2002-08-19 Michael Snyder <msnyder@redhat.com>
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "value.h"
32 #include "gdbcmd.h"
33 #include "language.h"
34 #include "gdbcore.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdbtypes.h"
38 #include "target.h"
39 #include "arch-utils.h"
40 #include "regcache.h"
41 #include "osabi.h"
42
43 #include "opcode/mips.h"
44 #include "elf/mips.h"
45 #include "elf-bfd.h"
46 #include "symcat.h"
47
48 /* A useful bit in the CP0 status register (PS_REGNUM). */
49 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
50 #define ST0_FR (1 << 26)
51
52 /* The sizes of floating point registers. */
53
54 enum
55 {
56 MIPS_FPU_SINGLE_REGSIZE = 4,
57 MIPS_FPU_DOUBLE_REGSIZE = 8
58 };
59
60 /* All the possible MIPS ABIs. */
61
62 enum mips_abi
63 {
64 MIPS_ABI_UNKNOWN = 0,
65 MIPS_ABI_N32,
66 MIPS_ABI_O32,
67 MIPS_ABI_N64,
68 MIPS_ABI_O64,
69 MIPS_ABI_EABI32,
70 MIPS_ABI_EABI64,
71 MIPS_ABI_LAST
72 };
73
74 static const char *mips_abi_string;
75
76 static const char *mips_abi_strings[] = {
77 "auto",
78 "n32",
79 "o32",
80 "n64",
81 "o64",
82 "eabi32",
83 "eabi64",
84 NULL
85 };
86
87 struct frame_extra_info
88 {
89 mips_extra_func_info_t proc_desc;
90 int num_args;
91 };
92
93 /* Various MIPS ISA options (related to stack analysis) can be
94 overridden dynamically. Establish an enum/array for managing
95 them. */
96
97 static const char size_auto[] = "auto";
98 static const char size_32[] = "32";
99 static const char size_64[] = "64";
100
101 static const char *size_enums[] = {
102 size_auto,
103 size_32,
104 size_64,
105 0
106 };
107
108 /* Some MIPS boards don't support floating point while others only
109 support single-precision floating-point operations. See also
110 FP_REGISTER_DOUBLE. */
111
112 enum mips_fpu_type
113 {
114 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
115 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
116 MIPS_FPU_NONE /* No floating point. */
117 };
118
119 #ifndef MIPS_DEFAULT_FPU_TYPE
120 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
121 #endif
122 static int mips_fpu_type_auto = 1;
123 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
124
125 static int mips_debug = 0;
126
127 /* MIPS specific per-architecture information */
128 struct gdbarch_tdep
129 {
130 /* from the elf header */
131 int elf_flags;
132
133 /* mips options */
134 enum mips_abi mips_abi;
135 enum mips_abi found_abi;
136 enum mips_fpu_type mips_fpu_type;
137 int mips_last_arg_regnum;
138 int mips_last_fp_arg_regnum;
139 int mips_default_saved_regsize;
140 int mips_fp_register_double;
141 int mips_default_stack_argsize;
142 int gdb_target_is_mips64;
143 int default_mask_address_p;
144
145 enum gdb_osabi osabi;
146 };
147
148 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
149 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
150
151 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
152
153 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
154
155 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
156
157 /* Return the currently configured (or set) saved register size. */
158
159 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
160
161 static const char *mips_saved_regsize_string = size_auto;
162
163 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
164
165 static unsigned int
166 mips_saved_regsize (void)
167 {
168 if (mips_saved_regsize_string == size_auto)
169 return MIPS_DEFAULT_SAVED_REGSIZE;
170 else if (mips_saved_regsize_string == size_64)
171 return 8;
172 else /* if (mips_saved_regsize_string == size_32) */
173 return 4;
174 }
175
176 /* XFER a value from the big/little/left end of the register.
177 Depending on the size of the value it might occupy the entire
178 register or just part of it. Make an allowance for this, aligning
179 things accordingly. */
180
181 static void
182 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
183 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
184 int buf_offset)
185 {
186 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
187 int reg_offset = 0;
188 /* Need to transfer the left or right part of the register, based on
189 the targets byte order. */
190 switch (endian)
191 {
192 case BFD_ENDIAN_BIG:
193 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
194 break;
195 case BFD_ENDIAN_LITTLE:
196 reg_offset = 0;
197 break;
198 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
199 reg_offset = 0;
200 break;
201 default:
202 internal_error (__FILE__, __LINE__, "bad switch");
203 }
204 if (mips_debug)
205 fprintf_unfiltered (gdb_stderr,
206 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
207 reg_num, reg_offset, buf_offset, length);
208 if (mips_debug && out != NULL)
209 {
210 int i;
211 fprintf_unfiltered (gdb_stdlog, "out ");
212 for (i = 0; i < length; i++)
213 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
214 }
215 if (in != NULL)
216 regcache_raw_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
217 if (out != NULL)
218 regcache_raw_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
219 if (mips_debug && in != NULL)
220 {
221 int i;
222 fprintf_unfiltered (gdb_stdlog, "in ");
223 for (i = 0; i < length; i++)
224 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
225 }
226 if (mips_debug)
227 fprintf_unfiltered (gdb_stdlog, "\n");
228 }
229
230 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
231 compatiblity mode. A return value of 1 means that we have
232 physical 64-bit registers, but should treat them as 32-bit registers. */
233
234 static int
235 mips2_fp_compat (void)
236 {
237 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
238 meaningful. */
239 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
240 return 0;
241
242 #if 0
243 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
244 in all the places we deal with FP registers. PR gdb/413. */
245 /* Otherwise check the FR bit in the status register - it controls
246 the FP compatiblity mode. If it is clear we are in compatibility
247 mode. */
248 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
249 return 1;
250 #endif
251
252 return 0;
253 }
254
255 /* Indicate that the ABI makes use of double-precision registers
256 provided by the FPU (rather than combining pairs of registers to
257 form double-precision values). Do not use "TARGET_IS_MIPS64" to
258 determine if the ABI is using double-precision registers. See also
259 MIPS_FPU_TYPE. */
260 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
261
262 /* The amount of space reserved on the stack for registers. This is
263 different to MIPS_SAVED_REGSIZE as it determines the alignment of
264 data allocated after the registers have run out. */
265
266 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
267
268 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
269
270 static const char *mips_stack_argsize_string = size_auto;
271
272 static unsigned int
273 mips_stack_argsize (void)
274 {
275 if (mips_stack_argsize_string == size_auto)
276 return MIPS_DEFAULT_STACK_ARGSIZE;
277 else if (mips_stack_argsize_string == size_64)
278 return 8;
279 else /* if (mips_stack_argsize_string == size_32) */
280 return 4;
281 }
282
283 #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
284
285 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
286
287 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
288
289 int gdb_print_insn_mips (bfd_vma, disassemble_info *);
290
291 static void mips_print_register (int, int);
292
293 static mips_extra_func_info_t
294 heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *, int);
295
296 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
297
298 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
299
300 int mips_set_processor_type (char *);
301
302 static void mips_show_processor_type_command (char *, int);
303
304 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
305
306 static mips_extra_func_info_t
307 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame);
308
309 static CORE_ADDR after_prologue (CORE_ADDR pc,
310 mips_extra_func_info_t proc_desc);
311
312 static void mips_read_fp_register_single (int regno, char *rare_buffer);
313 static void mips_read_fp_register_double (int regno, char *rare_buffer);
314
315 static struct type *mips_float_register_type (void);
316 static struct type *mips_double_register_type (void);
317
318 /* This value is the model of MIPS in use. It is derived from the value
319 of the PrID register. */
320
321 char *mips_processor_type;
322
323 char *tmp_mips_processor_type;
324
325 /* The list of available "set mips " and "show mips " commands */
326
327 static struct cmd_list_element *setmipscmdlist = NULL;
328 static struct cmd_list_element *showmipscmdlist = NULL;
329
330 /* A set of original names, to be used when restoring back to generic
331 registers from a specific set. */
332
333 char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
334 char **mips_processor_reg_names = mips_generic_reg_names;
335
336 const char *
337 mips_register_name (int i)
338 {
339 return mips_processor_reg_names[i];
340 }
341 /* *INDENT-OFF* */
342 /* Names of IDT R3041 registers. */
343
344 char *mips_r3041_reg_names[] = {
345 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
346 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
347 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
348 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
349 "sr", "lo", "hi", "bad", "cause","pc",
350 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
351 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
352 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
353 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
354 "fsr", "fir", "fp", "",
355 "", "", "bus", "ccfg", "", "", "", "",
356 "", "", "port", "cmp", "", "", "epc", "prid",
357 };
358
359 /* Names of IDT R3051 registers. */
360
361 char *mips_r3051_reg_names[] = {
362 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
363 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
364 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
365 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
366 "sr", "lo", "hi", "bad", "cause","pc",
367 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
368 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
369 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
370 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
371 "fsr", "fir", "fp", "",
372 "inx", "rand", "elo", "", "ctxt", "", "", "",
373 "", "", "ehi", "", "", "", "epc", "prid",
374 };
375
376 /* Names of IDT R3081 registers. */
377
378 char *mips_r3081_reg_names[] = {
379 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
380 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
381 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
382 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
383 "sr", "lo", "hi", "bad", "cause","pc",
384 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
385 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
386 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
387 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
388 "fsr", "fir", "fp", "",
389 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
390 "", "", "ehi", "", "", "", "epc", "prid",
391 };
392
393 /* Names of LSI 33k registers. */
394
395 char *mips_lsi33k_reg_names[] = {
396 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
397 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
398 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
399 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
400 "epc", "hi", "lo", "sr", "cause","badvaddr",
401 "dcic", "bpc", "bda", "", "", "", "", "",
402 "", "", "", "", "", "", "", "",
403 "", "", "", "", "", "", "", "",
404 "", "", "", "", "", "", "", "",
405 "", "", "", "",
406 "", "", "", "", "", "", "", "",
407 "", "", "", "", "", "", "", "",
408 };
409
410 struct {
411 char *name;
412 char **regnames;
413 } mips_processor_type_table[] = {
414 { "generic", mips_generic_reg_names },
415 { "r3041", mips_r3041_reg_names },
416 { "r3051", mips_r3051_reg_names },
417 { "r3071", mips_r3081_reg_names },
418 { "r3081", mips_r3081_reg_names },
419 { "lsi33k", mips_lsi33k_reg_names },
420 { NULL, NULL }
421 };
422 /* *INDENT-ON* */
423
424
425
426
427 /* Table to translate MIPS16 register field to actual register number. */
428 static int mips16_to_32_reg[8] =
429 {16, 17, 2, 3, 4, 5, 6, 7};
430
431 /* Heuristic_proc_start may hunt through the text section for a long
432 time across a 2400 baud serial line. Allows the user to limit this
433 search. */
434
435 static unsigned int heuristic_fence_post = 0;
436
437 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
438 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
439 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
440 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
441 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
442 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
443 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
444 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
445 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
446 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
447 /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
448 this will corrupt pdr.iline. Fortunately we don't use it. */
449 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
450 #define _PROC_MAGIC_ 0x0F0F0F0F
451 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
452 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
453
454 struct linked_proc_info
455 {
456 struct mips_extra_func_info info;
457 struct linked_proc_info *next;
458 }
459 *linked_proc_desc_table = NULL;
460
461 void
462 mips_print_extra_frame_info (struct frame_info *fi)
463 {
464 if (fi
465 && fi->extra_info
466 && fi->extra_info->proc_desc
467 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
468 printf_filtered (" frame pointer is at %s+%s\n",
469 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
470 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
471 }
472
473 /* Number of bytes of storage in the actual machine representation for
474 register N. NOTE: This indirectly defines the register size
475 transfered by the GDB protocol. */
476
477 static int mips64_transfers_32bit_regs_p = 0;
478
479 static int
480 mips_register_raw_size (int reg_nr)
481 {
482 if (mips64_transfers_32bit_regs_p)
483 return REGISTER_VIRTUAL_SIZE (reg_nr);
484 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
485 && FP_REGISTER_DOUBLE)
486 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
487 registers. */
488 return 8;
489 else
490 return MIPS_REGSIZE;
491 }
492
493 /* Convert between RAW and VIRTUAL registers. The RAW register size
494 defines the remote-gdb packet. */
495
496 static int
497 mips_register_convertible (int reg_nr)
498 {
499 if (mips64_transfers_32bit_regs_p)
500 return 0;
501 else
502 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
503 }
504
505 static void
506 mips_register_convert_to_virtual (int n, struct type *virtual_type,
507 char *raw_buf, char *virt_buf)
508 {
509 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
510 memcpy (virt_buf,
511 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
512 TYPE_LENGTH (virtual_type));
513 else
514 memcpy (virt_buf,
515 raw_buf,
516 TYPE_LENGTH (virtual_type));
517 }
518
519 static void
520 mips_register_convert_to_raw (struct type *virtual_type, int n,
521 char *virt_buf, char *raw_buf)
522 {
523 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
524 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
525 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
526 virt_buf,
527 TYPE_LENGTH (virtual_type));
528 else
529 memcpy (raw_buf,
530 virt_buf,
531 TYPE_LENGTH (virtual_type));
532 }
533
534 void
535 mips_register_convert_to_type (int regnum, struct type *type, char *buffer)
536 {
537 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
538 && REGISTER_RAW_SIZE (regnum) == 4
539 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
540 && TYPE_CODE(type) == TYPE_CODE_FLT
541 && TYPE_LENGTH(type) == 8)
542 {
543 char temp[4];
544 memcpy (temp, ((char *)(buffer))+4, 4);
545 memcpy (((char *)(buffer))+4, (buffer), 4);
546 memcpy (((char *)(buffer)), temp, 4);
547 }
548 }
549
550 void
551 mips_register_convert_from_type (int regnum, struct type *type, char *buffer)
552 {
553 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
554 && REGISTER_RAW_SIZE (regnum) == 4
555 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
556 && TYPE_CODE(type) == TYPE_CODE_FLT
557 && TYPE_LENGTH(type) == 8)
558 {
559 char temp[4];
560 memcpy (temp, ((char *)(buffer))+4, 4);
561 memcpy (((char *)(buffer))+4, (buffer), 4);
562 memcpy (((char *)(buffer)), temp, 4);
563 }
564 }
565
566 /* Return the GDB type object for the "standard" data type
567 of data in register REG.
568
569 Note: kevinb/2002-08-01: The definition below should faithfully
570 reproduce the behavior of each of the REGISTER_VIRTUAL_TYPE
571 definitions found in config/mips/tm-*.h. I'm concerned about
572 the ``FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM'' clause
573 though. In some cases FP_REGNUM is in this range, and I doubt
574 that this code is correct for the 64-bit case. */
575
576 static struct type *
577 mips_register_virtual_type (int reg)
578 {
579 if (FP0_REGNUM <= reg && reg < FP0_REGNUM + 32)
580 {
581 /* Floating point registers... */
582 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
583 return builtin_type_ieee_double_big;
584 else
585 return builtin_type_ieee_double_little;
586 }
587 else if (reg == PS_REGNUM /* CR */)
588 return builtin_type_uint32;
589 else if (FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM)
590 return builtin_type_uint32;
591 else
592 {
593 /* Everything else...
594 Return type appropriate for width of register. */
595 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
596 return builtin_type_uint64;
597 else
598 return builtin_type_uint32;
599 }
600 }
601
602 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
603
604 static CORE_ADDR
605 mips_read_sp (void)
606 {
607 return ADDR_BITS_REMOVE (read_register (SP_REGNUM));
608 }
609
610 /* Should the upper word of 64-bit addresses be zeroed? */
611 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
612
613 static int
614 mips_mask_address_p (void)
615 {
616 switch (mask_address_var)
617 {
618 case AUTO_BOOLEAN_TRUE:
619 return 1;
620 case AUTO_BOOLEAN_FALSE:
621 return 0;
622 break;
623 case AUTO_BOOLEAN_AUTO:
624 return MIPS_DEFAULT_MASK_ADDRESS_P;
625 default:
626 internal_error (__FILE__, __LINE__,
627 "mips_mask_address_p: bad switch");
628 return -1;
629 }
630 }
631
632 static void
633 show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
634 {
635 switch (mask_address_var)
636 {
637 case AUTO_BOOLEAN_TRUE:
638 printf_filtered ("The 32 bit mips address mask is enabled\n");
639 break;
640 case AUTO_BOOLEAN_FALSE:
641 printf_filtered ("The 32 bit mips address mask is disabled\n");
642 break;
643 case AUTO_BOOLEAN_AUTO:
644 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
645 mips_mask_address_p () ? "enabled" : "disabled");
646 break;
647 default:
648 internal_error (__FILE__, __LINE__,
649 "show_mask_address: bad switch");
650 break;
651 }
652 }
653
654 /* Should call_function allocate stack space for a struct return? */
655
656 static int
657 mips_eabi_use_struct_convention (int gcc_p, struct type *type)
658 {
659 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
660 }
661
662 static int
663 mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
664 {
665 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
666 }
667
668 static int
669 mips_o32_use_struct_convention (int gcc_p, struct type *type)
670 {
671 return 1; /* Structures are returned by ref in extra arg0. */
672 }
673
674 /* Should call_function pass struct by reference?
