* mips-tdep.c (mips32_in_function_epilogue_p): New function.
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include "gdb_assert.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "value.h"
32 #include "gdbcmd.h"
33 #include "language.h"
34 #include "gdbcore.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdbtypes.h"
38 #include "target.h"
39 #include "arch-utils.h"
40 #include "regcache.h"
41 #include "osabi.h"
42 #include "mips-tdep.h"
43 #include "block.h"
44 #include "reggroups.h"
45 #include "opcode/mips.h"
46 #include "elf/mips.h"
47 #include "elf-bfd.h"
48 #include "symcat.h"
49 #include "sim-regno.h"
50 #include "dis-asm.h"
51 #include "frame-unwind.h"
52 #include "frame-base.h"
53 #include "trad-frame.h"
54 #include "infcall.h"
55 #include "floatformat.h"
56 #include "remote.h"
57 #include "target-descriptions.h"
58 #include "dwarf2-frame.h"
59 #include "user-regs.h"
60
61 static const struct objfile_data *mips_pdr_data;
62
63 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
64
65 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
66 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
67 #define ST0_FR (1 << 26)
68
69 /* The sizes of floating point registers. */
70
71 enum
72 {
73 MIPS_FPU_SINGLE_REGSIZE = 4,
74 MIPS_FPU_DOUBLE_REGSIZE = 8
75 };
76
77 enum
78 {
79 MIPS32_REGSIZE = 4,
80 MIPS64_REGSIZE = 8
81 };
82
83 static const char *mips_abi_string;
84
85 static const char *mips_abi_strings[] = {
86 "auto",
87 "n32",
88 "o32",
89 "n64",
90 "o64",
91 "eabi32",
92 "eabi64",
93 NULL
94 };
95
96 /* The standard register names, and all the valid aliases for them. */
97 struct register_alias
98 {
99 const char *name;
100 int regnum;
101 };
102
103 /* Aliases for o32 and most other ABIs. */
104 const struct register_alias mips_o32_aliases[] = {
105 { "ta0", 12 },
106 { "ta1", 13 },
107 { "ta2", 14 },
108 { "ta3", 15 }
109 };
110
111 /* Aliases for n32 and n64. */
112 const struct register_alias mips_n32_n64_aliases[] = {
113 { "ta0", 8 },
114 { "ta1", 9 },
115 { "ta2", 10 },
116 { "ta3", 11 }
117 };
118
119 /* Aliases for ABI-independent registers. */
120 const struct register_alias mips_register_aliases[] = {
121 /* The architecture manuals specify these ABI-independent names for
122 the GPRs. */
123 #define R(n) { "r" #n, n }
124 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
125 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
126 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
127 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
128 #undef R
129
130 /* k0 and k1 are sometimes called these instead (for "kernel
131 temp"). */
132 { "kt0", 26 },
133 { "kt1", 27 },
134
135 /* This is the traditional GDB name for the CP0 status register. */
136 { "sr", MIPS_PS_REGNUM },
137
138 /* This is the traditional GDB name for the CP0 BadVAddr register. */
139 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
140
141 /* This is the traditional GDB name for the FCSR. */
142 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
143 };
144
145 /* Some MIPS boards don't support floating point while others only
146 support single-precision floating-point operations. */
147
148 enum mips_fpu_type
149 {
150 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
151 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
152 MIPS_FPU_NONE /* No floating point. */
153 };
154
155 #ifndef MIPS_DEFAULT_FPU_TYPE
156 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
157 #endif
158 static int mips_fpu_type_auto = 1;
159 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
160
161 static int mips_debug = 0;
162
163 /* Properties (for struct target_desc) describing the g/G packet
164 layout. */
165 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
166 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
167
168 struct target_desc *mips_tdesc_gp32;
169 struct target_desc *mips_tdesc_gp64;
170
171 /* MIPS specific per-architecture information */
172 struct gdbarch_tdep
173 {
174 /* from the elf header */
175 int elf_flags;
176
177 /* mips options */
178 enum mips_abi mips_abi;
179 enum mips_abi found_abi;
180 enum mips_fpu_type mips_fpu_type;
181 int mips_last_arg_regnum;
182 int mips_last_fp_arg_regnum;
183 int default_mask_address_p;
184 /* Is the target using 64-bit raw integer registers but only
185 storing a left-aligned 32-bit value in each? */
186 int mips64_transfers_32bit_regs_p;
187 /* Indexes for various registers. IRIX and embedded have
188 different values. This contains the "public" fields. Don't
189 add any that do not need to be public. */
190 const struct mips_regnum *regnum;
191 /* Register names table for the current register set. */
192 const char **mips_processor_reg_names;
193
194 /* The size of register data available from the target, if known.
195 This doesn't quite obsolete the manual
196 mips64_transfers_32bit_regs_p, since that is documented to force
197 left alignment even for big endian (very strange). */
198 int register_size_valid_p;
199 int register_size;
200 };
201
202 static int
203 n32n64_floatformat_always_valid (const struct floatformat *fmt,
204 const void *from)
205 {
206 return 1;
207 }
208
209 /* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
210 They are implemented as a pair of 64bit doubles where the high
211 part holds the result of the operation rounded to double, and
212 the low double holds the difference between the exact result and
213 the rounded result. So "high" + "low" contains the result with
214 added precision. Unfortunately, the floatformat structure used
215 by GDB is not powerful enough to describe this format. As a temporary
216 measure, we define a 128bit floatformat that only uses the high part.
217 We lose a bit of precision but that's probably the best we can do
218 for now with the current infrastructure. */
219
220 static const struct floatformat floatformat_n32n64_long_double_big =
221 {
222 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
223 floatformat_intbit_no,
224 "floatformat_n32n64_long_double_big",
225 n32n64_floatformat_always_valid
226 };
227
228 static const struct floatformat *floatformats_n32n64_long[BFD_ENDIAN_UNKNOWN] =
229 {
230 &floatformat_n32n64_long_double_big,
231 &floatformat_n32n64_long_double_big
232 };
233
234 const struct mips_regnum *
235 mips_regnum (struct gdbarch *gdbarch)
236 {
237 return gdbarch_tdep (gdbarch)->regnum;
238 }
239
240 static int
241 mips_fpa0_regnum (struct gdbarch *gdbarch)
242 {
243 return mips_regnum (gdbarch)->fp0 + 12;
244 }
245
246 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
247 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
248
249 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
250
251 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
252
253 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
254
255 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
256 functions to test, set, or clear bit 0 of addresses. */
257
258 static CORE_ADDR
259 is_mips16_addr (CORE_ADDR addr)
260 {
261 return ((addr) & 1);
262 }
263
264 static CORE_ADDR
265 unmake_mips16_addr (CORE_ADDR addr)
266 {
267 return ((addr) & ~(CORE_ADDR) 1);
268 }
269
270 /* Return the MIPS ABI associated with GDBARCH. */
271 enum mips_abi
272 mips_abi (struct gdbarch *gdbarch)
273 {
274 return gdbarch_tdep (gdbarch)->mips_abi;
275 }
276
277 int
278 mips_isa_regsize (struct gdbarch *gdbarch)
279 {
280 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
281
282 /* If we know how big the registers are, use that size. */
283 if (tdep->register_size_valid_p)
284 return tdep->register_size;
285
286 /* Fall back to the previous behavior. */
287 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
288 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
289 }
290
291 /* Return the currently configured (or set) saved register size. */
292
293 unsigned int
294 mips_abi_regsize (struct gdbarch *gdbarch)
295 {
296 switch (mips_abi (gdbarch))
297 {
298 case MIPS_ABI_EABI32:
299 case MIPS_ABI_O32:
300 return 4;
301 case MIPS_ABI_N32:
302 case MIPS_ABI_N64:
303 case MIPS_ABI_O64:
304 case MIPS_ABI_EABI64:
305 return 8;
306 case MIPS_ABI_UNKNOWN:
307 case MIPS_ABI_LAST:
308 default:
309 internal_error (__FILE__, __LINE__, _("bad switch"));
310 }
311 }
312
313 /* Functions for setting and testing a bit in a minimal symbol that
314 marks it as 16-bit function. The MSB of the minimal symbol's
315 "info" field is used for this purpose.
316
317 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
318 i.e. refers to a 16-bit function, and sets a "special" bit in a
319 minimal symbol to mark it as a 16-bit function
320
321 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
322
323 static void
324 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
325 {
326 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
327 {
328 MSYMBOL_INFO (msym) = (char *)
329 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
330 SYMBOL_VALUE_ADDRESS (msym) |= 1;
331 }
332 }
333
334 static int
335 msymbol_is_special (struct minimal_symbol *msym)
336 {
337 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
338 }
339
340 /* XFER a value from the big/little/left end of the register.
341 Depending on the size of the value it might occupy the entire
342 register or just part of it. Make an allowance for this, aligning
343 things accordingly. */
344
345 static void
346 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
347 enum bfd_endian endian, gdb_byte *in,
348 const gdb_byte *out, int buf_offset)
349 {
350 int reg_offset = 0;
351 gdb_assert (reg_num >= gdbarch_num_regs (current_gdbarch));
352 /* Need to transfer the left or right part of the register, based on
353 the targets byte order. */
354 switch (endian)
355 {
356 case BFD_ENDIAN_BIG:
357 reg_offset = register_size (current_gdbarch, reg_num) - length;
358 break;
359 case BFD_ENDIAN_LITTLE:
360 reg_offset = 0;
361 break;
362 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
363 reg_offset = 0;
364 break;
365 default:
366 internal_error (__FILE__, __LINE__, _("bad switch"));
367 }
368 if (mips_debug)
369 fprintf_unfiltered (gdb_stderr,
370 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
371 reg_num, reg_offset, buf_offset, length);
372 if (mips_debug && out != NULL)
373 {
374 int i;
375 fprintf_unfiltered (gdb_stdlog, "out ");
376 for (i = 0; i < length; i++)
377 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
378 }
379 if (in != NULL)
380 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
381 in + buf_offset);
382 if (out != NULL)
383 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
384 out + buf_offset);
385 if (mips_debug && in != NULL)
386 {
387 int i;
388 fprintf_unfiltered (gdb_stdlog, "in ");
389 for (i = 0; i < length; i++)
390 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
391 }
392 if (mips_debug)
393 fprintf_unfiltered (gdb_stdlog, "\n");
394 }
395
396 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
397 compatiblity mode. A return value of 1 means that we have
398 physical 64-bit registers, but should treat them as 32-bit registers. */
399
400 static int
401 mips2_fp_compat (struct frame_info *frame)
402 {
403 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
404 meaningful. */
405 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) ==
406 4)
407 return 0;
408
409 #if 0
410 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
411 in all the places we deal with FP registers. PR gdb/413. */
412 /* Otherwise check the FR bit in the status register - it controls
413 the FP compatiblity mode. If it is clear we are in compatibility
414 mode. */
415 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
416 return 1;
417 #endif
418
419 return 0;
420 }
421
422 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
423
424 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
425
426 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
427
428 static struct type *mips_float_register_type (void);
429 static struct type *mips_double_register_type (void);
430
431 /* The list of available "set mips " and "show mips " commands */
432
433 static struct cmd_list_element *setmipscmdlist = NULL;
434 static struct cmd_list_element *showmipscmdlist = NULL;
435
436 /* Integer registers 0 thru 31 are handled explicitly by
437 mips_register_name(). Processor specific registers 32 and above
438 are listed in the following tables. */
439
440 enum
441 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
442
443 /* Generic MIPS. */
444
445 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
446 "sr", "lo", "hi", "bad", "cause", "pc",
447 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
448 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
449 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
450 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
451 "fsr", "fir", "" /*"fp" */ , "",
452 "", "", "", "", "", "", "", "",
453 "", "", "", "", "", "", "", "",
454 };
455
456 /* Names of IDT R3041 registers. */
457
458 static const char *mips_r3041_reg_names[] = {
459 "sr", "lo", "hi", "bad", "cause", "pc",
460 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
461 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
462 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
463 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
464 "fsr", "fir", "", /*"fp" */ "",
465 "", "", "bus", "ccfg", "", "", "", "",
466 "", "", "port", "cmp", "", "", "epc", "prid",
467 };
468
469 /* Names of tx39 registers. */
470
471 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
472 "sr", "lo", "hi", "bad", "cause", "pc",
473 "", "", "", "", "", "", "", "",
474 "", "", "", "", "", "", "", "",
475 "", "", "", "", "", "", "", "",
476 "", "", "", "", "", "", "", "",
477 "", "", "", "",
478 "", "", "", "", "", "", "", "",
479 "", "", "config", "cache", "debug", "depc", "epc", ""
480 };
481
482 /* Names of IRIX registers. */
483 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
484 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
485 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
486 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
487 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
488 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
489 };
490
491
492 /* Return the name of the register corresponding to REGNO. */
493 static const char *
494 mips_register_name (int regno)
495 {
496 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
497 /* GPR names for all ABIs other than n32/n64. */
498 static char *mips_gpr_names[] = {
499 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
500 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
501 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
502 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
503 };
504
505 /* GPR names for n32 and n64 ABIs. */
506 static char *mips_n32_n64_gpr_names[] = {
507 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
508 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
509 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
510 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
511 };
512
513 enum mips_abi abi = mips_abi (current_gdbarch);
514
515 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
516 but then don't make the raw register names visible. */
517 int rawnum = regno % gdbarch_num_regs (current_gdbarch);
518 if (regno < gdbarch_num_regs (current_gdbarch))
519 return "";
520
521 /* The MIPS integer registers are always mapped from 0 to 31. The
522 names of the registers (which reflects the conventions regarding
523 register use) vary depending on the ABI. */
524 if (0 <= rawnum && rawnum < 32)
525 {
526 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
527 return mips_n32_n64_gpr_names[rawnum];
528 else
529 return mips_gpr_names[rawnum];
530 }
531 else if (tdesc_has_registers (gdbarch_target_desc (current_gdbarch)))
532 return tdesc_register_name (rawnum);
533 else if (32 <= rawnum && rawnum < gdbarch_num_regs (current_gdbarch))
534 {
535 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
536 return tdep->mips_processor_reg_names[rawnum - 32];
537 }
538 else
539 internal_error (__FILE__, __LINE__,
540 _("mips_register_name: bad register number %d"), rawnum);
541 }
542
543 /* Return the groups that a MIPS register can be categorised into. */
544
545 static int
546 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
547 struct reggroup *reggroup)
548 {
549 int vector_p;
550 int float_p;
551 int raw_p;
552 int rawnum = regnum % gdbarch_num_regs (current_gdbarch);
553 int pseudo = regnum / gdbarch_num_regs (current_gdbarch);
554 if (reggroup == all_reggroup)
555 return pseudo;
556 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
557 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
558 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
559 (gdbarch), as not all architectures are multi-arch. */
560 raw_p = rawnum < gdbarch_num_regs (current_gdbarch);
561 if (gdbarch_register_name (current_gdbarch, regnum) == NULL
562 || gdbarch_register_name (current_gdbarch, regnum)[0] == '\0')
563 return 0;
564 if (reggroup == float_reggroup)
565 return float_p && pseudo;
566 if (reggroup == vector_reggroup)
567 return vector_p && pseudo;
568 if (reggroup == general_reggroup)
569 return (!vector_p && !float_p) && pseudo;
570 /* Save the pseudo registers. Need to make certain that any code
571 extracting register values from a saved register cache also uses
572 pseudo registers. */
573 if (reggroup == save_reggroup)
574 return raw_p && pseudo;
575 /* Restore the same pseudo register. */
576 if (reggroup == restore_reggroup)
577 return raw_p && pseudo;
578 return 0;
579 }
580
581 /* Return the groups that a MIPS register can be categorised into.
582 This version is only used if we have a target description which
583 describes real registers (and their groups). */
584
585 static int
586 mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
587 struct reggroup *reggroup)
588 {
589 int rawnum = regnum % gdbarch_num_regs (gdbarch);
590 int pseudo = regnum / gdbarch_num_regs (gdbarch);
591 int ret;
592
593 /* Only save, restore, and display the pseudo registers. Need to
594 make certain that any code extracting register values from a
595 saved register cache also uses pseudo registers.
596
597 Note: saving and restoring the pseudo registers is slightly
598 strange; if we have 64 bits, we should save and restore all
599 64 bits. But this is hard and has little benefit. */
600 if (!pseudo)
601 return 0;
602
603 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
604 if (ret != -1)
605 return ret;
606
607 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
608 }
609
610 /* Map the symbol table registers which live in the range [1 *
611 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
612 registers. Take care of alignment and size problems. */
613
614 static void
615 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
616 int cookednum, gdb_byte *buf)
617 {
618 int rawnum = cookednum % gdbarch_num_regs (current_gdbarch);
619 gdb_assert (cookednum >= gdbarch_num_regs (current_gdbarch)
620 && cookednum < 2 * gdbarch_num_regs (current_gdbarch));
621 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
622 regcache_raw_read (regcache, rawnum, buf);
623 else if (register_size (gdbarch, rawnum) >
624 register_size (gdbarch, cookednum))
625 {
626 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
627 || gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
628 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
629 else
630 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
631 }
632 else
633 internal_error (__FILE__, __LINE__, _("bad register size"));
634 }
635
636 static void
637 mips_pseudo_register_write (struct gdbarch *gdbarch,
638 struct regcache *regcache, int cookednum,
639 const gdb_byte *buf)
640 {
641 int rawnum = cookednum % gdbarch_num_regs (current_gdbarch);
642 gdb_assert (cookednum >= gdbarch_num_regs (current_gdbarch)
643 && cookednum < 2 * gdbarch_num_regs (current_gdbarch));
644 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
645 regcache_raw_write (regcache, rawnum, buf);
646 else if (register_size (gdbarch, rawnum) >
647 register_size (gdbarch, cookednum))
648 {
649 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
650 || gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
651 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
652 else
653 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
654 }
655 else
656 internal_error (__FILE__, __LINE__, _("bad register size"));
657 }
658
659 /* Table to translate MIPS16 register field to actual register number. */
660 static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
661
662 /* Heuristic_proc_start may hunt through the text section for a long
663 time across a 2400 baud serial line. Allows the user to limit this
664 search. */
665
666 static unsigned int heuristic_fence_post = 0;
667
668 /* Number of bytes of storage in the actual machine representation for
669 register N. NOTE: This defines the pseudo register type so need to
670 rebuild the architecture vector. */
671
672 static int mips64_transfers_32bit_regs_p = 0;
673
674 static void
675 set_mips64_transfers_32bit_regs (char *args, int from_tty,
676 struct cmd_list_element *c)
677 {
678 struct gdbarch_info info;
679 gdbarch_info_init (&info);
680 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
681 instead of relying on globals. Doing that would let generic code
682 handle the search for this specific architecture. */
683 if (!gdbarch_update_p (info))
684 {
685 mips64_transfers_32bit_regs_p = 0;
686 error (_("32-bit compatibility mode not supported"));
687 }
688 }
689
690 /* Convert to/from a register and the corresponding memory value. */
691
692 static int
693 mips_convert_register_p (int regnum, struct type *type)
694 {
695 return (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
696 && register_size (current_gdbarch, regnum) == 4
697 && (regnum % gdbarch_num_regs (current_gdbarch))
698 >= mips_regnum (current_gdbarch)->fp0
699 && (regnum % gdbarch_num_regs (current_gdbarch))
700 < mips_regnum (current_gdbarch)->fp0 + 32
701 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
702 }
703
704 static void
705 mips_register_to_value (struct frame_info *frame, int regnum,
706 struct type *type, gdb_byte *to)
707 {
708 get_frame_register (frame, regnum + 0, to + 4);
709 get_frame_register (frame, regnum + 1, to + 0);
710 }
711
712 static void
713 mips_value_to_register (struct frame_info *frame, int regnum,
714 struct type *type, const gdb_byte *from)
715 {
716 put_frame_register (frame, regnum + 0, from + 4);
717 put_frame_register (frame, regnum + 1, from + 0);
718 }
719
720 /* Return the GDB type object for the "standard" data type of data in
721 register REG. */
722
723 static struct type *
724 mips_register_type (struct gdbarch *gdbarch, int regnum)
725 {
726 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (current_gdbarch));
727 if ((regnum % gdbarch_num_regs (current_gdbarch))
728 >= mips_regnum (current_gdbarch)->fp0
729 && (regnum % gdbarch_num_regs (current_gdbarch))
730 < mips_regnum (current_gdbarch)->fp0 + 32)
731 {
732 /* The floating-point registers raw, or cooked, always match
733 mips_isa_regsize(), and also map 1:1, byte for byte. */
734 if (mips_isa_regsize (gdbarch) == 4)
735 return builtin_type_ieee_single;
736 else
737 return builtin_type_ieee_double;
738 }
739 else if (regnum < gdbarch_num_regs (current_gdbarch))
740 {
741 /* The raw or ISA registers. These are all sized according to
742 the ISA regsize. */
743 if (mips_isa_regsize (gdbarch) == 4)
744 return builtin_type_int32;
745 else
746 return builtin_type_int64;
747 }
748 else
749 {
750 /* The cooked or ABI registers. These are sized according to
751 the ABI (with a few complications). */
752 if (regnum >= (gdbarch_num_regs (current_gdbarch)
753 + mips_regnum (current_gdbarch)->fp_control_status)
754 && regnum <= gdbarch_num_regs (current_gdbarch)
755 + MIPS_LAST_EMBED_REGNUM)
756 /* The pseudo/cooked view of the embedded registers is always
757 32-bit. The raw view is handled below. */
758 return builtin_type_int32;
759 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
760 /* The target, while possibly using a 64-bit register buffer,
761 is only transfering 32-bits of each integer register.
762 Reflect this in the cooked/pseudo (ABI) register value. */
763 return builtin_type_int32;
764 else if (mips_abi_regsize (gdbarch) == 4)
765 /* The ABI is restricted to 32-bit registers (the ISA could be
766 32- or 64-bit). */
767 return builtin_type_int32;
768 else
769 /* 64-bit ABI. */
770 return builtin_type_int64;
771 }
772 }
773
774 /* Return the GDB type for the pseudo register REGNUM, which is the
775 ABI-level view. This function is only called if there is a target
776 description which includes registers, so we know precisely the
777 types of hardware registers. */
778
779 static struct type *
780 mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
781 {
782 const int num_regs = gdbarch_num_regs (gdbarch);
783 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
784 int rawnum = regnum % num_regs;
785 struct type *rawtype;
786
787 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
788
789 /* Absent registers are still absent. */
790 rawtype = gdbarch_register_type (gdbarch, rawnum);
791 if (TYPE_LENGTH (rawtype) == 0)
792 return rawtype;
793
794 if (rawnum >= MIPS_EMBED_FP0_REGNUM && rawnum < MIPS_EMBED_FP0_REGNUM + 32)
795 /* Present the floating point registers however the hardware did;
796 do not try to convert between FPU layouts. */
797 return rawtype;
798
799 if (rawnum >= MIPS_EMBED_FP0_REGNUM + 32 && rawnum <= MIPS_LAST_EMBED_REGNUM)
800 {
801 /* The pseudo/cooked view of embedded registers is always
802 32-bit, even if the target transfers 64-bit values for them.
