\
9070 If you are debugging a stripped executable, GDB needs to search through the\n\
9071 program for the start of a function. This command sets the distance of the\n\
9072 search. The only need to set it is when debugging a stripped executable."),
9073 reinit_frame_cache_sfunc,
9074 NULL, /* FIXME: i18n: The distance searched for
9075 the start of a function is %s. */
9076 &setlist, &showlist);
9077
9078 /* Allow the user to control whether the upper bits of 64-bit
9079 addresses should be zeroed. */
9080 add_setshow_auto_boolean_cmd ("mask-address", no_class,
9081 &mask_address_var, _("\
9082 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
9083 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
9084 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
9085 allow GDB to determine the correct value."),
9086 NULL, show_mask_address,
9087 &setmipscmdlist, &showmipscmdlist);
9088
9089 /* Allow the user to control the size of 32 bit registers within the
9090 raw remote packet. */
9091 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
9092 &mips64_transfers_32bit_regs_p, _("\
9093 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9094 _("\
9095 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9096 _("\
9097 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
9098 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
9099 64 bits for others. Use \"off\" to disable compatibility mode"),
9100 set_mips64_transfers_32bit_regs,
9101 NULL, /* FIXME: i18n: Compatibility with 64-bit
9102 MIPS target that transfers 32-bit
9103 quantities is %s. */
9104 &setlist, &showlist);
9105
9106 /* Debug this files internals. */
9107 add_setshow_zuinteger_cmd ("mips", class_maintenance,
9108 &mips_debug, _("\
9109 Set mips debugging."), _("\
9110 Show mips debugging."), _("\
9111 When non-zero, mips specific debugging is enabled."),
9112 NULL,
9113 NULL, /* FIXME: i18n: Mips debugging is
9114 currently %s. */
9115 &setdebuglist, &showdebuglist);
9116 }
This page took 0.255987 seconds and 5 git commands to generate.