675 For each architecture, structs are passed either by
676 value or by reference, depending on their size. */
677
678 static int
679 mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
680 {
681 enum type_code typecode = TYPE_CODE (check_typedef (type));
682 int len = TYPE_LENGTH (check_typedef (type));
683
684 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
685 return (len > MIPS_SAVED_REGSIZE);
686
687 return 0;
688 }
689
690 static int
691 mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
692 {
693 return 0; /* Assumption: N32/N64 never passes struct by ref. */
694 }
695
696 static int
697 mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
698 {
699 return 0; /* Assumption: O32/O64 never passes struct by ref. */
700 }
701
702 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
703
704 static int
705 pc_is_mips16 (bfd_vma memaddr)
706 {
707 struct minimal_symbol *sym;
708
709 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
710 if (IS_MIPS16_ADDR (memaddr))
711 return 1;
712
713 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
714 the high bit of the info field. Use this to decide if the function is
715 MIPS16 or normal MIPS. */
716 sym = lookup_minimal_symbol_by_pc (memaddr);
717 if (sym)
718 return MSYMBOL_IS_SPECIAL (sym);
719 else
720 return 0;
721 }
722
723 /* ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
724 i.e. refers to a 16-bit function, and sets a "special" bit in a
725 minimal symbol to mark it as a 16-bit function. */
726
727 static void
728 mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
729 {
730 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
731 {
732 MSYMBOL_INFO (msym) = (char *)
733 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
734 SYMBOL_VALUE_ADDRESS (msym) |= 1;
735 }
736 }
737
738 /* MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol. */
739
740 int
741 mips_msymbol_is_special (struct minimal_symbol *msym)
742 {
743 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
744 }
745
746 /* MSYMBOL_SIZE returns the size of the minimal symbol, i.e. the
747 "info" field with the "special" bit masked out. */
748
749 long
750 mips_msymbol_size (struct minimal_symbol *msym)
751 {
752 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
753 }
754
755 /* MIPS believes that the PC has a sign extended value. Perhaphs the
756 all registers should be sign extended for simplicity? */
757
758 static CORE_ADDR
759 mips_read_pc (ptid_t ptid)
760 {
761 return read_signed_register_pid (PC_REGNUM, ptid);
762 }
763
764 /* This returns the PC of the first inst after the prologue. If we can't
765 find the prologue, then return 0. */
766
767 static CORE_ADDR
768 after_prologue (CORE_ADDR pc,
769 mips_extra_func_info_t proc_desc)
770 {
771 struct symtab_and_line sal;
772 CORE_ADDR func_addr, func_end;
773
774 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
775 to read the stack pointer from the current machine state, because
776 the current machine state has nothing to do with the information
777 we need from the proc_desc; and the process may or may not exist
778 right now. */
779 if (!proc_desc)
780 proc_desc = find_proc_desc (pc, NULL, 0);
781
782 if (proc_desc)
783 {
784 /* If function is frameless, then we need to do it the hard way. I
785 strongly suspect that frameless always means prologueless... */
786 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
787 && PROC_FRAME_OFFSET (proc_desc) == 0)
788 return 0;
789 }
790
791 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
792 return 0; /* Unknown */
793
794 sal = find_pc_line (func_addr, 0);
795
796 if (sal.end < func_end)
797 return sal.end;
798
799 /* The line after the prologue is after the end of the function. In this
800 case, tell the caller to find the prologue the hard way. */
801
802 return 0;
803 }
804
805 /* Decode a MIPS32 instruction that saves a register in the stack, and
806 set the appropriate bit in the general register mask or float register mask
807 to indicate which register is saved. This is a helper function
808 for mips_find_saved_regs. */
809
810 static void
811 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
812 unsigned long *float_mask)
813 {
814 int reg;
815
816 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
817 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
818 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
819 {
820 /* It might be possible to use the instruction to
821 find the offset, rather than the code below which
822 is based on things being in a certain order in the
823 frame, but figuring out what the instruction's offset
824 is relative to might be a little tricky. */
825 reg = (inst & 0x001f0000) >> 16;
826 *gen_mask |= (1 << reg);
827 }
828 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
829 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
830 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
831
832 {
833 reg = ((inst & 0x001f0000) >> 16);
834 *float_mask |= (1 << reg);
835 }
836 }
837
838 /* Decode a MIPS16 instruction that saves a register in the stack, and
839 set the appropriate bit in the general register or float register mask
840 to indicate which register is saved. This is a helper function
841 for mips_find_saved_regs. */
842
843 static void
844 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
845 {
846 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
847 {
848 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
849 *gen_mask |= (1 << reg);
850 }
851 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
852 {
853 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
854 *gen_mask |= (1 << reg);
855 }
856 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
857 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
858 *gen_mask |= (1 << RA_REGNUM);
859 }
860
861
862 /* Fetch and return instruction from the specified location. If the PC
863 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
864
865 static t_inst
866 mips_fetch_instruction (CORE_ADDR addr)
867 {
868 char buf[MIPS_INSTLEN];
869 int instlen;
870 int status;
871
872 if (pc_is_mips16 (addr))
873 {
874 instlen = MIPS16_INSTLEN;
875 addr = UNMAKE_MIPS16_ADDR (addr);
876 }
877 else
878 instlen = MIPS_INSTLEN;
879 status = read_memory_nobpt (addr, buf, instlen);
880 if (status)
881 memory_error (status, addr);
882 return extract_unsigned_integer (buf, instlen);
883 }
884
885
886 /* These the fields of 32 bit mips instructions */
887 #define mips32_op(x) (x >> 26)
888 #define itype_op(x) (x >> 26)
889 #define itype_rs(x) ((x >> 21) & 0x1f)
890 #define itype_rt(x) ((x >> 16) & 0x1f)
891 #define itype_immediate(x) (x & 0xffff)
892
893 #define jtype_op(x) (x >> 26)
894 #define jtype_target(x) (x & 0x03ffffff)
895
896 #define rtype_op(x) (x >> 26)
897 #define rtype_rs(x) ((x >> 21) & 0x1f)
898 #define rtype_rt(x) ((x >> 16) & 0x1f)
899 #define rtype_rd(x) ((x >> 11) & 0x1f)
900 #define rtype_shamt(x) ((x >> 6) & 0x1f)
901 #define rtype_funct(x) (x & 0x3f)
902
903 static CORE_ADDR
904 mips32_relative_offset (unsigned long inst)
905 {
906 long x;
907 x = itype_immediate (inst);
908 if (x & 0x8000) /* sign bit set */
909 {
910 x |= 0xffff0000; /* sign extension */
911 }
912 x = x << 2;
913 return x;
914 }
915
916 /* Determine whate to set a single step breakpoint while considering
917 branch prediction */
918 CORE_ADDR
919 mips32_next_pc (CORE_ADDR pc)
920 {
921 unsigned long inst;
922 int op;
923 inst = mips_fetch_instruction (pc);
924 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
925 {
926 if (itype_op (inst) >> 2 == 5)
927 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
928 {
929 op = (itype_op (inst) & 0x03);
930 switch (op)
931 {
932 case 0: /* BEQL */
933 goto equal_branch;
934 case 1: /* BNEL */
935 goto neq_branch;
936 case 2: /* BLEZL */
937 goto less_branch;
938 case 3: /* BGTZ */
939 goto greater_branch;
940 default:
941 pc += 4;
942 }
943 }
944 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
945 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
946 {
947 int tf = itype_rt (inst) & 0x01;
948 int cnum = itype_rt (inst) >> 2;
949 int fcrcs = read_signed_register (FCRCS_REGNUM);
950 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
951
952 if (((cond >> cnum) & 0x01) == tf)
953 pc += mips32_relative_offset (inst) + 4;
954 else
955 pc += 8;
956 }
957 else
958 pc += 4; /* Not a branch, next instruction is easy */
959 }
960 else
961 { /* This gets way messy */
962
963 /* Further subdivide into SPECIAL, REGIMM and other */
964 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
965 {
966 case 0: /* SPECIAL */
967 op = rtype_funct (inst);
968 switch (op)
969 {
970 case 8: /* JR */
971 case 9: /* JALR */
972 /* Set PC to that address */
973 pc = read_signed_register (rtype_rs (inst));
974 break;
975 default:
976 pc += 4;
977 }
978
979 break; /* end SPECIAL */
980 case 1: /* REGIMM */
981 {
982 op = itype_rt (inst); /* branch condition */
983 switch (op)
984 {
985 case 0: /* BLTZ */
986 case 2: /* BLTZL */
987 case 16: /* BLTZAL */
988 case 18: /* BLTZALL */
989 less_branch:
990 if (read_signed_register (itype_rs (inst)) < 0)
991 pc += mips32_relative_offset (inst) + 4;
992 else
993 pc += 8; /* after the delay slot */
994 break;
995 case 1: /* BGEZ */
996 case 3: /* BGEZL */
997 case 17: /* BGEZAL */
998 case 19: /* BGEZALL */
999 greater_equal_branch:
1000 if (read_signed_register (itype_rs (inst)) >= 0)
1001 pc += mips32_relative_offset (inst) + 4;
1002 else
1003 pc += 8; /* after the delay slot */
1004 break;
1005 /* All of the other instructions in the REGIMM category */
1006 default:
1007 pc += 4;
1008 }
1009 }
1010 break; /* end REGIMM */
1011 case 2: /* J */
1012 case 3: /* JAL */
1013 {
1014 unsigned long reg;
1015 reg = jtype_target (inst) << 2;
1016 /* Upper four bits get never changed... */
1017 pc = reg + ((pc + 4) & 0xf0000000);
1018 }
1019 break;
1020 /* FIXME case JALX : */
1021 {
1022 unsigned long reg;
1023 reg = jtype_target (inst) << 2;
1024 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
1025 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1026 }
1027 break; /* The new PC will be alternate mode */
1028 case 4: /* BEQ, BEQL */
1029 equal_branch:
1030 if (read_signed_register (itype_rs (inst)) ==
1031 read_signed_register (itype_rt (inst)))
1032 pc += mips32_relative_offset (inst) + 4;
1033 else
1034 pc += 8;
1035 break;
1036 case 5: /* BNE, BNEL */
1037 neq_branch:
1038 if (read_signed_register (itype_rs (inst)) !=
1039 read_signed_register (itype_rt (inst)))
1040 pc += mips32_relative_offset (inst) + 4;
1041 else
1042 pc += 8;
1043 break;
1044 case 6: /* BLEZ, BLEZL */
1045 less_zero_branch:
1046 if (read_signed_register (itype_rs (inst) <= 0))
1047 pc += mips32_relative_offset (inst) + 4;
1048 else
1049 pc += 8;
1050 break;
1051 case 7:
1052 default:
1053 greater_branch: /* BGTZ, BGTZL */
1054 if (read_signed_register (itype_rs (inst) > 0))
1055 pc += mips32_relative_offset (inst) + 4;
1056 else
1057 pc += 8;
1058 break;
1059 } /* switch */
1060 } /* else */
1061 return pc;
1062 } /* mips32_next_pc */
1063
1064 /* Decoding the next place to set a breakpoint is irregular for the
1065 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1066 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1067 We dont want to set a single step instruction on the extend instruction
1068 either.
1069 */
1070
1071 /* Lots of mips16 instruction formats */
1072 /* Predicting jumps requires itype,ritype,i8type
1073 and their extensions extItype,extritype,extI8type
1074 */
1075 enum mips16_inst_fmts
1076 {
1077 itype, /* 0 immediate 5,10 */
1078 ritype, /* 1 5,3,8 */
1079 rrtype, /* 2 5,3,3,5 */
1080 rritype, /* 3 5,3,3,5 */
1081 rrrtype, /* 4 5,3,3,3,2 */
1082 rriatype, /* 5 5,3,3,1,4 */
1083 shifttype, /* 6 5,3,3,3,2 */
1084 i8type, /* 7 5,3,8 */
1085 i8movtype, /* 8 5,3,3,5 */
1086 i8mov32rtype, /* 9 5,3,5,3 */
1087 i64type, /* 10 5,3,8 */
1088 ri64type, /* 11 5,3,3,5 */
1089 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1090 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1091 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1092 extRRItype, /* 15 5,5,5,5,3,3,5 */
1093 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1094 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1095 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1096 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1097 extRi64type, /* 20 5,6,5,5,3,3,5 */
1098 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1099 };
1100 /* I am heaping all the fields of the formats into one structure and
1101 then, only the fields which are involved in instruction extension */
1102 struct upk_mips16
1103 {
1104 CORE_ADDR offset;
1105 unsigned int regx; /* Function in i8 type */
1106 unsigned int regy;
1107 };
1108
1109
1110 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1111 for the bits which make up the immediatate extension. */
1112
1113 static CORE_ADDR
1114 extended_offset (unsigned int extension)
1115 {
1116 CORE_ADDR value;
1117 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1118 value = value << 6;
1119 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1120 value = value << 5;
1121 value |= extension & 0x01f; /* extract 4:0 */
1122 return value;
1123 }
1124
1125 /* Only call this function if you know that this is an extendable
1126 instruction, It wont malfunction, but why make excess remote memory references?
1127 If the immediate operands get sign extended or somthing, do it after
1128 the extension is performed.
1129 */
1130 /* FIXME: Every one of these cases needs to worry about sign extension
1131 when the offset is to be used in relative addressing */
1132
1133
1134 static unsigned int
1135 fetch_mips_16 (CORE_ADDR pc)
1136 {
1137 char buf[8];
1138 pc &= 0xfffffffe; /* clear the low order bit */
1139 target_read_memory (pc, buf, 2);
1140 return extract_unsigned_integer (buf, 2);
1141 }
1142
1143 static void
1144 unpack_mips16 (CORE_ADDR pc,
1145 unsigned int extension,
1146 unsigned int inst,
1147 enum mips16_inst_fmts insn_format,
1148 struct upk_mips16 *upk)
1149 {
1150 CORE_ADDR offset;
1151 int regx;
1152 int regy;
1153 switch (insn_format)
1154 {
1155 case itype:
1156 {
1157 CORE_ADDR value;
1158 if (extension)
1159 {
1160 value = extended_offset (extension);
1161 value = value << 11; /* rom for the original value */
1162 value |= inst & 0x7ff; /* eleven bits from instruction */
1163 }
1164 else
1165 {
1166 value = inst & 0x7ff;
1167 /* FIXME : Consider sign extension */
1168 }
1169 offset = value;
1170 regx = -1;
1171 regy = -1;
1172 }
1173 break;
1174 case ritype:
1175 case i8type:
1176 { /* A register identifier and an offset */
1177 /* Most of the fields are the same as I type but the
1178 immediate value is of a different length */
1179 CORE_ADDR value;
1180 if (extension)
1181 {
1182 value = extended_offset (extension);
1183 value = value << 8; /* from the original instruction */
1184 value |= inst & 0xff; /* eleven bits from instruction */
1185 regx = (extension >> 8) & 0x07; /* or i8 funct */
1186 if (value & 0x4000) /* test the sign bit , bit 26 */
1187 {
1188 value &= ~0x3fff; /* remove the sign bit */
1189 value = -value;
1190 }
1191 }
1192 else
1193 {
1194 value = inst & 0xff; /* 8 bits */
1195 regx = (inst >> 8) & 0x07; /* or i8 funct */
1196 /* FIXME: Do sign extension , this format needs it */
1197 if (value & 0x80) /* THIS CONFUSES ME */
1198 {
1199 value &= 0xef; /* remove the sign bit */
1200 value = -value;
1201 }
1202 }
1203 offset = value;
1204 regy = -1;
1205 break;
1206 }
1207 case jalxtype:
1208 {
1209 unsigned long value;
1210 unsigned int nexthalf;
1211 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1212 value = value << 16;
1213 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1214 value |= nexthalf;
1215 offset = value;
1216 regx = -1;
1217 regy = -1;
1218 break;
1219 }
1220 default:
1221 internal_error (__FILE__, __LINE__,
1222 "bad switch");
1223 }
1224 upk->offset = offset;
1225 upk->regx = regx;
1226 upk->regy = regy;
1227 }
1228
1229
1230 static CORE_ADDR
1231 add_offset_16 (CORE_ADDR pc, int offset)
1232 {
1233 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1234 }
1235
1236 static CORE_ADDR
1237 extended_mips16_next_pc (CORE_ADDR pc,
1238 unsigned int extension,
1239 unsigned int insn)
1240 {
1241 int op = (insn >> 11);
1242 switch (op)
1243 {
1244 case 2: /* Branch */
1245 {
1246 CORE_ADDR offset;
1247 struct upk_mips16 upk;
1248 unpack_mips16 (pc, extension, insn, itype, &upk);
1249 offset = upk.offset;
1250 if (offset & 0x800)
1251 {
1252 offset &= 0xeff;
1253 offset = -offset;
1254 }
1255 pc += (offset << 1) + 2;
1256 break;
1257 }
1258 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1259 {
1260 struct upk_mips16 upk;
1261 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1262 pc = add_offset_16 (pc, upk.offset);
1263 if ((insn >> 10) & 0x01) /* Exchange mode */
1264 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1265 else
1266 pc |= 0x01;
1267 break;
1268 }
1269 case 4: /* beqz */
1270 {
1271 struct upk_mips16 upk;
1272 int reg;
1273 unpack_mips16 (pc, extension, insn, ritype, &upk);
1274 reg = read_signed_register (upk.regx);
1275 if (reg == 0)
1276 pc += (upk.offset << 1) + 2;
1277 else
1278 pc += 2;
1279 break;
1280 }
1281 case 5: /* bnez */
1282 {
1283 struct upk_mips16 upk;
1284 int reg;
1285 unpack_mips16 (pc, extension, insn, ritype, &upk);
1286 reg = read_signed_register (upk.regx);
1287 if (reg != 0)
1288 pc += (upk.offset << 1) + 2;
1289 else
1290 pc += 2;
1291 break;
1292 }
1293 case 12: /* I8 Formats btez btnez */
1294 {
1295 struct upk_mips16 upk;
1296 int reg;
1297 unpack_mips16 (pc, extension, insn, i8type, &upk);
1298 /* upk.regx contains the opcode */
1299 reg = read_signed_register (24); /* Test register is 24 */
1300 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1301 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1302 /* pc = add_offset_16(pc,upk.offset) ; */
1303 pc += (upk.offset << 1) + 2;
1304 else
1305 pc += 2;
1306 break;
1307 }
1308 case 29: /* RR Formats JR, JALR, JALR-RA */
1309 {
1310 struct upk_mips16 upk;
1311 /* upk.fmt = rrtype; */
1312 op = insn & 0x1f;
1313 if (op == 0)
1314 {
1315 int reg;
1316 upk.regx = (insn >> 8) & 0x07;
1317 upk.regy = (insn >> 5) & 0x07;
1318 switch (upk.regy)
1319 {
1320 case 0:
1321 reg = upk.regx;
1322 break;
1323 case 1:
1324 reg = 31;
1325 break; /* Function return instruction */
1326 case 2:
1327 reg = upk.regx;
1328 break;
1329 default:
1330 reg = 31;
1331 break; /* BOGUS Guess */
1332 }
1333 pc = read_signed_register (reg);
1334 }
1335 else
1336 pc += 2;
1337 break;
1338 }
1339 case 30:
1340 /* This is an instruction extension. Fetch the real instruction
1341 (which follows the extension) and decode things based on
1342 that. */
1343 {
1344 pc += 2;
1345 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1346 break;
1347 }
1348 default:
1349 {
1350 pc += 2;
1351 break;
1352 }
1353 }
1354 return pc;
1355 }
1356
1357 CORE_ADDR
1358 mips16_next_pc (CORE_ADDR pc)
1359 {
1360 unsigned int insn = fetch_mips_16 (pc);
1361 return extended_mips16_next_pc (pc, 0, insn);
1362 }
1363
1364 /* The mips_next_pc function supports single_step when the remote
1365 target monitor or stub is not developed enough to do a single_step.
1366 It works by decoding the current instruction and predicting where a
1367 branch will go. This isnt hard because all the data is available.
1368 The MIPS32 and MIPS16 variants are quite different */
1369 CORE_ADDR
1370 mips_next_pc (CORE_ADDR pc)
1371 {
1372 if (pc & 0x01)
1373 return mips16_next_pc (pc);
1374 else
1375 return mips32_next_pc (pc);
1376 }
1377
1378 /* Guaranteed to set fci->saved_regs to some values (it never leaves it
1379 NULL).
1380
1381 Note: kevinb/2002-08-09: The only caller of this function is (and
1382 should remain) mips_frame_init_saved_regs(). In fact,
1383 aside from calling mips_find_saved_regs(), mips_frame_init_saved_regs()
1384 does nothing more than set frame->saved_regs[SP_REGNUM]. These two
1385 functions should really be combined and now that there is only one
1386 caller, it should be straightforward. (Watch out for multiple returns
1387 though.) */
1388
1389 static void
1390 mips_find_saved_regs (struct frame_info *fci)
1391 {
1392 int ireg;
1393 CORE_ADDR reg_position;
1394 /* r0 bit means kernel trap */
1395 int kernel_trap;
1396 /* What registers have been saved? Bitmasks. */
1397 unsigned long gen_mask, float_mask;
1398 mips_extra_func_info_t proc_desc;
1399 t_inst inst;
1400
1401 frame_saved_regs_zalloc (fci);
1402
1403 /* If it is the frame for sigtramp, the saved registers are located
1404 in a sigcontext structure somewhere on the stack.
1405 If the stack layout for sigtramp changes we might have to change these
1406 constants and the companion fixup_sigtramp in mdebugread.c */
1407 #ifndef SIGFRAME_BASE
1408 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1409 above the sigtramp frame. */
1410 #define SIGFRAME_BASE MIPS_REGSIZE
1411 /* FIXME! Are these correct?? */
1412 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1413 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1414 #define SIGFRAME_FPREGSAVE_OFF \
1415 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1416 #endif
1417 #ifndef SIGFRAME_REG_SIZE
1418 /* FIXME! Is this correct?? */
1419 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
1420 #endif
1421 if (fci->signal_handler_caller)
1422 {
1423 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1424 {
1425 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1426 + ireg * SIGFRAME_REG_SIZE;
1427 fci->saved_regs[ireg] = reg_position;
1428 }
1429 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1430 {
1431 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1432 + ireg * SIGFRAME_REG_SIZE;
1433 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1434 }
1435 fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1436 return;
1437 }
1438
1439 proc_desc = fci->extra_info->proc_desc;
1440 if (proc_desc == NULL)
1441 /* I'm not sure how/whether this can happen. Normally when we can't
1442 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1443 and set the saved_regs right away. */
1444 return;
1445
1446 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1447 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1448 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1449
1450 if ( /* In any frame other than the innermost or a frame interrupted by
1451 a signal, we assume that all registers have been saved.
1452 This assumes that all register saves in a function happen before
1453 the first function call. */
1454 (fci->next == NULL || fci->next->signal_handler_caller)
1455
1456 /* In a dummy frame we know exactly where things are saved. */
1457 && !PROC_DESC_IS_DUMMY (proc_desc)
1458
1459 /* Don't bother unless we are inside a function prologue. Outside the
1460 prologue, we know where everything is. */
1461
1462 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
1463
1464 /* Not sure exactly what kernel_trap means, but if it means
1465 the kernel saves the registers without a prologue doing it,
1466 we better not examine the prologue to see whether registers
1467 have been saved yet. */
1468 && !kernel_trap)
1469 {
1470 /* We need to figure out whether the registers that the proc_desc
1471 claims are saved have been saved yet. */
1472
1473 CORE_ADDR addr;
1474
1475 /* Bitmasks; set if we have found a save for the register. */
1476 unsigned long gen_save_found = 0;
1477 unsigned long float_save_found = 0;
1478 int instlen;
1479
1480 /* If the address is odd, assume this is MIPS16 code. */
1481 addr = PROC_LOW_ADDR (proc_desc);
1482 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1483
1484 /* Scan through this function's instructions preceding the current
1485 PC, and look for those that save registers. */
1486 while (addr < fci->pc)
1487 {
1488 inst = mips_fetch_instruction (addr);
1489 if (pc_is_mips16 (addr))
1490 mips16_decode_reg_save (inst, &gen_save_found);
1491 else
1492 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1493 addr += instlen;
1494 }
1495 gen_mask = gen_save_found;
1496 float_mask = float_save_found;
1497 }
1498
1499 /* Fill in the offsets for the registers which gen_mask says
1500 were saved. */
1501 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1502 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1503 if (gen_mask & 0x80000000)
1504 {
1505 fci->saved_regs[ireg] = reg_position;
1506 reg_position -= MIPS_SAVED_REGSIZE;
1507 }
1508
1509 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1510 of that normally used by gcc. Therefore, we have to fetch the first
1511 instruction of the function, and if it's an entry instruction that
1512 saves $s0 or $s1, correct their saved addresses. */
1513 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1514 {
1515 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1516 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1517 {
1518 int reg;
1519 int sreg_count = (inst >> 6) & 3;
1520
1521 /* Check if the ra register was pushed on the stack. */
1522 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1523 if (inst & 0x20)
1524 reg_position -= MIPS_SAVED_REGSIZE;
1525
1526 /* Check if the s0 and s1 registers were pushed on the stack. */
1527 for (reg = 16; reg < sreg_count + 16; reg++)
1528 {
1529 fci->saved_regs[reg] = reg_position;
1530 reg_position -= MIPS_SAVED_REGSIZE;
1531 }
1532 }
1533 }
1534
1535 /* Fill in the offsets for the registers which float_mask says
1536 were saved. */
1537 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1538
1539 /* Apparently, the freg_offset gives the offset to the first 64 bit
1540 saved.
1541
1542 When the ABI specifies 64 bit saved registers, the FREG_OFFSET
1543 designates the first saved 64 bit register.