803 New targets relying on XML descriptions should only transfer
804 the necessary 32 bits, but older versions of GDB expected 64,
805 so allow the target to provide 64 bits without interfering
806 with the displayed type. */
807 return builtin_type_int32;
808 }
809
810 /* Use pointer types for registers if we can. For n32 we can not,
811 since we do not have a 64-bit pointer type. */
812 if (mips_abi_regsize (gdbarch) == TYPE_LENGTH (builtin_type_void_data_ptr))
813 {
814 if (rawnum == MIPS_SP_REGNUM || rawnum == MIPS_EMBED_BADVADDR_REGNUM)
815 return builtin_type_void_data_ptr;
816 else if (rawnum == MIPS_EMBED_PC_REGNUM)
817 return builtin_type_void_func_ptr;
818 }
819
820 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
821 && rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_EMBED_PC_REGNUM)
822 return builtin_type_int32;
823
824 /* For all other registers, pass through the hardware type. */
825 return rawtype;
826 }
827
828 /* Should the upper word of 64-bit addresses be zeroed? */
829 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
830
831 static int
832 mips_mask_address_p (struct gdbarch_tdep *tdep)
833 {
834 switch (mask_address_var)
835 {
836 case AUTO_BOOLEAN_TRUE:
837 return 1;
838 case AUTO_BOOLEAN_FALSE:
839 return 0;
840 break;
841 case AUTO_BOOLEAN_AUTO:
842 return tdep->default_mask_address_p;
843 default:
844 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
845 return -1;
846 }
847 }
848
849 static void
850 show_mask_address (struct ui_file *file, int from_tty,
851 struct cmd_list_element *c, const char *value)
852 {
853 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
854
855 deprecated_show_value_hack (file, from_tty, c, value);
856 switch (mask_address_var)
857 {
858 case AUTO_BOOLEAN_TRUE:
859 printf_filtered ("The 32 bit mips address mask is enabled\n");
860 break;
861 case AUTO_BOOLEAN_FALSE:
862 printf_filtered ("The 32 bit mips address mask is disabled\n");
863 break;
864 case AUTO_BOOLEAN_AUTO:
865 printf_filtered
866 ("The 32 bit address mask is set automatically. Currently %s\n",
867 mips_mask_address_p (tdep) ? "enabled" : "disabled");
868 break;
869 default:
870 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
871 break;
872 }
873 }
874
875 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
876
877 int
878 mips_pc_is_mips16 (CORE_ADDR memaddr)
879 {
880 struct minimal_symbol *sym;
881
882 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
883 if (is_mips16_addr (memaddr))
884 return 1;
885
886 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
887 the high bit of the info field. Use this to decide if the function is
888 MIPS16 or normal MIPS. */
889 sym = lookup_minimal_symbol_by_pc (memaddr);
890 if (sym)
891 return msymbol_is_special (sym);
892 else
893 return 0;
894 }
895
896 /* MIPS believes that the PC has a sign extended value. Perhaps the
897 all registers should be sign extended for simplicity? */
898
899 static CORE_ADDR
900 mips_read_pc (struct regcache *regcache)
901 {
902 ULONGEST pc;
903 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
904 regcache_cooked_read_signed (regcache, regnum, &pc);
905 return pc;
906 }
907
908 static CORE_ADDR
909 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
910 {
911 return frame_unwind_register_signed (next_frame,
912 gdbarch_num_regs (current_gdbarch)
913 + mips_regnum (gdbarch)->pc);
914 }
915
916 static CORE_ADDR
917 mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
918 {
919 return frame_unwind_register_signed (next_frame,
920 gdbarch_num_regs (current_gdbarch)
921 + MIPS_SP_REGNUM);
922 }
923
924 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
925 dummy frame. The frame ID's base needs to match the TOS value
926 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
927 breakpoint. */
928
929 static struct frame_id
930 mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
931 {
932 return frame_id_build
933 (frame_unwind_register_signed (next_frame,
934 gdbarch_num_regs (current_gdbarch)
935 + MIPS_SP_REGNUM),
936 frame_pc_unwind (next_frame));
937 }
938
939 static void
940 mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
941 {
942 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
943 regcache_cooked_write_unsigned (regcache, regnum, pc);
944 }
945
946 /* Fetch and return instruction from the specified location. If the PC
947 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
948
949 static ULONGEST
950 mips_fetch_instruction (CORE_ADDR addr)
951 {
952 gdb_byte buf[MIPS_INSN32_SIZE];
953 int instlen;
954 int status;
955
956 if (mips_pc_is_mips16 (addr))
957 {
958 instlen = MIPS_INSN16_SIZE;
959 addr = unmake_mips16_addr (addr);
960 }
961 else
962 instlen = MIPS_INSN32_SIZE;
963 status = read_memory_nobpt (addr, buf, instlen);
964 if (status)
965 memory_error (status, addr);
966 return extract_unsigned_integer (buf, instlen);
967 }
968
969 /* These the fields of 32 bit mips instructions */
970 #define mips32_op(x) (x >> 26)
971 #define itype_op(x) (x >> 26)
972 #define itype_rs(x) ((x >> 21) & 0x1f)
973 #define itype_rt(x) ((x >> 16) & 0x1f)
974 #define itype_immediate(x) (x & 0xffff)
975
976 #define jtype_op(x) (x >> 26)
977 #define jtype_target(x) (x & 0x03ffffff)
978
979 #define rtype_op(x) (x >> 26)
980 #define rtype_rs(x) ((x >> 21) & 0x1f)
981 #define rtype_rt(x) ((x >> 16) & 0x1f)
982 #define rtype_rd(x) ((x >> 11) & 0x1f)
983 #define rtype_shamt(x) ((x >> 6) & 0x1f)
984 #define rtype_funct(x) (x & 0x3f)
985
986 static LONGEST
987 mips32_relative_offset (ULONGEST inst)
988 {
989 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
990 }
991
992 /* Determine where to set a single step breakpoint while considering
993 branch prediction. */
994 static CORE_ADDR
995 mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
996 {
997 unsigned long inst;
998 int op;
999 inst = mips_fetch_instruction (pc);
1000 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
1001 {
1002 if (itype_op (inst) >> 2 == 5)
1003 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1004 {
1005 op = (itype_op (inst) & 0x03);
1006 switch (op)
1007 {
1008 case 0: /* BEQL */
1009 goto equal_branch;
1010 case 1: /* BNEL */
1011 goto neq_branch;
1012 case 2: /* BLEZL */
1013 goto less_branch;
1014 case 3: /* BGTZ */
1015 goto greater_branch;
1016 default:
1017 pc += 4;
1018 }
1019 }
1020 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1021 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1022 {
1023 int tf = itype_rt (inst) & 0x01;
1024 int cnum = itype_rt (inst) >> 2;
1025 int fcrcs =
1026 get_frame_register_signed (frame, mips_regnum (current_gdbarch)->
1027 fp_control_status);
1028 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1029
1030 if (((cond >> cnum) & 0x01) == tf)
1031 pc += mips32_relative_offset (inst) + 4;
1032 else
1033 pc += 8;
1034 }
1035 else
1036 pc += 4; /* Not a branch, next instruction is easy */
1037 }
1038 else
1039 { /* This gets way messy */
1040
1041 /* Further subdivide into SPECIAL, REGIMM and other */
1042 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
1043 {
1044 case 0: /* SPECIAL */
1045 op = rtype_funct (inst);
1046 switch (op)
1047 {
1048 case 8: /* JR */
1049 case 9: /* JALR */
1050 /* Set PC to that address */
1051 pc = get_frame_register_signed (frame, rtype_rs (inst));
1052 break;
1053 default:
1054 pc += 4;
1055 }
1056
1057 break; /* end SPECIAL */
1058 case 1: /* REGIMM */
1059 {
1060 op = itype_rt (inst); /* branch condition */
1061 switch (op)
1062 {
1063 case 0: /* BLTZ */
1064 case 2: /* BLTZL */
1065 case 16: /* BLTZAL */
1066 case 18: /* BLTZALL */
1067 less_branch:
1068 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
1069 pc += mips32_relative_offset (inst) + 4;
1070 else
1071 pc += 8; /* after the delay slot */
1072 break;
1073 case 1: /* BGEZ */
1074 case 3: /* BGEZL */
1075 case 17: /* BGEZAL */
1076 case 19: /* BGEZALL */
1077 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
1078 pc += mips32_relative_offset (inst) + 4;
1079 else
1080 pc += 8; /* after the delay slot */
1081 break;
1082 /* All of the other instructions in the REGIMM category */
1083 default:
1084 pc += 4;
1085 }
1086 }
1087 break; /* end REGIMM */
1088 case 2: /* J */
1089 case 3: /* JAL */
1090 {
1091 unsigned long reg;
1092 reg = jtype_target (inst) << 2;
1093 /* Upper four bits get never changed... */
1094 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1095 }
1096 break;
1097 /* FIXME case JALX : */
1098 {
1099 unsigned long reg;
1100 reg = jtype_target (inst) << 2;
1101 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
1102 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1103 }
1104 break; /* The new PC will be alternate mode */
1105 case 4: /* BEQ, BEQL */
1106 equal_branch:
1107 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1108 get_frame_register_signed (frame, itype_rt (inst)))
1109 pc += mips32_relative_offset (inst) + 4;
1110 else
1111 pc += 8;
1112 break;
1113 case 5: /* BNE, BNEL */
1114 neq_branch:
1115 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1116 get_frame_register_signed (frame, itype_rt (inst)))
1117 pc += mips32_relative_offset (inst) + 4;
1118 else
1119 pc += 8;
1120 break;
1121 case 6: /* BLEZ, BLEZL */
1122 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
1123 pc += mips32_relative_offset (inst) + 4;
1124 else
1125 pc += 8;
1126 break;
1127 case 7:
1128 default:
1129 greater_branch: /* BGTZ, BGTZL */
1130 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
1131 pc += mips32_relative_offset (inst) + 4;
1132 else
1133 pc += 8;
1134 break;
1135 } /* switch */
1136 } /* else */
1137 return pc;
1138 } /* mips32_next_pc */
1139
1140 /* Decoding the next place to set a breakpoint is irregular for the
1141 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1142 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1143 We dont want to set a single step instruction on the extend instruction
1144 either.
1145 */
1146
1147 /* Lots of mips16 instruction formats */
1148 /* Predicting jumps requires itype,ritype,i8type
1149 and their extensions extItype,extritype,extI8type
1150 */
1151 enum mips16_inst_fmts
1152 {
1153 itype, /* 0 immediate 5,10 */
1154 ritype, /* 1 5,3,8 */
1155 rrtype, /* 2 5,3,3,5 */
1156 rritype, /* 3 5,3,3,5 */
1157 rrrtype, /* 4 5,3,3,3,2 */
1158 rriatype, /* 5 5,3,3,1,4 */
1159 shifttype, /* 6 5,3,3,3,2 */
1160 i8type, /* 7 5,3,8 */
1161 i8movtype, /* 8 5,3,3,5 */
1162 i8mov32rtype, /* 9 5,3,5,3 */
1163 i64type, /* 10 5,3,8 */
1164 ri64type, /* 11 5,3,3,5 */
1165 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1166 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1167 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1168 extRRItype, /* 15 5,5,5,5,3,3,5 */
1169 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1170 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1171 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1172 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1173 extRi64type, /* 20 5,6,5,5,3,3,5 */
1174 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1175 };
1176 /* I am heaping all the fields of the formats into one structure and
1177 then, only the fields which are involved in instruction extension */
1178 struct upk_mips16
1179 {
1180 CORE_ADDR offset;
1181 unsigned int regx; /* Function in i8 type */
1182 unsigned int regy;
1183 };
1184
1185
1186 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1187 for the bits which make up the immediatate extension. */
1188
1189 static CORE_ADDR
1190 extended_offset (unsigned int extension)
1191 {
1192 CORE_ADDR value;
1193 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1194 value = value << 6;
1195 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1196 value = value << 5;
1197 value |= extension & 0x01f; /* extract 4:0 */
1198 return value;
1199 }
1200
1201 /* Only call this function if you know that this is an extendable
1202 instruction. It won't malfunction, but why make excess remote memory
1203 references? If the immediate operands get sign extended or something,
1204 do it after the extension is performed. */
1205 /* FIXME: Every one of these cases needs to worry about sign extension
1206 when the offset is to be used in relative addressing. */
1207
1208 static unsigned int
1209 fetch_mips_16 (CORE_ADDR pc)
1210 {
1211 gdb_byte buf[8];
1212 pc &= 0xfffffffe; /* clear the low order bit */
1213 target_read_memory (pc, buf, 2);
1214 return extract_unsigned_integer (buf, 2);
1215 }
1216
1217 static void
1218 unpack_mips16 (CORE_ADDR pc,
1219 unsigned int extension,
1220 unsigned int inst,
1221 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
1222 {
1223 CORE_ADDR offset;
1224 int regx;
1225 int regy;
1226 switch (insn_format)
1227 {
1228 case itype:
1229 {
1230 CORE_ADDR value;
1231 if (extension)
1232 {
1233 value = extended_offset (extension);
1234 value = value << 11; /* rom for the original value */
1235 value |= inst & 0x7ff; /* eleven bits from instruction */
1236 }
1237 else
1238 {
1239 value = inst & 0x7ff;
1240 /* FIXME : Consider sign extension */
1241 }
1242 offset = value;
1243 regx = -1;
1244 regy = -1;
1245 }
1246 break;
1247 case ritype:
1248 case i8type:
1249 { /* A register identifier and an offset */
1250 /* Most of the fields are the same as I type but the
1251 immediate value is of a different length */
1252 CORE_ADDR value;
1253 if (extension)
1254 {
1255 value = extended_offset (extension);
1256 value = value << 8; /* from the original instruction */
1257 value |= inst & 0xff; /* eleven bits from instruction */
1258 regx = (extension >> 8) & 0x07; /* or i8 funct */
1259 if (value & 0x4000) /* test the sign bit , bit 26 */
1260 {
1261 value &= ~0x3fff; /* remove the sign bit */
1262 value = -value;
1263 }
1264 }
1265 else
1266 {
1267 value = inst & 0xff; /* 8 bits */
1268 regx = (inst >> 8) & 0x07; /* or i8 funct */
1269 /* FIXME: Do sign extension , this format needs it */
1270 if (value & 0x80) /* THIS CONFUSES ME */
1271 {
1272 value &= 0xef; /* remove the sign bit */
1273 value = -value;
1274 }
1275 }
1276 offset = value;
1277 regy = -1;
1278 break;
1279 }
1280 case jalxtype:
1281 {
1282 unsigned long value;
1283 unsigned int nexthalf;
1284 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1285 value = value << 16;
1286 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1287 value |= nexthalf;
1288 offset = value;
1289 regx = -1;
1290 regy = -1;
1291 break;
1292 }
1293 default:
1294 internal_error (__FILE__, __LINE__, _("bad switch"));
1295 }
1296 upk->offset = offset;
1297 upk->regx = regx;
1298 upk->regy = regy;
1299 }
1300
1301
1302 static CORE_ADDR
1303 add_offset_16 (CORE_ADDR pc, int offset)
1304 {
1305 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
1306 }
1307
1308 static CORE_ADDR
1309 extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
1310 unsigned int extension, unsigned int insn)
1311 {
1312 int op = (insn >> 11);
1313 switch (op)
1314 {
1315 case 2: /* Branch */
1316 {
1317 CORE_ADDR offset;
1318 struct upk_mips16 upk;
1319 unpack_mips16 (pc, extension, insn, itype, &upk);
1320 offset = upk.offset;
1321 if (offset & 0x800)
1322 {
1323 offset &= 0xeff;
1324 offset = -offset;
1325 }
1326 pc += (offset << 1) + 2;
1327 break;
1328 }
1329 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1330 {
1331 struct upk_mips16 upk;
1332 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1333 pc = add_offset_16 (pc, upk.offset);
1334 if ((insn >> 10) & 0x01) /* Exchange mode */
1335 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1336 else
1337 pc |= 0x01;
1338 break;
1339 }
1340 case 4: /* beqz */
1341 {
1342 struct upk_mips16 upk;
1343 int reg;
1344 unpack_mips16 (pc, extension, insn, ritype, &upk);
1345 reg = get_frame_register_signed (frame, upk.regx);
1346 if (reg == 0)
1347 pc += (upk.offset << 1) + 2;
1348 else
1349 pc += 2;
1350 break;
1351 }
1352 case 5: /* bnez */
1353 {
1354 struct upk_mips16 upk;
1355 int reg;
1356 unpack_mips16 (pc, extension, insn, ritype, &upk);
1357 reg = get_frame_register_signed (frame, upk.regx);
1358 if (reg != 0)
1359 pc += (upk.offset << 1) + 2;
1360 else
1361 pc += 2;
1362 break;
1363 }
1364 case 12: /* I8 Formats btez btnez */
1365 {
1366 struct upk_mips16 upk;
1367 int reg;
1368 unpack_mips16 (pc, extension, insn, i8type, &upk);
1369 /* upk.regx contains the opcode */
1370 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
1371 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1372 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1373 /* pc = add_offset_16(pc,upk.offset) ; */
1374 pc += (upk.offset << 1) + 2;
1375 else
1376 pc += 2;
1377 break;
1378 }
1379 case 29: /* RR Formats JR, JALR, JALR-RA */
1380 {
1381 struct upk_mips16 upk;
1382 /* upk.fmt = rrtype; */
1383 op = insn & 0x1f;
1384 if (op == 0)
1385 {
1386 int reg;
1387 upk.regx = (insn >> 8) & 0x07;
1388 upk.regy = (insn >> 5) & 0x07;
1389 switch (upk.regy)
1390 {
1391 case 0:
1392 reg = upk.regx;
1393 break;
1394 case 1:
1395 reg = 31;
1396 break; /* Function return instruction */
1397 case 2:
1398 reg = upk.regx;
1399 break;
1400 default:
1401 reg = 31;
1402 break; /* BOGUS Guess */
1403 }
1404 pc = get_frame_register_signed (frame, reg);
1405 }
1406 else
1407 pc += 2;
1408 break;
1409 }
1410 case 30:
1411 /* This is an instruction extension. Fetch the real instruction
1412 (which follows the extension) and decode things based on
1413 that. */
1414 {
1415 pc += 2;
1416 pc = extended_mips16_next_pc (frame, pc, insn, fetch_mips_16 (pc));
1417 break;
1418 }
1419 default:
1420 {
1421 pc += 2;
1422 break;
1423 }
1424 }
1425 return pc;
1426 }
1427
1428 static CORE_ADDR
1429 mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
1430 {
1431 unsigned int insn = fetch_mips_16 (pc);
1432 return extended_mips16_next_pc (frame, pc, 0, insn);
1433 }
1434
1435 /* The mips_next_pc function supports single_step when the remote
1436 target monitor or stub is not developed enough to do a single_step.
1437 It works by decoding the current instruction and predicting where a
1438 branch will go. This isnt hard because all the data is available.
1439 The MIPS32 and MIPS16 variants are quite different. */
1440 static CORE_ADDR
1441 mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
1442 {
1443 if (is_mips16_addr (pc))
1444 return mips16_next_pc (frame, pc);
1445 else
1446 return mips32_next_pc (frame, pc);
1447 }
1448
1449 struct mips_frame_cache
1450 {
1451 CORE_ADDR base;
1452 struct trad_frame_saved_reg *saved_regs;
1453 };
1454
1455 /* Set a register's saved stack address in temp_saved_regs. If an
1456 address has already been set for this register, do nothing; this
1457 way we will only recognize the first save of a given register in a
1458 function prologue.
1459
1460 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
1461 [gdbarch_num_regs .. 2*gdbarch_num_regs).
1462 Strictly speaking, only the second range is used as it is only second
1463 range (the ABI instead of ISA registers) that comes into play when finding
1464 saved registers in a frame. */
1465
1466 static void
1467 set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1468 CORE_ADDR offset)
1469 {
1470 if (this_cache != NULL
1471 && this_cache->saved_regs[regnum].addr == -1)
1472 {
1473 this_cache->saved_regs[regnum
1474 + 0 * gdbarch_num_regs (current_gdbarch)].addr
1475 = offset;
1476 this_cache->saved_regs[regnum
1477 + 1 * gdbarch_num_regs (current_gdbarch)].addr
1478 = offset;
1479 }
1480 }
1481
1482
1483 /* Fetch the immediate value from a MIPS16 instruction.
1484 If the previous instruction was an EXTEND, use it to extend
1485 the upper bits of the immediate value. This is a helper function
1486 for mips16_scan_prologue. */
1487
1488 static int
1489 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1490 unsigned short inst, /* current instruction */
1491 int nbits, /* number of bits in imm field */
1492 int scale, /* scale factor to be applied to imm */
1493 int is_signed) /* is the imm field signed? */
1494 {
1495 int offset;
1496
1497 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1498 {
1499 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1500 if (offset & 0x8000) /* check for negative extend */
1501 offset = 0 - (0x10000 - (offset & 0xffff));
1502 return offset | (inst & 0x1f);
1503 }
1504 else
1505 {
1506 int max_imm = 1 << nbits;
1507 int mask = max_imm - 1;
1508 int sign_bit = max_imm >> 1;
1509
1510 offset = inst & mask;
1511 if (is_signed && (offset & sign_bit))
1512 offset = 0 - (max_imm - offset);
1513 return offset * scale;
1514 }
1515 }
1516
1517
1518 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1519 the associated FRAME_CACHE if not null.