1544
1545 When the ABI specifies 32 bit saved registers, the ``64 bit saved
1546 DOUBLE'' consists of two adjacent 32 bit registers, Hence
1547 FREG_OFFSET, designates the address of the lower register of the
1548 register pair. Adjust the offset so that it designates the upper
1549 register of the pair -- i.e., the address of the first saved 32
1550 bit register. */
1551
1552 if (MIPS_SAVED_REGSIZE == 4)
1553 reg_position += MIPS_SAVED_REGSIZE;
1554
1555 /* Fill in the offsets for the float registers which float_mask says
1556 were saved. */
1557 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1558 if (float_mask & 0x80000000)
1559 {
1560 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1561 reg_position -= MIPS_SAVED_REGSIZE;
1562 }
1563
1564 fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
1565 }
1566
1567 /* Set up the 'saved_regs' array. This is a data structure containing
1568 the addresses on the stack where each register has been saved, for
1569 each stack frame. Registers that have not been saved will have
1570 zero here. The stack pointer register is special: rather than the
1571 address where the stack register has been saved, saved_regs[SP_REGNUM]
1572 will have the actual value of the previous frame's stack register. */
1573
1574 static void
1575 mips_frame_init_saved_regs (struct frame_info *frame)
1576 {
1577 if (frame->saved_regs == NULL)
1578 {
1579 mips_find_saved_regs (frame);
1580 }
1581 frame->saved_regs[SP_REGNUM] = frame->frame;
1582 }
1583
1584 static CORE_ADDR
1585 read_next_frame_reg (struct frame_info *fi, int regno)
1586 {
1587 for (; fi; fi = fi->next)
1588 {
1589 /* We have to get the saved sp from the sigcontext
1590 if it is a signal handler frame. */
1591 if (regno == SP_REGNUM && !fi->signal_handler_caller)
1592 return fi->frame;
1593 else
1594 {
1595 if (fi->saved_regs == NULL)
1596 FRAME_INIT_SAVED_REGS (fi);
1597 if (fi->saved_regs[regno])
1598 return read_memory_integer (ADDR_BITS_REMOVE (fi->saved_regs[regno]), MIPS_SAVED_REGSIZE);
1599 }
1600 }
1601 return read_signed_register (regno);
1602 }
1603
1604 /* mips_addr_bits_remove - remove useless address bits */
1605
1606 static CORE_ADDR
1607 mips_addr_bits_remove (CORE_ADDR addr)
1608 {
1609 if (GDB_TARGET_IS_MIPS64)
1610 {
1611 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
1612 {
1613 /* This hack is a work-around for existing boards using
1614 PMON, the simulator, and any other 64-bit targets that
1615 doesn't have true 64-bit addressing. On these targets,
1616 the upper 32 bits of addresses are ignored by the
1617 hardware. Thus, the PC or SP are likely to have been
1618 sign extended to all 1s by instruction sequences that
1619 load 32-bit addresses. For example, a typical piece of
1620 code that loads an address is this:
1621 lui $r2, <upper 16 bits>
1622 ori $r2, <lower 16 bits>
1623 But the lui sign-extends the value such that the upper 32
1624 bits may be all 1s. The workaround is simply to mask off
1625 these bits. In the future, gcc may be changed to support
1626 true 64-bit addressing, and this masking will have to be
1627 disabled. */
1628 addr &= (CORE_ADDR) 0xffffffff;
1629 }
1630 }
1631 else if (mips_mask_address_p ())
1632 {
1633 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1634 masking off bits, instead, the actual target should be asking
1635 for the address to be converted to a valid pointer. */
1636 /* Even when GDB is configured for some 32-bit targets
1637 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1638 so CORE_ADDR is 64 bits. So we still have to mask off
1639 useless bits from addresses. */
1640 addr &= (CORE_ADDR) 0xffffffff;
1641 }
1642 return addr;
1643 }
1644
1645 /* mips_software_single_step() is called just before we want to resume
1646 the inferior, if we want to single-step it but there is no hardware
1647 or kernel single-step support (MIPS on GNU/Linux for example). We find
1648 the target of the coming instruction and breakpoint it.
1649
1650 single_step is also called just after the inferior stops. If we had
1651 set up a simulated single-step, we undo our damage. */
1652
1653 void
1654 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1655 {
1656 static CORE_ADDR next_pc;
1657 typedef char binsn_quantum[BREAKPOINT_MAX];
1658 static binsn_quantum break_mem;
1659 CORE_ADDR pc;
1660
1661 if (insert_breakpoints_p)
1662 {
1663 pc = read_register (PC_REGNUM);
1664 next_pc = mips_next_pc (pc);
1665
1666 target_insert_breakpoint (next_pc, break_mem);
1667 }
1668 else
1669 target_remove_breakpoint (next_pc, break_mem);
1670 }
1671
1672 static void
1673 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1674 {
1675 CORE_ADDR pc, tmp;
1676
1677 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
1678 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
1679 tmp = mips_skip_stub (pc);
1680 prev->pc = tmp ? tmp : pc;
1681 }
1682
1683
1684 static CORE_ADDR
1685 mips_frame_saved_pc (struct frame_info *frame)
1686 {
1687 CORE_ADDR saved_pc;
1688 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
1689 /* We have to get the saved pc from the sigcontext
1690 if it is a signal handler frame. */
1691 int pcreg = frame->signal_handler_caller ? PC_REGNUM
1692 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1693
1694 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1695 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1696 else
1697 saved_pc = read_next_frame_reg (frame, pcreg);
1698
1699 return ADDR_BITS_REMOVE (saved_pc);
1700 }
1701
1702 static struct mips_extra_func_info temp_proc_desc;
1703 static CORE_ADDR temp_saved_regs[NUM_REGS];
1704
1705 /* Set a register's saved stack address in temp_saved_regs. If an address
1706 has already been set for this register, do nothing; this way we will
1707 only recognize the first save of a given register in a function prologue.
1708 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1709
1710 static void
1711 set_reg_offset (int regno, CORE_ADDR offset)
1712 {
1713 if (temp_saved_regs[regno] == 0)
1714 temp_saved_regs[regno] = offset;
1715 }
1716
1717
1718 /* Test whether the PC points to the return instruction at the
1719 end of a function. */
1720
1721 static int
1722 mips_about_to_return (CORE_ADDR pc)
1723 {
1724 if (pc_is_mips16 (pc))
1725 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1726 generates a "jr $ra"; other times it generates code to load
1727 the return address from the stack to an accessible register (such
1728 as $a3), then a "jr" using that register. This second case
1729 is almost impossible to distinguish from an indirect jump
1730 used for switch statements, so we don't even try. */
1731 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1732 else
1733 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1734 }
1735
1736
1737 /* This fencepost looks highly suspicious to me. Removing it also
1738 seems suspicious as it could affect remote debugging across serial
1739 lines. */
1740
1741 static CORE_ADDR
1742 heuristic_proc_start (CORE_ADDR pc)
1743 {
1744 CORE_ADDR start_pc;
1745 CORE_ADDR fence;
1746 int instlen;
1747 int seen_adjsp = 0;
1748
1749 pc = ADDR_BITS_REMOVE (pc);
1750 start_pc = pc;
1751 fence = start_pc - heuristic_fence_post;
1752 if (start_pc == 0)
1753 return 0;
1754
1755 if (heuristic_fence_post == UINT_MAX
1756 || fence < VM_MIN_ADDRESS)
1757 fence = VM_MIN_ADDRESS;
1758
1759 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1760
1761 /* search back for previous return */
1762 for (start_pc -= instlen;; start_pc -= instlen)
1763 if (start_pc < fence)
1764 {
1765 /* It's not clear to me why we reach this point when
1766 stop_soon_quietly, but with this test, at least we
1767 don't print out warnings for every child forked (eg, on
1768 decstation). 22apr93 rich@cygnus.com. */
1769 if (!stop_soon_quietly)
1770 {
1771 static int blurb_printed = 0;
1772
1773 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1774 paddr_nz (pc));
1775
1776 if (!blurb_printed)
1777 {
1778 /* This actually happens frequently in embedded
1779 development, when you first connect to a board
1780 and your stack pointer and pc are nowhere in
1781 particular. This message needs to give people
1782 in that situation enough information to
1783 determine that it's no big deal. */
1784 printf_filtered ("\n\
1785 GDB is unable to find the start of the function at 0x%s\n\
1786 and thus can't determine the size of that function's stack frame.\n\
1787 This means that GDB may be unable to access that stack frame, or\n\
1788 the frames below it.\n\
1789 This problem is most likely caused by an invalid program counter or\n\
1790 stack pointer.\n\
1791 However, if you think GDB should simply search farther back\n\
1792 from 0x%s for code which looks like the beginning of a\n\
1793 function, you can increase the range of the search using the `set\n\
1794 heuristic-fence-post' command.\n",
1795 paddr_nz (pc), paddr_nz (pc));
1796 blurb_printed = 1;
1797 }
1798 }
1799
1800 return 0;
1801 }
1802 else if (pc_is_mips16 (start_pc))
1803 {
1804 unsigned short inst;
1805
1806 /* On MIPS16, any one of the following is likely to be the
1807 start of a function:
1808 entry
1809 addiu sp,-n
1810 daddiu sp,-n
1811 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1812 inst = mips_fetch_instruction (start_pc);
1813 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1814 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1815 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1816 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1817 break;
1818 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1819 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1820 seen_adjsp = 1;
1821 else
1822 seen_adjsp = 0;
1823 }
1824 else if (mips_about_to_return (start_pc))
1825 {
1826 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1827 break;
1828 }
1829
1830 return start_pc;
1831 }
1832
1833 /* Fetch the immediate value from a MIPS16 instruction.
1834 If the previous instruction was an EXTEND, use it to extend
1835 the upper bits of the immediate value. This is a helper function
1836 for mips16_heuristic_proc_desc. */
1837
1838 static int
1839 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1840 unsigned short inst, /* current instruction */
1841 int nbits, /* number of bits in imm field */
1842 int scale, /* scale factor to be applied to imm */
1843 int is_signed) /* is the imm field signed? */
1844 {
1845 int offset;
1846
1847 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1848 {
1849 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1850 if (offset & 0x8000) /* check for negative extend */
1851 offset = 0 - (0x10000 - (offset & 0xffff));
1852 return offset | (inst & 0x1f);
1853 }
1854 else
1855 {
1856 int max_imm = 1 << nbits;
1857 int mask = max_imm - 1;
1858 int sign_bit = max_imm >> 1;
1859
1860 offset = inst & mask;
1861 if (is_signed && (offset & sign_bit))
1862 offset = 0 - (max_imm - offset);
1863 return offset * scale;
1864 }
1865 }
1866
1867
1868 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
1869 stream from start_pc to limit_pc. */
1870
1871 static void
1872 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1873 struct frame_info *next_frame, CORE_ADDR sp)
1874 {
1875 CORE_ADDR cur_pc;
1876 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1877 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1878 unsigned inst = 0; /* current instruction */
1879 unsigned entry_inst = 0; /* the entry instruction */
1880 int reg, offset;
1881
1882 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1883 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1884
1885 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1886 {
1887 /* Save the previous instruction. If it's an EXTEND, we'll extract
1888 the immediate offset extension from it in mips16_get_imm. */
1889 prev_inst = inst;
1890
1891 /* Fetch and decode the instruction. */
1892 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1893 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1894 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1895 {
1896 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1897 if (offset < 0) /* negative stack adjustment? */
1898 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
1899 else
1900 /* Exit loop if a positive stack adjustment is found, which
1901 usually means that the stack cleanup code in the function
1902 epilogue is reached. */
1903 break;
1904 }
1905 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1906 {
1907 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1908 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1909 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1910 set_reg_offset (reg, sp + offset);
1911 }
1912 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1913 {
1914 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1915 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1916 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1917 set_reg_offset (reg, sp + offset);
1918 }
1919 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1920 {
1921 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1922 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1923 set_reg_offset (RA_REGNUM, sp + offset);
1924 }
1925 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1926 {
1927 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1928 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1929 set_reg_offset (RA_REGNUM, sp + offset);
1930 }
1931 else if (inst == 0x673d) /* move $s1, $sp */
1932 {
1933 frame_addr = sp;
1934 PROC_FRAME_REG (&temp_proc_desc) = 17;
1935 }
1936 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1937 {
1938 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1939 frame_addr = sp + offset;
1940 PROC_FRAME_REG (&temp_proc_desc) = 17;
1941 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1942 }
1943 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1944 {
1945 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1946 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1947 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1948 set_reg_offset (reg, frame_addr + offset);
1949 }
1950 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1951 {
1952 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1953 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1954 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1955 set_reg_offset (reg, frame_addr + offset);
1956 }
1957 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1958 entry_inst = inst; /* save for later processing */
1959 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1960 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
1961 }
1962
1963 /* The entry instruction is typically the first instruction in a function,
1964 and it stores registers at offsets relative to the value of the old SP
1965 (before the prologue). But the value of the sp parameter to this
1966 function is the new SP (after the prologue has been executed). So we
1967 can't calculate those offsets until we've seen the entire prologue,
1968 and can calculate what the old SP must have been. */
1969 if (entry_inst != 0)
1970 {
1971 int areg_count = (entry_inst >> 8) & 7;
1972 int sreg_count = (entry_inst >> 6) & 3;
1973
1974 /* The entry instruction always subtracts 32 from the SP. */
1975 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
1976
1977 /* Now we can calculate what the SP must have been at the
1978 start of the function prologue. */
1979 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
1980
1981 /* Check if a0-a3 were saved in the caller's argument save area. */
1982 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1983 {
1984 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1985 set_reg_offset (reg, sp + offset);
1986 offset += MIPS_SAVED_REGSIZE;
1987 }
1988
1989 /* Check if the ra register was pushed on the stack. */
1990 offset = -4;
1991 if (entry_inst & 0x20)
1992 {
1993 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
1994 set_reg_offset (RA_REGNUM, sp + offset);
1995 offset -= MIPS_SAVED_REGSIZE;
1996 }
1997
1998 /* Check if the s0 and s1 registers were pushed on the stack. */
1999 for (reg = 16; reg < sreg_count + 16; reg++)
2000 {
2001 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2002 set_reg_offset (reg, sp + offset);
2003 offset -= MIPS_SAVED_REGSIZE;
2004 }
2005 }
2006 }
2007
2008 static void
2009 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2010 struct frame_info *next_frame, CORE_ADDR sp)
2011 {
2012 CORE_ADDR cur_pc;
2013 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
2014 restart:
2015 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2016 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
2017 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2018 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2019 {
2020 unsigned long inst, high_word, low_word;
2021 int reg;
2022
2023 /* Fetch the instruction. */
2024 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2025
2026 /* Save some code by pre-extracting some useful fields. */
2027 high_word = (inst >> 16) & 0xffff;
2028 low_word = inst & 0xffff;
2029 reg = high_word & 0x1f;
2030
2031 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
2032 || high_word == 0x23bd /* addi $sp,$sp,-i */
2033 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2034 {
2035 if (low_word & 0x8000) /* negative stack adjustment? */
2036 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
2037 else
2038 /* Exit loop if a positive stack adjustment is found, which
2039 usually means that the stack cleanup code in the function
2040 epilogue is reached. */
2041 break;
2042 }
2043 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2044 {
2045 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2046 set_reg_offset (reg, sp + low_word);
2047 }
2048 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2049 {
2050 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2051 but the register size used is only 32 bits. Make the address
2052 for the saved register point to the lower 32 bits. */
2053 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2054 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
2055 }
2056 else if (high_word == 0x27be) /* addiu $30,$sp,size */
2057 {
2058 /* Old gcc frame, r30 is virtual frame pointer. */
2059 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2060 frame_addr = sp + low_word;
2061 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2062 {
2063 unsigned alloca_adjust;
2064 PROC_FRAME_REG (&temp_proc_desc) = 30;
2065 frame_addr = read_next_frame_reg (next_frame, 30);
2066 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
2067 if (alloca_adjust > 0)
2068 {
2069 /* FP > SP + frame_size. This may be because
2070 * of an alloca or somethings similar.
2071 * Fix sp to "pre-alloca" value, and try again.
2072 */
2073 sp += alloca_adjust;
2074 goto restart;
2075 }
2076 }
2077 }
2078 /* move $30,$sp. With different versions of gas this will be either
2079 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2080 Accept any one of these. */
2081 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2082 {
2083 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2084 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2085 {
2086 unsigned alloca_adjust;
2087 PROC_FRAME_REG (&temp_proc_desc) = 30;
2088 frame_addr = read_next_frame_reg (next_frame, 30);
2089 alloca_adjust = (unsigned) (frame_addr - sp);
2090 if (alloca_adjust > 0)
2091 {
2092 /* FP > SP + frame_size. This may be because
2093 * of an alloca or somethings similar.
2094 * Fix sp to "pre-alloca" value, and try again.
2095 */
2096 sp += alloca_adjust;
2097 goto restart;
2098 }
2099 }
2100 }
2101 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
2102 {
2103 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2104 set_reg_offset (reg, frame_addr + low_word);
2105 }
2106 }
2107 }
2108
2109 static mips_extra_func_info_t
2110 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2111 struct frame_info *next_frame, int cur_frame)
2112 {
2113 CORE_ADDR sp;
2114
2115 if (cur_frame)
2116 sp = read_next_frame_reg (next_frame, SP_REGNUM);
2117 else
2118 sp = 0;
2119
2120 if (start_pc == 0)
2121 return NULL;
2122 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
2123 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2124 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2125 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2126 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2127
2128 if (start_pc + 200 < limit_pc)
2129 limit_pc = start_pc + 200;
2130 if (pc_is_mips16 (start_pc))
2131 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2132 else
2133 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2134 return &temp_proc_desc;
2135 }
2136
2137 struct mips_objfile_private
2138 {
2139 bfd_size_type size;
2140 char *contents;
2141 };
2142
2143 /* Global used to communicate between non_heuristic_proc_desc and
2144 compare_pdr_entries within qsort (). */
2145 static bfd *the_bfd;
2146
2147 static int
2148 compare_pdr_entries (const void *a, const void *b)
2149 {
2150 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2151 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2152
2153 if (lhs < rhs)
2154 return -1;
2155 else if (lhs == rhs)
2156 return 0;
2157 else
2158 return 1;
2159 }
2160
2161 static mips_extra_func_info_t
2162 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
2163 {
2164 CORE_ADDR startaddr;
2165 mips_extra_func_info_t proc_desc;
2166 struct block *b = block_for_pc (pc);
2167 struct symbol *sym;
2168 struct obj_section *sec;
2169 struct mips_objfile_private *priv;
2170
2171 if (PC_IN_CALL_DUMMY (pc, 0, 0))
2172 return NULL;
2173
2174 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2175 if (addrptr)
2176 *addrptr = startaddr;
2177
2178 priv = NULL;
2179
2180 sec = find_pc_section (pc);
2181 if (sec != NULL)
2182 {
2183 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2184
2185 /* Search the ".pdr" section generated by GAS. This includes most of
2186 the information normally found in ECOFF PDRs. */
2187
2188 the_bfd = sec->objfile->obfd;
2189 if (priv == NULL
2190 && (the_bfd->format == bfd_object
2191 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2192 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2193 {
2194 /* Right now GAS only outputs the address as a four-byte sequence.
2195 This means that we should not bother with this method on 64-bit
2196 targets (until that is fixed). */
2197
2198 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2199 sizeof (struct mips_objfile_private));
2200 priv->size = 0;
2201 sec->objfile->obj_private = priv;
2202 }
2203 else if (priv == NULL)
2204 {
2205 asection *bfdsec;
2206
2207 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2208 sizeof (struct mips_objfile_private));
2209
2210 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2211 if (bfdsec != NULL)
2212 {
2213 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2214 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2215 priv->size);
2216 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2217 priv->contents, 0, priv->size);
2218
2219 /* In general, the .pdr section is sorted. However, in the
2220 presence of multiple code sections (and other corner cases)
2221 it can become unsorted. Sort it so that we can use a faster
2222 binary search. */
2223 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2224 }
2225 else
2226 priv->size = 0;
2227
2228 sec->objfile->obj_private = priv;
2229 }
2230 the_bfd = NULL;
2231
2232 if (priv->size != 0)
2233 {
2234 int low, mid, high;
2235 char *ptr;
2236
2237 low = 0;
2238 high = priv->size / 32;
2239
2240 do
2241 {
2242 CORE_ADDR pdr_pc;
2243
2244 mid = (low + high) / 2;
2245
2246 ptr = priv->contents + mid * 32;
2247 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2248 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2249 SECT_OFF_TEXT (sec->objfile));
2250 if (pdr_pc == startaddr)
2251 break;
2252 if (pdr_pc > startaddr)
2253 high = mid;
2254 else
2255 low = mid + 1;
2256 }
2257 while (low != high);
2258
2259 if (low != high)
2260 {
2261 struct symbol *sym = find_pc_function (pc);
2262
2263 /* Fill in what we need of the proc_desc. */
2264 proc_desc = (mips_extra_func_info_t)
2265 obstack_alloc (&sec->objfile->psymbol_obstack,
2266 sizeof (struct mips_extra_func_info));
2267 PROC_LOW_ADDR (proc_desc) = startaddr;
2268
2269 /* Only used for dummy frames. */
2270 PROC_HIGH_ADDR (proc_desc) = 0;
2271
2272 PROC_FRAME_OFFSET (proc_desc)
2273 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2274 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2275 ptr + 24);
2276 PROC_FRAME_ADJUST (proc_desc) = 0;
2277 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2278 ptr + 4);
2279 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2280 ptr + 12);
2281 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2282 ptr + 8);
2283 PROC_FREG_OFFSET (proc_desc)
2284 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2285 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2286 ptr + 28);
2287 proc_desc->pdr.isym = (long) sym;
2288
2289 return proc_desc;
2290 }
2291 }
2292 }
2293
2294 if (b == NULL)
2295 return NULL;
2296
2297 if (startaddr > BLOCK_START (b))
2298 {
2299 /* This is the "pathological" case referred to in a comment in
2300 print_frame_info. It might be better to move this check into
2301 symbol reading. */
2302 return NULL;
2303 }
2304
2305 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
2306
2307 /* If we never found a PDR for this function in symbol reading, then
2308 examine prologues to find the information. */
2309 if (sym)
2310 {
2311 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2312 if (PROC_FRAME_REG (proc_desc) == -1)
2313 return NULL;
2314 else
2315 return proc_desc;
2316 }
2317 else
2318 return NULL;
2319 }
2320
2321
2322 static mips_extra_func_info_t
2323 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
2324 {
2325 mips_extra_func_info_t proc_desc;
2326 CORE_ADDR startaddr;
2327
2328 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2329
2330 if (proc_desc)
2331 {
2332 /* IF this is the topmost frame AND
2333 * (this proc does not have debugging information OR
2334 * the PC is in the procedure prologue)
2335 * THEN create a "heuristic" proc_desc (by analyzing
2336 * the actual code) to replace the "official" proc_desc.