1520 Return the address of the first instruction past the prologue. */
1521
1522 static CORE_ADDR
1523 mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1524 struct frame_info *next_frame,
1525 struct mips_frame_cache *this_cache)
1526 {
1527 CORE_ADDR cur_pc;
1528 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1529 CORE_ADDR sp;
1530 long frame_offset = 0; /* Size of stack frame. */
1531 long frame_adjust = 0; /* Offset of FP from SP. */
1532 int frame_reg = MIPS_SP_REGNUM;
1533 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1534 unsigned inst = 0; /* current instruction */
1535 unsigned entry_inst = 0; /* the entry instruction */
1536 int reg, offset;
1537
1538 int extend_bytes = 0;
1539 int prev_extend_bytes;
1540 CORE_ADDR end_prologue_addr = 0;
1541
1542 /* Can be called when there's no process, and hence when there's no
1543 NEXT_FRAME. */
1544 if (next_frame != NULL)
1545 sp = frame_unwind_register_signed (next_frame,
1546 gdbarch_num_regs (current_gdbarch)
1547 + MIPS_SP_REGNUM);
1548 else
1549 sp = 0;
1550
1551 if (limit_pc > start_pc + 200)
1552 limit_pc = start_pc + 200;
1553
1554 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
1555 {
1556 /* Save the previous instruction. If it's an EXTEND, we'll extract
1557 the immediate offset extension from it in mips16_get_imm. */
1558 prev_inst = inst;
1559
1560 /* Fetch and decode the instruction. */
1561 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1562
1563 /* Normally we ignore extend instructions. However, if it is
1564 not followed by a valid prologue instruction, then this
1565 instruction is not part of the prologue either. We must
1566 remember in this case to adjust the end_prologue_addr back
1567 over the extend. */
1568 if ((inst & 0xf800) == 0xf000) /* extend */
1569 {
1570 extend_bytes = MIPS_INSN16_SIZE;
1571 continue;
1572 }
1573
1574 prev_extend_bytes = extend_bytes;
1575 extend_bytes = 0;
1576
1577 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1578 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1579 {
1580 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1581 if (offset < 0) /* negative stack adjustment? */
1582 frame_offset -= offset;
1583 else
1584 /* Exit loop if a positive stack adjustment is found, which
1585 usually means that the stack cleanup code in the function
1586 epilogue is reached. */
1587 break;
1588 }
1589 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1590 {
1591 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1592 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1593 set_reg_offset (this_cache, reg, sp + offset);
1594 }
1595 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1596 {
1597 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1598 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1599 set_reg_offset (this_cache, reg, sp + offset);
1600 }
1601 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1602 {
1603 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1604 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1605 }
1606 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1607 {
1608 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1609 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1610 }
1611 else if (inst == 0x673d) /* move $s1, $sp */
1612 {
1613 frame_addr = sp;
1614 frame_reg = 17;
1615 }
1616 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1617 {
1618 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1619 frame_addr = sp + offset;
1620 frame_reg = 17;
1621 frame_adjust = offset;
1622 }
1623 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1624 {
1625 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1626 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1627 set_reg_offset (this_cache, reg, frame_addr + offset);
1628 }
1629 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1630 {
1631 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1632 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1633 set_reg_offset (this_cache, reg, frame_addr + offset);
1634 }
1635 else if ((inst & 0xf81f) == 0xe809
1636 && (inst & 0x700) != 0x700) /* entry */
1637 entry_inst = inst; /* save for later processing */
1638 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1639 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
1640 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1641 {
1642 /* This instruction is part of the prologue, but we don't
1643 need to do anything special to handle it. */
1644 }
1645 else
1646 {
1647 /* This instruction is not an instruction typically found
1648 in a prologue, so we must have reached the end of the
1649 prologue. */
1650 if (end_prologue_addr == 0)
1651 end_prologue_addr = cur_pc - prev_extend_bytes;
1652 }
1653 }
1654
1655 /* The entry instruction is typically the first instruction in a function,
1656 and it stores registers at offsets relative to the value of the old SP
1657 (before the prologue). But the value of the sp parameter to this
1658 function is the new SP (after the prologue has been executed). So we
1659 can't calculate those offsets until we've seen the entire prologue,
1660 and can calculate what the old SP must have been. */
1661 if (entry_inst != 0)
1662 {
1663 int areg_count = (entry_inst >> 8) & 7;
1664 int sreg_count = (entry_inst >> 6) & 3;
1665
1666 /* The entry instruction always subtracts 32 from the SP. */
1667 frame_offset += 32;
1668
1669 /* Now we can calculate what the SP must have been at the
1670 start of the function prologue. */
1671 sp += frame_offset;
1672
1673 /* Check if a0-a3 were saved in the caller's argument save area. */
1674 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1675 {
1676 set_reg_offset (this_cache, reg, sp + offset);
1677 offset += mips_abi_regsize (current_gdbarch);
1678 }
1679
1680 /* Check if the ra register was pushed on the stack. */
1681 offset = -4;
1682 if (entry_inst & 0x20)
1683 {
1684 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1685 offset -= mips_abi_regsize (current_gdbarch);
1686 }
1687
1688 /* Check if the s0 and s1 registers were pushed on the stack. */
1689 for (reg = 16; reg < sreg_count + 16; reg++)
1690 {
1691 set_reg_offset (this_cache, reg, sp + offset);
1692 offset -= mips_abi_regsize (current_gdbarch);
1693 }
1694 }
1695
1696 if (this_cache != NULL)
1697 {
1698 this_cache->base =
1699 (frame_unwind_register_signed (next_frame,
1700 gdbarch_num_regs (current_gdbarch)
1701 + frame_reg)
1702 + frame_offset - frame_adjust);
1703 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1704 be able to get rid of the assignment below, evetually. But it's
1705 still needed for now. */
1706 this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
1707 + mips_regnum (current_gdbarch)->pc]
1708 = this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
1709 + MIPS_RA_REGNUM];
1710 }
1711
1712 /* If we didn't reach the end of the prologue when scanning the function
1713 instructions, then set end_prologue_addr to the address of the
1714 instruction immediately after the last one we scanned. */
1715 if (end_prologue_addr == 0)
1716 end_prologue_addr = cur_pc;
1717
1718 return end_prologue_addr;
1719 }
1720
1721 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1722 Procedures that use the 32-bit instruction set are handled by the
1723 mips_insn32 unwinder. */
1724
1725 static struct mips_frame_cache *
1726 mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
1727 {
1728 struct mips_frame_cache *cache;
1729
1730 if ((*this_cache) != NULL)
1731 return (*this_cache);
1732 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1733 (*this_cache) = cache;
1734 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1735
1736 /* Analyze the function prologue. */
1737 {
1738 const CORE_ADDR pc =
1739 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1740 CORE_ADDR start_addr;
1741
1742 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1743 if (start_addr == 0)
1744 start_addr = heuristic_proc_start (pc);
1745 /* We can't analyze the prologue if we couldn't find the begining
1746 of the function. */
1747 if (start_addr == 0)
1748 return cache;
1749
1750 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1751 }
1752
1753 /* gdbarch_sp_regnum contains the value and not the address. */
1754 trad_frame_set_value (cache->saved_regs, gdbarch_num_regs (current_gdbarch)
1755 + MIPS_SP_REGNUM, cache->base);
1756
1757 return (*this_cache);
1758 }
1759
1760 static void
1761 mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1762 struct frame_id *this_id)
1763 {
1764 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1765 this_cache);
1766 (*this_id) = frame_id_build (info->base,
1767 frame_func_unwind (next_frame, NORMAL_FRAME));
1768 }
1769
1770 static void
1771 mips_insn16_frame_prev_register (struct frame_info *next_frame,
1772 void **this_cache,
1773 int regnum, int *optimizedp,
1774 enum lval_type *lvalp, CORE_ADDR *addrp,
1775 int *realnump, gdb_byte *valuep)
1776 {
1777 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1778 this_cache);
1779 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1780 optimizedp, lvalp, addrp, realnump, valuep);
1781 }
1782
1783 static const struct frame_unwind mips_insn16_frame_unwind =
1784 {
1785 NORMAL_FRAME,
1786 mips_insn16_frame_this_id,
1787 mips_insn16_frame_prev_register
1788 };
1789
1790 static const struct frame_unwind *
1791 mips_insn16_frame_sniffer (struct frame_info *next_frame)
1792 {
1793 CORE_ADDR pc = frame_pc_unwind (next_frame);
1794 if (mips_pc_is_mips16 (pc))
1795 return &mips_insn16_frame_unwind;
1796 return NULL;
1797 }
1798
1799 static CORE_ADDR
1800 mips_insn16_frame_base_address (struct frame_info *next_frame,
1801 void **this_cache)
1802 {
1803 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1804 this_cache);
1805 return info->base;
1806 }
1807
1808 static const struct frame_base mips_insn16_frame_base =
1809 {
1810 &mips_insn16_frame_unwind,
1811 mips_insn16_frame_base_address,
1812 mips_insn16_frame_base_address,
1813 mips_insn16_frame_base_address
1814 };
1815
1816 static const struct frame_base *
1817 mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
1818 {
1819 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1820 return &mips_insn16_frame_base;
1821 else
1822 return NULL;
1823 }
1824
1825 /* Mark all the registers as unset in the saved_regs array
1826 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1827
1828 void
1829 reset_saved_regs (struct mips_frame_cache *this_cache)
1830 {
1831 if (this_cache == NULL || this_cache->saved_regs == NULL)
1832 return;
1833
1834 {
1835 const int num_regs = gdbarch_num_regs (current_gdbarch);
1836 int i;
1837
1838 for (i = 0; i < num_regs; i++)
1839 {
1840 this_cache->saved_regs[i].addr = -1;
1841 }
1842 }
1843 }
1844
1845 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1846 the associated FRAME_CACHE if not null.
1847 Return the address of the first instruction past the prologue. */
1848
1849 static CORE_ADDR
1850 mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1851 struct frame_info *next_frame,
1852 struct mips_frame_cache *this_cache)
1853 {
1854 CORE_ADDR cur_pc;
1855 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1856 CORE_ADDR sp;
1857 long frame_offset;
1858 int frame_reg = MIPS_SP_REGNUM;
1859
1860 CORE_ADDR end_prologue_addr = 0;
1861 int seen_sp_adjust = 0;
1862 int load_immediate_bytes = 0;
1863
1864 /* Can be called when there's no process, and hence when there's no
1865 NEXT_FRAME. */
1866 if (next_frame != NULL)
1867 sp = frame_unwind_register_signed (next_frame,
1868 gdbarch_num_regs (current_gdbarch)
1869 + MIPS_SP_REGNUM);
1870 else
1871 sp = 0;
1872
1873 if (limit_pc > start_pc + 200)
1874 limit_pc = start_pc + 200;
1875
1876 restart:
1877
1878 frame_offset = 0;
1879 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
1880 {
1881 unsigned long inst, high_word, low_word;
1882 int reg;
1883
1884 /* Fetch the instruction. */
1885 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1886
1887 /* Save some code by pre-extracting some useful fields. */
1888 high_word = (inst >> 16) & 0xffff;
1889 low_word = inst & 0xffff;
1890 reg = high_word & 0x1f;
1891
1892 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1893 || high_word == 0x23bd /* addi $sp,$sp,-i */
1894 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1895 {
1896 if (low_word & 0x8000) /* negative stack adjustment? */
1897 frame_offset += 0x10000 - low_word;
1898 else
1899 /* Exit loop if a positive stack adjustment is found, which
1900 usually means that the stack cleanup code in the function
1901 epilogue is reached. */
1902 break;
1903 seen_sp_adjust = 1;
1904 }
1905 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1906 {
1907 set_reg_offset (this_cache, reg, sp + low_word);
1908 }
1909 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1910 {
1911 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1912 set_reg_offset (this_cache, reg, sp + low_word);
1913 }
1914 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1915 {
1916 /* Old gcc frame, r30 is virtual frame pointer. */
1917 if ((long) low_word != frame_offset)
1918 frame_addr = sp + low_word;
1919 else if (next_frame && frame_reg == MIPS_SP_REGNUM)
1920 {
1921 unsigned alloca_adjust;
1922
1923 frame_reg = 30;
1924 frame_addr = frame_unwind_register_signed
1925 (next_frame,
1926 gdbarch_num_regs (current_gdbarch) + 30);
1927
1928 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1929 if (alloca_adjust > 0)
1930 {
1931 /* FP > SP + frame_size. This may be because of
1932 an alloca or somethings similar. Fix sp to
1933 "pre-alloca" value, and try again. */
1934 sp += alloca_adjust;
1935 /* Need to reset the status of all registers. Otherwise,
1936 we will hit a guard that prevents the new address
1937 for each register to be recomputed during the second
1938 pass. */
1939 reset_saved_regs (this_cache);
1940 goto restart;
1941 }
1942 }
1943 }
1944 /* move $30,$sp. With different versions of gas this will be either
1945 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1946 Accept any one of these. */
1947 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1948 {
1949 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1950 if (next_frame && frame_reg == MIPS_SP_REGNUM)
1951 {
1952 unsigned alloca_adjust;
1953
1954 frame_reg = 30;
1955 frame_addr = frame_unwind_register_signed
1956 (next_frame,
1957 gdbarch_num_regs (current_gdbarch) + 30);
1958
1959 alloca_adjust = (unsigned) (frame_addr - sp);
1960 if (alloca_adjust > 0)
1961 {
1962 /* FP > SP + frame_size. This may be because of
1963 an alloca or somethings similar. Fix sp to
1964 "pre-alloca" value, and try again. */
1965 sp = frame_addr;
1966 /* Need to reset the status of all registers. Otherwise,
1967 we will hit a guard that prevents the new address
1968 for each register to be recomputed during the second
1969 pass. */
1970 reset_saved_regs (this_cache);
1971 goto restart;
1972 }
1973 }
1974 }
1975 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1976 {
1977 set_reg_offset (this_cache, reg, frame_addr + low_word);
1978 }
1979 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1980 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1981 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1982 || high_word == 0x3c1c /* lui $gp,n */
1983 || high_word == 0x279c /* addiu $gp,$gp,n */
1984 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1985 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1986 )
1987 {
1988 /* These instructions are part of the prologue, but we don't
1989 need to do anything special to handle them. */
1990 }
1991 /* The instructions below load $at or $t0 with an immediate
1992 value in preparation for a stack adjustment via
1993 subu $sp,$sp,[$at,$t0]. These instructions could also
1994 initialize a local variable, so we accept them only before
1995 a stack adjustment instruction was seen. */
1996 else if (!seen_sp_adjust
1997 && (high_word == 0x3c01 /* lui $at,n */
1998 || high_word == 0x3c08 /* lui $t0,n */
1999 || high_word == 0x3421 /* ori $at,$at,n */
2000 || high_word == 0x3508 /* ori $t0,$t0,n */
2001 || high_word == 0x3401 /* ori $at,$zero,n */
2002 || high_word == 0x3408 /* ori $t0,$zero,n */
2003 ))
2004 {
2005 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
2006 }
2007 else
2008 {
2009 /* This instruction is not an instruction typically found
2010 in a prologue, so we must have reached the end of the
2011 prologue. */
2012 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
2013 loop now? Why would we need to continue scanning the function
2014 instructions? */
2015 if (end_prologue_addr == 0)
2016 end_prologue_addr = cur_pc;
2017 }
2018 }
2019
2020 if (this_cache != NULL)
2021 {
2022 this_cache->base =
2023 (frame_unwind_register_signed (next_frame,
2024 gdbarch_num_regs (current_gdbarch)
2025 + frame_reg)
2026 + frame_offset);
2027 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
2028 this assignment below, eventually. But it's still needed
2029 for now. */
2030 this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
2031 + mips_regnum (current_gdbarch)->pc]
2032 = this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
2033 + MIPS_RA_REGNUM];
2034 }
2035
2036 /* If we didn't reach the end of the prologue when scanning the function
2037 instructions, then set end_prologue_addr to the address of the
2038 instruction immediately after the last one we scanned. */
2039 /* brobecker/2004-10-10: I don't think this would ever happen, but
2040 we may as well be careful and do our best if we have a null
2041 end_prologue_addr. */
2042 if (end_prologue_addr == 0)
2043 end_prologue_addr = cur_pc;
2044
2045 /* In a frameless function, we might have incorrectly
2046 skipped some load immediate instructions. Undo the skipping
2047 if the load immediate was not followed by a stack adjustment. */
2048 if (load_immediate_bytes && !seen_sp_adjust)
2049 end_prologue_addr -= load_immediate_bytes;
2050
2051 return end_prologue_addr;
2052 }
2053
2054 /* Heuristic unwinder for procedures using 32-bit instructions (covers
2055 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
2056 instructions (a.k.a. MIPS16) are handled by the mips_insn16
2057 unwinder. */
2058
2059 static struct mips_frame_cache *
2060 mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
2061 {
2062 struct mips_frame_cache *cache;
2063
2064 if ((*this_cache) != NULL)
2065 return (*this_cache);
2066
2067 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2068 (*this_cache) = cache;
2069 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2070
2071 /* Analyze the function prologue. */
2072 {
2073 const CORE_ADDR pc =
2074 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
2075 CORE_ADDR start_addr;
2076
2077 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2078 if (start_addr == 0)
2079 start_addr = heuristic_proc_start (pc);
2080 /* We can't analyze the prologue if we couldn't find the begining
2081 of the function. */
2082 if (start_addr == 0)
2083 return cache;
2084
2085 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
2086 }
2087
2088 /* gdbarch_sp_regnum contains the value and not the address. */
2089 trad_frame_set_value (cache->saved_regs,
2090 gdbarch_num_regs (current_gdbarch) + MIPS_SP_REGNUM,
2091 cache->base);
2092
2093 return (*this_cache);
2094 }
2095
2096 static void
2097 mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
2098 struct frame_id *this_id)
2099 {
2100 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2101 this_cache);
2102 (*this_id) = frame_id_build (info->base,
2103 frame_func_unwind (next_frame, NORMAL_FRAME));
2104 }
2105
2106 static void
2107 mips_insn32_frame_prev_register (struct frame_info *next_frame,
2108 void **this_cache,
2109 int regnum, int *optimizedp,
2110 enum lval_type *lvalp, CORE_ADDR *addrp,
2111 int *realnump, gdb_byte *valuep)
2112 {
2113 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2114 this_cache);
2115 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2116 optimizedp, lvalp, addrp, realnump, valuep);
2117 }
2118
2119 static const struct frame_unwind mips_insn32_frame_unwind =
2120 {
2121 NORMAL_FRAME,
2122 mips_insn32_frame_this_id,
2123 mips_insn32_frame_prev_register
2124 };
2125
2126 static const struct frame_unwind *
2127 mips_insn32_frame_sniffer (struct frame_info *next_frame)
2128 {
2129 CORE_ADDR pc = frame_pc_unwind (next_frame);
2130 if (! mips_pc_is_mips16 (pc))
2131 return &mips_insn32_frame_unwind;
2132 return NULL;
2133 }
2134
2135 static CORE_ADDR
2136 mips_insn32_frame_base_address (struct frame_info *next_frame,
2137 void **this_cache)
2138 {
2139 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2140 this_cache);
2141 return info->base;
2142 }
2143
2144 static const struct frame_base mips_insn32_frame_base =
2145 {
2146 &mips_insn32_frame_unwind,
2147 mips_insn32_frame_base_address,
2148 mips_insn32_frame_base_address,
2149 mips_insn32_frame_base_address
2150 };
2151
2152 static const struct frame_base *
2153 mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2154 {
2155 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2156 return &mips_insn32_frame_base;
2157 else
2158 return NULL;
2159 }
2160
2161 static struct trad_frame_cache *
2162 mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2163 {
2164 CORE_ADDR pc;
2165 CORE_ADDR start_addr;
2166 CORE_ADDR stack_addr;
2167 struct trad_frame_cache *this_trad_cache;
2168
2169 if ((*this_cache) != NULL)
2170 return (*this_cache);
2171 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2172 (*this_cache) = this_trad_cache;
2173
2174 /* The return address is in the link register. */
2175 trad_frame_set_reg_realreg (this_trad_cache,
2176 gdbarch_pc_regnum (current_gdbarch),
2177 (gdbarch_num_regs (current_gdbarch)
2178 + MIPS_RA_REGNUM));
2179
2180 /* Frame ID, since it's a frameless / stackless function, no stack
2181 space is allocated and SP on entry is the current SP. */
2182 pc = frame_pc_unwind (next_frame);
2183 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2184 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
2185 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
2186
2187 /* Assume that the frame's base is the same as the
2188 stack-pointer. */
2189 trad_frame_set_this_base (this_trad_cache, stack_addr);
2190
2191 return this_trad_cache;
2192 }
2193
2194 static void
2195 mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2196 struct frame_id *this_id)
2197 {
2198 struct trad_frame_cache *this_trad_cache
2199 = mips_stub_frame_cache (next_frame, this_cache);
2200 trad_frame_get_id (this_trad_cache, this_id);
2201 }
2202
2203 static void
2204 mips_stub_frame_prev_register (struct frame_info *next_frame,
2205 void **this_cache,
2206 int regnum, int *optimizedp,
2207 enum lval_type *lvalp, CORE_ADDR *addrp,
2208 int *realnump, gdb_byte *valuep)
2209 {
2210 struct trad_frame_cache *this_trad_cache
2211 = mips_stub_frame_cache (next_frame, this_cache);
2212 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2213 lvalp, addrp, realnump, valuep);
2214 }
2215
2216 static const struct frame_unwind mips_stub_frame_unwind =
2217 {
2218 NORMAL_FRAME,
2219 mips_stub_frame_this_id,
2220 mips_stub_frame_prev_register
2221 };
2222
2223 static const struct frame_unwind *
2224 mips_stub_frame_sniffer (struct frame_info *next_frame)
2225 {
2226 gdb_byte dummy[4];
2227 struct obj_section *s;
2228 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
2229
2230 /* Use the stub unwinder for unreadable code. */
2231 if (target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
2232 return &mips_stub_frame_unwind;
2233
2234 if (in_plt_section (pc, NULL))
2235 return &mips_stub_frame_unwind;
2236
2237 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2238 s = find_pc_section (pc);
2239
2240 if (s != NULL
2241 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2242 ".MIPS.stubs") == 0)
2243 return &mips_stub_frame_unwind;
2244
2245 return NULL;
2246 }
2247
2248 static CORE_ADDR
2249 mips_stub_frame_base_address (struct frame_info *next_frame,
2250 void **this_cache)
2251 {
2252 struct trad_frame_cache *this_trad_cache
2253 = mips_stub_frame_cache (next_frame, this_cache);
2254 return trad_frame_get_this_base (this_trad_cache);
2255 }
2256
2257 static const struct frame_base mips_stub_frame_base =
2258 {
2259 &mips_stub_frame_unwind,
2260 mips_stub_frame_base_address,
2261 mips_stub_frame_base_address,
2262 mips_stub_frame_base_address
2263 };
2264
2265 static const struct frame_base *
2266 mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2267 {
2268 if (mips_stub_frame_sniffer (next_frame) != NULL)
2269 return &mips_stub_frame_base;
2270 else
2271 return NULL;
2272 }
2273
2274 /* mips_addr_bits_remove - remove useless address bits */
2275
2276 static CORE_ADDR
2277 mips_addr_bits_remove (CORE_ADDR addr)
2278 {
2279 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2280 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2281 /* This hack is a work-around for existing boards using PMON, the
2282 simulator, and any other 64-bit targets that doesn't have true
2283 64-bit addressing. On these targets, the upper 32 bits of
2284 addresses are ignored by the hardware. Thus, the PC or SP are
2285 likely to have been sign extended to all 1s by instruction
2286 sequences that load 32-bit addresses. For example, a typical
2287 piece of code that loads an address is this:
2288
2289 lui $r2, <upper 16 bits>
2290 ori $r2, <lower 16 bits>
2291
2292 But the lui sign-extends the value such that the upper 32 bits
2293 may be all 1s. The workaround is simply to mask off these
2294 bits. In the future, gcc may be changed to support true 64-bit
2295 addressing, and this masking will have to be disabled. */
2296 return addr &= 0xffffffffUL;
2297 else
2298 return addr;
2299 }
2300
2301 /* mips_software_single_step() is called just before we want to resume
2302 the inferior, if we want to single-step it but there is no hardware
2303 or kernel single-step support (MIPS on GNU/Linux for example). We find
2304 the target of the coming instruction and breakpoint it. */
2305
2306 int
2307 mips_software_single_step (struct frame_info *frame)
2308 {
2309 CORE_ADDR pc, next_pc;
2310
2311 pc = get_frame_pc (frame);
2312 next_pc = mips_next_pc (frame, pc);
2313
2314 insert_single_step_breakpoint (next_pc);
2315 return 1;
2316 }
2317
2318 /* Test whether the PC points to the return instruction at the
2319 end of a function. */
2320
2321 static int
2322 mips_about_to_return (CORE_ADDR pc)
2323 {
2324 if (mips_pc_is_mips16 (pc))
2325 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2326 generates a "jr $ra"; other times it generates code to load
2327 the return address from the stack to an accessible register (such
2328 as $a3), then a "jr" using that register. This second case
2329 is almost impossible to distinguish from an indirect jump
2330 used for switch statements, so we don't even try. */
2331 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2332 else
2333 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2334 }
2335
2336
2337 /* This fencepost looks highly suspicious to me. Removing it also
2338 seems suspicious as it could affect remote debugging across serial
2339 lines. */
2340
2341 static CORE_ADDR
2342 heuristic_proc_start (CORE_ADDR pc)
2343 {
2344 CORE_ADDR start_pc;
2345 CORE_ADDR fence;
2346 int instlen;
2347 int seen_adjsp = 0;
2348
2349 pc = gdbarch_addr_bits_remove (current_gdbarch, pc);
2350 start_pc = pc;
2351 fence = start_pc - heuristic_fence_post;
2352 if (start_pc == 0)
2353 return 0;
2354
2355 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2356 fence = VM_MIN_ADDRESS;
2357
2358 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
2359
2360 /* search back for previous return */
2361 for (start_pc -= instlen;; start_pc -= instlen)
2362 if (start_pc < fence)
2363 {
2364 /* It's not clear to me why we reach this point when
2365 stop_soon, but with this test, at least we
2366 don't print out warnings for every child forked (eg, on
2367 decstation). 22apr93 rich@cygnus.com. */
2368 if (stop_soon == NO_STOP_QUIETLY)
2369 {
2370 static int blurb_printed = 0;
2371
2372 warning (_("GDB can't find the start of the function at 0x%s."),
2373 paddr_nz (pc));
2374
2375 if (!blurb_printed)
2376 {
2377 /* This actually happens frequently in embedded
2378 development, when you first connect to a board
2379 and your stack pointer and pc are nowhere in
2380 particular. This message needs to give people
2381 in that situation enough information to
2382 determine that it's no big deal. */
2383 printf_filtered ("\n\
2384 GDB is unable to find the start of the function at 0x%s\n\
2385 and thus can't determine the size of that function's stack frame.\n\
2386 This means that GDB may be unable to access that stack frame, or\n\
2387 the frames below it.\n\
2388 This problem is most likely caused by an invalid program counter or\n\
2389 stack pointer.\n\
2390 However, if you think GDB should simply search farther back\n\
2391 from 0x%s for code which looks like the beginning of a\n\
2392 function, you can increase the range of the search using the `set\n\
2393 heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2394 blurb_printed = 1;
2395 }
2396 }
2397
2398 return 0;
2399 }
2400 else if (mips_pc_is_mips16 (start_pc))
2401 {
2402 unsigned short inst;
2403
2404 /* On MIPS16, any one of the following is likely to be the
2405 start of a function:
2406 extend save
2407 save
2408 entry
2409 addiu sp,-n
2410 daddiu sp,-n
2411 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2412 inst = mips_fetch_instruction (start_pc);
2413 if ((inst & 0xff80) == 0x6480) /* save */
2414 {
2415 if (start_pc - instlen >= fence)
2416 {
2417 inst = mips_fetch_instruction (start_pc - instlen);
2418 if ((inst & 0xf800) == 0xf000) /* extend */
2419 start_pc -= instlen;
2420 }
2421 break;
2422 }
2423 else if (((inst & 0xf81f) == 0xe809
2424 && (inst & 0x700) != 0x700) /* entry */
2425 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2426 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2427 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2428 break;
2429 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2430 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2431 seen_adjsp = 1;
2432 else
2433 seen_adjsp = 0;
2434 }
2435 else if (mips_about_to_return (start_pc))
2436 {
2437 /* Skip return and its delay slot. */
2438 start_pc += 2 * MIPS_INSN32_SIZE;
2439 break;
2440 }
2441
2442 return start_pc;
2443 }
2444
2445 struct mips_objfile_private
2446 {
2447 bfd_size_type size;
2448 char *contents;
2449 };
2450
2451 /* According to the current ABI, should the type be passed in a
2452 floating-point register (assuming that there is space)? When there
2453 is no FPU, FP are not even considered as possible candidates for
2454 FP registers and, consequently this returns false - forces FP
2455 arguments into integer registers. */
2456
2457 static int
2458 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2459 {
2460 return ((typecode == TYPE_CODE_FLT
2461 || (MIPS_EABI
2462 && (typecode == TYPE_CODE_STRUCT
2463 || typecode == TYPE_CODE_UNION)
2464 && TYPE_NFIELDS (arg_type) == 1
2465 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
2466 == TYPE_CODE_FLT))
2467 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2468 }
2469
2470 /* On o32, argument passing in GPRs depends on the alignment of the type being
2471 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2472
2473 static int
2474 mips_type_needs_double_align (struct type *type)
2475 {
2476 enum type_code typecode = TYPE_CODE (type);
2477
2478 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2479 return 1;
2480 else if (typecode == TYPE_CODE_STRUCT)
2481 {
2482 if (TYPE_NFIELDS (type) < 1)
2483 return 0;
2484 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2485 }
2486 else if (typecode == TYPE_CODE_UNION)
2487 {
2488 int i, n;
2489
2490 n = TYPE_NFIELDS (type);
2491 for (i = 0; i < n; i++)
2492 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2493 return 1;
2494 return 0;
2495 }
2496 return 0;
2497 }
2498
2499 /* Adjust the address downward (direction of stack growth) so that it
2500 is correctly aligned for a new stack frame. */
2501 static CORE_ADDR
2502 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2503 {
2504 return align_down (addr, 16);
2505 }
2506
2507 static CORE_ADDR
2508 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2509 struct regcache *regcache, CORE_ADDR bp_addr,
2510 int nargs, struct value **args, CORE_ADDR sp,
2511 int struct_return, CORE_ADDR struct_addr)
2512 {
2513 int argreg;
2514 int float_argreg;
2515 int argnum;
2516 int len = 0;
2517 int stack_offset = 0;
2518 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2519 CORE_ADDR func_addr = find_function_addr (function, NULL);
2520 int regsize = mips_abi_regsize (gdbarch);
2521
2522 /* For shared libraries, "t9" needs to point at the function
2523 address. */
2524 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2525
2526 /* Set the return address register to point to the entry point of
2527 the program, where a breakpoint lies in wait. */
2528 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2529
2530 /* First ensure that the stack and structure return address (if any)
2531 are properly aligned. The stack has to be at least 64-bit
2532 aligned even on 32-bit machines, because doubles must be 64-bit
2533 aligned. For n32 and n64, stack frames need to be 128-bit
2534 aligned, so we round to this widest known alignment. */
2535
2536 sp = align_down (sp, 16);
2537 struct_addr = align_down (struct_addr, 16);
2538
2539 /* Now make space on the stack for the args. We allocate more
2540 than necessary for EABI, because the first few arguments are
2541 passed in registers, but that's OK. */
2542 for (argnum = 0; argnum < nargs; argnum++)
2543 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
2544 sp -= align_up (len, 16);
2545
2546 if (mips_debug)
2547 fprintf_unfiltered (gdb_stdlog,
2548 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2549 paddr_nz (sp), (long) align_up (len, 16));
2550
2551 /* Initialize the integer and float register pointers. */
2552 argreg = MIPS_A0_REGNUM;
2553 float_argreg = mips_fpa0_regnum (current_gdbarch);
2554
2555 /* The struct_return pointer occupies the first parameter-passing reg. */
2556 if (struct_return)
2557 {
2558 if (mips_debug)
2559 fprintf_unfiltered (gdb_stdlog,
2560 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2561 argreg, paddr_nz (struct_addr));
2562 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
2563 }
2564
2565 /* Now load as many as possible of the first arguments into
2566 registers, and push the rest onto the stack. Loop thru args
2567 from first to last. */
2568 for (argnum = 0; argnum < nargs; argnum++)
2569 {
2570 const gdb_byte *val;
2571 gdb_byte valbuf[MAX_REGISTER_SIZE];
2572 struct value *arg = args[argnum];
2573 struct type *arg_type = check_typedef (value_type (arg));
2574 int len = TYPE_LENGTH (arg_type);
2575 enum type_code typecode = TYPE_CODE (arg_type);
2576
2577 if (mips_debug)
2578 fprintf_unfiltered (gdb_stdlog,
2579 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2580 argnum + 1, len, (int) typecode);
2581
2582 /* The EABI passes structures that do not fit in a register by
2583 reference. */
2584 if (len > regsize
2585 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2586 {
2587 store_unsigned_integer (valbuf, regsize, VALUE_ADDRESS (arg));
2588 typecode = TYPE_CODE_PTR;
2589 len = regsize;
2590 val = valbuf;
2591 if (mips_debug)
2592 fprintf_unfiltered (gdb_stdlog, " push");
2593 }
2594 else
2595 val = value_contents (arg);
2596
2597 /* 32-bit ABIs always start floating point arguments in an
2598 even-numbered floating point register. Round the FP register
2599 up before the check to see if there are any FP registers
2600 left. Non MIPS_EABI targets also pass the FP in the integer
2601 registers so also round up normal registers. */
2602 if (regsize < 8 && fp_register_arg_p (typecode, arg_type))
2603 {
2604 if ((float_argreg & 1))
2605 float_argreg++;
2606 }
2607
2608 /* Floating point arguments passed in registers have to be
2609 treated specially. On 32-bit architectures, doubles
2610 are passed in register pairs; the even register gets
2611 the low word, and the odd register gets the high word.
2612 On non-EABI processors, the first two floating point arguments are
2613 also copied to general registers, because MIPS16 functions
2614 don't use float registers for arguments. This duplication of
2615 arguments in general registers can't hurt non-MIPS16 functions
2616 because those registers are normally skipped. */
2617 /* MIPS_EABI squeezes a struct that contains a single floating
2618 point value into an FP register instead of pushing it onto the
2619 stack. */
2620 if (fp_register_arg_p (typecode, arg_type)
2621 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2622 {
2623 /* EABI32 will pass doubles in consecutive registers, even on
2624 64-bit cores. At one time, we used to check the size of
2625 `float_argreg' to determine whether or not to pass doubles
2626 in consecutive registers, but this is not sufficient for
2627 making the ABI determination. */
2628 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
2629 {
2630 int low_offset = gdbarch_byte_order (current_gdbarch)
2631 == BFD_ENDIAN_BIG ? 4 : 0;
2632 unsigned long regval;
2633
2634 /* Write the low word of the double to the even register(s). */
2635 regval = extract_unsigned_integer (val + low_offset, 4);
2636 if (mips_debug)
2637 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2638 float_argreg, phex (regval, 4));
2639 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2640
2641 /* Write the high word of the double to the odd register(s). */
2642 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2643 if (mips_debug)
2644 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2645 float_argreg, phex (regval, 4));
2646 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2647 }
2648 else
2649 {
2650 /* This is a floating point value that fits entirely
2651 in a single register. */
2652 /* On 32 bit ABI's the float_argreg is further adjusted
2653 above to ensure that it is even register aligned. */
2654 LONGEST regval = extract_unsigned_integer (val, len);
2655 if (mips_debug)
2656 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2657 float_argreg, phex (regval, len));
2658 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2659 }
2660 }
2661 else
2662 {
2663 /* Copy the argument to general registers or the stack in
2664 register-sized pieces. Large arguments are split between
2665 registers and stack. */
2666 /* Note: structs whose size is not a multiple of regsize
2667 are treated specially: Irix cc passes
2668 them in registers where gcc sometimes puts them on the
2669 stack. For maximum compatibility, we will put them in
2670 both places. */
2671 int odd_sized_struct = (len > regsize && len % regsize != 0);
2672
2673 /* Note: Floating-point values that didn't fit into an FP
2674 register are only written to memory. */
2675 while (len > 0)
2676 {
2677 /* Remember if the argument was written to the stack. */
2678 int stack_used_p = 0;
2679 int partial_len = (len < regsize ? len : regsize);
2680
2681 if (mips_debug)
2682 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2683 partial_len);
2684
2685 /* Write this portion of the argument to the stack. */
2686 if (argreg > MIPS_LAST_ARG_REGNUM
2687 || odd_sized_struct
2688 || fp_register_arg_p (typecode, arg_type))
2689 {
2690 /* Should shorter than int integer values be
2691 promoted to int before being stored? */
2692 int longword_offset = 0;
2693 CORE_ADDR addr;
2694 stack_used_p = 1;
2695 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
2696 {
2697 if (regsize == 8
2698 && (typecode == TYPE_CODE_INT
2699 || typecode == TYPE_CODE_PTR
2700 || typecode == TYPE_CODE_FLT) && len <= 4)
2701 longword_offset = regsize - len;
2702 else if ((typecode == TYPE_CODE_STRUCT
2703 || typecode == TYPE_CODE_UNION)
2704 && TYPE_LENGTH (arg_type) < regsize)
2705 longword_offset = regsize - len;
2706 }
2707
2708 if (mips_debug)
2709 {
2710 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2711 paddr_nz (stack_offset));
2712 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2713 paddr_nz (longword_offset));
2714 }
2715
2716 addr = sp + stack_offset + longword_offset;
2717
2718 if (mips_debug)
2719 {
2720 int i;
2721 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2722 paddr_nz (addr));
2723 for (i = 0; i < partial_len; i++)
2724 {
2725 fprintf_unfiltered (gdb_stdlog, "%02x",
2726 val[i] & 0xff);
2727 }
2728 }
2729 write_memory (addr, val, partial_len);
2730 }
2731
2732 /* Note!!! This is NOT an else clause. Odd sized
2733 structs may go thru BOTH paths. Floating point
2734 arguments will not. */
2735 /* Write this portion of the argument to a general
2736 purpose register. */
2737 if (argreg <= MIPS_LAST_ARG_REGNUM
2738 && !fp_register_arg_p (typecode, arg_type))
2739 {
2740 LONGEST regval =
2741 extract_unsigned_integer (val, partial_len);
2742
2743 if (mips_debug)
2744 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2745 argreg,
2746 phex (regval, regsize));
2747 regcache_cooked_write_unsigned (regcache, argreg, regval);
2748 argreg++;
2749 }
2750
2751 len -= partial_len;
2752 val += partial_len;
2753
2754 /* Compute the the offset into the stack at which we
2755 will copy the next parameter.
2756
2757 In the new EABI (and the NABI32), the stack_offset
2758 only needs to be adjusted when it has been used. */
2759
2760 if (stack_used_p)
2761 stack_offset += align_up (partial_len, regsize);
2762 }
2763 }
2764 if (mips_debug)
2765 fprintf_unfiltered (gdb_stdlog, "\n");
2766 }
2767
2768 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2769
2770 /* Return adjusted stack pointer. */
2771 return sp;
2772 }
2773
2774 /* Determine the return value convention being used. */
2775
2776 static enum return_value_convention
2777 mips_eabi_return_value (struct gdbarch *gdbarch,
2778 struct type *type, struct regcache *regcache,
2779 gdb_byte *readbuf, const gdb_byte *writebuf)
2780 {
2781 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2782 return RETURN_VALUE_STRUCT_CONVENTION;
2783 if (readbuf)
2784 memset (readbuf, 0, TYPE_LENGTH (type));
2785 return RETURN_VALUE_REGISTER_CONVENTION;
2786 }
2787
2788
2789 /* N32/N64 ABI stuff. */
2790
2791 /* Search for a naturally aligned double at OFFSET inside a struct
2792 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
2793 registers. */
2794
2795 static int
2796 mips_n32n64_fp_arg_chunk_p (struct type *arg_type, int offset)
2797 {
2798 int i;
2799
2800 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
2801 return 0;
2802
2803 if (MIPS_FPU_TYPE != MIPS_FPU_DOUBLE)
2804 return 0;
2805
2806 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
2807 return 0;
2808
2809 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
2810 {
2811 int pos;
2812 struct type *field_type;
2813
2814 /* We're only looking at normal fields. */
2815 if (TYPE_FIELD_STATIC (arg_type, i)
2816 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
2817 continue;
2818
2819 /* If we have gone past the offset, there is no double to pass. */
2820 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
2821 if (pos > offset)
2822 return 0;
2823
2824 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
2825
2826 /* If this field is entirely before the requested offset, go
2827 on to the next one. */
2828 if (pos + TYPE_LENGTH (field_type) <= offset)
2829 continue;
2830
2831 /* If this is our special aligned double, we can stop. */
2832 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
2833 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
2834 return 1;
2835
2836 /* This field starts at or before the requested offset, and
2837 overlaps it. If it is a structure, recurse inwards. */
2838 return mips_n32n64_fp_arg_chunk_p (field_type, offset - pos);
2839 }
2840
2841 return 0;
2842 }
2843
2844 static CORE_ADDR
2845 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2846 struct regcache *regcache, CORE_ADDR bp_addr,
2847 int nargs, struct value **args, CORE_ADDR sp,
2848 int struct_return, CORE_ADDR struct_addr)
2849 {
2850 int argreg;
2851 int float_argreg;
2852 int argnum;
2853 int len = 0;
2854 int stack_offset = 0;
2855 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2856 CORE_ADDR func_addr = find_function_addr (function, NULL);
2857
2858 /* For shared libraries, "t9" needs to point at the function
2859 address. */
2860 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2861
2862 /* Set the return address register to point to the entry point of
2863 the program, where a breakpoint lies in wait. */
2864 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2865
2866 /* First ensure that the stack and structure return address (if any)
2867 are properly aligned. The stack has to be at least 64-bit
2868 aligned even on 32-bit machines, because doubles must be 64-bit
2869 aligned. For n32 and n64, stack frames need to be 128-bit
2870 aligned, so we round to this widest known alignment. */
2871
2872 sp = align_down (sp, 16);
2873 struct_addr = align_down (struct_addr, 16);
2874
2875 /* Now make space on the stack for the args. */
2876 for (argnum = 0; argnum < nargs; argnum++)
2877 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
2878 sp -= align_up (len, 16);
2879
2880 if (mips_debug)
2881 fprintf_unfiltered (gdb_stdlog,
2882 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2883 paddr_nz (sp), (long) align_up (len, 16));
2884
2885 /* Initialize the integer and float register pointers. */
2886 argreg = MIPS_A0_REGNUM;
2887 float_argreg = mips_fpa0_regnum (current_gdbarch);
2888
2889 /* The struct_return pointer occupies the first parameter-passing reg. */
2890 if (struct_return)
2891 {
2892 if (mips_debug)
2893 fprintf_unfiltered (gdb_stdlog,
2894 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
2895 argreg, paddr_nz (struct_addr));
2896 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
2897 }
2898
2899 /* Now load as many as possible of the first arguments into
2900 registers, and push the rest onto the stack. Loop thru args
2901 from first to last. */
2902 for (argnum = 0; argnum < nargs; argnum++)
2903 {
2904 const gdb_byte *val;
2905 struct value *arg = args[argnum];
2906 struct type *arg_type = check_typedef (value_type (arg));
2907 int len = TYPE_LENGTH (arg_type);
2908 enum type_code typecode = TYPE_CODE (arg_type);
2909
2910 if (mips_debug)
2911 fprintf_unfiltered (gdb_stdlog,
2912 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
2913 argnum + 1, len, (int) typecode);
2914
2915 val = value_contents (arg);
2916
2917 if (fp_register_arg_p (typecode, arg_type)
2918 && argreg <= MIPS_LAST_ARG_REGNUM)
2919 {
2920 /* This is a floating point value that fits entirely
2921 in a single register. */
2922 LONGEST regval = extract_unsigned_integer (val, len);
2923 if (mips_debug)
2924 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2925 float_argreg, phex (regval, len));
2926 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
2927
2928 if (mips_debug)
2929 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2930 argreg, phex (regval, len));
2931 regcache_cooked_write_unsigned (regcache, argreg, regval);
2932 float_argreg++;
2933 argreg++;
2934 }
2935 else
2936 {
2937 /* Copy the argument to general registers or the stack in
2938 register-sized pieces. Large arguments are split between
2939 registers and stack. */
2940 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
2941 are treated specially: Irix cc passes them in registers
2942 where gcc sometimes puts them on the stack. For maximum
2943 compatibility, we will put them in both places. */
2944 int odd_sized_struct = (len > MIPS64_REGSIZE
2945 && len % MIPS64_REGSIZE != 0);
2946 /* Note: Floating-point values that didn't fit into an FP
2947 register are only written to memory. */
2948 while (len > 0)
2949 {
2950 /* Remember if the argument was written to the stack. */
2951 int stack_used_p = 0;
2952 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
2953
2954 if (mips_debug)
2955 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2956 partial_len);
2957
2958 if (fp_register_arg_p (typecode, arg_type))
2959 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM);
2960
2961 /* Write this portion of the argument to the stack. */
2962 if (argreg > MIPS_LAST_ARG_REGNUM
2963 || odd_sized_struct)
2964 {
2965 /* Should shorter than int integer values be
2966 promoted to int before being stored? */
2967 int longword_offset = 0;
2968 CORE_ADDR addr;
2969 stack_used_p = 1;
2970 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
2971 {
2972 if ((typecode == TYPE_CODE_INT
2973 || typecode == TYPE_CODE_PTR
2974 || typecode == TYPE_CODE_FLT)
2975 && len <= 4)
2976 longword_offset = MIPS64_REGSIZE - len;
2977 }
2978
2979 if (mips_debug)
2980 {
2981 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2982 paddr_nz (stack_offset));
2983 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2984 paddr_nz (longword_offset));
2985 }
2986
2987 addr = sp + stack_offset + longword_offset;
2988
2989 if (mips_debug)
2990 {
2991 int i;
2992 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2993 paddr_nz (addr));
2994 for (i = 0; i < partial_len; i++)
2995 {
2996 fprintf_unfiltered (gdb_stdlog, "%02x",
2997 val[i] & 0xff);
2998 }
2999 }
3000 write_memory (addr, val, partial_len);
3001 }
3002
3003 /* Note!!! This is NOT an else clause. Odd sized
3004 structs may go thru BOTH paths. */
3005 /* Write this portion of the argument to a general
3006 purpose register. */
3007 if (argreg <= MIPS_LAST_ARG_REGNUM)
3008 {
3009 LONGEST regval =
3010 extract_unsigned_integer (val, partial_len);
3011
3012 /* A non-floating-point argument being passed in a
3013 general register. If a struct or union, and if
3014 the remaining length is smaller than the register
3015 size, we have to adjust the register value on
3016 big endian targets.
3017
3018 It does not seem to be necessary to do the
3019 same for integral types. */
3020
3021 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
3022 && partial_len < MIPS64_REGSIZE
3023 && (typecode == TYPE_CODE_STRUCT
3024 || typecode == TYPE_CODE_UNION))
3025 regval <<= ((MIPS64_REGSIZE - partial_len)
3026 * TARGET_CHAR_BIT);
3027
3028 if (mips_debug)
3029 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3030 argreg,
3031 phex (regval, MIPS64_REGSIZE));
3032 regcache_cooked_write_unsigned (regcache, argreg, regval);
3033
3034 if (mips_n32n64_fp_arg_chunk_p (arg_type,
3035 TYPE_LENGTH (arg_type) - len))
3036 {
3037 if (mips_debug)
3038 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
3039 float_argreg,
3040 phex (regval, MIPS64_REGSIZE));
3041 regcache_cooked_write_unsigned (regcache, float_argreg,
3042 regval);
3043 }
3044
3045 float_argreg++;
3046 argreg++;
3047 }
3048
3049 len -= partial_len;
3050 val += partial_len;
3051
3052 /* Compute the the offset into the stack at which we
3053 will copy the next parameter.