2337 */
2338 if (next_frame == NULL)
2339 {
2340 struct symtab_and_line val;
2341 struct symbol *proc_symbol =
2342 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
2343
2344 if (proc_symbol)
2345 {
2346 val = find_pc_line (BLOCK_START
2347 (SYMBOL_BLOCK_VALUE (proc_symbol)),
2348 0);
2349 val.pc = val.end ? val.end : pc;
2350 }
2351 if (!proc_symbol || pc < val.pc)
2352 {
2353 mips_extra_func_info_t found_heuristic =
2354 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2355 pc, next_frame, cur_frame);
2356 if (found_heuristic)
2357 proc_desc = found_heuristic;
2358 }
2359 }
2360 }
2361 else
2362 {
2363 /* Is linked_proc_desc_table really necessary? It only seems to be used
2364 by procedure call dummys. However, the procedures being called ought
2365 to have their own proc_descs, and even if they don't,
2366 heuristic_proc_desc knows how to create them! */
2367
2368 register struct linked_proc_info *link;
2369
2370 for (link = linked_proc_desc_table; link; link = link->next)
2371 if (PROC_LOW_ADDR (&link->info) <= pc
2372 && PROC_HIGH_ADDR (&link->info) > pc)
2373 return &link->info;
2374
2375 if (startaddr == 0)
2376 startaddr = heuristic_proc_start (pc);
2377
2378 proc_desc =
2379 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
2380 }
2381 return proc_desc;
2382 }
2383
2384 static CORE_ADDR
2385 get_frame_pointer (struct frame_info *frame,
2386 mips_extra_func_info_t proc_desc)
2387 {
2388 return ADDR_BITS_REMOVE (read_next_frame_reg (frame,
2389 PROC_FRAME_REG (proc_desc)) +
2390 PROC_FRAME_OFFSET (proc_desc) -
2391 PROC_FRAME_ADJUST (proc_desc));
2392 }
2393
2394 mips_extra_func_info_t cached_proc_desc;
2395
2396 static CORE_ADDR
2397 mips_frame_chain (struct frame_info *frame)
2398 {
2399 mips_extra_func_info_t proc_desc;
2400 CORE_ADDR tmp;
2401 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
2402
2403 if (saved_pc == 0 || inside_entry_file (saved_pc))
2404 return 0;
2405
2406 /* Check if the PC is inside a call stub. If it is, fetch the
2407 PC of the caller of that stub. */
2408 if ((tmp = mips_skip_stub (saved_pc)) != 0)
2409 saved_pc = tmp;
2410
2411 /* Look up the procedure descriptor for this PC. */
2412 proc_desc = find_proc_desc (saved_pc, frame, 1);
2413 if (!proc_desc)
2414 return 0;
2415
2416 cached_proc_desc = proc_desc;
2417
2418 /* If no frame pointer and frame size is zero, we must be at end
2419 of stack (or otherwise hosed). If we don't check frame size,
2420 we loop forever if we see a zero size frame. */
2421 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2422 && PROC_FRAME_OFFSET (proc_desc) == 0
2423 /* The previous frame from a sigtramp frame might be frameless
2424 and have frame size zero. */
2425 && !frame->signal_handler_caller
2426 /* Check if this is a call dummy frame. */
2427 && frame->pc != CALL_DUMMY_ADDRESS ())
2428 return 0;
2429 else
2430 return get_frame_pointer (frame, proc_desc);
2431 }
2432
2433 static void
2434 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
2435 {
2436 int regnum;
2437
2438 /* Use proc_desc calculated in frame_chain */
2439 mips_extra_func_info_t proc_desc =
2440 fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next, 1);
2441
2442 fci->extra_info = (struct frame_extra_info *)
2443 frame_obstack_alloc (sizeof (struct frame_extra_info));
2444
2445 fci->saved_regs = NULL;
2446 fci->extra_info->proc_desc =
2447 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2448 if (proc_desc)
2449 {
2450 /* Fixup frame-pointer - only needed for top frame */
2451 /* This may not be quite right, if proc has a real frame register.
2452 Get the value of the frame relative sp, procedure might have been
2453 interrupted by a signal at it's very start. */
2454 if (fci->pc == PROC_LOW_ADDR (proc_desc)
2455 && !PROC_DESC_IS_DUMMY (proc_desc))
2456 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
2457 else
2458 fci->frame = get_frame_pointer (fci->next, proc_desc);
2459
2460 if (proc_desc == &temp_proc_desc)
2461 {
2462 char *name;
2463
2464 /* Do not set the saved registers for a sigtramp frame,
2465 mips_find_saved_registers will do that for us.
2466 We can't use fci->signal_handler_caller, it is not yet set. */
2467 find_pc_partial_function (fci->pc, &name,
2468 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2469 if (!PC_IN_SIGTRAMP (fci->pc, name))
2470 {
2471 frame_saved_regs_zalloc (fci);
2472 memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2473 fci->saved_regs[PC_REGNUM]
2474 = fci->saved_regs[RA_REGNUM];
2475 /* Set value of previous frame's stack pointer. Remember that
2476 saved_regs[SP_REGNUM] is special in that it contains the
2477 value of the stack pointer register. The other saved_regs
2478 values are addresses (in the inferior) at which a given
2479 register's value may be found. */
2480 fci->saved_regs[SP_REGNUM] = fci->frame;
2481 }
2482 }
2483
2484 /* hack: if argument regs are saved, guess these contain args */
2485 /* assume we can't tell how many args for now */
2486 fci->extra_info->num_args = -1;
2487 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2488 {
2489 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2490 {
2491 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
2492 break;
2493 }
2494 }
2495 }
2496 }
2497
2498 /* MIPS stack frames are almost impenetrable. When execution stops,
2499 we basically have to look at symbol information for the function
2500 that we stopped in, which tells us *which* register (if any) is
2501 the base of the frame pointer, and what offset from that register
2502 the frame itself is at.
2503
2504 This presents a problem when trying to examine a stack in memory
2505 (that isn't executing at the moment), using the "frame" command. We
2506 don't have a PC, nor do we have any registers except SP.
2507
2508 This routine takes two arguments, SP and PC, and tries to make the
2509 cached frames look as if these two arguments defined a frame on the
2510 cache. This allows the rest of info frame to extract the important
2511 arguments without difficulty. */
2512
2513 struct frame_info *
2514 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2515 {
2516 if (argc != 2)
2517 error ("MIPS frame specifications require two arguments: sp and pc");
2518
2519 return create_new_frame (argv[0], argv[1]);
2520 }
2521
2522 /* According to the current ABI, should the type be passed in a
2523 floating-point register (assuming that there is space)? When there
2524 is no FPU, FP are not even considered as possibile candidates for
2525 FP registers and, consequently this returns false - forces FP
2526 arguments into integer registers. */
2527
2528 static int
2529 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2530 {
2531 return ((typecode == TYPE_CODE_FLT
2532 || (MIPS_EABI
2533 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2534 && TYPE_NFIELDS (arg_type) == 1
2535 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2536 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2537 }
2538
2539 /* On o32, argument passing in GPRs depends on the alignment of the type being
2540 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2541
2542 static int
2543 mips_type_needs_double_align (struct type *type)
2544 {
2545 enum type_code typecode = TYPE_CODE (type);
2546
2547 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2548 return 1;
2549 else if (typecode == TYPE_CODE_STRUCT)
2550 {
2551 if (TYPE_NFIELDS (type) < 1)
2552 return 0;
2553 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2554 }
2555 else if (typecode == TYPE_CODE_UNION)
2556 {
2557 int i, n;
2558
2559 n = TYPE_NFIELDS (type);
2560 for (i = 0; i < n; i++)
2561 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2562 return 1;
2563 return 0;
2564 }
2565 return 0;
2566 }
2567
2568 /* Macros to round N up or down to the next A boundary;
2569 A must be a power of two. */
2570
2571 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2572 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2573
2574 static CORE_ADDR
2575 mips_eabi_push_arguments (int nargs,
2576 struct value **args,
2577 CORE_ADDR sp,
2578 int struct_return,
2579 CORE_ADDR struct_addr)
2580 {
2581 int argreg;
2582 int float_argreg;
2583 int argnum;
2584 int len = 0;
2585 int stack_offset = 0;
2586
2587 /* First ensure that the stack and structure return address (if any)
2588 are properly aligned. The stack has to be at least 64-bit
2589 aligned even on 32-bit machines, because doubles must be 64-bit
2590 aligned. For n32 and n64, stack frames need to be 128-bit
2591 aligned, so we round to this widest known alignment. */
2592
2593 sp = ROUND_DOWN (sp, 16);
2594 struct_addr = ROUND_DOWN (struct_addr, 16);
2595
2596 /* Now make space on the stack for the args. We allocate more
2597 than necessary for EABI, because the first few arguments are
2598 passed in registers, but that's OK. */
2599 for (argnum = 0; argnum < nargs; argnum++)
2600 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2601 MIPS_STACK_ARGSIZE);
2602 sp -= ROUND_UP (len, 16);
2603
2604 if (mips_debug)
2605 fprintf_unfiltered (gdb_stdlog,
2606 "mips_eabi_push_arguments: sp=0x%s allocated %d\n",
2607 paddr_nz (sp), ROUND_UP (len, 16));
2608
2609 /* Initialize the integer and float register pointers. */
2610 argreg = A0_REGNUM;
2611 float_argreg = FPA0_REGNUM;
2612
2613 /* The struct_return pointer occupies the first parameter-passing reg. */
2614 if (struct_return)
2615 {
2616 if (mips_debug)
2617 fprintf_unfiltered (gdb_stdlog,
2618 "mips_eabi_push_arguments: struct_return reg=%d 0x%s\n",
2619 argreg, paddr_nz (struct_addr));
2620 write_register (argreg++, struct_addr);
2621 }
2622
2623 /* Now load as many as possible of the first arguments into
2624 registers, and push the rest onto the stack. Loop thru args
2625 from first to last. */
2626 for (argnum = 0; argnum < nargs; argnum++)
2627 {
2628 char *val;
2629 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2630 struct value *arg = args[argnum];
2631 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2632 int len = TYPE_LENGTH (arg_type);
2633 enum type_code typecode = TYPE_CODE (arg_type);
2634
2635 if (mips_debug)
2636 fprintf_unfiltered (gdb_stdlog,
2637 "mips_eabi_push_arguments: %d len=%d type=%d",
2638 argnum + 1, len, (int) typecode);
2639
2640 /* The EABI passes structures that do not fit in a register by
2641 reference. */
2642 if (len > MIPS_SAVED_REGSIZE
2643 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2644 {
2645 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2646 typecode = TYPE_CODE_PTR;
2647 len = MIPS_SAVED_REGSIZE;
2648 val = valbuf;
2649 if (mips_debug)
2650 fprintf_unfiltered (gdb_stdlog, " push");
2651 }
2652 else
2653 val = (char *) VALUE_CONTENTS (arg);
2654
2655 /* 32-bit ABIs always start floating point arguments in an
2656 even-numbered floating point register. Round the FP register
2657 up before the check to see if there are any FP registers
2658 left. Non MIPS_EABI targets also pass the FP in the integer
2659 registers so also round up normal registers. */
2660 if (!FP_REGISTER_DOUBLE
2661 && fp_register_arg_p (typecode, arg_type))
2662 {
2663 if ((float_argreg & 1))
2664 float_argreg++;
2665 }
2666
2667 /* Floating point arguments passed in registers have to be
2668 treated specially. On 32-bit architectures, doubles
2669 are passed in register pairs; the even register gets
2670 the low word, and the odd register gets the high word.
2671 On non-EABI processors, the first two floating point arguments are
2672 also copied to general registers, because MIPS16 functions
2673 don't use float registers for arguments. This duplication of
2674 arguments in general registers can't hurt non-MIPS16 functions
2675 because those registers are normally skipped. */
2676 /* MIPS_EABI squeezes a struct that contains a single floating
2677 point value into an FP register instead of pushing it onto the
2678 stack. */
2679 if (fp_register_arg_p (typecode, arg_type)
2680 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2681 {
2682 if (!FP_REGISTER_DOUBLE && len == 8)
2683 {
2684 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2685 unsigned long regval;
2686
2687 /* Write the low word of the double to the even register(s). */
2688 regval = extract_unsigned_integer (val + low_offset, 4);
2689 if (mips_debug)
2690 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2691 float_argreg, phex (regval, 4));
2692 write_register (float_argreg++, regval);
2693
2694 /* Write the high word of the double to the odd register(s). */
2695 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2696 if (mips_debug)
2697 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2698 float_argreg, phex (regval, 4));
2699 write_register (float_argreg++, regval);
2700 }
2701 else
2702 {
2703 /* This is a floating point value that fits entirely
2704 in a single register. */
2705 /* On 32 bit ABI's the float_argreg is further adjusted
2706 above to ensure that it is even register aligned. */
2707 LONGEST regval = extract_unsigned_integer (val, len);
2708 if (mips_debug)
2709 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2710 float_argreg, phex (regval, len));
2711 write_register (float_argreg++, regval);
2712 }
2713 }
2714 else
2715 {
2716 /* Copy the argument to general registers or the stack in
2717 register-sized pieces. Large arguments are split between
2718 registers and stack. */
2719 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2720 are treated specially: Irix cc passes them in registers
2721 where gcc sometimes puts them on the stack. For maximum
2722 compatibility, we will put them in both places. */
2723 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2724 (len % MIPS_SAVED_REGSIZE != 0));
2725
2726 /* Note: Floating-point values that didn't fit into an FP
2727 register are only written to memory. */
2728 while (len > 0)
2729 {
2730 /* Remember if the argument was written to the stack. */
2731 int stack_used_p = 0;
2732 int partial_len =
2733 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
2734
2735 if (mips_debug)
2736 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2737 partial_len);
2738
2739 /* Write this portion of the argument to the stack. */
2740 if (argreg > MIPS_LAST_ARG_REGNUM
2741 || odd_sized_struct
2742 || fp_register_arg_p (typecode, arg_type))
2743 {
2744 /* Should shorter than int integer values be
2745 promoted to int before being stored? */
2746 int longword_offset = 0;
2747 CORE_ADDR addr;
2748 stack_used_p = 1;
2749 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2750 {
2751 if (MIPS_STACK_ARGSIZE == 8 &&
2752 (typecode == TYPE_CODE_INT ||
2753 typecode == TYPE_CODE_PTR ||
2754 typecode == TYPE_CODE_FLT) && len <= 4)
2755 longword_offset = MIPS_STACK_ARGSIZE - len;
2756 else if ((typecode == TYPE_CODE_STRUCT ||
2757 typecode == TYPE_CODE_UNION) &&
2758 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2759 longword_offset = MIPS_STACK_ARGSIZE - len;
2760 }
2761
2762 if (mips_debug)
2763 {
2764 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2765 paddr_nz (stack_offset));
2766 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2767 paddr_nz (longword_offset));
2768 }
2769
2770 addr = sp + stack_offset + longword_offset;
2771
2772 if (mips_debug)
2773 {
2774 int i;
2775 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2776 paddr_nz (addr));
2777 for (i = 0; i < partial_len; i++)
2778 {
2779 fprintf_unfiltered (gdb_stdlog, "%02x",
2780 val[i] & 0xff);
2781 }
2782 }
2783 write_memory (addr, val, partial_len);
2784 }
2785
2786 /* Note!!! This is NOT an else clause. Odd sized
2787 structs may go thru BOTH paths. Floating point
2788 arguments will not. */
2789 /* Write this portion of the argument to a general
2790 purpose register. */
2791 if (argreg <= MIPS_LAST_ARG_REGNUM
2792 && !fp_register_arg_p (typecode, arg_type))
2793 {
2794 LONGEST regval = extract_unsigned_integer (val, partial_len);
2795
2796 if (mips_debug)
2797 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2798 argreg,
2799 phex (regval, MIPS_SAVED_REGSIZE));
2800 write_register (argreg, regval);
2801 argreg++;
2802 }
2803
2804 len -= partial_len;
2805 val += partial_len;
2806
2807 /* Compute the the offset into the stack at which we
2808 will copy the next parameter.
2809
2810 In the new EABI (and the NABI32), the stack_offset
2811 only needs to be adjusted when it has been used. */
2812
2813 if (stack_used_p)
2814 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
2815 }
2816 }
2817 if (mips_debug)
2818 fprintf_unfiltered (gdb_stdlog, "\n");
2819 }
2820
2821 /* Return adjusted stack pointer. */
2822 return sp;
2823 }
2824
2825 /* N32/N64 version of push_arguments. */
2826
2827 static CORE_ADDR
2828 mips_n32n64_push_arguments (int nargs,
2829 struct value **args,
2830 CORE_ADDR sp,
2831 int struct_return,
2832 CORE_ADDR struct_addr)
2833 {
2834 int argreg;
2835 int float_argreg;
2836 int argnum;
2837 int len = 0;
2838 int stack_offset = 0;
2839
2840 /* First ensure that the stack and structure return address (if any)
2841 are properly aligned. The stack has to be at least 64-bit
2842 aligned even on 32-bit machines, because doubles must be 64-bit
2843 aligned. For n32 and n64, stack frames need to be 128-bit
2844 aligned, so we round to this widest known alignment. */
2845
2846 sp = ROUND_DOWN (sp, 16);
2847 struct_addr = ROUND_DOWN (struct_addr, 16);
2848
2849 /* Now make space on the stack for the args. */
2850 for (argnum = 0; argnum < nargs; argnum++)
2851 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2852 MIPS_STACK_ARGSIZE);
2853 sp -= ROUND_UP (len, 16);
2854
2855 if (mips_debug)
2856 fprintf_unfiltered (gdb_stdlog,
2857 "mips_n32n64_push_arguments: sp=0x%s allocated %d\n",
2858 paddr_nz (sp), ROUND_UP (len, 16));
2859
2860 /* Initialize the integer and float register pointers. */
2861 argreg = A0_REGNUM;
2862 float_argreg = FPA0_REGNUM;
2863
2864 /* The struct_return pointer occupies the first parameter-passing reg. */
2865 if (struct_return)
2866 {
2867 if (mips_debug)
2868 fprintf_unfiltered (gdb_stdlog,
2869 "mips_n32n64_push_arguments: struct_return reg=%d 0x%s\n",
2870 argreg, paddr_nz (struct_addr));
2871 write_register (argreg++, struct_addr);
2872 }
2873
2874 /* Now load as many as possible of the first arguments into
2875 registers, and push the rest onto the stack. Loop thru args
2876 from first to last. */
2877 for (argnum = 0; argnum < nargs; argnum++)
2878 {
2879 char *val;
2880 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2881 struct value *arg = args[argnum];
2882 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2883 int len = TYPE_LENGTH (arg_type);
2884 enum type_code typecode = TYPE_CODE (arg_type);
2885
2886 if (mips_debug)
2887 fprintf_unfiltered (gdb_stdlog,
2888 "mips_n32n64_push_arguments: %d len=%d type=%d",
2889 argnum + 1, len, (int) typecode);
2890
2891 val = (char *) VALUE_CONTENTS (arg);
2892
2893 if (fp_register_arg_p (typecode, arg_type)
2894 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2895 {
2896 /* This is a floating point value that fits entirely
2897 in a single register. */
2898 /* On 32 bit ABI's the float_argreg is further adjusted
2899 above to ensure that it is even register aligned. */
2900 LONGEST regval = extract_unsigned_integer (val, len);
2901 if (mips_debug)
2902 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2903 float_argreg, phex (regval, len));
2904 write_register (float_argreg++, regval);
2905
2906 if (mips_debug)
2907 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2908 argreg, phex (regval, len));
2909 write_register (argreg, regval);
2910 argreg += 1;
2911 }
2912 else
2913 {
2914 /* Copy the argument to general registers or the stack in
2915 register-sized pieces. Large arguments are split between
2916 registers and stack. */
2917 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2918 are treated specially: Irix cc passes them in registers
2919 where gcc sometimes puts them on the stack. For maximum
2920 compatibility, we will put them in both places. */
2921 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2922 (len % MIPS_SAVED_REGSIZE != 0));
2923 /* Note: Floating-point values that didn't fit into an FP
2924 register are only written to memory. */
2925 while (len > 0)
2926 {
2927 /* Rememer if the argument was written to the stack. */
2928 int stack_used_p = 0;
2929 int partial_len = len < MIPS_SAVED_REGSIZE ?
2930 len : MIPS_SAVED_REGSIZE;
2931
2932 if (mips_debug)
2933 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2934 partial_len);
2935
2936 /* Write this portion of the argument to the stack. */
2937 if (argreg > MIPS_LAST_ARG_REGNUM
2938 || odd_sized_struct
2939 || fp_register_arg_p (typecode, arg_type))
2940 {
2941 /* Should shorter than int integer values be
2942 promoted to int before being stored? */
2943 int longword_offset = 0;
2944 CORE_ADDR addr;
2945 stack_used_p = 1;
2946 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2947 {
2948 if (MIPS_STACK_ARGSIZE == 8 &&
2949 (typecode == TYPE_CODE_INT ||
2950 typecode == TYPE_CODE_PTR ||
2951 typecode == TYPE_CODE_FLT) && len <= 4)
2952 longword_offset = MIPS_STACK_ARGSIZE - len;
2953 else if ((typecode == TYPE_CODE_STRUCT ||
2954 typecode == TYPE_CODE_UNION) &&
2955 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2956 longword_offset = MIPS_STACK_ARGSIZE - len;
2957 }
2958
2959 if (mips_debug)
2960 {
2961 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2962 paddr_nz (stack_offset));
2963 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2964 paddr_nz (longword_offset));
2965 }
2966
2967 addr = sp + stack_offset + longword_offset;
2968
2969 if (mips_debug)
2970 {
2971 int i;
2972 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2973 paddr_nz (addr));
2974 for (i = 0; i < partial_len; i++)
2975 {
2976 fprintf_unfiltered (gdb_stdlog, "%02x",
2977 val[i] & 0xff);
2978 }
2979 }
2980 write_memory (addr, val, partial_len);
2981 }
2982
2983 /* Note!!! This is NOT an else clause. Odd sized
2984 structs may go thru BOTH paths. Floating point
2985 arguments will not. */
2986 /* Write this portion of the argument to a general
2987 purpose register. */
2988 if (argreg <= MIPS_LAST_ARG_REGNUM
2989 && !fp_register_arg_p (typecode, arg_type))
2990 {
2991 LONGEST regval = extract_unsigned_integer (val, partial_len);
2992
2993 /* A non-floating-point argument being passed in a
2994 general register. If a struct or union, and if
2995 the remaining length is smaller than the register
2996 size, we have to adjust the register value on
2997 big endian targets.