3054
3055 In N32 (N64?), the stack_offset only needs to be
3056 adjusted when it has been used. */
3057
3058 if (stack_used_p)
3059 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
3060 }
3061 }
3062 if (mips_debug)
3063 fprintf_unfiltered (gdb_stdlog, "\n");
3064 }
3065
3066 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3067
3068 /* Return adjusted stack pointer. */
3069 return sp;
3070 }
3071
3072 static enum return_value_convention
3073 mips_n32n64_return_value (struct gdbarch *gdbarch,
3074 struct type *type, struct regcache *regcache,
3075 gdb_byte *readbuf, const gdb_byte *writebuf)
3076 {
3077 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3078 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3079 || TYPE_CODE (type) == TYPE_CODE_UNION
3080 || TYPE_CODE (type) == TYPE_CODE_ARRAY
3081 || TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
3082 return RETURN_VALUE_STRUCT_CONVENTION;
3083 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3084 && TYPE_LENGTH (type) == 16
3085 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3086 {
3087 /* A 128-bit floating-point value fills both $f0 and $f2. The
3088 two registers are used in the same as memory order, so the
3089 eight bytes with the lower memory address are in $f0. */
3090 if (mips_debug)
3091 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
3092 mips_xfer_register (regcache,
3093 gdbarch_num_regs (current_gdbarch)
3094 + mips_regnum (current_gdbarch)->fp0,
3095 8, gdbarch_byte_order (current_gdbarch),
3096 readbuf, writebuf, 0);
3097 mips_xfer_register (regcache,
3098 gdbarch_num_regs (current_gdbarch)
3099 + mips_regnum (current_gdbarch)->fp0 + 2,
3100 8, gdbarch_byte_order (current_gdbarch),
3101 readbuf ? readbuf + 8 : readbuf,
3102 writebuf ? writebuf + 8 : writebuf, 0);
3103 return RETURN_VALUE_REGISTER_CONVENTION;
3104 }
3105 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3106 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3107 {
3108 /* A floating-point value belongs in the least significant part
3109 of FP0. */
3110 if (mips_debug)
3111 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3112 mips_xfer_register (regcache,
3113 gdbarch_num_regs (current_gdbarch)
3114 + mips_regnum (current_gdbarch)->fp0,
3115 TYPE_LENGTH (type),
3116 gdbarch_byte_order (current_gdbarch),
3117 readbuf, writebuf, 0);
3118 return RETURN_VALUE_REGISTER_CONVENTION;
3119 }
3120 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3121 && TYPE_NFIELDS (type) <= 2
3122 && TYPE_NFIELDS (type) >= 1
3123 && ((TYPE_NFIELDS (type) == 1
3124 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3125 == TYPE_CODE_FLT))
3126 || (TYPE_NFIELDS (type) == 2
3127 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3128 == TYPE_CODE_FLT)
3129 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3130 == TYPE_CODE_FLT)))
3131 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3132 {
3133 /* A struct that contains one or two floats. Each value is part
3134 in the least significant part of their floating point
3135 register.. */
3136 int regnum;
3137 int field;
3138 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3139 field < TYPE_NFIELDS (type); field++, regnum += 2)
3140 {
3141 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3142 / TARGET_CHAR_BIT);
3143 if (mips_debug)
3144 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3145 offset);
3146 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3147 + regnum,
3148 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3149 gdbarch_byte_order (current_gdbarch),
3150 readbuf, writebuf, offset);
3151 }
3152 return RETURN_VALUE_REGISTER_CONVENTION;
3153 }
3154 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3155 || TYPE_CODE (type) == TYPE_CODE_UNION)
3156 {
3157 /* A structure or union. Extract the left justified value,
3158 regardless of the byte order. I.e. DO NOT USE
3159 mips_xfer_lower. */
3160 int offset;
3161 int regnum;
3162 for (offset = 0, regnum = MIPS_V0_REGNUM;
3163 offset < TYPE_LENGTH (type);
3164 offset += register_size (current_gdbarch, regnum), regnum++)
3165 {
3166 int xfer = register_size (current_gdbarch, regnum);
3167 if (offset + xfer > TYPE_LENGTH (type))
3168 xfer = TYPE_LENGTH (type) - offset;
3169 if (mips_debug)
3170 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3171 offset, xfer, regnum);
3172 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3173 + regnum, xfer,
3174 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3175 }
3176 return RETURN_VALUE_REGISTER_CONVENTION;
3177 }
3178 else
3179 {
3180 /* A scalar extract each part but least-significant-byte
3181 justified. */
3182 int offset;
3183 int regnum;
3184 for (offset = 0, regnum = MIPS_V0_REGNUM;
3185 offset < TYPE_LENGTH (type);
3186 offset += register_size (current_gdbarch, regnum), regnum++)
3187 {
3188 int xfer = register_size (current_gdbarch, regnum);
3189 if (offset + xfer > TYPE_LENGTH (type))
3190 xfer = TYPE_LENGTH (type) - offset;
3191 if (mips_debug)
3192 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3193 offset, xfer, regnum);
3194 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3195 + regnum, xfer,
3196 gdbarch_byte_order (current_gdbarch),
3197 readbuf, writebuf, offset);
3198 }
3199 return RETURN_VALUE_REGISTER_CONVENTION;
3200 }
3201 }
3202
3203 /* O32 ABI stuff. */
3204
3205 static CORE_ADDR
3206 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3207 struct regcache *regcache, CORE_ADDR bp_addr,
3208 int nargs, struct value **args, CORE_ADDR sp,
3209 int struct_return, CORE_ADDR struct_addr)
3210 {
3211 int argreg;
3212 int float_argreg;
3213 int argnum;
3214 int len = 0;
3215 int stack_offset = 0;
3216 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3217 CORE_ADDR func_addr = find_function_addr (function, NULL);
3218
3219 /* For shared libraries, "t9" needs to point at the function
3220 address. */
3221 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3222
3223 /* Set the return address register to point to the entry point of
3224 the program, where a breakpoint lies in wait. */
3225 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3226
3227 /* First ensure that the stack and structure return address (if any)
3228 are properly aligned. The stack has to be at least 64-bit
3229 aligned even on 32-bit machines, because doubles must be 64-bit
3230 aligned. For n32 and n64, stack frames need to be 128-bit
3231 aligned, so we round to this widest known alignment. */
3232
3233 sp = align_down (sp, 16);
3234 struct_addr = align_down (struct_addr, 16);
3235
3236 /* Now make space on the stack for the args. */
3237 for (argnum = 0; argnum < nargs; argnum++)
3238 {
3239 struct type *arg_type = check_typedef (value_type (args[argnum]));
3240 int arglen = TYPE_LENGTH (arg_type);
3241
3242 /* Align to double-word if necessary. */
3243 if (mips_type_needs_double_align (arg_type))
3244 len = align_up (len, MIPS32_REGSIZE * 2);
3245 /* Allocate space on the stack. */
3246 len += align_up (arglen, MIPS32_REGSIZE);
3247 }
3248 sp -= align_up (len, 16);
3249
3250 if (mips_debug)
3251 fprintf_unfiltered (gdb_stdlog,
3252 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3253 paddr_nz (sp), (long) align_up (len, 16));
3254
3255 /* Initialize the integer and float register pointers. */
3256 argreg = MIPS_A0_REGNUM;
3257 float_argreg = mips_fpa0_regnum (current_gdbarch);
3258
3259 /* The struct_return pointer occupies the first parameter-passing reg. */
3260 if (struct_return)
3261 {
3262 if (mips_debug)
3263 fprintf_unfiltered (gdb_stdlog,
3264 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3265 argreg, paddr_nz (struct_addr));
3266 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
3267 stack_offset += MIPS32_REGSIZE;
3268 }
3269
3270 /* Now load as many as possible of the first arguments into
3271 registers, and push the rest onto the stack. Loop thru args
3272 from first to last. */
3273 for (argnum = 0; argnum < nargs; argnum++)
3274 {
3275 const gdb_byte *val;
3276 struct value *arg = args[argnum];
3277 struct type *arg_type = check_typedef (value_type (arg));
3278 int len = TYPE_LENGTH (arg_type);
3279 enum type_code typecode = TYPE_CODE (arg_type);
3280
3281 if (mips_debug)
3282 fprintf_unfiltered (gdb_stdlog,
3283 "mips_o32_push_dummy_call: %d len=%d type=%d",
3284 argnum + 1, len, (int) typecode);
3285
3286 val = value_contents (arg);
3287
3288 /* 32-bit ABIs always start floating point arguments in an
3289 even-numbered floating point register. Round the FP register
3290 up before the check to see if there are any FP registers
3291 left. O32/O64 targets also pass the FP in the integer
3292 registers so also round up normal registers. */
3293 if (fp_register_arg_p (typecode, arg_type))
3294 {
3295 if ((float_argreg & 1))
3296 float_argreg++;
3297 }
3298
3299 /* Floating point arguments passed in registers have to be
3300 treated specially. On 32-bit architectures, doubles
3301 are passed in register pairs; the even register gets
3302 the low word, and the odd register gets the high word.
3303 On O32/O64, the first two floating point arguments are
3304 also copied to general registers, because MIPS16 functions
3305 don't use float registers for arguments. This duplication of
3306 arguments in general registers can't hurt non-MIPS16 functions
3307 because those registers are normally skipped. */
3308
3309 if (fp_register_arg_p (typecode, arg_type)
3310 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3311 {
3312 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
3313 {
3314 int low_offset = gdbarch_byte_order (current_gdbarch)
3315 == BFD_ENDIAN_BIG ? 4 : 0;
3316 unsigned long regval;
3317
3318 /* Write the low word of the double to the even register(s). */
3319 regval = extract_unsigned_integer (val + low_offset, 4);
3320 if (mips_debug)
3321 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3322 float_argreg, phex (regval, 4));
3323 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3324 if (mips_debug)
3325 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3326 argreg, phex (regval, 4));
3327 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3328
3329 /* Write the high word of the double to the odd register(s). */
3330 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3331 if (mips_debug)
3332 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3333 float_argreg, phex (regval, 4));
3334 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3335
3336 if (mips_debug)
3337 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3338 argreg, phex (regval, 4));
3339 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3340 }
3341 else
3342 {
3343 /* This is a floating point value that fits entirely
3344 in a single register. */
3345 /* On 32 bit ABI's the float_argreg is further adjusted
3346 above to ensure that it is even register aligned. */
3347 LONGEST regval = extract_unsigned_integer (val, len);
3348 if (mips_debug)
3349 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3350 float_argreg, phex (regval, len));
3351 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3352 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3353 registers for each argument. The below is (my
3354 guess) to ensure that the corresponding integer
3355 register has reserved the same space. */
3356 if (mips_debug)
3357 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3358 argreg, phex (regval, len));
3359 regcache_cooked_write_unsigned (regcache, argreg, regval);
3360 argreg += 2;
3361 }
3362 /* Reserve space for the FP register. */
3363 stack_offset += align_up (len, MIPS32_REGSIZE);
3364 }
3365 else
3366 {
3367 /* Copy the argument to general registers or the stack in
3368 register-sized pieces. Large arguments are split between
3369 registers and stack. */
3370 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
3371 are treated specially: Irix cc passes
3372 them in registers where gcc sometimes puts them on the
3373 stack. For maximum compatibility, we will put them in
3374 both places. */
3375 int odd_sized_struct = (len > MIPS32_REGSIZE
3376 && len % MIPS32_REGSIZE != 0);
3377 /* Structures should be aligned to eight bytes (even arg registers)
3378 on MIPS_ABI_O32, if their first member has double precision. */
3379 if (mips_type_needs_double_align (arg_type))
3380 {
3381 if ((argreg & 1))
3382 {
3383 argreg++;
3384 stack_offset += MIPS32_REGSIZE;
3385 }
3386 }
3387 while (len > 0)
3388 {
3389 /* Remember if the argument was written to the stack. */
3390 int stack_used_p = 0;
3391 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
3392
3393 if (mips_debug)
3394 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3395 partial_len);
3396
3397 /* Write this portion of the argument to the stack. */
3398 if (argreg > MIPS_LAST_ARG_REGNUM
3399 || odd_sized_struct)
3400 {
3401 /* Should shorter than int integer values be
3402 promoted to int before being stored? */
3403 int longword_offset = 0;
3404 CORE_ADDR addr;
3405 stack_used_p = 1;
3406
3407 if (mips_debug)
3408 {
3409 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3410 paddr_nz (stack_offset));
3411 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3412 paddr_nz (longword_offset));
3413 }
3414
3415 addr = sp + stack_offset + longword_offset;
3416
3417 if (mips_debug)
3418 {
3419 int i;
3420 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3421 paddr_nz (addr));
3422 for (i = 0; i < partial_len; i++)
3423 {
3424 fprintf_unfiltered (gdb_stdlog, "%02x",
3425 val[i] & 0xff);
3426 }
3427 }
3428 write_memory (addr, val, partial_len);
3429 }
3430
3431 /* Note!!! This is NOT an else clause. Odd sized
3432 structs may go thru BOTH paths. */
3433 /* Write this portion of the argument to a general
3434 purpose register. */
3435 if (argreg <= MIPS_LAST_ARG_REGNUM)
3436 {
3437 LONGEST regval = extract_signed_integer (val, partial_len);
3438 /* Value may need to be sign extended, because
3439 mips_isa_regsize() != mips_abi_regsize(). */
3440
3441 /* A non-floating-point argument being passed in a
3442 general register. If a struct or union, and if
3443 the remaining length is smaller than the register
3444 size, we have to adjust the register value on
3445 big endian targets.
3446
3447 It does not seem to be necessary to do the
3448 same for integral types.
3449
3450 Also don't do this adjustment on O64 binaries.
3451
3452 cagney/2001-07-23: gdb/179: Also, GCC, when
3453 outputting LE O32 with sizeof (struct) <
3454 mips_abi_regsize(), generates a left shift
3455 as part of storing the argument in a register
3456 (the left shift isn't generated when
3457 sizeof (struct) >= mips_abi_regsize()). Since
3458 it is quite possible that this is GCC
3459 contradicting the LE/O32 ABI, GDB has not been
3460 adjusted to accommodate this. Either someone
3461 needs to demonstrate that the LE/O32 ABI
3462 specifies such a left shift OR this new ABI gets
3463 identified as such and GDB gets tweaked
3464 accordingly. */
3465
3466 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
3467 && partial_len < MIPS32_REGSIZE
3468 && (typecode == TYPE_CODE_STRUCT
3469 || typecode == TYPE_CODE_UNION))
3470 regval <<= ((MIPS32_REGSIZE - partial_len)
3471 * TARGET_CHAR_BIT);
3472
3473 if (mips_debug)
3474 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3475 argreg,
3476 phex (regval, MIPS32_REGSIZE));
3477 regcache_cooked_write_unsigned (regcache, argreg, regval);
3478 argreg++;
3479
3480 /* Prevent subsequent floating point arguments from
3481 being passed in floating point registers. */
3482 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3483 }
3484
3485 len -= partial_len;
3486 val += partial_len;
3487
3488 /* Compute the the offset into the stack at which we
3489 will copy the next parameter.
3490
3491 In older ABIs, the caller reserved space for
3492 registers that contained arguments. This was loosely
3493 refered to as their "home". Consequently, space is
3494 always allocated. */
3495
3496 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
3497 }
3498 }
3499 if (mips_debug)
3500 fprintf_unfiltered (gdb_stdlog, "\n");
3501 }
3502
3503 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3504
3505 /* Return adjusted stack pointer. */
3506 return sp;
3507 }
3508
3509 static enum return_value_convention
3510 mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3511 struct regcache *regcache,
3512 gdb_byte *readbuf, const gdb_byte *writebuf)
3513 {
3514 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3515
3516 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3517 || TYPE_CODE (type) == TYPE_CODE_UNION
3518 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3519 return RETURN_VALUE_STRUCT_CONVENTION;
3520 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3521 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3522 {
3523 /* A single-precision floating-point value. It fits in the
3524 least significant part of FP0. */
3525 if (mips_debug)
3526 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3527 mips_xfer_register (regcache,
3528 gdbarch_num_regs (current_gdbarch)
3529 + mips_regnum (current_gdbarch)->fp0,
3530 TYPE_LENGTH (type),
3531 gdbarch_byte_order (current_gdbarch),
3532 readbuf, writebuf, 0);
3533 return RETURN_VALUE_REGISTER_CONVENTION;
3534 }
3535 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3536 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3537 {
3538 /* A double-precision floating-point value. The most
3539 significant part goes in FP1, and the least significant in
3540 FP0. */
3541 if (mips_debug)
3542 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
3543 switch (gdbarch_byte_order (current_gdbarch))
3544 {
3545 case BFD_ENDIAN_LITTLE:
3546 mips_xfer_register (regcache,
3547 gdbarch_num_regs (current_gdbarch)
3548 + mips_regnum (current_gdbarch)->fp0 +
3549 0, 4, gdbarch_byte_order (current_gdbarch),
3550 readbuf, writebuf, 0);
3551 mips_xfer_register (regcache,
3552 gdbarch_num_regs (current_gdbarch)
3553 + mips_regnum (current_gdbarch)->fp0 + 1,
3554 4, gdbarch_byte_order (current_gdbarch),
3555 readbuf, writebuf, 4);
3556 break;
3557 case BFD_ENDIAN_BIG:
3558 mips_xfer_register (regcache,
3559 gdbarch_num_regs (current_gdbarch)
3560 + mips_regnum (current_gdbarch)->fp0 + 1,
3561 4, gdbarch_byte_order (current_gdbarch),
3562 readbuf, writebuf, 0);
3563 mips_xfer_register (regcache,
3564 gdbarch_num_regs (current_gdbarch)
3565 + mips_regnum (current_gdbarch)->fp0 + 0,
3566 4, gdbarch_byte_order (current_gdbarch),
3567 readbuf, writebuf, 4);
3568 break;
3569 default:
3570 internal_error (__FILE__, __LINE__, _("bad switch"));
3571 }
3572 return RETURN_VALUE_REGISTER_CONVENTION;
3573 }
3574 #if 0
3575 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3576 && TYPE_NFIELDS (type) <= 2
3577 && TYPE_NFIELDS (type) >= 1
3578 && ((TYPE_NFIELDS (type) == 1
3579 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3580 == TYPE_CODE_FLT))
3581 || (TYPE_NFIELDS (type) == 2
3582 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3583 == TYPE_CODE_FLT)
3584 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3585 == TYPE_CODE_FLT)))
3586 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3587 {
3588 /* A struct that contains one or two floats. Each value is part
3589 in the least significant part of their floating point
3590 register.. */
3591 gdb_byte reg[MAX_REGISTER_SIZE];
3592 int regnum;
3593 int field;
3594 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3595 field < TYPE_NFIELDS (type); field++, regnum += 2)
3596 {
3597 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3598 / TARGET_CHAR_BIT);
3599 if (mips_debug)
3600 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3601 offset);
3602 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3603 + regnum,
3604 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3605 gdbarch_byte_order (current_gdbarch),
3606 readbuf, writebuf, offset);
3607 }
3608 return RETURN_VALUE_REGISTER_CONVENTION;
3609 }
3610 #endif
3611 #if 0
3612 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3613 || TYPE_CODE (type) == TYPE_CODE_UNION)
3614 {
3615 /* A structure or union. Extract the left justified value,
3616 regardless of the byte order. I.e. DO NOT USE
3617 mips_xfer_lower. */
3618 int offset;
3619 int regnum;
3620 for (offset = 0, regnum = MIPS_V0_REGNUM;
3621 offset < TYPE_LENGTH (type);
3622 offset += register_size (current_gdbarch, regnum), regnum++)
3623 {
3624 int xfer = register_size (current_gdbarch, regnum);
3625 if (offset + xfer > TYPE_LENGTH (type))
3626 xfer = TYPE_LENGTH (type) - offset;
3627 if (mips_debug)
3628 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3629 offset, xfer, regnum);
3630 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3631 + regnum, xfer,
3632 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3633 }
3634 return RETURN_VALUE_REGISTER_CONVENTION;
3635 }
3636 #endif
3637 else
3638 {
3639 /* A scalar extract each part but least-significant-byte
3640 justified. o32 thinks registers are 4 byte, regardless of
3641 the ISA. */
3642 int offset;
3643 int regnum;
3644 for (offset = 0, regnum = MIPS_V0_REGNUM;
3645 offset < TYPE_LENGTH (type);
3646 offset += MIPS32_REGSIZE, regnum++)
3647 {
3648 int xfer = MIPS32_REGSIZE;
3649 if (offset + xfer > TYPE_LENGTH (type))
3650 xfer = TYPE_LENGTH (type) - offset;
3651 if (mips_debug)
3652 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3653 offset, xfer, regnum);
3654 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3655 + regnum, xfer,
3656 gdbarch_byte_order (current_gdbarch),
3657 readbuf, writebuf, offset);
3658 }
3659 return RETURN_VALUE_REGISTER_CONVENTION;
3660 }
3661 }
3662
3663 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3664 ABI. */
3665
3666 static CORE_ADDR
3667 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3668 struct regcache *regcache, CORE_ADDR bp_addr,
3669 int nargs,
3670 struct value **args, CORE_ADDR sp,
3671 int struct_return, CORE_ADDR struct_addr)
3672 {
3673 int argreg;
3674 int float_argreg;
3675 int argnum;
3676 int len = 0;
3677 int stack_offset = 0;
3678 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3679 CORE_ADDR func_addr = find_function_addr (function, NULL);
3680
3681 /* For shared libraries, "t9" needs to point at the function
3682 address. */
3683 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3684
3685 /* Set the return address register to point to the entry point of
3686 the program, where a breakpoint lies in wait. */
3687 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3688
3689 /* First ensure that the stack and structure return address (if any)
3690 are properly aligned. The stack has to be at least 64-bit
3691 aligned even on 32-bit machines, because doubles must be 64-bit
3692 aligned. For n32 and n64, stack frames need to be 128-bit
3693 aligned, so we round to this widest known alignment. */
3694
3695 sp = align_down (sp, 16);
3696 struct_addr = align_down (struct_addr, 16);
3697
3698 /* Now make space on the stack for the args. */
3699 for (argnum = 0; argnum < nargs; argnum++)
3700 {
3701 struct type *arg_type = check_typedef (value_type (args[argnum]));
3702 int arglen = TYPE_LENGTH (arg_type);
3703
3704 /* Allocate space on the stack. */
3705 len += align_up (arglen, MIPS64_REGSIZE);
3706 }
3707 sp -= align_up (len, 16);
3708
3709 if (mips_debug)
3710 fprintf_unfiltered (gdb_stdlog,
3711 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3712 paddr_nz (sp), (long) align_up (len, 16));
3713
3714 /* Initialize the integer and float register pointers. */
3715 argreg = MIPS_A0_REGNUM;
3716 float_argreg = mips_fpa0_regnum (current_gdbarch);
3717
3718 /* The struct_return pointer occupies the first parameter-passing reg. */
3719 if (struct_return)
3720 {
3721 if (mips_debug)
3722 fprintf_unfiltered (gdb_stdlog,
3723 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3724 argreg, paddr_nz (struct_addr));
3725 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
3726 stack_offset += MIPS64_REGSIZE;
3727 }
3728
3729 /* Now load as many as possible of the first arguments into
3730 registers, and push the rest onto the stack. Loop thru args
3731 from first to last. */
3732 for (argnum = 0; argnum < nargs; argnum++)
3733 {
3734 const gdb_byte *val;
3735 struct value *arg = args[argnum];
3736 struct type *arg_type = check_typedef (value_type (arg));
3737 int len = TYPE_LENGTH (arg_type);
3738 enum type_code typecode = TYPE_CODE (arg_type);
3739
3740 if (mips_debug)
3741 fprintf_unfiltered (gdb_stdlog,
3742 "mips_o64_push_dummy_call: %d len=%d type=%d",
3743 argnum + 1, len, (int) typecode);
3744
3745 val = value_contents (arg);
3746
3747 /* Floating point arguments passed in registers have to be
3748 treated specially. On 32-bit architectures, doubles
3749 are passed in register pairs; the even register gets
3750 the low word, and the odd register gets the high word.
3751 On O32/O64, the first two floating point arguments are
3752 also copied to general registers, because MIPS16 functions
3753 don't use float registers for arguments. This duplication of
3754 arguments in general registers can't hurt non-MIPS16 functions
3755 because those registers are normally skipped. */
3756
3757 if (fp_register_arg_p (typecode, arg_type)
3758 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3759 {
3760 LONGEST regval = extract_unsigned_integer (val, len);
3761 if (mips_debug)
3762 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3763 float_argreg, phex (regval, len));
3764 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3765 if (mips_debug)
3766 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3767 argreg, phex (regval, len));
3768 regcache_cooked_write_unsigned (regcache, argreg, regval);
3769 argreg++;
3770 /* Reserve space for the FP register. */
3771 stack_offset += align_up (len, MIPS64_REGSIZE);
3772 }
3773 else
3774 {
3775 /* Copy the argument to general registers or the stack in
3776 register-sized pieces. Large arguments are split between
3777 registers and stack. */
3778 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
3779 are treated specially: Irix cc passes them in registers
3780 where gcc sometimes puts them on the stack. For maximum
3781 compatibility, we will put them in both places. */
3782 int odd_sized_struct = (len > MIPS64_REGSIZE
3783 && len % MIPS64_REGSIZE != 0);
3784 while (len > 0)
3785 {
3786 /* Remember if the argument was written to the stack. */
3787 int stack_used_p = 0;
3788 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
3789
3790 if (mips_debug)
3791 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3792 partial_len);
3793
3794 /* Write this portion of the argument to the stack. */
3795 if (argreg > MIPS_LAST_ARG_REGNUM
3796 || odd_sized_struct)
3797 {
3798 /* Should shorter than int integer values be
3799 promoted to int before being stored? */
3800 int longword_offset = 0;
3801 CORE_ADDR addr;
3802 stack_used_p = 1;
3803 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
3804 {
3805 if ((typecode == TYPE_CODE_INT
3806 || typecode == TYPE_CODE_PTR
3807 || typecode == TYPE_CODE_FLT)
3808 && len <= 4)
3809 longword_offset = MIPS64_REGSIZE - len;
3810 }
3811
3812 if (mips_debug)
3813 {
3814 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3815 paddr_nz (stack_offset));
3816 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3817 paddr_nz (longword_offset));
3818 }
3819
3820 addr = sp + stack_offset + longword_offset;
3821
3822 if (mips_debug)
3823 {
3824 int i;
3825 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3826 paddr_nz (addr));
3827 for (i = 0; i < partial_len; i++)
3828 {
3829 fprintf_unfiltered (gdb_stdlog, "%02x",
3830 val[i] & 0xff);
3831 }
3832 }
3833 write_memory (addr, val, partial_len);
3834 }
3835
3836 /* Note!!! This is NOT an else clause. Odd sized
3837 structs may go thru BOTH paths. */
3838 /* Write this portion of the argument to a general
3839 purpose register. */
3840 if (argreg <= MIPS_LAST_ARG_REGNUM)
3841 {
3842 LONGEST regval = extract_signed_integer (val, partial_len);
3843 /* Value may need to be sign extended, because
3844 mips_isa_regsize() != mips_abi_regsize(). */
3845
3846 /* A non-floating-point argument being passed in a
3847 general register. If a struct or union, and if
3848 the remaining length is smaller than the register
3849 size, we have to adjust the register value on
3850 big endian targets.
3851
3852 It does not seem to be necessary to do the
3853 same for integral types. */
3854
3855 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
3856 && partial_len < MIPS64_REGSIZE
3857 && (typecode == TYPE_CODE_STRUCT
3858 || typecode == TYPE_CODE_UNION))
3859 regval <<= ((MIPS64_REGSIZE - partial_len)
3860 * TARGET_CHAR_BIT);
3861
3862 if (mips_debug)
3863 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3864 argreg,
3865 phex (regval, MIPS64_REGSIZE));
3866 regcache_cooked_write_unsigned (regcache, argreg, regval);
3867 argreg++;
3868
3869 /* Prevent subsequent floating point arguments from
3870 being passed in floating point registers. */
3871 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3872 }
3873
3874 len -= partial_len;
3875 val += partial_len;
3876
3877 /* Compute the the offset into the stack at which we
3878 will copy the next parameter.
3879
3880 In older ABIs, the caller reserved space for
3881 registers that contained arguments. This was loosely
3882 refered to as their "home". Consequently, space is
3883 always allocated. */
3884
3885 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
3886 }
3887 }
3888 if (mips_debug)
3889 fprintf_unfiltered (gdb_stdlog, "\n");
3890 }
3891
3892 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3893
3894 /* Return adjusted stack pointer. */
3895 return sp;
3896 }
3897
3898 static enum return_value_convention
3899 mips_o64_return_value (struct gdbarch *gdbarch,
3900 struct type *type, struct regcache *regcache,
3901 gdb_byte *readbuf, const gdb_byte *writebuf)
3902 {
3903 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3904
3905 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3906 || TYPE_CODE (type) == TYPE_CODE_UNION
3907 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3908 return RETURN_VALUE_STRUCT_CONVENTION;
3909 else if (fp_register_arg_p (TYPE_CODE (type), type))
3910 {
3911 /* A floating-point value. It fits in the least significant
3912 part of FP0. */
3913 if (mips_debug)
3914 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3915 mips_xfer_register (regcache,
3916 gdbarch_num_regs (current_gdbarch)
3917 + mips_regnum (current_gdbarch)->fp0,
3918 TYPE_LENGTH (type),
3919 gdbarch_byte_order (current_gdbarch),
3920 readbuf, writebuf, 0);
3921 return RETURN_VALUE_REGISTER_CONVENTION;
3922 }
3923 else
3924 {
3925 /* A scalar extract each part but least-significant-byte
3926 justified. */
3927 int offset;
3928 int regnum;
3929 for (offset = 0, regnum = MIPS_V0_REGNUM;
3930 offset < TYPE_LENGTH (type);
3931 offset += MIPS64_REGSIZE, regnum++)
3932 {
3933 int xfer = MIPS64_REGSIZE;
3934 if (offset + xfer > TYPE_LENGTH (type))
3935 xfer = TYPE_LENGTH (type) - offset;
3936 if (mips_debug)
3937 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3938 offset, xfer, regnum);
3939 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3940 + regnum, xfer,
3941 gdbarch_byte_order (current_gdbarch),
3942 readbuf, writebuf, offset);
3943 }
3944 return RETURN_VALUE_REGISTER_CONVENTION;
3945 }
3946 }
3947
3948 /* Floating point register management.
3949
3950 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3951 64bit operations, these early MIPS cpus treat fp register pairs
3952 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3953 registers and offer a compatibility mode that emulates the MIPS2 fp
3954 model. When operating in MIPS2 fp compat mode, later cpu's split
3955 double precision floats into two 32-bit chunks and store them in
3956 consecutive fp regs. To display 64-bit floats stored in this
3957 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3958 Throw in user-configurable endianness and you have a real mess.
3959
3960 The way this works is:
3961 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3962 double-precision value will be split across two logical registers.
3963 The lower-numbered logical register will hold the low-order bits,
3964 regardless of the processor's endianness.
3965 - If we are on a 64-bit processor, and we are looking for a
3966 single-precision value, it will be in the low ordered bits
3967 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3968 save slot in memory.
3969 - If we are in 64-bit mode, everything is straightforward.
3970
3971 Note that this code only deals with "live" registers at the top of the
3972 stack. We will attempt to deal with saved registers later, when
3973 the raw/cooked register interface is in place. (We need a general
3974 interface that can deal with dynamic saved register sizes -- fp
3975 regs could be 32 bits wide in one frame and 64 on the frame above
3976 and below). */
3977
3978 static struct type *
3979 mips_float_register_type (void)
3980 {
3981 return builtin_type_ieee_single;
3982 }
3983
3984 static struct type *
3985 mips_double_register_type (void)
3986 {
3987 return builtin_type_ieee_double;
3988 }
3989
3990 /* Copy a 32-bit single-precision value from the current frame
3991 into rare_buffer. */
3992
3993 static void
3994 mips_read_fp_register_single (struct frame_info *frame, int regno,
3995 gdb_byte *rare_buffer)
3996 {
3997 int raw_size = register_size (current_gdbarch, regno);
3998 gdb_byte *raw_buffer = alloca (raw_size);
3999
4000 if (!frame_register_read (frame, regno, raw_buffer))
4001 error (_("can't read register %d (%s)"),
4002 regno, gdbarch_register_name (current_gdbarch, regno));
4003 if (raw_size == 8)
4004 {
4005 /* We have a 64-bit value for this register. Find the low-order
4006 32 bits. */
4007 int offset;
4008
4009 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4010 offset = 4;
4011 else
4012 offset = 0;
4013
4014 memcpy (rare_buffer, raw_buffer + offset, 4);
4015 }
4016 else
4017 {
4018 memcpy (rare_buffer, raw_buffer, 4);
4019 }
4020 }
4021
4022 /* Copy a 64-bit double-precision value from the current frame into
4023 rare_buffer. This may include getting half of it from the next
4024 register. */
4025
4026 static void
4027 mips_read_fp_register_double (struct frame_info *frame, int regno,
4028 gdb_byte *rare_buffer)
4029 {
4030 int raw_size = register_size (current_gdbarch, regno);
4031
4032 if (raw_size == 8 && !mips2_fp_compat (frame))
4033 {
4034 /* We have a 64-bit value for this register, and we should use
4035 all 64 bits. */
4036 if (!frame_register_read (frame, regno, rare_buffer))
4037 error (_("can't read register %d (%s)"),
4038 regno, gdbarch_register_name (current_gdbarch, regno));
4039 }
4040 else
4041 {
4042 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
4043 internal_error (__FILE__, __LINE__,
4044 _("mips_read_fp_register_double: bad access to "
4045 "odd-numbered FP register"));
4046
4047 /* mips_read_fp_register_single will find the correct 32 bits from
4048 each register. */
4049 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4050 {
4051 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4052 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
4053 }
4054 else
4055 {
4056 mips_read_fp_register_single (frame, regno, rare_buffer);
4057 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
4058 }
4059 }
4060 }
4061
4062 static void
4063 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4064 int regnum)
4065 { /* do values for FP (float) regs */
4066 gdb_byte *raw_buffer;
4067 double doub, flt1; /* doubles extracted from raw hex data */
4068 int inv1, inv2;
4069
4070 raw_buffer = alloca (2 * register_size (current_gdbarch,
4071 mips_regnum (current_gdbarch)->fp0));
4072
4073 fprintf_filtered (file, "%s:",
4074 gdbarch_register_name (current_gdbarch, regnum));
4075 fprintf_filtered (file, "%*s",
4076 4 - (int) strlen (gdbarch_register_name
4077 (current_gdbarch, regnum)),
4078 "");
4079
4080 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat (frame))
4081 {
4082 /* 4-byte registers: Print hex and floating. Also print even
4083 numbered registers as doubles. */
4084 mips_read_fp_register_single (frame, regnum, raw_buffer);
4085 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4086
4087 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
4088 file);
4089
4090 fprintf_filtered (file, " flt: ");
4091 if (inv1)
4092 fprintf_filtered (file, " <invalid float> ");
4093 else
4094 fprintf_filtered (file, "%-17.9g", flt1);
4095
4096 if (regnum % 2 == 0)
4097 {
4098 mips_read_fp_register_double (frame, regnum, raw_buffer);
4099 doub = unpack_double (mips_double_register_type (), raw_buffer,
4100 &inv2);
4101
4102 fprintf_filtered (file, " dbl: ");
4103 if (inv2)
4104 fprintf_filtered (file, "<invalid double>");
4105 else
4106 fprintf_filtered (file, "%-24.17g", doub);
4107 }
4108 }
4109 else
4110 {
4111 /* Eight byte registers: print each one as hex, float and double. */
4112 mips_read_fp_register_single (frame, regnum, raw_buffer);
4113 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4114
4115 mips_read_fp_register_double (frame, regnum, raw_buffer);
4116 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4117
4118
4119 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
4120 file);
4121
4122 fprintf_filtered (file, " flt: ");
4123 if (inv1)
4124 fprintf_filtered (file, "<invalid float>");
4125 else
4126 fprintf_filtered (file, "%-17.9g", flt1);
4127
4128 fprintf_filtered (file, " dbl: ");
4129 if (inv2)
4130 fprintf_filtered (file, "<invalid double>");
4131 else
4132 fprintf_filtered (file, "%-24.17g", doub);
4133 }
4134 }
4135
4136 static void
4137 mips_print_register (struct ui_file *file, struct frame_info *frame,
4138 int regnum)
4139 {
4140 struct gdbarch *gdbarch = get_frame_arch (frame);
4141 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4142 int offset;
4143
4144 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4145 {
4146 mips_print_fp_register (file, frame, regnum);
4147 return;
4148 }
4149
4150 /* Get the data in raw format. */
4151 if (!frame_register_read (frame, regnum, raw_buffer))
4152 {
4153 fprintf_filtered (file, "%s: [Invalid]",
4154 gdbarch_register_name (current_gdbarch, regnum));
4155 return;
4156 }
4157
4158 fputs_filtered (gdbarch_register_name (current_gdbarch, regnum), file);
4159
4160 /* The problem with printing numeric register names (r26, etc.) is that
4161 the user can't use them on input. Probably the best solution is to
4162 fix it so that either the numeric or the funky (a2, etc.) names
4163 are accepted on input. */
4164 if (regnum < MIPS_NUMREGS)
4165 fprintf_filtered (file, "(r%d): ", regnum);
4166 else
4167 fprintf_filtered (file, ": ");
4168
4169 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4170 offset =
4171 register_size (current_gdbarch,
4172 regnum) - register_size (current_gdbarch, regnum);
4173 else
4174 offset = 0;
4175
4176 print_scalar_formatted (raw_buffer + offset,
4177 register_type (gdbarch, regnum), 'x', 0,
4178 file);
4179 }
4180
4181 /* Replacement for generic do_registers_info.
4182 Print regs in pretty columns. */
4183
4184 static int
4185 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4186 int regnum)
4187 {
4188 fprintf_filtered (file, " ");
4189 mips_print_fp_register (file, frame, regnum);
4190 fprintf_filtered (file, "\n");
4191 return regnum + 1;
4192 }
4193
4194
4195 /* Print a row's worth of GP (int) registers, with name labels above */
4196
4197 static int
4198 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4199 int start_regnum)
4200 {
4201 struct gdbarch *gdbarch = get_frame_arch (frame);
4202 /* do values for GP (int) regs */
4203 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4204 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
4205 int col, byte;
4206 int regnum;
4207
4208 /* For GP registers, we print a separate row of names above the vals */
4209 for (col = 0, regnum = start_regnum;
4210 col < ncols && regnum < gdbarch_num_regs (current_gdbarch)
4211 + gdbarch_num_pseudo_regs (current_gdbarch);
4212 regnum++)
4213 {
4214 if (*gdbarch_register_name (current_gdbarch, regnum) == '\0')
4215 continue; /* unused register */
4216 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4217 TYPE_CODE_FLT)
4218 break; /* end the row: reached FP register */
4219 /* Large registers are handled separately. */
4220 if (register_size (current_gdbarch, regnum)
4221 > mips_abi_regsize (current_gdbarch))
4222 {
4223 if (col > 0)
4224 break; /* End the row before this register. */
4225
4226 /* Print this register on a row by itself. */
4227 mips_print_register (file, frame, regnum);
4228 fprintf_filtered (file, "\n");
4229 return regnum + 1;
4230 }
4231 if (col == 0)
4232 fprintf_filtered (file, " ");
4233 fprintf_filtered (file,
4234 mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
4235 gdbarch_register_name (current_gdbarch, regnum));
4236 col++;
4237 }
4238
4239 if (col == 0)
4240 return regnum;
4241
4242 /* print the R0 to R31 names */
4243 if ((start_regnum % gdbarch_num_regs (current_gdbarch)) < MIPS_NUMREGS)
4244 fprintf_filtered (file, "\n R%-4d",
4245 start_regnum % gdbarch_num_regs (current_gdbarch));
4246 else
4247 fprintf_filtered (file, "\n ");
4248
4249 /* now print the values in hex, 4 or 8 to the row */
4250 for (col = 0, regnum = start_regnum;
4251 col < ncols && regnum < gdbarch_num_regs (current_gdbarch)
4252 + gdbarch_num_pseudo_regs (current_gdbarch);
4253 regnum++)
4254 {
4255 if (*gdbarch_register_name (current_gdbarch, regnum) == '\0')
4256 continue; /* unused register */
4257 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4258 TYPE_CODE_FLT)
4259 break; /* end row: reached FP register */
4260 if (register_size (current_gdbarch, regnum)
4261 > mips_abi_regsize (current_gdbarch))
4262 break; /* End row: large register. */
4263
4264 /* OK: get the data in raw format. */
4265 if (!frame_register_read (frame, regnum, raw_buffer))
4266 error (_("can't read register %d (%s)"),
4267 regnum, gdbarch_register_name (current_gdbarch, regnum));
4268 /* pad small registers */
4269 for (byte = 0;
4270 byte < (mips_abi_regsize (current_gdbarch)
4271 - register_size (current_gdbarch, regnum)); byte++)
4272 printf_filtered (" ");
4273 /* Now print the register value in hex, endian order. */
4274 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4275 for (byte =
4276 register_size (current_gdbarch,
4277 regnum) - register_size (current_gdbarch, regnum);
4278 byte < register_size (current_gdbarch, regnum); byte++)
4279 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4280 else
4281 for (byte = register_size (current_gdbarch, regnum) - 1;
4282 byte >= 0; byte--)
4283 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4284 fprintf_filtered (file, " ");
4285 col++;
4286 }
4287 if (col > 0) /* ie. if we actually printed anything... */
4288 fprintf_filtered (file, "\n");
4289
4290 return regnum;
4291 }
4292
4293 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4294
4295 static void
4296 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4297 struct frame_info *frame, int regnum, int all)
4298 {
4299 if (regnum != -1) /* do one specified register */
4300 {
4301 gdb_assert (regnum >= gdbarch_num_regs (current_gdbarch));
4302 if (*(gdbarch_register_name (current_gdbarch, regnum)) == '\0')
4303 error (_("Not a valid register for the current processor type"));
4304
4305 mips_print_register (file, frame, regnum);
4306 fprintf_filtered (file, "\n");
4307 }
4308 else
4309 /* do all (or most) registers */
4310 {
4311 regnum = gdbarch_num_regs (current_gdbarch);
4312 while (regnum < gdbarch_num_regs (current_gdbarch)
4313 + gdbarch_num_pseudo_regs (current_gdbarch))
4314 {
4315 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4316 TYPE_CODE_FLT)
4317 {
4318 if (all) /* true for "INFO ALL-REGISTERS" command */
4319 regnum = print_fp_register_row (file, frame, regnum);
4320 else
4321 regnum += MIPS_NUMREGS; /* skip floating point regs */
4322 }
4323 else
4324 regnum = print_gp_register_row (file, frame, regnum);
4325 }
4326 }
4327 }
4328
4329 /* Is this a branch with a delay slot? */
4330
4331 static int
4332 is_delayed (unsigned long insn)
4333 {
4334 int i;
4335 for (i = 0; i < NUMOPCODES; ++i)
4336 if (mips_opcodes[i].pinfo != INSN_MACRO
4337 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4338 break;
4339 return (i < NUMOPCODES
4340 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4341 | INSN_COND_BRANCH_DELAY
4342 | INSN_COND_BRANCH_LIKELY)));
4343 }
4344
4345 int
4346 mips_single_step_through_delay (struct gdbarch *gdbarch,
4347 struct frame_info *frame)
4348 {
4349 CORE_ADDR pc = get_frame_pc (frame);
4350 gdb_byte buf[MIPS_INSN32_SIZE];
4351
4352 /* There is no branch delay slot on MIPS16. */
4353 if (mips_pc_is_mips16 (pc))
4354 return 0;
4355
4356 if (!breakpoint_here_p (pc + 4))
4357 return 0;
4358
4359 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4360 /* If error reading memory, guess that it is not a delayed
4361 branch. */
4362 return 0;
4363 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
4364 }
4365
4366 /* To skip prologues, I use this predicate. Returns either PC itself
4367 if the code at PC does not look like a function prologue; otherwise
4368 returns an address that (if we're lucky) follows the prologue. If
4369 LENIENT, then we must skip everything which is involved in setting
4370 up the frame (it's OK to skip more, just so long as we don't skip
4371 anything which might clobber the registers which are being saved.
4372 We must skip more in the case where part of the prologue is in the
4373 delay slot of a non-prologue instruction). */
4374
4375 static CORE_ADDR
4376 mips_skip_prologue (CORE_ADDR pc)
4377 {
4378 CORE_ADDR limit_pc;
4379 CORE_ADDR func_addr;
4380
4381 /* See if we can determine the end of the prologue via the symbol table.
4382 If so, then return either PC, or the PC after the prologue, whichever
4383 is greater. */
4384 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4385 {
4386 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4387 if (post_prologue_pc != 0)
4388 return max (pc, post_prologue_pc);
4389 }
4390
4391 /* Can't determine prologue from the symbol table, need to examine
4392 instructions. */
4393
4394 /* Find an upper limit on the function prologue using the debug
4395 information. If the debug information could not be used to provide
4396 that bound, then use an arbitrary large number as the upper bound. */
4397 limit_pc = skip_prologue_using_sal (pc);
4398 if (limit_pc == 0)
4399 limit_pc = pc + 100; /* Magic. */
4400
4401 if (mips_pc_is_mips16 (pc))
4402 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
4403 else
4404 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
4405 }
4406
4407 /* Check whether the PC is in a function epilogue (32-bit version).