2998
2999 It does not seem to be necessary to do the
3000 same for integral types.
3001
3002 cagney/2001-07-23: gdb/179: Also, GCC, when
3003 outputting LE O32 with sizeof (struct) <
3004 MIPS_SAVED_REGSIZE, generates a left shift as
3005 part of storing the argument in a register a
3006 register (the left shift isn't generated when
3007 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3008 is quite possible that this is GCC contradicting
3009 the LE/O32 ABI, GDB has not been adjusted to
3010 accommodate this. Either someone needs to
3011 demonstrate that the LE/O32 ABI specifies such a
3012 left shift OR this new ABI gets identified as
3013 such and GDB gets tweaked accordingly. */
3014
3015 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3016 && partial_len < MIPS_SAVED_REGSIZE
3017 && (typecode == TYPE_CODE_STRUCT ||
3018 typecode == TYPE_CODE_UNION))
3019 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3020 TARGET_CHAR_BIT);
3021
3022 if (mips_debug)
3023 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3024 argreg,
3025 phex (regval, MIPS_SAVED_REGSIZE));
3026 write_register (argreg, regval);
3027 argreg++;
3028 }
3029
3030 len -= partial_len;
3031 val += partial_len;
3032
3033 /* Compute the the offset into the stack at which we
3034 will copy the next parameter.
3035
3036 In N32 (N64?), the stack_offset only needs to be
3037 adjusted when it has been used. */
3038
3039 if (stack_used_p)
3040 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3041 }
3042 }
3043 if (mips_debug)
3044 fprintf_unfiltered (gdb_stdlog, "\n");
3045 }
3046
3047 /* Return adjusted stack pointer. */
3048 return sp;
3049 }
3050
3051 /* O32 version of push_arguments. */
3052
3053 static CORE_ADDR
3054 mips_o32_push_arguments (int nargs,
3055 struct value **args,
3056 CORE_ADDR sp,
3057 int struct_return,
3058 CORE_ADDR struct_addr)
3059 {
3060 int argreg;
3061 int float_argreg;
3062 int argnum;
3063 int len = 0;
3064 int stack_offset = 0;
3065
3066 /* First ensure that the stack and structure return address (if any)
3067 are properly aligned. The stack has to be at least 64-bit
3068 aligned even on 32-bit machines, because doubles must be 64-bit
3069 aligned. For n32 and n64, stack frames need to be 128-bit
3070 aligned, so we round to this widest known alignment. */
3071
3072 sp = ROUND_DOWN (sp, 16);
3073 struct_addr = ROUND_DOWN (struct_addr, 16);
3074
3075 /* Now make space on the stack for the args. */
3076 for (argnum = 0; argnum < nargs; argnum++)
3077 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3078 MIPS_STACK_ARGSIZE);
3079 sp -= ROUND_UP (len, 16);
3080
3081 if (mips_debug)
3082 fprintf_unfiltered (gdb_stdlog,
3083 "mips_o32_push_arguments: sp=0x%s allocated %d\n",
3084 paddr_nz (sp), ROUND_UP (len, 16));
3085
3086 /* Initialize the integer and float register pointers. */
3087 argreg = A0_REGNUM;
3088 float_argreg = FPA0_REGNUM;
3089
3090 /* The struct_return pointer occupies the first parameter-passing reg. */
3091 if (struct_return)
3092 {
3093 if (mips_debug)
3094 fprintf_unfiltered (gdb_stdlog,
3095 "mips_o32_push_arguments: struct_return reg=%d 0x%s\n",
3096 argreg, paddr_nz (struct_addr));
3097 write_register (argreg++, struct_addr);
3098 stack_offset += MIPS_STACK_ARGSIZE;
3099 }
3100
3101 /* Now load as many as possible of the first arguments into
3102 registers, and push the rest onto the stack. Loop thru args
3103 from first to last. */
3104 for (argnum = 0; argnum < nargs; argnum++)
3105 {
3106 char *val;
3107 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3108 struct value *arg = args[argnum];
3109 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3110 int len = TYPE_LENGTH (arg_type);
3111 enum type_code typecode = TYPE_CODE (arg_type);
3112
3113 if (mips_debug)
3114 fprintf_unfiltered (gdb_stdlog,
3115 "mips_o32_push_arguments: %d len=%d type=%d",
3116 argnum + 1, len, (int) typecode);
3117
3118 val = (char *) VALUE_CONTENTS (arg);
3119
3120 /* 32-bit ABIs always start floating point arguments in an
3121 even-numbered floating point register. Round the FP register
3122 up before the check to see if there are any FP registers
3123 left. O32/O64 targets also pass the FP in the integer
3124 registers so also round up normal registers. */
3125 if (!FP_REGISTER_DOUBLE
3126 && fp_register_arg_p (typecode, arg_type))
3127 {
3128 if ((float_argreg & 1))
3129 float_argreg++;
3130 }
3131
3132 /* Floating point arguments passed in registers have to be
3133 treated specially. On 32-bit architectures, doubles
3134 are passed in register pairs; the even register gets
3135 the low word, and the odd register gets the high word.
3136 On O32/O64, the first two floating point arguments are
3137 also copied to general registers, because MIPS16 functions
3138 don't use float registers for arguments. This duplication of
3139 arguments in general registers can't hurt non-MIPS16 functions
3140 because those registers are normally skipped. */
3141
3142 if (fp_register_arg_p (typecode, arg_type)
3143 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3144 {
3145 if (!FP_REGISTER_DOUBLE && len == 8)
3146 {
3147 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3148 unsigned long regval;
3149
3150 /* Write the low word of the double to the even register(s). */
3151 regval = extract_unsigned_integer (val + low_offset, 4);
3152 if (mips_debug)
3153 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3154 float_argreg, phex (regval, 4));
3155 write_register (float_argreg++, regval);
3156 if (mips_debug)
3157 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3158 argreg, phex (regval, 4));
3159 write_register (argreg++, regval);
3160
3161 /* Write the high word of the double to the odd register(s). */
3162 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3163 if (mips_debug)
3164 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3165 float_argreg, phex (regval, 4));
3166 write_register (float_argreg++, regval);
3167
3168 if (mips_debug)
3169 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3170 argreg, phex (regval, 4));
3171 write_register (argreg++, regval);
3172 }
3173 else
3174 {
3175 /* This is a floating point value that fits entirely
3176 in a single register. */
3177 /* On 32 bit ABI's the float_argreg is further adjusted
3178 above to ensure that it is even register aligned. */
3179 LONGEST regval = extract_unsigned_integer (val, len);
3180 if (mips_debug)
3181 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3182 float_argreg, phex (regval, len));
3183 write_register (float_argreg++, regval);
3184 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3185 registers for each argument. The below is (my
3186 guess) to ensure that the corresponding integer
3187 register has reserved the same space. */
3188 if (mips_debug)
3189 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3190 argreg, phex (regval, len));
3191 write_register (argreg, regval);
3192 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3193 }
3194 /* Reserve space for the FP register. */
3195 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3196 }
3197 else
3198 {
3199 /* Copy the argument to general registers or the stack in
3200 register-sized pieces. Large arguments are split between
3201 registers and stack. */
3202 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3203 are treated specially: Irix cc passes them in registers
3204 where gcc sometimes puts them on the stack. For maximum
3205 compatibility, we will put them in both places. */
3206 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3207 (len % MIPS_SAVED_REGSIZE != 0));
3208 /* Structures should be aligned to eight bytes (even arg registers)
3209 on MIPS_ABI_O32, if their first member has double precision. */
3210 if (MIPS_SAVED_REGSIZE < 8
3211 && mips_type_needs_double_align (arg_type))
3212 {
3213 if ((argreg & 1))
3214 argreg++;
3215 }
3216 /* Note: Floating-point values that didn't fit into an FP
3217 register are only written to memory. */
3218 while (len > 0)
3219 {
3220 /* Remember if the argument was written to the stack. */
3221 int stack_used_p = 0;
3222 int partial_len =
3223 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3224
3225 if (mips_debug)
3226 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3227 partial_len);
3228
3229 /* Write this portion of the argument to the stack. */
3230 if (argreg > MIPS_LAST_ARG_REGNUM
3231 || odd_sized_struct
3232 || fp_register_arg_p (typecode, arg_type))
3233 {
3234 /* Should shorter than int integer values be
3235 promoted to int before being stored? */
3236 int longword_offset = 0;
3237 CORE_ADDR addr;
3238 stack_used_p = 1;
3239 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3240 {
3241 if (MIPS_STACK_ARGSIZE == 8 &&
3242 (typecode == TYPE_CODE_INT ||
3243 typecode == TYPE_CODE_PTR ||
3244 typecode == TYPE_CODE_FLT) && len <= 4)
3245 longword_offset = MIPS_STACK_ARGSIZE - len;
3246 }
3247
3248 if (mips_debug)
3249 {
3250 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3251 paddr_nz (stack_offset));
3252 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3253 paddr_nz (longword_offset));
3254 }
3255
3256 addr = sp + stack_offset + longword_offset;
3257
3258 if (mips_debug)
3259 {
3260 int i;
3261 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3262 paddr_nz (addr));
3263 for (i = 0; i < partial_len; i++)
3264 {
3265 fprintf_unfiltered (gdb_stdlog, "%02x",
3266 val[i] & 0xff);
3267 }
3268 }
3269 write_memory (addr, val, partial_len);
3270 }
3271
3272 /* Note!!! This is NOT an else clause. Odd sized
3273 structs may go thru BOTH paths. Floating point
3274 arguments will not. */
3275 /* Write this portion of the argument to a general
3276 purpose register. */
3277 if (argreg <= MIPS_LAST_ARG_REGNUM
3278 && !fp_register_arg_p (typecode, arg_type))
3279 {
3280 LONGEST regval = extract_signed_integer (val, partial_len);
3281 /* Value may need to be sign extended, because
3282 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3283
3284 /* A non-floating-point argument being passed in a
3285 general register. If a struct or union, and if
3286 the remaining length is smaller than the register
3287 size, we have to adjust the register value on
3288 big endian targets.
3289
3290 It does not seem to be necessary to do the
3291 same for integral types.
3292
3293 Also don't do this adjustment on O64 binaries.
3294
3295 cagney/2001-07-23: gdb/179: Also, GCC, when
3296 outputting LE O32 with sizeof (struct) <
3297 MIPS_SAVED_REGSIZE, generates a left shift as
3298 part of storing the argument in a register a
3299 register (the left shift isn't generated when
3300 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3301 is quite possible that this is GCC contradicting
3302 the LE/O32 ABI, GDB has not been adjusted to
3303 accommodate this. Either someone needs to
3304 demonstrate that the LE/O32 ABI specifies such a
3305 left shift OR this new ABI gets identified as
3306 such and GDB gets tweaked accordingly. */
3307
3308 if (MIPS_SAVED_REGSIZE < 8
3309 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3310 && partial_len < MIPS_SAVED_REGSIZE
3311 && (typecode == TYPE_CODE_STRUCT ||
3312 typecode == TYPE_CODE_UNION))
3313 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3314 TARGET_CHAR_BIT);
3315
3316 if (mips_debug)
3317 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3318 argreg,
3319 phex (regval, MIPS_SAVED_REGSIZE));
3320 write_register (argreg, regval);
3321 argreg++;
3322
3323 /* Prevent subsequent floating point arguments from
3324 being passed in floating point registers. */
3325 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3326 }
3327
3328 len -= partial_len;
3329 val += partial_len;
3330
3331 /* Compute the the offset into the stack at which we
3332 will copy the next parameter.
3333
3334 In older ABIs, the caller reserved space for
3335 registers that contained arguments. This was loosely
3336 refered to as their "home". Consequently, space is
3337 always allocated. */
3338
3339 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3340 }
3341 }
3342 if (mips_debug)
3343 fprintf_unfiltered (gdb_stdlog, "\n");
3344 }
3345
3346 /* Return adjusted stack pointer. */
3347 return sp;
3348 }
3349
3350 /* O64 version of push_arguments. */
3351
3352 static CORE_ADDR
3353 mips_o64_push_arguments (int nargs,
3354 struct value **args,
3355 CORE_ADDR sp,
3356 int struct_return,
3357 CORE_ADDR struct_addr)
3358 {
3359 int argreg;
3360 int float_argreg;
3361 int argnum;
3362 int len = 0;
3363 int stack_offset = 0;
3364
3365 /* First ensure that the stack and structure return address (if any)
3366 are properly aligned. The stack has to be at least 64-bit
3367 aligned even on 32-bit machines, because doubles must be 64-bit
3368 aligned. For n32 and n64, stack frames need to be 128-bit
3369 aligned, so we round to this widest known alignment. */
3370
3371 sp = ROUND_DOWN (sp, 16);
3372 struct_addr = ROUND_DOWN (struct_addr, 16);
3373
3374 /* Now make space on the stack for the args. */
3375 for (argnum = 0; argnum < nargs; argnum++)
3376 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3377 MIPS_STACK_ARGSIZE);
3378 sp -= ROUND_UP (len, 16);
3379
3380 if (mips_debug)
3381 fprintf_unfiltered (gdb_stdlog,
3382 "mips_o64_push_arguments: sp=0x%s allocated %d\n",
3383 paddr_nz (sp), ROUND_UP (len, 16));
3384
3385 /* Initialize the integer and float register pointers. */
3386 argreg = A0_REGNUM;
3387 float_argreg = FPA0_REGNUM;
3388
3389 /* The struct_return pointer occupies the first parameter-passing reg. */
3390 if (struct_return)
3391 {
3392 if (mips_debug)
3393 fprintf_unfiltered (gdb_stdlog,
3394 "mips_o64_push_arguments: struct_return reg=%d 0x%s\n",
3395 argreg, paddr_nz (struct_addr));
3396 write_register (argreg++, struct_addr);
3397 stack_offset += MIPS_STACK_ARGSIZE;
3398 }
3399
3400 /* Now load as many as possible of the first arguments into
3401 registers, and push the rest onto the stack. Loop thru args
3402 from first to last. */
3403 for (argnum = 0; argnum < nargs; argnum++)
3404 {
3405 char *val;
3406 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3407 struct value *arg = args[argnum];
3408 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3409 int len = TYPE_LENGTH (arg_type);
3410 enum type_code typecode = TYPE_CODE (arg_type);
3411
3412 if (mips_debug)
3413 fprintf_unfiltered (gdb_stdlog,
3414 "mips_o64_push_arguments: %d len=%d type=%d",
3415 argnum + 1, len, (int) typecode);
3416
3417 val = (char *) VALUE_CONTENTS (arg);
3418
3419 /* 32-bit ABIs always start floating point arguments in an
3420 even-numbered floating point register. Round the FP register
3421 up before the check to see if there are any FP registers
3422 left. O32/O64 targets also pass the FP in the integer
3423 registers so also round up normal registers. */
3424 if (!FP_REGISTER_DOUBLE
3425 && fp_register_arg_p (typecode, arg_type))
3426 {
3427 if ((float_argreg & 1))
3428 float_argreg++;
3429 }
3430
3431 /* Floating point arguments passed in registers have to be
3432 treated specially. On 32-bit architectures, doubles
3433 are passed in register pairs; the even register gets
3434 the low word, and the odd register gets the high word.
3435 On O32/O64, the first two floating point arguments are
3436 also copied to general registers, because MIPS16 functions
3437 don't use float registers for arguments. This duplication of
3438 arguments in general registers can't hurt non-MIPS16 functions
3439 because those registers are normally skipped. */
3440
3441 if (fp_register_arg_p (typecode, arg_type)
3442 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3443 {
3444 if (!FP_REGISTER_DOUBLE && len == 8)
3445 {
3446 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3447 unsigned long regval;
3448
3449 /* Write the low word of the double to the even register(s). */
3450 regval = extract_unsigned_integer (val + low_offset, 4);
3451 if (mips_debug)
3452 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3453 float_argreg, phex (regval, 4));
3454 write_register (float_argreg++, regval);
3455 if (mips_debug)
3456 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3457 argreg, phex (regval, 4));
3458 write_register (argreg++, regval);
3459
3460 /* Write the high word of the double to the odd register(s). */
3461 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3462 if (mips_debug)
3463 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3464 float_argreg, phex (regval, 4));
3465 write_register (float_argreg++, regval);
3466
3467 if (mips_debug)
3468 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3469 argreg, phex (regval, 4));
3470 write_register (argreg++, regval);
3471 }
3472 else
3473 {
3474 /* This is a floating point value that fits entirely
3475 in a single register. */
3476 /* On 32 bit ABI's the float_argreg is further adjusted
3477 above to ensure that it is even register aligned. */
3478 LONGEST regval = extract_unsigned_integer (val, len);
3479 if (mips_debug)
3480 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3481 float_argreg, phex (regval, len));
3482 write_register (float_argreg++, regval);
3483 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3484 registers for each argument. The below is (my
3485 guess) to ensure that the corresponding integer
3486 register has reserved the same space. */
3487 if (mips_debug)
3488 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3489 argreg, phex (regval, len));
3490 write_register (argreg, regval);
3491 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3492 }
3493 /* Reserve space for the FP register. */
3494 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3495 }
3496 else
3497 {
3498 /* Copy the argument to general registers or the stack in
3499 register-sized pieces. Large arguments are split between
3500 registers and stack. */
3501 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3502 are treated specially: Irix cc passes them in registers
3503 where gcc sometimes puts them on the stack. For maximum
3504 compatibility, we will put them in both places. */
3505 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3506 (len % MIPS_SAVED_REGSIZE != 0));
3507 /* Structures should be aligned to eight bytes (even arg registers)
3508 on MIPS_ABI_O32, if their first member has double precision. */
3509 if (MIPS_SAVED_REGSIZE < 8
3510 && mips_type_needs_double_align (arg_type))
3511 {
3512 if ((argreg & 1))
3513 argreg++;
3514 }
3515 /* Note: Floating-point values that didn't fit into an FP
3516 register are only written to memory. */
3517 while (len > 0)
3518 {
3519 /* Remember if the argument was written to the stack. */
3520 int stack_used_p = 0;
3521 int partial_len =
3522 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3523
3524 if (mips_debug)
3525 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3526 partial_len);
3527
3528 /* Write this portion of the argument to the stack. */
3529 if (argreg > MIPS_LAST_ARG_REGNUM
3530 || odd_sized_struct
3531 || fp_register_arg_p (typecode, arg_type))
3532 {
3533 /* Should shorter than int integer values be
3534 promoted to int before being stored? */
3535 int longword_offset = 0;
3536 CORE_ADDR addr;
3537 stack_used_p = 1;
3538 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3539 {
3540 if (MIPS_STACK_ARGSIZE == 8 &&
3541 (typecode == TYPE_CODE_INT ||
3542 typecode == TYPE_CODE_PTR ||
3543 typecode == TYPE_CODE_FLT) && len <= 4)
3544 longword_offset = MIPS_STACK_ARGSIZE - len;
3545 }
3546
3547 if (mips_debug)
3548 {
3549 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3550 paddr_nz (stack_offset));
3551 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3552 paddr_nz (longword_offset));
3553 }
3554
3555 addr = sp + stack_offset + longword_offset;
3556
3557 if (mips_debug)
3558 {
3559 int i;
3560 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3561 paddr_nz (addr));
3562 for (i = 0; i < partial_len; i++)
3563 {
3564 fprintf_unfiltered (gdb_stdlog, "%02x",
3565 val[i] & 0xff);
3566 }
3567 }
3568 write_memory (addr, val, partial_len);
3569 }
3570
3571 /* Note!!! This is NOT an else clause. Odd sized
3572 structs may go thru BOTH paths. Floating point
3573 arguments will not. */
3574 /* Write this portion of the argument to a general
3575 purpose register. */
3576 if (argreg <= MIPS_LAST_ARG_REGNUM
3577 && !fp_register_arg_p (typecode, arg_type))
3578 {
3579 LONGEST regval = extract_signed_integer (val, partial_len);
3580 /* Value may need to be sign extended, because
3581 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3582
3583 /* A non-floating-point argument being passed in a
3584 general register. If a struct or union, and if
3585 the remaining length is smaller than the register
3586 size, we have to adjust the register value on
3587 big endian targets.
3588
3589 It does not seem to be necessary to do the
3590 same for integral types.
3591
3592 Also don't do this adjustment on O64 binaries.
3593
3594 cagney/2001-07-23: gdb/179: Also, GCC, when
3595 outputting LE O32 with sizeof (struct) <
3596 MIPS_SAVED_REGSIZE, generates a left shift as
3597 part of storing the argument in a register a
3598 register (the left shift isn't generated when
3599 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3600 is quite possible that this is GCC contradicting
3601 the LE/O32 ABI, GDB has not been adjusted to
3602 accommodate this. Either someone needs to
3603 demonstrate that the LE/O32 ABI specifies such a
3604 left shift OR this new ABI gets identified as
3605 such and GDB gets tweaked accordingly. */
3606
3607 if (MIPS_SAVED_REGSIZE < 8
3608 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3609 && partial_len < MIPS_SAVED_REGSIZE
3610 && (typecode == TYPE_CODE_STRUCT ||
3611 typecode == TYPE_CODE_UNION))
3612 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3613 TARGET_CHAR_BIT);
3614
3615 if (mips_debug)
3616 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3617 argreg,
3618 phex (regval, MIPS_SAVED_REGSIZE));
3619 write_register (argreg, regval);
3620 argreg++;
3621
3622 /* Prevent subsequent floating point arguments from
3623 being passed in floating point registers. */
3624 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3625 }
3626
3627 len -= partial_len;
3628 val += partial_len;
3629
3630 /* Compute the the offset into the stack at which we
3631 will copy the next parameter.