4408 This is a helper function for mips_in_function_epilogue_p. */
4409 static int
4410 mips32_in_function_epilogue_p (CORE_ADDR pc)
4411 {
4412 CORE_ADDR func_addr = 0, func_end = 0;
4413
4414 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4415 {
4416 /* The MIPS epilogue is max. 12 bytes long. */
4417 CORE_ADDR addr = func_end - 12;
4418
4419 if (addr < func_addr + 4)
4420 addr = func_addr + 4;
4421 if (pc < addr)
4422 return 0;
4423
4424 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
4425 {
4426 unsigned long high_word;
4427 unsigned long inst;
4428
4429 inst = mips_fetch_instruction (pc);
4430 high_word = (inst >> 16) & 0xffff;
4431
4432 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
4433 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
4434 && inst != 0x03e00008 /* jr $ra */
4435 && inst != 0x00000000) /* nop */
4436 return 0;
4437 }
4438
4439 return 1;
4440 }
4441
4442 return 0;
4443 }
4444
4445 /* Check whether the PC is in a function epilogue (16-bit version).
4446 This is a helper function for mips_in_function_epilogue_p. */
4447 static int
4448 mips16_in_function_epilogue_p (CORE_ADDR pc)
4449 {
4450 CORE_ADDR func_addr = 0, func_end = 0;
4451
4452 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4453 {
4454 /* The MIPS epilogue is max. 12 bytes long. */
4455 CORE_ADDR addr = func_end - 12;
4456
4457 if (addr < func_addr + 4)
4458 addr = func_addr + 4;
4459 if (pc < addr)
4460 return 0;
4461
4462 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
4463 {
4464 unsigned short inst;
4465
4466 inst = mips_fetch_instruction (pc);
4467
4468 if ((inst & 0xf800) == 0xf000) /* extend */
4469 continue;
4470
4471 if (inst != 0x6300 /* addiu $sp,offset */
4472 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
4473 && inst != 0xe820 /* jr $ra */
4474 && inst != 0xe8a0 /* jrc $ra */
4475 && inst != 0x6500) /* nop */
4476 return 0;
4477 }
4478
4479 return 1;
4480 }
4481
4482 return 0;
4483 }
4484
4485 /* The epilogue is defined here as the area at the end of a function,
4486 after an instruction which destroys the function's stack frame. */
4487 static int
4488 mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4489 {
4490 if (mips_pc_is_mips16 (pc))
4491 return mips16_in_function_epilogue_p (pc);
4492 else
4493 return mips32_in_function_epilogue_p (pc);
4494 }
4495
4496 /* Root of all "set mips "/"show mips " commands. This will eventually be
4497 used for all MIPS-specific commands. */
4498
4499 static void
4500 show_mips_command (char *args, int from_tty)
4501 {
4502 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4503 }
4504
4505 static void
4506 set_mips_command (char *args, int from_tty)
4507 {
4508 printf_unfiltered
4509 ("\"set mips\" must be followed by an appropriate subcommand.\n");
4510 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4511 }
4512
4513 /* Commands to show/set the MIPS FPU type. */
4514
4515 static void
4516 show_mipsfpu_command (char *args, int from_tty)
4517 {
4518 char *fpu;
4519 switch (MIPS_FPU_TYPE)
4520 {
4521 case MIPS_FPU_SINGLE:
4522 fpu = "single-precision";
4523 break;
4524 case MIPS_FPU_DOUBLE:
4525 fpu = "double-precision";
4526 break;
4527 case MIPS_FPU_NONE:
4528 fpu = "absent (none)";
4529 break;
4530 default:
4531 internal_error (__FILE__, __LINE__, _("bad switch"));
4532 }
4533 if (mips_fpu_type_auto)
4534 printf_unfiltered
4535 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4536 fpu);
4537 else
4538 printf_unfiltered
4539 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
4540 }
4541
4542
4543 static void
4544 set_mipsfpu_command (char *args, int from_tty)
4545 {
4546 printf_unfiltered
4547 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4548 show_mipsfpu_command (args, from_tty);
4549 }
4550
4551 static void
4552 set_mipsfpu_single_command (char *args, int from_tty)
4553 {
4554 struct gdbarch_info info;
4555 gdbarch_info_init (&info);
4556 mips_fpu_type = MIPS_FPU_SINGLE;
4557 mips_fpu_type_auto = 0;
4558 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4559 instead of relying on globals. Doing that would let generic code
4560 handle the search for this specific architecture. */
4561 if (!gdbarch_update_p (info))
4562 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4563 }
4564
4565 static void
4566 set_mipsfpu_double_command (char *args, int from_tty)
4567 {
4568 struct gdbarch_info info;
4569 gdbarch_info_init (&info);
4570 mips_fpu_type = MIPS_FPU_DOUBLE;
4571 mips_fpu_type_auto = 0;
4572 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4573 instead of relying on globals. Doing that would let generic code
4574 handle the search for this specific architecture. */
4575 if (!gdbarch_update_p (info))
4576 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4577 }
4578
4579 static void
4580 set_mipsfpu_none_command (char *args, int from_tty)
4581 {
4582 struct gdbarch_info info;
4583 gdbarch_info_init (&info);
4584 mips_fpu_type = MIPS_FPU_NONE;
4585 mips_fpu_type_auto = 0;
4586 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4587 instead of relying on globals. Doing that would let generic code
4588 handle the search for this specific architecture. */
4589 if (!gdbarch_update_p (info))
4590 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4591 }
4592
4593 static void
4594 set_mipsfpu_auto_command (char *args, int from_tty)
4595 {
4596 mips_fpu_type_auto = 1;
4597 }
4598
4599 /* Attempt to identify the particular processor model by reading the
4600 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4601 the relevant processor still exists (it dates back to '94) and
4602 secondly this is not the way to do this. The processor type should
4603 be set by forcing an architecture change. */
4604
4605 void
4606 deprecated_mips_set_processor_regs_hack (void)
4607 {
4608 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4609 ULONGEST prid;
4610
4611 regcache_cooked_read_unsigned (get_current_regcache (),
4612 MIPS_PRID_REGNUM, &prid);
4613 if ((prid & ~0xf) == 0x700)
4614 tdep->mips_processor_reg_names = mips_r3041_reg_names;
4615 }
4616
4617 /* Just like reinit_frame_cache, but with the right arguments to be
4618 callable as an sfunc. */
4619
4620 static void
4621 reinit_frame_cache_sfunc (char *args, int from_tty,
4622 struct cmd_list_element *c)
4623 {
4624 reinit_frame_cache ();
4625 }
4626
4627 static int
4628 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
4629 {
4630 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4631
4632 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4633 disassembler needs to be able to locally determine the ISA, and
4634 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4635 work. */
4636 if (mips_pc_is_mips16 (memaddr))
4637 info->mach = bfd_mach_mips16;
4638
4639 /* Round down the instruction address to the appropriate boundary. */
4640 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
4641
4642 /* Set the disassembler options. */
4643 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
4644 {
4645 /* Set up the disassembler info, so that we get the right
4646 register names from libopcodes. */
4647 if (tdep->mips_abi == MIPS_ABI_N32)
4648 info->disassembler_options = "gpr-names=n32";
4649 else
4650 info->disassembler_options = "gpr-names=64";
4651 info->flavour = bfd_target_elf_flavour;
4652 }
4653 else
4654 /* This string is not recognized explicitly by the disassembler,
4655 but it tells the disassembler to not try to guess the ABI from
4656 the bfd elf headers, such that, if the user overrides the ABI
4657 of a program linked as NewABI, the disassembly will follow the
4658 register naming conventions specified by the user. */
4659 info->disassembler_options = "gpr-names=32";
4660
4661 /* Call the appropriate disassembler based on the target endian-ness. */
4662 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4663 return print_insn_big_mips (memaddr, info);
4664 else
4665 return print_insn_little_mips (memaddr, info);
4666 }
4667
4668 /* This function implements gdbarch_breakpoint_from_pc. It uses the program
4669 counter value to determine whether a 16- or 32-bit breakpoint should be used.
4670 It returns a pointer to a string of bytes that encode a breakpoint
4671 instruction, stores the length of the string to *lenptr, and adjusts pc (if
4672 necessary) to point to the actual memory location where the breakpoint
4673 should be inserted. */
4674
4675 static const gdb_byte *
4676 mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
4677 {
4678 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4679 {
4680 if (mips_pc_is_mips16 (*pcptr))
4681 {
4682 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
4683 *pcptr = unmake_mips16_addr (*pcptr);
4684 *lenptr = sizeof (mips16_big_breakpoint);
4685 return mips16_big_breakpoint;
4686 }
4687 else
4688 {
4689 /* The IDT board uses an unusual breakpoint value, and
4690 sometimes gets confused when it sees the usual MIPS
4691 breakpoint instruction. */
4692 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
4693 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4694 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
4695
4696 *lenptr = sizeof (big_breakpoint);
4697
4698 if (strcmp (target_shortname, "mips") == 0)
4699 return idt_big_breakpoint;
4700 else if (strcmp (target_shortname, "ddb") == 0
4701 || strcmp (target_shortname, "pmon") == 0
4702 || strcmp (target_shortname, "lsi") == 0)
4703 return pmon_big_breakpoint;
4704 else
4705 return big_breakpoint;
4706 }
4707 }
4708 else
4709 {
4710 if (mips_pc_is_mips16 (*pcptr))
4711 {
4712 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
4713 *pcptr = unmake_mips16_addr (*pcptr);
4714 *lenptr = sizeof (mips16_little_breakpoint);
4715 return mips16_little_breakpoint;
4716 }
4717 else
4718 {
4719 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4720 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4721 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
4722
4723 *lenptr = sizeof (little_breakpoint);
4724
4725 if (strcmp (target_shortname, "mips") == 0)
4726 return idt_little_breakpoint;
4727 else if (strcmp (target_shortname, "ddb") == 0
4728 || strcmp (target_shortname, "pmon") == 0
4729 || strcmp (target_shortname, "lsi") == 0)
4730 return pmon_little_breakpoint;
4731 else
4732 return little_breakpoint;
4733 }
4734 }
4735 }
4736
4737 /* If PC is in a mips16 call or return stub, return the address of the target
4738 PC, which is either the callee or the caller. There are several
4739 cases which must be handled:
4740
4741 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4742 target PC is in $31 ($ra).
4743 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4744 and the target PC is in $2.
4745 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4746 before the jal instruction, this is effectively a call stub
4747 and the the target PC is in $2. Otherwise this is effectively
4748 a return stub and the target PC is in $18.
4749
4750 See the source code for the stubs in gcc/config/mips/mips16.S for
4751 gory details. */
4752
4753 static CORE_ADDR
4754 mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
4755 {
4756 char *name;
4757 CORE_ADDR start_addr;
4758
4759 /* Find the starting address and name of the function containing the PC. */
4760 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4761 return 0;
4762
4763 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4764 target PC is in $31 ($ra). */
4765 if (strcmp (name, "__mips16_ret_sf") == 0
4766 || strcmp (name, "__mips16_ret_df") == 0)
4767 return get_frame_register_signed (frame, MIPS_RA_REGNUM);
4768
4769 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4770 {
4771 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4772 and the target PC is in $2. */
4773 if (name[19] >= '0' && name[19] <= '9')
4774 return get_frame_register_signed (frame, 2);
4775
4776 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4777 before the jal instruction, this is effectively a call stub
4778 and the the target PC is in $2. Otherwise this is effectively
4779 a return stub and the target PC is in $18. */
4780 else if (name[19] == 's' || name[19] == 'd')
4781 {
4782 if (pc == start_addr)
4783 {
4784 /* Check if the target of the stub is a compiler-generated
4785 stub. Such a stub for a function bar might have a name
4786 like __fn_stub_bar, and might look like this:
4787 mfc1 $4,$f13
4788 mfc1 $5,$f12
4789 mfc1 $6,$f15
4790 mfc1 $7,$f14
4791 la $1,bar (becomes a lui/addiu pair)
4792 jr $1
4793 So scan down to the lui/addi and extract the target
4794 address from those two instructions. */
4795
4796 CORE_ADDR target_pc = get_frame_register_signed (frame, 2);
4797 ULONGEST inst;
4798 int i;
4799
4800 /* See if the name of the target function is __fn_stub_*. */
4801 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4802 0)
4803 return target_pc;
4804 if (strncmp (name, "__fn_stub_", 10) != 0
4805 && strcmp (name, "etext") != 0
4806 && strcmp (name, "_etext") != 0)
4807 return target_pc;
4808
4809 /* Scan through this _fn_stub_ code for the lui/addiu pair.
4810 The limit on the search is arbitrarily set to 20
4811 instructions. FIXME. */
4812 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
4813 {
4814 inst = mips_fetch_instruction (target_pc);
4815 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4816 pc = (inst << 16) & 0xffff0000; /* high word */
4817 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4818 return pc | (inst & 0xffff); /* low word */
4819 }
4820
4821 /* Couldn't find the lui/addui pair, so return stub address. */
4822 return target_pc;
4823 }
4824 else
4825 /* This is the 'return' part of a call stub. The return
4826 address is in $r18. */
4827 return get_frame_register_signed (frame, 18);
4828 }
4829 }
4830 return 0; /* not a stub */
4831 }
4832
4833 /* Convert a dbx stab register number (from `r' declaration) to a GDB
4834 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
4835
4836 static int
4837 mips_stab_reg_to_regnum (int num)
4838 {
4839 int regnum;
4840 if (num >= 0 && num < 32)
4841 regnum = num;
4842 else if (num >= 38 && num < 70)
4843 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
4844 else if (num == 70)
4845 regnum = mips_regnum (current_gdbarch)->hi;
4846 else if (num == 71)
4847 regnum = mips_regnum (current_gdbarch)->lo;
4848 else
4849 /* This will hopefully (eventually) provoke a warning. Should
4850 we be calling complaint() here? */
4851 return gdbarch_num_regs (current_gdbarch)
4852 + gdbarch_num_pseudo_regs (current_gdbarch);
4853 return gdbarch_num_regs (current_gdbarch) + regnum;
4854 }
4855
4856
4857 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
4858 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
4859
4860 static int
4861 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
4862 {
4863 int regnum;
4864 if (num >= 0 && num < 32)
4865 regnum = num;
4866 else if (num >= 32 && num < 64)
4867 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
4868 else if (num == 64)
4869 regnum = mips_regnum (current_gdbarch)->hi;
4870 else if (num == 65)
4871 regnum = mips_regnum (current_gdbarch)->lo;
4872 else
4873 /* This will hopefully (eventually) provoke a warning. Should we
4874 be calling complaint() here? */
4875 return gdbarch_num_regs (current_gdbarch)
4876 + gdbarch_num_pseudo_regs (current_gdbarch);
4877 return gdbarch_num_regs (current_gdbarch) + regnum;
4878 }
4879
4880 static int
4881 mips_register_sim_regno (int regnum)
4882 {
4883 /* Only makes sense to supply raw registers. */
4884 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (current_gdbarch));
4885 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4886 decide if it is valid. Should instead define a standard sim/gdb
4887 register numbering scheme. */
4888 if (gdbarch_register_name (current_gdbarch,
4889 gdbarch_num_regs
4890 (current_gdbarch) + regnum) != NULL
4891 && gdbarch_register_name (current_gdbarch,
4892 gdbarch_num_regs
4893 (current_gdbarch) + regnum)[0] != '\0')
4894 return regnum;
4895 else
4896 return LEGACY_SIM_REGNO_IGNORE;
4897 }
4898
4899
4900 /* Convert an integer into an address. Extracting the value signed
4901 guarantees a correctly sign extended address. */
4902
4903 static CORE_ADDR
4904 mips_integer_to_address (struct gdbarch *gdbarch,
4905 struct type *type, const gdb_byte *buf)
4906 {
4907 return (CORE_ADDR) extract_signed_integer (buf, TYPE_LENGTH (type));
4908 }
4909
4910 static void
4911 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4912 {
4913 enum mips_abi *abip = (enum mips_abi *) obj;
4914 const char *name = bfd_get_section_name (abfd, sect);
4915
4916 if (*abip != MIPS_ABI_UNKNOWN)
4917 return;
4918
4919 if (strncmp (name, ".mdebug.", 8) != 0)
4920 return;
4921
4922 if (strcmp (name, ".mdebug.abi32") == 0)
4923 *abip = MIPS_ABI_O32;
4924 else if (strcmp (name, ".mdebug.abiN32") == 0)
4925 *abip = MIPS_ABI_N32;
4926 else if (strcmp (name, ".mdebug.abi64") == 0)
4927 *abip = MIPS_ABI_N64;
4928 else if (strcmp (name, ".mdebug.abiO64") == 0)
4929 *abip = MIPS_ABI_O64;
4930 else if (strcmp (name, ".mdebug.eabi32") == 0)
4931 *abip = MIPS_ABI_EABI32;
4932 else if (strcmp (name, ".mdebug.eabi64") == 0)
4933 *abip = MIPS_ABI_EABI64;
4934 else
4935 warning (_("unsupported ABI %s."), name + 8);
4936 }
4937
4938 static void
4939 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
4940 {
4941 int *lbp = (int *) obj;
4942 const char *name = bfd_get_section_name (abfd, sect);
4943
4944 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
4945 *lbp = 32;
4946 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
4947 *lbp = 64;
4948 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
4949 warning (_("unrecognized .gcc_compiled_longXX"));
4950 }
4951
4952 static enum mips_abi
4953 global_mips_abi (void)
4954 {
4955 int i;
4956
4957 for (i = 0; mips_abi_strings[i] != NULL; i++)
4958 if (mips_abi_strings[i] == mips_abi_string)
4959 return (enum mips_abi) i;
4960
4961 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
4962 }
4963
4964 static void
4965 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
4966 {
4967 /* If the size matches the set of 32-bit or 64-bit integer registers,
4968 assume that's what we've got. */
4969 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
4970 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
4971
4972 /* If the size matches the full set of registers GDB traditionally
4973 knows about, including floating point, for either 32-bit or
4974 64-bit, assume that's what we've got. */
4975 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
4976 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
4977
4978 /* Otherwise we don't have a useful guess. */
4979 }
4980
4981 static struct value *
4982 value_of_mips_user_reg (struct frame_info *frame, const void *baton)
4983 {
4984 const int *reg_p = baton;
4985 return value_of_register (*reg_p, frame);
4986 }
4987
4988 static struct gdbarch *
4989 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4990 {
4991 struct gdbarch *gdbarch;
4992 struct gdbarch_tdep *tdep;
4993 int elf_flags;
4994 enum mips_abi mips_abi, found_abi, wanted_abi;
4995 int i, num_regs;
4996 enum mips_fpu_type fpu_type;
4997 struct tdesc_arch_data *tdesc_data = NULL;
4998 int elf_fpu_type = 0;
4999
5000 /* Check any target description for validity. */
5001 if (tdesc_has_registers (info.target_desc))
5002 {
5003 static const char *const mips_gprs[] = {
5004 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
5005 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5006 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
5007 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
5008 };
5009 static const char *const mips_fprs[] = {
5010 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
5011 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
5012 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
5013 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
5014 };
5015
5016 const struct tdesc_feature *feature;
5017 int valid_p;
5018
5019 feature = tdesc_find_feature (info.target_desc,
5020 "org.gnu.gdb.mips.cpu");
5021 if (feature == NULL)
5022 return NULL;
5023
5024 tdesc_data = tdesc_data_alloc ();
5025
5026 valid_p = 1;
5027 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
5028 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
5029 mips_gprs[i]);
5030
5031
5032 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5033 MIPS_EMBED_LO_REGNUM, "lo");
5034 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5035 MIPS_EMBED_HI_REGNUM, "hi");
5036 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5037 MIPS_EMBED_PC_REGNUM, "pc");
5038
5039 if (!valid_p)
5040 {
5041 tdesc_data_cleanup (tdesc_data);
5042 return NULL;
5043 }
5044
5045 feature = tdesc_find_feature (info.target_desc,
5046 "org.gnu.gdb.mips.cp0");
5047 if (feature == NULL)
5048 {
5049 tdesc_data_cleanup (tdesc_data);
5050 return NULL;
5051 }
5052
5053 valid_p = 1;
5054 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5055 MIPS_EMBED_BADVADDR_REGNUM,
5056 "badvaddr");
5057 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5058 MIPS_PS_REGNUM, "status");
5059 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5060 MIPS_EMBED_CAUSE_REGNUM, "cause");
5061
5062 if (!valid_p)
5063 {
5064 tdesc_data_cleanup (tdesc_data);
5065 return NULL;
5066 }
5067
5068 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
5069 backend is not prepared for that, though. */
5070 feature = tdesc_find_feature (info.target_desc,
5071 "org.gnu.gdb.mips.fpu");
5072 if (feature == NULL)
5073 {
5074 tdesc_data_cleanup (tdesc_data);
5075 return NULL;
5076 }
5077
5078 valid_p = 1;
5079 for (i = 0; i < 32; i++)
5080 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5081 i + MIPS_EMBED_FP0_REGNUM,
5082 mips_fprs[i]);
5083
5084 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5085 MIPS_EMBED_FP0_REGNUM + 32, "fcsr");
5086 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5087 MIPS_EMBED_FP0_REGNUM + 33, "fir");
5088
5089 if (!valid_p)
5090 {
5091 tdesc_data_cleanup (tdesc_data);
5092 return NULL;
5093 }
5094
5095 /* It would be nice to detect an attempt to use a 64-bit ABI
5096 when only 32-bit registers are provided. */
5097 }
5098
5099 /* First of all, extract the elf_flags, if available. */
5100 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5101 elf_flags = elf_elfheader (info.abfd)->e_flags;
5102 else if (arches != NULL)
5103 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
5104 else
5105 elf_flags = 0;
5106 if (gdbarch_debug)
5107 fprintf_unfiltered (gdb_stdlog,
5108 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
5109
5110 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5111 switch ((elf_flags & EF_MIPS_ABI))
5112 {
5113 case E_MIPS_ABI_O32:
5114 found_abi = MIPS_ABI_O32;
5115 break;
5116 case E_MIPS_ABI_O64:
5117 found_abi = MIPS_ABI_O64;
5118 break;
5119 case E_MIPS_ABI_EABI32:
5120 found_abi = MIPS_ABI_EABI32;
5121 break;
5122 case E_MIPS_ABI_EABI64:
5123 found_abi = MIPS_ABI_EABI64;
5124 break;
5125 default:
5126 if ((elf_flags & EF_MIPS_ABI2))
5127 found_abi = MIPS_ABI_N32;
5128 else
5129 found_abi = MIPS_ABI_UNKNOWN;
5130 break;
5131 }
5132
5133 /* GCC creates a pseudo-section whose name describes the ABI. */
5134 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5135 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
5136
5137 /* If we have no useful BFD information, use the ABI from the last
5138 MIPS architecture (if there is one). */
5139 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
5140 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5141
5142 /* Try the architecture for any hint of the correct ABI. */
5143 if (found_abi == MIPS_ABI_UNKNOWN
5144 && info.bfd_arch_info != NULL
5145 && info.bfd_arch_info->arch == bfd_arch_mips)
5146 {
5147 switch (info.bfd_arch_info->mach)
5148 {
5149 case bfd_mach_mips3900:
5150 found_abi = MIPS_ABI_EABI32;
5151 break;
5152 case bfd_mach_mips4100:
5153 case bfd_mach_mips5000:
5154 found_abi = MIPS_ABI_EABI64;
5155 break;
5156 case bfd_mach_mips8000:
5157 case bfd_mach_mips10000:
5158 /* On Irix, ELF64 executables use the N64 ABI. The
5159 pseudo-sections which describe the ABI aren't present
5160 on IRIX. (Even for executables created by gcc.) */
5161 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5162 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5163 found_abi = MIPS_ABI_N64;
5164 else
5165 found_abi = MIPS_ABI_N32;
5166 break;
5167 }
5168 }
5169
5170 /* Default 64-bit objects to N64 instead of O32. */
5171 if (found_abi == MIPS_ABI_UNKNOWN
5172 && info.abfd != NULL
5173 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5174 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5175 found_abi = MIPS_ABI_N64;
5176
5177 if (gdbarch_debug)
5178 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
5179 found_abi);
5180
5181 /* What has the user specified from the command line? */
5182 wanted_abi = global_mips_abi ();
5183 if (gdbarch_debug)
5184 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
5185 wanted_abi);
5186
5187 /* Now that we have found what the ABI for this binary would be,
5188 check whether the user is overriding it. */
5189 if (wanted_abi != MIPS_ABI_UNKNOWN)
5190 mips_abi = wanted_abi;
5191 else if (found_abi != MIPS_ABI_UNKNOWN)
5192 mips_abi = found_abi;
5193 else
5194 mips_abi = MIPS_ABI_O32;
5195 if (gdbarch_debug)
5196 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
5197 mips_abi);
5198
5199 /* Also used when doing an architecture lookup. */
5200 if (gdbarch_debug)
5201 fprintf_unfiltered (gdb_stdlog,
5202 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
5203 mips64_transfers_32bit_regs_p);
5204
5205 /* Determine the MIPS FPU type. */
5206 #ifdef HAVE_ELF
5207 if (info.abfd
5208 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5209 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
5210 Tag_GNU_MIPS_ABI_FP);
5211 #endif /* HAVE_ELF */
5212
5213 if (!mips_fpu_type_auto)
5214 fpu_type = mips_fpu_type;
5215 else if (elf_fpu_type != 0)
5216 {
5217 switch (elf_fpu_type)
5218 {
5219 case 1:
5220 fpu_type = MIPS_FPU_DOUBLE;
5221 break;
5222 case 2:
5223 fpu_type = MIPS_FPU_SINGLE;
5224 break;
5225 case 3:
5226 default:
5227 /* Soft float or unknown. */
5228 fpu_type = MIPS_FPU_NONE;
5229 break;
5230 }
5231 }
5232 else if (info.bfd_arch_info != NULL
5233 && info.bfd_arch_info->arch == bfd_arch_mips)
5234 switch (info.bfd_arch_info->mach)
5235 {
5236 case bfd_mach_mips3900:
5237 case bfd_mach_mips4100:
5238 case bfd_mach_mips4111:
5239 case bfd_mach_mips4120:
5240 fpu_type = MIPS_FPU_NONE;
5241 break;
5242 case bfd_mach_mips4650:
5243 fpu_type = MIPS_FPU_SINGLE;
5244 break;
5245 default:
5246 fpu_type = MIPS_FPU_DOUBLE;
5247 break;
5248 }
5249 else if (arches != NULL)
5250 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
5251 else
5252 fpu_type = MIPS_FPU_DOUBLE;
5253 if (gdbarch_debug)
5254 fprintf_unfiltered (gdb_stdlog,
5255 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
5256
5257 /* Check for blatant incompatibilities. */
5258
5259 /* If we have only 32-bit registers, then we can't debug a 64-bit
5260 ABI. */
5261 if (info.target_desc
5262 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
5263 && mips_abi != MIPS_ABI_EABI32
5264 && mips_abi != MIPS_ABI_O32)
5265 {
5266 if (tdesc_data != NULL)
5267 tdesc_data_cleanup (tdesc_data);
5268 return NULL;
5269 }
5270
5271 /* try to find a pre-existing architecture */
5272 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5273 arches != NULL;
5274 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5275 {
5276 /* MIPS needs to be pedantic about which ABI the object is
5277 using. */
5278 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5279 continue;
5280 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5281 continue;
5282 /* Need to be pedantic about which register virtual size is
5283 used. */
5284 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
5285 != mips64_transfers_32bit_regs_p)
5286 continue;
5287 /* Be pedantic about which FPU is selected. */
5288 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
5289 continue;
5290
5291 if (tdesc_data != NULL)
5292 tdesc_data_cleanup (tdesc_data);
5293 return arches->gdbarch;
5294 }
5295
5296 /* Need a new architecture. Fill in a target specific vector. */
5297 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5298 gdbarch = gdbarch_alloc (&info, tdep);
5299 tdep->elf_flags = elf_flags;
5300 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
5301 tdep->found_abi = found_abi;
5302 tdep->mips_abi = mips_abi;
5303 tdep->mips_fpu_type = fpu_type;
5304 tdep->register_size_valid_p = 0;
5305 tdep->register_size = 0;
5306
5307 if (info.target_desc)
5308 {
5309 /* Some useful properties can be inferred from the target. */
5310 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
5311 {
5312 tdep->register_size_valid_p = 1;
5313 tdep->register_size = 4;
5314 }
5315 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
5316 {
5317 tdep->register_size_valid_p = 1;
5318 tdep->register_size = 8;
5319 }
5320 }
5321
5322 /* Initially set everything according to the default ABI/ISA. */
5323 set_gdbarch_short_bit (gdbarch, 16);
5324 set_gdbarch_int_bit (gdbarch, 32);
5325 set_gdbarch_float_bit (gdbarch, 32);
5326 set_gdbarch_double_bit (gdbarch, 64);
5327 set_gdbarch_long_double_bit (gdbarch, 64);
5328 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5329 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5330 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
5331
5332 set_gdbarch_elf_make_msymbol_special (gdbarch,
5333 mips_elf_make_msymbol_special);
5334
5335 /* Fill in the OS dependant register numbers and names. */
5336 {
5337 const char **reg_names;
5338 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
5339 struct mips_regnum);
5340 if (tdesc_has_registers (info.target_desc))
5341 {
5342 regnum->lo = MIPS_EMBED_LO_REGNUM;
5343 regnum->hi = MIPS_EMBED_HI_REGNUM;
5344 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5345 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5346 regnum->pc = MIPS_EMBED_PC_REGNUM;
5347 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5348 regnum->fp_control_status = 70;
5349 regnum->fp_implementation_revision = 71;
5350 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
5351 reg_names = NULL;
5352 }
5353 else if (info.osabi == GDB_OSABI_IRIX)
5354 {
5355 regnum->fp0 = 32;
5356 regnum->pc = 64;
5357 regnum->cause = 65;
5358 regnum->badvaddr = 66;
5359 regnum->hi = 67;
5360 regnum->lo = 68;
5361 regnum->fp_control_status = 69;
5362 regnum->fp_implementation_revision = 70;
5363 num_regs = 71;
5364 reg_names = mips_irix_reg_names;
5365 }
5366 else
5367 {
5368 regnum->lo = MIPS_EMBED_LO_REGNUM;
5369 regnum->hi = MIPS_EMBED_HI_REGNUM;
5370 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5371 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5372 regnum->pc = MIPS_EMBED_PC_REGNUM;
5373 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5374 regnum->fp_control_status = 70;
5375 regnum->fp_implementation_revision = 71;
5376 num_regs = 90;
5377 if (info.bfd_arch_info != NULL
5378 && info.bfd_arch_info->mach == bfd_mach_mips3900)
5379 reg_names = mips_tx39_reg_names;
5380 else
5381 reg_names = mips_generic_reg_names;
5382 }
5383 /* FIXME: cagney/2003-11-15: For MIPS, hasn't gdbarch_pc_regnum been
5384 replaced by read_pc? */
5385 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
5386 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5387 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5388 set_gdbarch_num_regs (gdbarch, num_regs);
5389 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5390 set_gdbarch_register_name (gdbarch, mips_register_name);
5391 tdep->mips_processor_reg_names = reg_names;
5392 tdep->regnum = regnum;
5393 }
5394
5395 switch (mips_abi)
5396 {
5397 case MIPS_ABI_O32:
5398 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
5399 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
5400 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
5401 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5402 tdep->default_mask_address_p = 0;
5403 set_gdbarch_long_bit (gdbarch, 32);
5404 set_gdbarch_ptr_bit (gdbarch, 32);
5405 set_gdbarch_long_long_bit (gdbarch, 64);
5406 break;
5407 case MIPS_ABI_O64:
5408 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
5409 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
5410 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
5411 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5412 tdep->default_mask_address_p = 0;
5413 set_gdbarch_long_bit (gdbarch, 32);
5414 set_gdbarch_ptr_bit (gdbarch, 32);
5415 set_gdbarch_long_long_bit (gdbarch, 64);
5416 break;
5417 case MIPS_ABI_EABI32:
5418 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5419 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
5420 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5421 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5422 tdep->default_mask_address_p = 0;
5423 set_gdbarch_long_bit (gdbarch, 32);
5424 set_gdbarch_ptr_bit (gdbarch, 32);
5425 set_gdbarch_long_long_bit (gdbarch, 64);
5426 break;
5427 case MIPS_ABI_EABI64:
5428 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5429 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
5430 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5431 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5432 tdep->default_mask_address_p = 0;
5433 set_gdbarch_long_bit (gdbarch, 64);
5434 set_gdbarch_ptr_bit (gdbarch, 64);
5435 set_gdbarch_long_long_bit (gdbarch, 64);
5436 break;
5437 case MIPS_ABI_N32:
5438 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5439 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5440 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5441 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5442 tdep->default_mask_address_p = 0;
5443 set_gdbarch_long_bit (gdbarch, 32);
5444 set_gdbarch_ptr_bit (gdbarch, 32);
5445 set_gdbarch_long_long_bit (gdbarch, 64);
5446 set_gdbarch_long_double_bit (gdbarch, 128);
5447 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
5448 break;
5449 case MIPS_ABI_N64:
5450 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5451 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5452 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5453 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5454 tdep->default_mask_address_p = 0;
5455 set_gdbarch_long_bit (gdbarch, 64);
5456 set_gdbarch_ptr_bit (gdbarch, 64);
5457 set_gdbarch_long_long_bit (gdbarch, 64);
5458 set_gdbarch_long_double_bit (gdbarch, 128);
5459 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
5460 break;
5461 default:
5462 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5463 }
5464
5465 /* GCC creates a pseudo-section whose name specifies the size of
5466 longs, since -mlong32 or -mlong64 may be used independent of
5467 other options. How those options affect pointer sizes is ABI and
5468 architecture dependent, so use them to override the default sizes
5469 set by the ABI. This table shows the relationship between ABI,
5470 -mlongXX, and size of pointers:
5471
5472 ABI -mlongXX ptr bits
5473 --- -------- --------
5474 o32 32 32
5475 o32 64 32
5476 n32 32 32
5477 n32 64 64
5478 o64 32 32
5479 o64 64 64
5480 n64 32 32
5481 n64 64 64
5482 eabi32 32 32
5483 eabi32 64 32
5484 eabi64 32 32
5485 eabi64 64 64
5486
5487 Note that for o32 and eabi32, pointers are always 32 bits
5488 regardless of any -mlongXX option. For all others, pointers and
5489 longs are the same, as set by -mlongXX or set by defaults.
5490 */
5491
5492 if (info.abfd != NULL)
5493 {
5494 int long_bit = 0;
5495
5496 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
5497 if (long_bit)
5498 {
5499 set_gdbarch_long_bit (gdbarch, long_bit);
5500 switch (mips_abi)
5501 {
5502 case MIPS_ABI_O32:
5503 case MIPS_ABI_EABI32:
5504 break;
5505 case MIPS_ABI_N32:
5506 case MIPS_ABI_O64:
5507 case MIPS_ABI_N64:
5508 case MIPS_ABI_EABI64:
5509 set_gdbarch_ptr_bit (gdbarch, long_bit);
5510 break;
5511 default:
5512 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5513 }
5514 }
5515 }
5516
5517 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5518 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5519 comment:
5520
5521 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5522 flag in object files because to do so would make it impossible to
5523 link with libraries compiled without "-gp32". This is
5524 unnecessarily restrictive.
5525
5526 We could solve this problem by adding "-gp32" multilibs to gcc,
5527 but to set this flag before gcc is built with such multilibs will
5528 break too many systems.''
5529
5530 But even more unhelpfully, the default linker output target for
5531 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5532 for 64-bit programs - you need to change the ABI to change this,
5533 and not all gcc targets support that currently. Therefore using
5534 this flag to detect 32-bit mode would do the wrong thing given
5535 the current gcc - it would make GDB treat these 64-bit programs
5536 as 32-bit programs by default. */
5537
5538 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5539 set_gdbarch_write_pc (gdbarch, mips_write_pc);
5540
5541 /* Add/remove bits from an address. The MIPS needs be careful to
5542 ensure that all 32 bit addresses are sign extended to 64 bits. */
5543 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5544
5545 /* Unwind the frame. */
5546 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
5547 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
5548 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
5549
5550 /* Map debug register numbers onto internal register numbers. */
5551 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5552 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5553 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5554 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
5555 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5556 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5557 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5558 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
5559
5560 /* MIPS version of CALL_DUMMY */
5561
5562 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5563 replaced by a command, and all targets will default to on stack
5564 (regardless of the stack's execute status). */
5565 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
5566 set_gdbarch_frame_align (gdbarch, mips_frame_align);
5567
5568 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5569 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5570 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5571
5572 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5573 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5574
5575 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5576
5577 set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
5578
5579 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5580 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5581 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
5582
5583 set_gdbarch_register_type (gdbarch, mips_register_type);
5584
5585 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
5586
5587 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5588
5589 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5590 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5591 need to all be folded into the target vector. Since they are
5592 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5593 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5594 is sitting on? */
5595 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5596
5597 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
5598
5599 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5600
5601 /* Virtual tables. */
5602 set_gdbarch_vbit_in_delta (gdbarch, 1);
5603
5604 mips_register_g_packet_guesses (gdbarch);
5605
5606 /* Hook in OS ABI-specific overrides, if they have been registered. */
5607 info.tdep_info = (void *) tdesc_data;
5608 gdbarch_init_osabi (info, gdbarch);
5609
5610 /* Unwind the frame. */
5611 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
5612 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
5613 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5614 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
5615 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
5616 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
5617 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5618 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5619
5620 if (tdesc_data)
5621 {
5622 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
5623 tdesc_use_registers (gdbarch, tdesc_data);
5624
5625 /* Override the normal target description methods to handle our
5626 dual real and pseudo registers. */
5627 set_gdbarch_register_name (gdbarch, mips_register_name);
5628 set_gdbarch_register_reggroup_p (gdbarch, mips_tdesc_register_reggroup_p);
5629
5630 num_regs = gdbarch_num_regs (gdbarch);
5631 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5632 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
5633 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5634 }
5635
5636 /* Add ABI-specific aliases for the registers. */
5637 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
5638 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
5639 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
5640 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
5641 else
5642 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
5643 user_reg_add (gdbarch, mips_o32_aliases[i].name,
5644 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
5645
5646 /* Add some other standard aliases. */
5647 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
5648 user_reg_add (gdbarch, mips_register_aliases[i].name,
5649 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
5650
5651 return gdbarch;
5652 }
5653
5654 static void
5655 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
5656 {
5657 struct gdbarch_info info;
5658
5659 /* Force the architecture to update, and (if it's a MIPS architecture)
5660 mips_gdbarch_init will take care of the rest. */
5661 gdbarch_info_init (&info);
5662 gdbarch_update_p (info);
5663 }
5664
5665 /* Print out which MIPS ABI is in use. */
5666
5667 static void
5668 show_mips_abi (struct ui_file *file,
5669 int from_tty,
5670 struct cmd_list_element *ignored_cmd,
5671 const char *ignored_value)
5672 {
5673 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
5674 fprintf_filtered
5675 (file,
5676 "The MIPS ABI is unknown because the current architecture "
5677 "is not MIPS.\n");
5678 else
5679 {
5680 enum mips_abi global_abi = global_mips_abi ();
5681 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5682 const char *actual_abi_str = mips_abi_strings[actual_abi];
5683
5684 if (global_abi == MIPS_ABI_UNKNOWN)
5685 fprintf_filtered
5686 (file,
5687 "The MIPS ABI is set automatically (currently \"%s\").\n",
5688 actual_abi_str);
5689 else if (global_abi == actual_abi)
5690 fprintf_filtered
5691 (file,
5692 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
5693 actual_abi_str);
5694 else
5695 {
5696 /* Probably shouldn't happen... */
5697 fprintf_filtered
5698 (file,
5699 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
5700 actual_abi_str, mips_abi_strings[global_abi]);
5701 }
5702 }
5703 }
5704
5705 static void
5706 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5707 {
5708 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5709 if (tdep != NULL)
5710 {
5711 int ef_mips_arch;
5712 int ef_mips_32bitmode;
5713 /* Determine the ISA. */
5714 switch (tdep->elf_flags & EF_MIPS_ARCH)
5715 {
5716 case E_MIPS_ARCH_1:
5717 ef_mips_arch = 1;
5718 break;
5719 case E_MIPS_ARCH_2:
5720 ef_mips_arch = 2;
5721 break;
5722 case E_MIPS_ARCH_3:
5723 ef_mips_arch = 3;
5724 break;
5725 case E_MIPS_ARCH_4:
5726 ef_mips_arch = 4;
5727 break;
5728 default:
5729 ef_mips_arch = 0;
5730 break;
5731 }
5732 /* Determine the size of a pointer. */
5733 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
5734 fprintf_unfiltered (file,
5735 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
5736 tdep->elf_flags);
5737 fprintf_unfiltered (file,
5738 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5739 ef_mips_32bitmode);
5740 fprintf_unfiltered (file,
5741 "mips_dump_tdep: ef_mips_arch = %d\n",
5742 ef_mips_arch);
5743 fprintf_unfiltered (file,
5744 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
5745 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
5746 fprintf_unfiltered (file,
5747 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
5748 mips_mask_address_p (tdep),
5749 tdep->default_mask_address_p);
5750 }
5751 fprintf_unfiltered (file,
5752 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5753 MIPS_DEFAULT_FPU_TYPE,
5754 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5755 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5756 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5757 : "???"));
5758 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
5759 fprintf_unfiltered (file,
5760 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5761 MIPS_FPU_TYPE,
5762 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5763 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5764 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5765 : "???"));
5766 }
5767
5768 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
5769
5770 void
5771 _initialize_mips_tdep (void)
5772 {
5773 static struct cmd_list_element *mipsfpulist = NULL;
5774 struct cmd_list_element *c;
5775
5776 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
5777 if (MIPS_ABI_LAST + 1
5778 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
5779 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
5780
5781 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
5782
5783 mips_pdr_data = register_objfile_data ();
5784
5785 /* Create feature sets with the appropriate properties. The values
5786 are not important. */
5787 mips_tdesc_gp32 = allocate_target_description ();
5788 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
5789
5790 mips_tdesc_gp64 = allocate_target_description ();
5791 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
5792
5793 /* Add root prefix command for all "set mips"/"show mips" commands */
5794 add_prefix_cmd ("mips", no_class, set_mips_command,
5795 _("Various MIPS specific commands."),
5796 &setmipscmdlist, "set mips ", 0, &setlist);
5797
5798 add_prefix_cmd ("mips", no_class, show_mips_command,
5799 _("Various MIPS specific commands."),
5800 &showmipscmdlist, "show mips ", 0, &showlist);
5801
5802 /* Allow the user to override the ABI. */
5803 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
5804 &mips_abi_string, _("\
5805 Set the MIPS ABI used by this program."), _("\
5806 Show the MIPS ABI used by this program."), _("\
5807 This option can be set to one of:\n\
5808 auto - the default ABI associated with the current binary\n\
5809 o32\n\
5810 o64\n\
5811 n32\n\
5812 n64\n\
5813 eabi32\n\
5814 eabi64"),
5815 mips_abi_update,
5816 show_mips_abi,
5817 &setmipscmdlist, &showmipscmdlist);
5818
5819 /* Let the user turn off floating point and set the fence post for
5820 heuristic_proc_start. */
5821
5822 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
5823 _("Set use of MIPS floating-point coprocessor."),
5824 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5825 add_cmd ("single", class_support, set_mipsfpu_single_command,
5826 _("Select single-precision MIPS floating-point coprocessor."),
5827 &mipsfpulist);
5828 add_cmd ("double", class_support, set_mipsfpu_double_command,
5829 _("Select double-precision MIPS floating-point coprocessor."),
5830 &mipsfpulist);
5831 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5832 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5833 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5834 add_cmd ("none", class_support, set_mipsfpu_none_command,
5835 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
5836 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5837 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5838 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5839 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
5840 _("Select MIPS floating-point coprocessor automatically."),
5841 &mipsfpulist);
5842 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
5843 _("Show current use of MIPS floating-point coprocessor target."),
5844 &showlist);
5845
5846 /* We really would like to have both "0" and "unlimited" work, but
5847 command.c doesn't deal with that. So make it a var_zinteger
5848 because the user can always use "999999" or some such for unlimited. */
5849 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
5850 &heuristic_fence_post, _("\
5851 Set the distance searched for the start of a function."), _("\
5852 Show the distance searched for the start of a function."), _("\
5853 If you are debugging a stripped executable, GDB needs to search through the\n\
5854 program for the start of a function. This command sets the distance of the\n\
5855 search. The only need to set it is when debugging a stripped executable."),
5856 reinit_frame_cache_sfunc,
5857 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
5858 &setlist, &showlist);
5859
5860 /* Allow the user to control whether the upper bits of 64-bit
5861 addresses should be zeroed. */
5862 add_setshow_auto_boolean_cmd ("mask-address", no_class,
5863 &mask_address_var, _("\
5864 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
5865 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
5866 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
5867 allow GDB to determine the correct value."),
5868 NULL, show_mask_address,
5869 &setmipscmdlist, &showmipscmdlist);
5870
5871 /* Allow the user to control the size of 32 bit registers within the
5872 raw remote packet. */
5873 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
5874 &mips64_transfers_32bit_regs_p, _("\
5875 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5876 _("\
5877 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5878 _("\
5879 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5880 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
5881 64 bits for others. Use \"off\" to disable compatibility mode"),
5882 set_mips64_transfers_32bit_regs,
5883 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
5884 &setlist, &showlist);
5885
5886 /* Debug this files internals. */
5887 add_setshow_zinteger_cmd ("mips", class_maintenance,
5888 &mips_debug, _("\
5889 Set mips debugging."), _("\
5890 Show mips debugging."), _("\
5891 When non-zero, mips specific debugging is enabled."),
5892 NULL,
5893 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
5894 &setdebuglist, &showdebuglist);
5895 }
This page took 0.147557 seconds and 5 git commands to generate.