3632
3633 In older ABIs, the caller reserved space for
3634 registers that contained arguments. This was loosely
3635 refered to as their "home". Consequently, space is
3636 always allocated. */
3637
3638 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3639 }
3640 }
3641 if (mips_debug)
3642 fprintf_unfiltered (gdb_stdlog, "\n");
3643 }
3644
3645 /* Return adjusted stack pointer. */
3646 return sp;
3647 }
3648
3649 static CORE_ADDR
3650 mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
3651 {
3652 /* Set the return address register to point to the entry
3653 point of the program, where a breakpoint lies in wait. */
3654 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
3655 return sp;
3656 }
3657
3658 static void
3659 mips_push_register (CORE_ADDR * sp, int regno)
3660 {
3661 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
3662 int regsize;
3663 int offset;
3664 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
3665 {
3666 regsize = MIPS_SAVED_REGSIZE;
3667 offset = (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3668 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
3669 : 0);
3670 }
3671 else
3672 {
3673 regsize = REGISTER_RAW_SIZE (regno);
3674 offset = 0;
3675 }
3676 *sp -= regsize;
3677 read_register_gen (regno, buffer);
3678 write_memory (*sp, buffer + offset, regsize);
3679 }
3680
3681 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
3682 #define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
3683
3684 static void
3685 mips_push_dummy_frame (void)
3686 {
3687 int ireg;
3688 struct linked_proc_info *link = (struct linked_proc_info *)
3689 xmalloc (sizeof (struct linked_proc_info));
3690 mips_extra_func_info_t proc_desc = &link->info;
3691 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
3692 CORE_ADDR old_sp = sp;
3693 link->next = linked_proc_desc_table;
3694 linked_proc_desc_table = link;
3695
3696 /* FIXME! are these correct ? */
3697 #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
3698 #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
3699 #define FLOAT_REG_SAVE_MASK MASK(0,19)
3700 #define FLOAT_SINGLE_REG_SAVE_MASK \
3701 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
3702 /*
3703 * The registers we must save are all those not preserved across
3704 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
3705 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
3706 * and FP Control/Status registers.
3707 *
3708 *
3709 * Dummy frame layout:
3710 * (high memory)
3711 * Saved PC
3712 * Saved MMHI, MMLO, FPC_CSR
3713 * Saved R31
3714 * Saved R28
3715 * ...
3716 * Saved R1
3717 * Saved D18 (i.e. F19, F18)
3718 * ...
3719 * Saved D0 (i.e. F1, F0)
3720 * Argument build area and stack arguments written via mips_push_arguments
3721 * (low memory)
3722 */
3723
3724 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
3725 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
3726 PROC_FRAME_OFFSET (proc_desc) = 0;
3727 PROC_FRAME_ADJUST (proc_desc) = 0;
3728 mips_push_register (&sp, PC_REGNUM);
3729 mips_push_register (&sp, HI_REGNUM);
3730 mips_push_register (&sp, LO_REGNUM);
3731 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
3732
3733 /* Save general CPU registers */
3734 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
3735 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
3736 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
3737 for (ireg = 32; --ireg >= 0;)
3738 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
3739 mips_push_register (&sp, ireg);
3740
3741 /* Save floating point registers starting with high order word */
3742 PROC_FREG_MASK (proc_desc) =
3743 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
3744 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
3745 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
3746 from FP. */
3747 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
3748 for (ireg = 32; --ireg >= 0;)
3749 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
3750 mips_push_register (&sp, ireg + FP0_REGNUM);
3751
3752 /* Update the frame pointer for the call dummy and the stack pointer.
3753 Set the procedure's starting and ending addresses to point to the
3754 call dummy address at the entry point. */
3755 write_register (PUSH_FP_REGNUM, old_sp);
3756 write_register (SP_REGNUM, sp);
3757 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
3758 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
3759 SET_PROC_DESC_IS_DUMMY (proc_desc);
3760 PROC_PC_REG (proc_desc) = RA_REGNUM;
3761 }
3762
3763 static void
3764 mips_pop_frame (void)
3765 {
3766 register int regnum;
3767 struct frame_info *frame = get_current_frame ();
3768 CORE_ADDR new_sp = FRAME_FP (frame);
3769
3770 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
3771
3772 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
3773 if (frame->saved_regs == NULL)
3774 FRAME_INIT_SAVED_REGS (frame);
3775 for (regnum = 0; regnum < NUM_REGS; regnum++)
3776 {
3777 if (regnum != SP_REGNUM && regnum != PC_REGNUM
3778 && frame->saved_regs[regnum])
3779 write_register (regnum,
3780 read_memory_integer (frame->saved_regs[regnum],
3781 MIPS_SAVED_REGSIZE));
3782 }
3783 write_register (SP_REGNUM, new_sp);
3784 flush_cached_frames ();
3785
3786 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
3787 {
3788 struct linked_proc_info *pi_ptr, *prev_ptr;
3789
3790 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3791 pi_ptr != NULL;
3792 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3793 {
3794 if (&pi_ptr->info == proc_desc)
3795 break;
3796 }
3797
3798 if (pi_ptr == NULL)
3799 error ("Can't locate dummy extra frame info\n");
3800
3801 if (prev_ptr != NULL)
3802 prev_ptr->next = pi_ptr->next;
3803 else
3804 linked_proc_desc_table = pi_ptr->next;
3805
3806 xfree (pi_ptr);
3807
3808 write_register (HI_REGNUM,
3809 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
3810 MIPS_SAVED_REGSIZE));
3811 write_register (LO_REGNUM,
3812 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
3813 MIPS_SAVED_REGSIZE));
3814 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3815 write_register (FCRCS_REGNUM,
3816 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
3817 MIPS_SAVED_REGSIZE));
3818 }
3819 }
3820
3821 static void
3822 mips_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
3823 struct value **args, struct type *type, int gcc_p)
3824 {
3825 write_register(T9_REGNUM, fun);
3826 }
3827
3828 /* Floating point register management.
3829
3830 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3831 64bit operations, these early MIPS cpus treat fp register pairs
3832 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3833 registers and offer a compatibility mode that emulates the MIPS2 fp
3834 model. When operating in MIPS2 fp compat mode, later cpu's split
3835 double precision floats into two 32-bit chunks and store them in
3836 consecutive fp regs. To display 64-bit floats stored in this
3837 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3838 Throw in user-configurable endianness and you have a real mess.
3839
3840 The way this works is:
3841 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3842 double-precision value will be split across two logical registers.
3843 The lower-numbered logical register will hold the low-order bits,
3844 regardless of the processor's endianness.
3845 - If we are on a 64-bit processor, and we are looking for a
3846 single-precision value, it will be in the low ordered bits
3847 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3848 save slot in memory.
3849 - If we are in 64-bit mode, everything is straightforward.
3850
3851 Note that this code only deals with "live" registers at the top of the
3852 stack. We will attempt to deal with saved registers later, when
3853 the raw/cooked register interface is in place. (We need a general
3854 interface that can deal with dynamic saved register sizes -- fp
3855 regs could be 32 bits wide in one frame and 64 on the frame above
3856 and below). */
3857
3858 static struct type *
3859 mips_float_register_type (void)
3860 {
3861 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3862 return builtin_type_ieee_single_big;
3863 else
3864 return builtin_type_ieee_single_little;
3865 }
3866
3867 static struct type *
3868 mips_double_register_type (void)
3869 {
3870 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3871 return builtin_type_ieee_double_big;
3872 else
3873 return builtin_type_ieee_double_little;
3874 }
3875
3876 /* Copy a 32-bit single-precision value from the current frame
3877 into rare_buffer. */
3878
3879 static void
3880 mips_read_fp_register_single (int regno, char *rare_buffer)
3881 {
3882 int raw_size = REGISTER_RAW_SIZE (regno);
3883 char *raw_buffer = alloca (raw_size);
3884
3885 if (!frame_register_read (selected_frame, regno, raw_buffer))
3886 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3887 if (raw_size == 8)
3888 {
3889 /* We have a 64-bit value for this register. Find the low-order
3890 32 bits. */
3891 int offset;
3892
3893 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3894 offset = 4;
3895 else
3896 offset = 0;
3897
3898 memcpy (rare_buffer, raw_buffer + offset, 4);
3899 }
3900 else
3901 {
3902 memcpy (rare_buffer, raw_buffer, 4);
3903 }
3904 }
3905
3906 /* Copy a 64-bit double-precision value from the current frame into
3907 rare_buffer. This may include getting half of it from the next
3908 register. */
3909
3910 static void
3911 mips_read_fp_register_double (int regno, char *rare_buffer)
3912 {
3913 int raw_size = REGISTER_RAW_SIZE (regno);
3914
3915 if (raw_size == 8 && !mips2_fp_compat ())
3916 {
3917 /* We have a 64-bit value for this register, and we should use
3918 all 64 bits. */
3919 if (!frame_register_read (selected_frame, regno, rare_buffer))
3920 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3921 }
3922 else
3923 {
3924 if ((regno - FP0_REGNUM) & 1)
3925 internal_error (__FILE__, __LINE__,
3926 "mips_read_fp_register_double: bad access to "
3927 "odd-numbered FP register");
3928
3929 /* mips_read_fp_register_single will find the correct 32 bits from
3930 each register. */
3931 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3932 {
3933 mips_read_fp_register_single (regno, rare_buffer + 4);
3934 mips_read_fp_register_single (regno + 1, rare_buffer);
3935 }
3936 else
3937 {
3938 mips_read_fp_register_single (regno, rare_buffer);
3939 mips_read_fp_register_single (regno + 1, rare_buffer + 4);
3940 }
3941 }
3942 }
3943
3944 static void
3945 mips_print_register (int regnum, int all)
3946 {
3947 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
3948
3949 /* Get the data in raw format. */
3950 if (!frame_register_read (selected_frame, regnum, raw_buffer))
3951 {
3952 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
3953 return;
3954 }
3955
3956 /* If we have a actual 32-bit floating point register (or we are in
3957 32-bit compatibility mode), and the register is even-numbered,
3958 also print it as a double (spanning two registers). */
3959 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
3960 && (REGISTER_RAW_SIZE (regnum) == 4
3961 || mips2_fp_compat ())
3962 && !((regnum - FP0_REGNUM) & 1))
3963 {
3964 char *dbuffer = alloca (2 * MAX_REGISTER_RAW_SIZE);
3965
3966 mips_read_fp_register_double (regnum, dbuffer);
3967
3968 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
3969 val_print (mips_double_register_type (), dbuffer, 0, 0,
3970 gdb_stdout, 0, 1, 0, Val_pretty_default);
3971 printf_filtered ("); ");
3972 }
3973 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
3974
3975 /* The problem with printing numeric register names (r26, etc.) is that
3976 the user can't use them on input. Probably the best solution is to
3977 fix it so that either the numeric or the funky (a2, etc.) names
3978 are accepted on input. */
3979 if (regnum < MIPS_NUMREGS)
3980 printf_filtered ("(r%d): ", regnum);
3981 else
3982 printf_filtered (": ");
3983
3984 /* If virtual format is floating, print it that way. */
3985 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
3986 if (REGISTER_RAW_SIZE (regnum) == 8 && !mips2_fp_compat ())
3987 {
3988 /* We have a meaningful 64-bit value in this register. Show
3989 it as a 32-bit float and a 64-bit double. */
3990 int offset = 4 * (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG);
3991
3992 printf_filtered (" (float) ");
3993 val_print (mips_float_register_type (), raw_buffer + offset, 0, 0,
3994 gdb_stdout, 0, 1, 0, Val_pretty_default);
3995 printf_filtered (", (double) ");
3996 val_print (mips_double_register_type (), raw_buffer, 0, 0,
3997 gdb_stdout, 0, 1, 0, Val_pretty_default);
3998 }
3999 else
4000 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
4001 gdb_stdout, 0, 1, 0, Val_pretty_default);
4002 /* Else print as integer in hex. */
4003 else
4004 {
4005 int offset;
4006
4007 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4008 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4009 else
4010 offset = 0;
4011
4012 print_scalar_formatted (raw_buffer + offset,
4013 REGISTER_VIRTUAL_TYPE (regnum),
4014 'x', 0, gdb_stdout);
4015 }
4016 }
4017
4018 /* Replacement for generic do_registers_info.
4019 Print regs in pretty columns. */
4020
4021 static int
4022 do_fp_register_row (int regnum)
4023 { /* do values for FP (float) regs */
4024 char *raw_buffer;
4025 double doub, flt1, flt2; /* doubles extracted from raw hex data */
4026 int inv1, inv2, inv3;
4027
4028 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
4029
4030 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
4031 {
4032 /* 4-byte registers: we can fit two registers per row. */
4033 /* Also print every pair of 4-byte regs as an 8-byte double. */
4034 mips_read_fp_register_single (regnum, raw_buffer);
4035 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4036
4037 mips_read_fp_register_single (regnum + 1, raw_buffer);
4038 flt2 = unpack_double (mips_float_register_type (), raw_buffer, &inv2);
4039
4040 mips_read_fp_register_double (regnum, raw_buffer);
4041 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
4042
4043 printf_filtered (" %-5s", REGISTER_NAME (regnum));
4044 if (inv1)
4045 printf_filtered (": <invalid float>");
4046 else
4047 printf_filtered ("%-17.9g", flt1);
4048
4049 printf_filtered (" %-5s", REGISTER_NAME (regnum + 1));
4050 if (inv2)
4051 printf_filtered (": <invalid float>");
4052 else
4053 printf_filtered ("%-17.9g", flt2);
4054
4055 printf_filtered (" dbl: ");
4056 if (inv3)
4057 printf_filtered ("<invalid double>");
4058 else
4059 printf_filtered ("%-24.17g", doub);
4060 printf_filtered ("\n");
4061
4062 /* may want to do hex display here (future enhancement) */
4063 regnum += 2;
4064 }
4065 else
4066 {
4067 /* Eight byte registers: print each one as float AND as double. */
4068 mips_read_fp_register_single (regnum, raw_buffer);
4069 flt1 = unpack_double (mips_double_register_type (), raw_buffer, &inv1);
4070
4071 mips_read_fp_register_double (regnum, raw_buffer);
4072 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
4073
4074 printf_filtered (" %-5s: ", REGISTER_NAME (regnum));
4075 if (inv1)
4076 printf_filtered ("<invalid float>");
4077 else
4078 printf_filtered ("flt: %-17.9g", flt1);
4079
4080 printf_filtered (" dbl: ");
4081 if (inv3)
4082 printf_filtered ("<invalid double>");
4083 else
4084 printf_filtered ("%-24.17g", doub);
4085
4086 printf_filtered ("\n");
4087 /* may want to do hex display here (future enhancement) */
4088 regnum++;
4089 }
4090 return regnum;
4091 }
4092
4093 /* Print a row's worth of GP (int) registers, with name labels above */
4094
4095 static int
4096 do_gp_register_row (int regnum)
4097 {
4098 /* do values for GP (int) regs */
4099 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4100 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4101 int col, byte;
4102 int start_regnum = regnum;
4103 int numregs = NUM_REGS;
4104
4105
4106 /* For GP registers, we print a separate row of names above the vals */
4107 printf_filtered (" ");
4108 for (col = 0; col < ncols && regnum < numregs; regnum++)
4109 {
4110 if (*REGISTER_NAME (regnum) == '\0')
4111 continue; /* unused register */
4112 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4113 break; /* end the row: reached FP register */
4114 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
4115 REGISTER_NAME (regnum));
4116 col++;
4117 }
4118 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
4119 start_regnum); /* print the R0 to R31 names */
4120
4121 regnum = start_regnum; /* go back to start of row */
4122 /* now print the values in hex, 4 or 8 to the row */
4123 for (col = 0; col < ncols && regnum < numregs; regnum++)
4124 {
4125 if (*REGISTER_NAME (regnum) == '\0')
4126 continue; /* unused register */
4127 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4128 break; /* end row: reached FP register */
4129 /* OK: get the data in raw format. */
4130 if (!frame_register_read (selected_frame, regnum, raw_buffer))
4131 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4132 /* pad small registers */
4133 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
4134 printf_filtered (" ");
4135 /* Now print the register value in hex, endian order. */
4136 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4137 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4138 byte < REGISTER_RAW_SIZE (regnum);
4139 byte++)
4140 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4141 else
4142 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4143 byte >= 0;
4144 byte--)
4145 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4146 printf_filtered (" ");
4147 col++;
4148 }
4149 if (col > 0) /* ie. if we actually printed anything... */
4150 printf_filtered ("\n");
4151
4152 return regnum;
4153 }
4154
4155 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4156
4157 static void
4158 mips_do_registers_info (int regnum, int fpregs)
4159 {
4160 if (regnum != -1) /* do one specified register */
4161 {
4162 if (*(REGISTER_NAME (regnum)) == '\0')
4163 error ("Not a valid register for the current processor type");
4164
4165 mips_print_register (regnum, 0);
4166 printf_filtered ("\n");
4167 }
4168 else
4169 /* do all (or most) registers */
4170 {
4171 regnum = 0;
4172 while (regnum < NUM_REGS)
4173 {
4174 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4175 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
4176 regnum = do_fp_register_row (regnum); /* FP regs */
4177 else
4178 regnum += MIPS_NUMREGS; /* skip floating point regs */
4179 else
4180 regnum = do_gp_register_row (regnum); /* GP (int) regs */
4181 }
4182 }
4183 }
4184
4185 /* Is this a branch with a delay slot? */
4186
4187 static int is_delayed (unsigned long);
4188
4189 static int
4190 is_delayed (unsigned long insn)
4191 {
4192 int i;
4193 for (i = 0; i < NUMOPCODES; ++i)
4194 if (mips_opcodes[i].pinfo != INSN_MACRO
4195 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4196 break;
4197 return (i < NUMOPCODES
4198 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4199 | INSN_COND_BRANCH_DELAY
4200 | INSN_COND_BRANCH_LIKELY)));
4201 }
4202
4203 int
4204 mips_step_skips_delay (CORE_ADDR pc)
4205 {
4206 char buf[MIPS_INSTLEN];
4207
4208 /* There is no branch delay slot on MIPS16. */
4209 if (pc_is_mips16 (pc))
4210 return 0;
4211
4212 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4213 /* If error reading memory, guess that it is not a delayed branch. */
4214 return 0;
4215 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
4216 }
4217
4218
4219 /* Skip the PC past function prologue instructions (32-bit version).
4220 This is a helper function for mips_skip_prologue. */
4221
4222 static CORE_ADDR
4223 mips32_skip_prologue (CORE_ADDR pc)
4224 {
4225 t_inst inst;
4226 CORE_ADDR end_pc;
4227 int seen_sp_adjust = 0;
4228 int load_immediate_bytes = 0;
4229
4230 /* Skip the typical prologue instructions. These are the stack adjustment
4231 instruction and the instructions that save registers on the stack
4232 or in the gcc frame. */
4233 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4234 {
4235 unsigned long high_word;
4236
4237 inst = mips_fetch_instruction (pc);
4238 high_word = (inst >> 16) & 0xffff;
4239
4240 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4241 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4242 seen_sp_adjust = 1;
4243 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4244 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4245 seen_sp_adjust = 1;
4246 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4247 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4248 && (inst & 0x001F0000)) /* reg != $zero */
4249 continue;
4250
4251 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4252 continue;
4253 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4254 /* sx reg,n($s8) */
4255 continue; /* reg != $zero */
4256
4257 /* move $s8,$sp. With different versions of gas this will be either
4258 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4259 Accept any one of these. */
4260 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4261 continue;
4262
4263 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4264 continue;
4265 else if (high_word == 0x3c1c) /* lui $gp,n */
4266 continue;
4267 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4268 continue;
4269 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4270 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4271 continue;
4272 /* The following instructions load $at or $t0 with an immediate
4273 value in preparation for a stack adjustment via
4274 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4275 a local variable, so we accept them only before a stack adjustment
4276 instruction was seen. */
4277 else if (!seen_sp_adjust)
4278 {
4279 if (high_word == 0x3c01 || /* lui $at,n */
4280 high_word == 0x3c08) /* lui $t0,n */
4281 {
4282 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4283 continue;
4284 }
4285 else if (high_word == 0x3421 || /* ori $at,$at,n */
4286 high_word == 0x3508 || /* ori $t0,$t0,n */
4287 high_word == 0x3401 || /* ori $at,$zero,n */
4288 high_word == 0x3408) /* ori $t0,$zero,n */
4289 {
4290 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4291 continue;
4292 }
4293 else
4294 break;
4295 }
4296 else
4297 break;
4298 }
4299
4300 /* In a frameless function, we might have incorrectly
4301 skipped some load immediate instructions. Undo the skipping
4302 if the load immediate was not followed by a stack adjustment. */
4303 if (load_immediate_bytes && !seen_sp_adjust)
4304 pc -= load_immediate_bytes;
4305 return pc;
4306 }
4307
4308 /* Skip the PC past function prologue instructions (16-bit version).
4309 This is a helper function for mips_skip_prologue. */
4310
4311 static CORE_ADDR
4312 mips16_skip_prologue (CORE_ADDR pc)
4313 {
4314 CORE_ADDR end_pc;
4315 int extend_bytes = 0;
4316 int prev_extend_bytes;
4317
4318 /* Table of instructions likely to be found in a function prologue. */
4319 static struct
4320 {
4321 unsigned short inst;
4322 unsigned short mask;
4323 }
4324 table[] =
4325 {
4326 {
4327 0x6300, 0xff00
4328 }
4329 , /* addiu $sp,offset */
4330 {
4331 0xfb00, 0xff00
4332 }
4333 , /* daddiu $sp,offset */
4334 {
4335 0xd000, 0xf800
4336 }
4337 , /* sw reg,n($sp) */
4338 {
4339 0xf900, 0xff00
4340 }
4341 , /* sd reg,n($sp) */
4342 {
4343 0x6200, 0xff00
4344 }
4345 , /* sw $ra,n($sp) */
4346 {
4347 0xfa00, 0xff00
4348 }
4349 , /* sd $ra,n($sp) */
4350 {
4351 0x673d, 0xffff
4352 }
4353 , /* move $s1,sp */
4354 {
4355 0xd980, 0xff80
4356 }
4357 , /* sw $a0-$a3,n($s1) */
4358 {
4359 0x6704, 0xff1c
4360 }
4361 , /* move reg,$a0-$a3 */
4362 {
4363 0xe809, 0xf81f
4364 }
4365 , /* entry pseudo-op */
4366 {
4367 0x0100, 0xff00
4368 }
4369 , /* addiu $s1,$sp,n */
4370 {
4371 0, 0
4372 } /* end of table marker */
4373 };
4374
4375 /* Skip the typical prologue instructions. These are the stack adjustment
4376 instruction and the instructions that save registers on the stack
4377 or in the gcc frame. */
4378 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4379 {
4380 unsigned short inst;
4381 int i;
4382
4383 inst = mips_fetch_instruction (pc);
4384
4385 /* Normally we ignore an extend instruction. However, if it is
4386 not followed by a valid prologue instruction, we must adjust
4387 the pc back over the extend so that it won't be considered
4388 part of the prologue. */
4389 if ((inst & 0xf800) == 0xf000) /* extend */
4390 {
4391 extend_bytes = MIPS16_INSTLEN;
4392 continue;
4393 }
4394 prev_extend_bytes = extend_bytes;
4395 extend_bytes = 0;
4396
4397 /* Check for other valid prologue instructions besides extend. */
4398 for (i = 0; table[i].mask != 0; i++)
4399 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4400 break;
4401 if (table[i].mask != 0) /* it was in table? */
4402 continue; /* ignore it */
4403 else
4404 /* non-prologue */
4405 {
4406 /* Return the current pc, adjusted backwards by 2 if
4407 the previous instruction was an extend. */
4408 return pc - prev_extend_bytes;
4409 }
4410 }
4411 return pc;
4412 }
4413
4414 /* To skip prologues, I use this predicate. Returns either PC itself
4415 if the code at PC does not look like a function prologue; otherwise
4416 returns an address that (if we're lucky) follows the prologue. If
4417 LENIENT, then we must skip everything which is involved in setting
4418 up the frame (it's OK to skip more, just so long as we don't skip
4419 anything which might clobber the registers which are being saved.
4420 We must skip more in the case where part of the prologue is in the
4421 delay slot of a non-prologue instruction). */
4422
4423 static CORE_ADDR
4424 mips_skip_prologue (CORE_ADDR pc)
4425 {
4426 /* See if we can determine the end of the prologue via the symbol table.
4427 If so, then return either PC, or the PC after the prologue, whichever
4428 is greater. */
4429
4430 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4431
4432 if (post_prologue_pc != 0)
4433 return max (pc, post_prologue_pc);
4434
4435 /* Can't determine prologue from the symbol table, need to examine
4436 instructions. */
4437
4438 if (pc_is_mips16 (pc))
4439 return mips16_skip_prologue (pc);
4440 else
4441 return mips32_skip_prologue (pc);
4442 }
4443
4444 /* Determine how a return value is stored within the MIPS register
4445 file, given the return type `valtype'. */
4446
4447 struct return_value_word
4448 {
4449 int len;
4450 int reg;
4451 int reg_offset;
4452 int buf_offset;
4453 };
4454
4455 static void
4456 return_value_location (struct type *valtype,
4457 struct return_value_word *hi,
4458 struct return_value_word *lo)
4459 {
4460 int len = TYPE_LENGTH (valtype);
4461
4462 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4463 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4464 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4465 {
4466 if (!FP_REGISTER_DOUBLE && len == 8)
4467 {
4468 /* We need to break a 64bit float in two 32 bit halves and
4469 spread them across a floating-point register pair. */
4470 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4471 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4472 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4473 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4474 ? 4 : 0);
4475 hi->reg_offset = lo->reg_offset;
4476 lo->reg = FP0_REGNUM + 0;
4477 hi->reg = FP0_REGNUM + 1;
4478 lo->len = 4;
4479 hi->len = 4;
4480 }
4481 else
4482 {
4483 /* The floating point value fits in a single floating-point
4484 register. */
4485 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4486 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4487 && len == 4)
4488 ? 4 : 0);
4489 lo->reg = FP0_REGNUM;
4490 lo->len = len;
4491 lo->buf_offset = 0;
4492 hi->len = 0;
4493 hi->reg_offset = 0;
4494 hi->buf_offset = 0;
4495 hi->reg = 0;
4496 }
4497 }
4498 else
4499 {
4500 /* Locate a result possibly spread across two registers. */
4501 int regnum = 2;
4502 lo->reg = regnum + 0;
4503 hi->reg = regnum + 1;
4504 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4505 && len < MIPS_SAVED_REGSIZE)
4506 {
4507 /* "un-left-justify" the value in the low register */
4508 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
4509 lo->len = len;
4510 hi->reg_offset = 0;
4511 hi->len = 0;
4512 }
4513 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4514 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4515 && len < MIPS_SAVED_REGSIZE * 2
4516 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4517 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4518 {
4519 /* "un-left-justify" the value spread across two registers. */
4520 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4521 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4522 hi->reg_offset = 0;
4523 hi->len = len - lo->len;
4524 }
4525 else
4526 {
4527 /* Only perform a partial copy of the second register. */
4528 lo->reg_offset = 0;
4529 hi->reg_offset = 0;
4530 if (len > MIPS_SAVED_REGSIZE)
4531 {
4532 lo->len = MIPS_SAVED_REGSIZE;
4533 hi->len = len - MIPS_SAVED_REGSIZE;
4534 }
4535 else
4536 {
4537 lo->len = len;
4538 hi->len = 0;
4539 }
4540 }
4541 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4542 && REGISTER_RAW_SIZE (regnum) == 8
4543 && MIPS_SAVED_REGSIZE == 4)
4544 {
4545 /* Account for the fact that only the least-signficant part
4546 of the register is being used */
4547 lo->reg_offset += 4;
4548 hi->reg_offset += 4;
4549 }
4550 lo->buf_offset = 0;
4551 hi->buf_offset = lo->len;
4552 }
4553 }
4554
4555 /* Given a return value in `regbuf' with a type `valtype', extract and
4556 copy its value into `valbuf'. */
4557
4558 static void
4559 mips_eabi_extract_return_value (struct type *valtype,
4560 char regbuf[REGISTER_BYTES],
4561 char *valbuf)
4562 {
4563 struct return_value_word lo;
4564 struct return_value_word hi;
4565 return_value_location (valtype, &hi, &lo);
4566
4567 memcpy (valbuf + lo.buf_offset,
4568 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4569 lo.len);
4570
4571 if (hi.len > 0)
4572 memcpy (valbuf + hi.buf_offset,
4573 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4574 hi.len);
4575 }
4576
4577 static void
4578 mips_o64_extract_return_value (struct type *valtype,
4579 char regbuf[REGISTER_BYTES],
4580 char *valbuf)
4581 {
4582 struct return_value_word lo;
4583 struct return_value_word hi;
4584 return_value_location (valtype, &hi, &lo);
4585
4586 memcpy (valbuf + lo.buf_offset,
4587 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4588 lo.len);
4589
4590 if (hi.len > 0)
4591 memcpy (valbuf + hi.buf_offset,
4592 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4593 hi.len);
4594 }
4595
4596 /* Given a return value in `valbuf' with a type `valtype', write it's
4597 value into the appropriate register. */
4598
4599 static void
4600 mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4601 {
4602 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4603 struct return_value_word lo;
4604 struct return_value_word hi;
4605 return_value_location (valtype, &hi, &lo);
4606
4607 memset (raw_buffer, 0, sizeof (raw_buffer));
4608 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4609 write_register_bytes (REGISTER_BYTE (lo.reg),
4610 raw_buffer,
4611 REGISTER_RAW_SIZE (lo.reg));
4612
4613 if (hi.len > 0)
4614 {
4615 memset (raw_buffer, 0, sizeof (raw_buffer));
4616 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4617 write_register_bytes (REGISTER_BYTE (hi.reg),
4618 raw_buffer,
4619 REGISTER_RAW_SIZE (hi.reg));
4620 }
4621 }
4622
4623 static void
4624 mips_o64_store_return_value (struct type *valtype, char *valbuf)
4625 {
4626 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4627 struct return_value_word lo;
4628 struct return_value_word hi;
4629 return_value_location (valtype, &hi, &lo);
4630
4631 memset (raw_buffer, 0, sizeof (raw_buffer));
4632 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4633 write_register_bytes (REGISTER_BYTE (lo.reg),
4634 raw_buffer,
4635 REGISTER_RAW_SIZE (lo.reg));
4636
4637 if (hi.len > 0)
4638 {
4639 memset (raw_buffer, 0, sizeof (raw_buffer));
4640 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4641 write_register_bytes (REGISTER_BYTE (hi.reg),
4642 raw_buffer,
4643 REGISTER_RAW_SIZE (hi.reg));
4644 }
4645 }
4646
4647 /* O32 ABI stuff. */
4648
4649 static void
4650 mips_o32_xfer_return_value (struct type *type,
4651 struct regcache *regcache,
4652 bfd_byte *in, const bfd_byte *out)
4653 {
4654 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4655 if (TYPE_CODE (type) == TYPE_CODE_FLT
4656 && TYPE_LENGTH (type) == 4
4657 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4658 {
4659 /* A single-precision floating-point value. It fits in the
4660 least significant part of FP0. */
4661 if (mips_debug)
4662 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4663 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4664 TARGET_BYTE_ORDER, in, out, 0);
4665 }
4666 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4667 && TYPE_LENGTH (type) == 8
4668 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4669 {
4670 /* A double-precision floating-point value. It fits in the
4671 least significant part of FP0/FP1 but with byte ordering
4672 based on the target (???). */
4673 if (mips_debug)
4674 fprintf_unfiltered (gdb_stderr, "Return float in $fp0/$fp1\n");
4675 switch (TARGET_BYTE_ORDER)
4676 {
4677 case BFD_ENDIAN_LITTLE:
4678 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4679 TARGET_BYTE_ORDER, in, out, 0);
4680 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4681 TARGET_BYTE_ORDER, in, out, 4);
4682 break;
4683 case BFD_ENDIAN_BIG:
4684 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4685 TARGET_BYTE_ORDER, in, out, 0);
4686 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4687 TARGET_BYTE_ORDER, in, out, 4);
4688 break;
4689 default:
4690 internal_error (__FILE__, __LINE__, "bad switch");
4691 }
4692 }
4693 #if 0
4694 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4695 && TYPE_NFIELDS (type) <= 2
4696 && TYPE_NFIELDS (type) >= 1
4697 && ((TYPE_NFIELDS (type) == 1
4698 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4699 == TYPE_CODE_FLT))
4700 || (TYPE_NFIELDS (type) == 2
4701 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4702 == TYPE_CODE_FLT)
4703 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4704 == TYPE_CODE_FLT)))
4705 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4706 {
4707 /* A struct that contains one or two floats. Each value is part
4708 in the least significant part of their floating point
4709 register.. */
4710 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4711 int regnum;
4712 int field;
4713 for (field = 0, regnum = FP0_REGNUM;
4714 field < TYPE_NFIELDS (type);
4715 field++, regnum += 2)
4716 {
4717 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4718 / TARGET_CHAR_BIT);
4719 if (mips_debug)
4720 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4721 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4722 TARGET_BYTE_ORDER, in, out, offset);
4723 }
4724 }
4725 #endif
4726 #if 0
4727 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4728 || TYPE_CODE (type) == TYPE_CODE_UNION)
4729 {
4730 /* A structure or union. Extract the left justified value,
4731 regardless of the byte order. I.e. DO NOT USE
4732 mips_xfer_lower. */
4733 int offset;
4734 int regnum;
4735 for (offset = 0, regnum = V0_REGNUM;
4736 offset < TYPE_LENGTH (type);
4737 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4738 {
4739 int xfer = REGISTER_RAW_SIZE (regnum);
4740 if (offset + xfer > TYPE_LENGTH (type))
4741 xfer = TYPE_LENGTH (type) - offset;
4742 if (mips_debug)
4743 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4744 offset, xfer, regnum);
4745 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4746 in, out, offset);
4747 }
4748 }
4749 #endif
4750 else
4751 {
4752 /* A scalar extract each part but least-significant-byte
4753 justified. o32 thinks registers are 4 byte, regardless of
4754 the ISA. mips_stack_argsize controls this. */
4755 int offset;
4756 int regnum;
4757 for (offset = 0, regnum = V0_REGNUM;
4758 offset < TYPE_LENGTH (type);
4759 offset += mips_stack_argsize (), regnum++)
4760 {
4761 int xfer = mips_stack_argsize ();
4762 int pos = 0;
4763 if (offset + xfer > TYPE_LENGTH (type))
4764 xfer = TYPE_LENGTH (type) - offset;
4765 if (mips_debug)
4766 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4767 offset, xfer, regnum);
4768 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4769 in, out, offset);
4770 }
4771 }
4772 }
4773
4774 static void
4775 mips_o32_extract_return_value (struct type *type,
4776 struct regcache *regcache,
4777 char *valbuf)
4778 {
4779 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4780 }
4781
4782 static void
4783 mips_o32_store_return_value (struct type *type, char *valbuf)
4784 {
4785 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4786 }
4787
4788 /* N32/N44 ABI stuff. */
4789
4790 static void
4791 mips_n32n64_xfer_return_value (struct type *type,
4792 struct regcache *regcache,
4793 bfd_byte *in, const bfd_byte *out)
4794 {
4795 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4796 if (TYPE_CODE (type) == TYPE_CODE_FLT
4797 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4798 {
4799 /* A floating-point value belongs in the least significant part
4800 of FP0. */
4801 if (mips_debug)
4802 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4803 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4804 TARGET_BYTE_ORDER, in, out, 0);
4805 }
4806 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4807 && TYPE_NFIELDS (type) <= 2
4808 && TYPE_NFIELDS (type) >= 1
4809 && ((TYPE_NFIELDS (type) == 1
4810 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4811 == TYPE_CODE_FLT))
4812 || (TYPE_NFIELDS (type) == 2
4813 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4814 == TYPE_CODE_FLT)
4815 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4816 == TYPE_CODE_FLT)))
4817 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4818 {
4819 /* A struct that contains one or two floats. Each value is part
4820 in the least significant part of their floating point
4821 register.. */
4822 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4823 int regnum;
4824 int field;
4825 for (field = 0, regnum = FP0_REGNUM;
4826 field < TYPE_NFIELDS (type);
4827 field++, regnum += 2)
4828 {
4829 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4830 / TARGET_CHAR_BIT);
4831 if (mips_debug)
4832 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4833 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4834 TARGET_BYTE_ORDER, in, out, offset);
4835 }
4836 }
4837 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4838 || TYPE_CODE (type) == TYPE_CODE_UNION)
4839 {
4840 /* A structure or union. Extract the left justified value,
4841 regardless of the byte order. I.e. DO NOT USE
4842 mips_xfer_lower. */
4843 int offset;
4844 int regnum;
4845 for (offset = 0, regnum = V0_REGNUM;
4846 offset < TYPE_LENGTH (type);
4847 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4848 {
4849 int xfer = REGISTER_RAW_SIZE (regnum);
4850 if (offset + xfer > TYPE_LENGTH (type))
4851 xfer = TYPE_LENGTH (type) - offset;
4852 if (mips_debug)
4853 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4854 offset, xfer, regnum);
4855 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4856 in, out, offset);
4857 }
4858 }
4859 else
4860 {
4861 /* A scalar extract each part but least-significant-byte
4862 justified. */
4863 int offset;
4864 int regnum;
4865 for (offset = 0, regnum = V0_REGNUM;
4866 offset < TYPE_LENGTH (type);
4867 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4868 {
4869 int xfer = REGISTER_RAW_SIZE (regnum);
4870 int pos = 0;
4871 if (offset + xfer > TYPE_LENGTH (type))
4872 xfer = TYPE_LENGTH (type) - offset;
4873 if (mips_debug)
4874 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4875 offset, xfer, regnum);
4876 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4877 in, out, offset);
4878 }
4879 }
4880 }
4881
4882 static void
4883 mips_n32n64_extract_return_value (struct type *type,
4884 struct regcache *regcache,
4885 char *valbuf)
4886 {
4887 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
4888 }
4889
4890 static void
4891 mips_n32n64_store_return_value (struct type *type, char *valbuf)
4892 {
4893 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
4894 }
4895
4896 static void
4897 mips_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4898 {
4899 /* Nothing to do -- push_arguments does all the work. */
4900 }
4901
4902 static CORE_ADDR
4903 mips_extract_struct_value_address (struct regcache *ignore)
4904 {
4905 /* FIXME: This will only work at random. The caller passes the
4906 struct_return address in V0, but it is not preserved. It may
4907 still be there, or this may be a random value. */
4908 return read_register (V0_REGNUM);
4909 }
4910
4911 /* Exported procedure: Is PC in the signal trampoline code */
4912
4913 static int
4914 mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
4915 {
4916 if (sigtramp_address == 0)
4917 fixup_sigtramp ();
4918 return (pc >= sigtramp_address && pc < sigtramp_end);
4919 }
4920
4921 /* Root of all "set mips "/"show mips " commands. This will eventually be
4922 used for all MIPS-specific commands. */
4923
4924 static void
4925 show_mips_command (char *args, int from_tty)
4926 {
4927 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4928 }
4929
4930 static void
4931 set_mips_command (char *args, int from_tty)
4932 {
4933 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
4934 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4935 }
4936
4937 /* Commands to show/set the MIPS FPU type. */
4938
4939 static void
4940 show_mipsfpu_command (char *args, int from_tty)
4941 {
4942 char *fpu;
4943 switch (MIPS_FPU_TYPE)
4944 {
4945 case MIPS_FPU_SINGLE:
4946 fpu = "single-precision";
4947 break;
4948 case MIPS_FPU_DOUBLE:
4949 fpu = "double-precision";
4950 break;
4951 case MIPS_FPU_NONE:
4952 fpu = "absent (none)";
4953 break;
4954 default:
4955 internal_error (__FILE__, __LINE__, "bad switch");
4956 }
4957 if (mips_fpu_type_auto)
4958 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4959 fpu);
4960 else
4961 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
4962 fpu);
4963 }
4964
4965
4966 static void
4967 set_mipsfpu_command (char *args, int from_tty)
4968 {
4969 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4970 show_mipsfpu_command (args, from_tty);
4971 }
4972
4973 static void
4974 set_mipsfpu_single_command (char *args, int from_tty)
4975 {
4976 mips_fpu_type = MIPS_FPU_SINGLE;
4977 mips_fpu_type_auto = 0;
4978 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
4979 }
4980
4981 static void
4982 set_mipsfpu_double_command (char *args, int from_tty)
4983 {
4984 mips_fpu_type = MIPS_FPU_DOUBLE;
4985 mips_fpu_type_auto = 0;
4986 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
4987 }
4988
4989 static void
4990 set_mipsfpu_none_command (char *args, int from_tty)
4991 {
4992 mips_fpu_type = MIPS_FPU_NONE;
4993 mips_fpu_type_auto = 0;
4994 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
4995 }
4996
4997 static void
4998 set_mipsfpu_auto_command (char *args, int from_tty)
4999 {
5000 mips_fpu_type_auto = 1;
5001 }
5002
5003 /* Command to set the processor type. */
5004
5005 void
5006 mips_set_processor_type_command (char *args, int from_tty)
5007 {
5008 int i;
5009
5010 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5011 {
5012 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5013 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5014 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5015
5016 /* Restore the value. */
5017 tmp_mips_processor_type = xstrdup (mips_processor_type);
5018
5019 return;
5020 }
5021
5022 if (!mips_set_processor_type (tmp_mips_processor_type))
5023 {
5024 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5025 /* Restore its value. */
5026 tmp_mips_processor_type = xstrdup (mips_processor_type);
5027 }
5028 }
5029
5030 static void
5031 mips_show_processor_type_command (char *args, int from_tty)
5032 {
5033 }
5034
5035 /* Modify the actual processor type. */
5036
5037 int
5038 mips_set_processor_type (char *str)
5039 {
5040 int i;
5041
5042 if (str == NULL)
5043 return 0;
5044
5045 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5046 {
5047 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5048 {
5049 mips_processor_type = str;
5050 mips_processor_reg_names = mips_processor_type_table[i].regnames;
5051 return 1;
5052 /* FIXME tweak fpu flag too */
5053 }
5054 }
5055
5056 return 0;
5057 }
5058
5059 /* Attempt to identify the particular processor model by reading the
5060 processor id. */
5061
5062 char *
5063 mips_read_processor_type (void)
5064 {
5065 CORE_ADDR prid;
5066
5067 prid = read_register (PRID_REGNUM);
5068
5069 if ((prid & ~0xf) == 0x700)
5070 return savestring ("r3041", strlen ("r3041"));
5071
5072 return NULL;
5073 }
5074
5075 /* Just like reinit_frame_cache, but with the right arguments to be
5076 callable as an sfunc. */
5077
5078 static void
5079 reinit_frame_cache_sfunc (char *args, int from_tty,
5080 struct cmd_list_element *c)
5081 {
5082 reinit_frame_cache ();
5083 }
5084
5085 int
5086 gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
5087 {
5088 mips_extra_func_info_t proc_desc;
5089
5090 /* Search for the function containing this address. Set the low bit
5091 of the address when searching, in case we were given an even address
5092 that is the start of a 16-bit function. If we didn't do this,
5093 the search would fail because the symbol table says the function
5094 starts at an odd address, i.e. 1 byte past the given address. */
5095 memaddr = ADDR_BITS_REMOVE (memaddr);
5096 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
5097
5098 /* Make an attempt to determine if this is a 16-bit function. If
5099 the procedure descriptor exists and the address therein is odd,
5100 it's definitely a 16-bit function. Otherwise, we have to just
5101 guess that if the address passed in is odd, it's 16-bits. */
5102 if (proc_desc)
5103 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
5104 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
5105 else
5106 info->mach = pc_is_mips16 (memaddr) ?
5107 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
5108
5109 /* Round down the instruction address to the appropriate boundary. */
5110 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
5111
5112 /* Call the appropriate disassembler based on the target endian-ness. */
5113 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5114 return print_insn_big_mips (memaddr, info);
5115 else
5116 return print_insn_little_mips (memaddr, info);
5117 }
5118
5119 /* Old-style breakpoint macros.
5120 The IDT board uses an unusual breakpoint value, and sometimes gets
5121 confused when it sees the usual MIPS breakpoint instruction. */
5122
5123 #define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
5124 #define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
5125 #define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
5126 #define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
5127 #define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
5128 #define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
5129 #define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
5130 #define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
5131
5132 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5133 counter value to determine whether a 16- or 32-bit breakpoint should be
5134 used. It returns a pointer to a string of bytes that encode a breakpoint
5135 instruction, stores the length of the string to *lenptr, and adjusts pc
5136 (if necessary) to point to the actual memory location where the
5137 breakpoint should be inserted. */
5138
5139 static const unsigned char *
5140 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
5141 {
5142 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5143 {
5144 if (pc_is_mips16 (*pcptr))
5145 {
5146 static unsigned char mips16_big_breakpoint[] =
5147 MIPS16_BIG_BREAKPOINT;
5148 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
5149 *lenptr = sizeof (mips16_big_breakpoint);
5150 return mips16_big_breakpoint;
5151 }
5152 else
5153 {
5154 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
5155 static unsigned char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
5156 static unsigned char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
5157
5158 *lenptr = sizeof (big_breakpoint);
5159
5160 if (strcmp (target_shortname, "mips") == 0)
5161 return idt_big_breakpoint;
5162 else if (strcmp (target_shortname, "ddb") == 0
5163 || strcmp (target_shortname, "pmon") == 0
5164 || strcmp (target_shortname, "lsi") == 0)
5165 return pmon_big_breakpoint;
5166 else
5167 return big_breakpoint;
5168 }
5169 }
5170 else
5171 {
5172 if (pc_is_mips16 (*pcptr))
5173 {
5174 static unsigned char mips16_little_breakpoint[] =
5175 MIPS16_LITTLE_BREAKPOINT;
5176 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
5177 *lenptr = sizeof (mips16_little_breakpoint);
5178 return mips16_little_breakpoint;
5179 }
5180 else
5181 {
5182 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
5183 static unsigned char pmon_little_breakpoint[] =
5184 PMON_LITTLE_BREAKPOINT;
5185 static unsigned char idt_little_breakpoint[] =
5186 IDT_LITTLE_BREAKPOINT;
5187
5188 *lenptr = sizeof (little_breakpoint);
5189
5190 if (strcmp (target_shortname, "mips") == 0)
5191 return idt_little_breakpoint;
5192 else if (strcmp (target_shortname, "ddb") == 0
5193 || strcmp (target_shortname, "pmon") == 0
5194 || strcmp (target_shortname, "lsi") == 0)
5195 return pmon_little_breakpoint;
5196 else
5197 return little_breakpoint;
5198 }
5199 }
5200 }
5201
5202 /* If PC is in a mips16 call or return stub, return the address of the target
5203 PC, which is either the callee or the caller. There are several
5204 cases which must be handled:
5205
5206 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5207 target PC is in $31 ($ra).
5208 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5209 and the target PC is in $2.
5210 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5211 before the jal instruction, this is effectively a call stub
5212 and the the target PC is in $2. Otherwise this is effectively
5213 a return stub and the target PC is in $18.
5214
5215 See the source code for the stubs in gcc/config/mips/mips16.S for
5216 gory details.
5217
5218 This function implements the SKIP_TRAMPOLINE_CODE macro.
5219 */
5220
5221 CORE_ADDR
5222 mips_skip_stub (CORE_ADDR pc)
5223 {
5224 char *name;
5225 CORE_ADDR start_addr;
5226
5227 /* Find the starting address and name of the function containing the PC. */
5228 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5229 return 0;
5230
5231 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5232 target PC is in $31 ($ra). */
5233 if (strcmp (name, "__mips16_ret_sf") == 0
5234 || strcmp (name, "__mips16_ret_df") == 0)
5235 return read_signed_register (RA_REGNUM);
5236
5237 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5238 {
5239 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5240 and the target PC is in $2. */
5241 if (name[19] >= '0' && name[19] <= '9')
5242 return read_signed_register (2);
5243
5244 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5245 before the jal instruction, this is effectively a call stub
5246 and the the target PC is in $2. Otherwise this is effectively
5247 a return stub and the target PC is in $18. */
5248 else if (name[19] == 's' || name[19] == 'd')
5249 {
5250 if (pc == start_addr)
5251 {
5252 /* Check if the target of the stub is a compiler-generated
5253 stub. Such a stub for a function bar might have a name
5254 like __fn_stub_bar, and might look like this:
5255 mfc1 $4,$f13
5256 mfc1 $5,$f12
5257 mfc1 $6,$f15
5258 mfc1 $7,$f14
5259 la $1,bar (becomes a lui/addiu pair)
5260 jr $1
5261 So scan down to the lui/addi and extract the target
5262 address from those two instructions. */
5263
5264 CORE_ADDR target_pc = read_signed_register (2);
5265 t_inst inst;
5266 int i;
5267
5268 /* See if the name of the target function is __fn_stub_*. */
5269 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5270 return target_pc;
5271 if (strncmp (name, "__fn_stub_", 10) != 0
5272 && strcmp (name, "etext") != 0
5273 && strcmp (name, "_etext") != 0)
5274 return target_pc;
5275
5276 /* Scan through this _fn_stub_ code for the lui/addiu pair.
5277 The limit on the search is arbitrarily set to 20
5278 instructions. FIXME. */
5279 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5280 {
5281 inst = mips_fetch_instruction (target_pc);
5282 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5283 pc = (inst << 16) & 0xffff0000; /* high word */
5284 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5285 return pc | (inst & 0xffff); /* low word */
5286 }
5287
5288 /* Couldn't find the lui/addui pair, so return stub address. */
5289 return target_pc;
5290 }
5291 else
5292 /* This is the 'return' part of a call stub. The return
5293 address is in $r18. */
5294 return read_signed_register (18);
5295 }
5296 }
5297 return 0; /* not a stub */
5298 }
5299
5300
5301 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5302 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5303
5304 int
5305 mips_in_call_stub (CORE_ADDR pc, char *name)
5306 {
5307 CORE_ADDR start_addr;
5308
5309 /* Find the starting address of the function containing the PC. If the
5310 caller didn't give us a name, look it up at the same time. */
5311 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5312 return 0;
5313
5314 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5315 {
5316 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5317 if (name[19] >= '0' && name[19] <= '9')
5318 return 1;
5319 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5320 before the jal instruction, this is effectively a call stub. */
5321 else if (name[19] == 's' || name[19] == 'd')
5322 return pc == start_addr;
5323 }
5324
5325 return 0; /* not a stub */
5326 }
5327
5328
5329 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5330 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5331
5332 int
5333 mips_in_return_stub (CORE_ADDR pc, char *name)
5334 {
5335 CORE_ADDR start_addr;
5336
5337 /* Find the starting address of the function containing the PC. */
5338 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5339 return 0;
5340
5341 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5342 if (strcmp (name, "__mips16_ret_sf") == 0
5343 || strcmp (name, "__mips16_ret_df") == 0)
5344 return 1;
5345
5346 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
5347 i.e. after the jal instruction, this is effectively a return stub. */
5348 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5349 && (name[19] == 's' || name[19] == 'd')
5350 && pc != start_addr)
5351 return 1;
5352
5353 return 0; /* not a stub */
5354 }
5355
5356
5357 /* Return non-zero if the PC is in a library helper function that should
5358 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5359
5360 int
5361 mips_ignore_helper (CORE_ADDR pc)
5362 {
5363 char *name;
5364
5365 /* Find the starting address and name of the function containing the PC. */
5366 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5367 return 0;
5368
5369 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5370 that we want to ignore. */
5371 return (strcmp (name, "__mips16_ret_sf") == 0
5372 || strcmp (name, "__mips16_ret_df") == 0);
5373 }
5374
5375
5376 /* Return a location where we can set a breakpoint that will be hit
5377 when an inferior function call returns. This is normally the
5378 program's entry point. Executables that don't have an entry
5379 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
5380 whose address is the location where the breakpoint should be placed. */
5381
5382 static CORE_ADDR
5383 mips_call_dummy_address (void)
5384 {
5385 struct minimal_symbol *sym;
5386
5387 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
5388 if (sym)
5389 return SYMBOL_VALUE_ADDRESS (sym);
5390 else
5391 return entry_point_address ();
5392 }
5393
5394
5395 /* If the current gcc for this target does not produce correct debugging
5396 information for float parameters, both prototyped and unprototyped, then
5397 define this macro. This forces gdb to always assume that floats are
5398 passed as doubles and then converted in the callee.
5399
5400 For the mips chip, it appears that the debug info marks the parameters as
5401 floats regardless of whether the function is prototyped, but the actual
5402 values are passed as doubles for the non-prototyped case and floats for
5403 the prototyped case. Thus we choose to make the non-prototyped case work
5404 for C and break the prototyped case, since the non-prototyped case is
5405 probably much more common. (FIXME). */
5406
5407 static int
5408 mips_coerce_float_to_double (struct type *formal, struct type *actual)
5409 {
5410 return current_language->la_language == language_c;
5411 }
5412
5413 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5414 the register stored on the stack (32) is different to its real raw
5415 size (64). The below ensures that registers are fetched from the
5416 stack using their ABI size and then stored into the RAW_BUFFER
5417 using their raw size.
5418
5419 The alternative to adding this function would be to add an ABI
5420 macro - REGISTER_STACK_SIZE(). */
5421
5422 static void
5423 mips_get_saved_register (char *raw_buffer,
5424 int *optimized,
5425 CORE_ADDR *addrp,
5426 struct frame_info *frame,
5427 int regnum,
5428 enum lval_type *lval)
5429 {
5430 CORE_ADDR addr;
5431
5432 if (!target_has_registers)
5433 error ("No registers.");
5434
5435 /* Normal systems don't optimize out things with register numbers. */
5436 if (optimized != NULL)
5437 *optimized = 0;
5438 addr = find_saved_register (frame, regnum);
5439 if (addr != 0)
5440 {
5441 if (lval != NULL)
5442 *lval = lval_memory;
5443 if (regnum == SP_REGNUM)
5444 {
5445 if (raw_buffer != NULL)
5446 {
5447 /* Put it back in target format. */
5448 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
5449 (LONGEST) addr);
5450 }
5451 if (addrp != NULL)
5452 *addrp = 0;
5453 return;
5454 }
5455 if (raw_buffer != NULL)
5456 {
5457 LONGEST val;
5458 if (regnum < 32)
5459 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
5460 saved. */
5461 val = read_memory_integer (addr, MIPS_SAVED_REGSIZE);
5462 else
5463 val = read_memory_integer (addr, REGISTER_RAW_SIZE (regnum));
5464 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
5465 }
5466 }
5467 else
5468 {
5469 if (lval != NULL)
5470 *lval = lval_register;
5471 addr = REGISTER_BYTE (regnum);
5472 if (raw_buffer != NULL)
5473 read_register_gen (regnum, raw_buffer);
5474 }
5475 if (addrp != NULL)
5476 *addrp = addr;
5477 }
5478
5479 /* Immediately after a function call, return the saved pc.
5480 Can't always go through the frames for this because on some machines
5481 the new frame is not set up until the new function executes
5482 some instructions. */
5483
5484 static CORE_ADDR
5485 mips_saved_pc_after_call (struct frame_info *frame)
5486 {
5487 return read_signed_register (RA_REGNUM);
5488 }
5489
5490
5491 /* Convert a dbx stab register number (from `r' declaration) to a gdb
5492 REGNUM */
5493
5494 static int
5495 mips_stab_reg_to_regnum (int num)
5496 {
5497 if (num < 32)
5498 return num;
5499 else
5500 return num + FP0_REGNUM - 38;
5501 }
5502
5503 /* Convert a ecoff register number to a gdb REGNUM */
5504
5505 static int
5506 mips_ecoff_reg_to_regnum (int num)
5507 {
5508 if (num < 32)
5509 return num;
5510 else
5511 return num + FP0_REGNUM - 32;
5512 }
5513
5514 /* Convert an integer into an address. By first converting the value
5515 into a pointer and then extracting it signed, the address is
5516 guarenteed to be correctly sign extended. */
5517
5518 static CORE_ADDR
5519 mips_integer_to_address (struct type *type, void *buf)
5520 {
5521 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5522 LONGEST val = unpack_long (type, buf);
5523 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5524 return extract_signed_integer (tmp,
5525 TYPE_LENGTH (builtin_type_void_data_ptr));
5526 }
5527
5528 static void
5529 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5530 {
5531 enum mips_abi *abip = (enum mips_abi *) obj;
5532 const char *name = bfd_get_section_name (abfd, sect);
5533
5534 if (*abip != MIPS_ABI_UNKNOWN)
5535 return;
5536
5537 if (strncmp (name, ".mdebug.", 8) != 0)
5538 return;
5539
5540 if (strcmp (name, ".mdebug.abi32") == 0)
5541 *abip = MIPS_ABI_O32;
5542 else if (strcmp (name, ".mdebug.abiN32") == 0)
5543 *abip = MIPS_ABI_N32;
5544 else if (strcmp (name, ".mdebug.abiN64") == 0)
5545 *abip = MIPS_ABI_N64;
5546 else if (strcmp (name, ".mdebug.abiO64") == 0)
5547 *abip = MIPS_ABI_O64;
5548 else if (strcmp (name, ".mdebug.eabi32") == 0)
5549 *abip = MIPS_ABI_EABI32;
5550 else if (strcmp (name, ".mdebug.eabi64") == 0)
5551 *abip = MIPS_ABI_EABI64;
5552 else
5553 warning ("unsupported ABI %s.", name + 8);
5554 }
5555
5556 static enum mips_abi
5557 global_mips_abi (void)
5558 {
5559 int i;
5560
5561 for (i = 0; mips_abi_strings[i] != NULL; i++)
5562 if (mips_abi_strings[i] == mips_abi_string)
5563 return (enum mips_abi) i;
5564
5565 internal_error (__FILE__, __LINE__,
5566 "unknown ABI string");
5567 }
5568
5569 static struct gdbarch *
5570 mips_gdbarch_init (struct gdbarch_info info,
5571 struct gdbarch_list *arches)
5572 {
5573 static LONGEST mips_call_dummy_words[] =
5574 {0};
5575 struct gdbarch *gdbarch;
5576 struct gdbarch_tdep *tdep;
5577 int elf_flags;
5578 enum mips_abi mips_abi, found_abi, wanted_abi;
5579 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
5580
5581 /* Reset the disassembly info, in case it was set to something
5582 non-default. */
5583 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
5584 tm_print_insn_info.arch = bfd_arch_unknown;
5585 tm_print_insn_info.mach = 0;
5586
5587 elf_flags = 0;
5588
5589 if (info.abfd)
5590 {
5591 /* First of all, extract the elf_flags, if available. */
5592 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5593 elf_flags = elf_elfheader (info.abfd)->e_flags;
5594
5595 /* Try to determine the OS ABI of the object we are loading. If
5596 we end up with `unknown', just leave it that way. */
5597 osabi = gdbarch_lookup_osabi (info.abfd);
5598 }
5599
5600 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5601 switch ((elf_flags & EF_MIPS_ABI))
5602 {
5603 case E_MIPS_ABI_O32:
5604 mips_abi = MIPS_ABI_O32;
5605 break;
5606 case E_MIPS_ABI_O64:
5607 mips_abi = MIPS_ABI_O64;
5608 break;
5609 case E_MIPS_ABI_EABI32:
5610 mips_abi = MIPS_ABI_EABI32;
5611 break;
5612 case E_MIPS_ABI_EABI64:
5613 mips_abi = MIPS_ABI_EABI64;
5614 break;
5615 default:
5616 if ((elf_flags & EF_MIPS_ABI2))
5617 mips_abi = MIPS_ABI_N32;
5618 else
5619 mips_abi = MIPS_ABI_UNKNOWN;
5620 break;
5621 }
5622
5623 /* GCC creates a pseudo-section whose name describes the ABI. */
5624 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5625 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5626
5627 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5628 Use the ABI from the last architecture if there is one. */
5629 if (info.abfd == NULL && arches != NULL)
5630 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5631
5632 /* Try the architecture for any hint of the correct ABI. */
5633 if (mips_abi == MIPS_ABI_UNKNOWN
5634 && info.bfd_arch_info != NULL
5635 && info.bfd_arch_info->arch == bfd_arch_mips)
5636 {
5637 switch (info.bfd_arch_info->mach)
5638 {
5639 case bfd_mach_mips3900:
5640 mips_abi = MIPS_ABI_EABI32;
5641 break;
5642 case bfd_mach_mips4100:
5643 case bfd_mach_mips5000:
5644 mips_abi = MIPS_ABI_EABI64;
5645 break;
5646 case bfd_mach_mips8000:
5647 case bfd_mach_mips10000:
5648 /* On Irix, ELF64 executables use the N64 ABI. The
5649 pseudo-sections which describe the ABI aren't present
5650 on IRIX. (Even for executables created by gcc.) */
5651 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5652 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5653 mips_abi = MIPS_ABI_N64;
5654 else
5655 mips_abi = MIPS_ABI_N32;
5656 break;
5657 }
5658 }
5659
5660 if (mips_abi == MIPS_ABI_UNKNOWN)
5661 mips_abi = MIPS_ABI_O32;
5662
5663 /* Now that we have found what the ABI for this binary would be,
5664 check whether the user is overriding it. */
5665 found_abi = mips_abi;
5666 wanted_abi = global_mips_abi ();
5667 if (wanted_abi != MIPS_ABI_UNKNOWN)
5668 mips_abi = wanted_abi;
5669
5670 if (gdbarch_debug)
5671 {
5672 fprintf_unfiltered (gdb_stdlog,
5673 "mips_gdbarch_init: elf_flags = 0x%08x\n",
5674 elf_flags);
5675 fprintf_unfiltered (gdb_stdlog,
5676 "mips_gdbarch_init: mips_abi = %d\n",
5677 mips_abi);
5678 fprintf_unfiltered (gdb_stdlog,
5679 "mips_gdbarch_init: found_mips_abi = %d\n",
5680 found_abi);
5681 }
5682
5683 /* try to find a pre-existing architecture */
5684 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5685 arches != NULL;
5686 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5687 {
5688 /* MIPS needs to be pedantic about which ABI the object is
5689 using. */
5690 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5691 continue;
5692 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5693 continue;
5694 if (gdbarch_tdep (arches->gdbarch)->osabi == osabi)
5695 return arches->gdbarch;
5696 }
5697
5698 /* Need a new architecture. Fill in a target specific vector. */
5699 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5700 gdbarch = gdbarch_alloc (&info, tdep);
5701 tdep->elf_flags = elf_flags;
5702 tdep->osabi = osabi;
5703
5704 /* Initially set everything according to the default ABI/ISA. */
5705 set_gdbarch_short_bit (gdbarch, 16);
5706 set_gdbarch_int_bit (gdbarch, 32);
5707 set_gdbarch_float_bit (gdbarch, 32);
5708 set_gdbarch_double_bit (gdbarch, 64);
5709 set_gdbarch_long_double_bit (gdbarch, 64);
5710 set_gdbarch_register_raw_size (gdbarch, mips_register_raw_size);
5711 set_gdbarch_max_register_raw_size (gdbarch, 8);
5712 set_gdbarch_max_register_virtual_size (gdbarch, 8);
5713 tdep->found_abi = found_abi;
5714 tdep->mips_abi = mips_abi;
5715
5716 set_gdbarch_elf_make_msymbol_special (gdbarch,
5717 mips_elf_make_msymbol_special);
5718
5719 switch (mips_abi)
5720 {
5721 case MIPS_ABI_O32:
5722 set_gdbarch_push_arguments (gdbarch, mips_o32_push_arguments);
5723 set_gdbarch_store_return_value (gdbarch, mips_o32_store_return_value);
5724 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
5725 tdep->mips_default_saved_regsize = 4;
5726 tdep->mips_default_stack_argsize = 4;
5727 tdep->mips_fp_register_double = 0;
5728 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5729 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5730 tdep->gdb_target_is_mips64 = 0;
5731 tdep->default_mask_address_p = 0;
5732 set_gdbarch_long_bit (gdbarch, 32);
5733 set_gdbarch_ptr_bit (gdbarch, 32);
5734 set_gdbarch_long_long_bit (gdbarch, 64);
5735 set_gdbarch_reg_struct_has_addr (gdbarch,
5736 mips_o32_reg_struct_has_addr);
5737 set_gdbarch_use_struct_convention (gdbarch,
5738 mips_o32_use_struct_convention);
5739 break;
5740 case MIPS_ABI_O64:
5741 set_gdbarch_push_arguments (gdbarch, mips_o64_push_arguments);
5742 set_gdbarch_store_return_value (gdbarch, mips_o64_store_return_value);
5743 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
5744 tdep->mips_default_saved_regsize = 8;
5745 tdep->mips_default_stack_argsize = 8;
5746 tdep->mips_fp_register_double = 1;
5747 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5748 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5749 tdep->gdb_target_is_mips64 = 1;
5750 tdep->default_mask_address_p = 0;
5751 set_gdbarch_long_bit (gdbarch, 32);
5752 set_gdbarch_ptr_bit (gdbarch, 32);
5753 set_gdbarch_long_long_bit (gdbarch, 64);
5754 set_gdbarch_reg_struct_has_addr (gdbarch,
5755 mips_o32_reg_struct_has_addr);
5756 set_gdbarch_use_struct_convention (gdbarch,
5757 mips_o32_use_struct_convention);
5758 break;
5759 case MIPS_ABI_EABI32:
5760 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
5761 set_gdbarch_store_return_value (gdbarch, mips_eabi_store_return_value);
5762 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5763 tdep->mips_default_saved_regsize = 4;
5764 tdep->mips_default_stack_argsize = 4;
5765 tdep->mips_fp_register_double = 0;
5766 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5767 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5768 tdep->gdb_target_is_mips64 = 0;
5769 tdep->default_mask_address_p = 0;
5770 set_gdbarch_long_bit (gdbarch, 32);
5771 set_gdbarch_ptr_bit (gdbarch, 32);
5772 set_gdbarch_long_long_bit (gdbarch, 64);
5773 set_gdbarch_reg_struct_has_addr (gdbarch,
5774 mips_eabi_reg_struct_has_addr);
5775 set_gdbarch_use_struct_convention (gdbarch,
5776 mips_eabi_use_struct_convention);
5777 break;
5778 case MIPS_ABI_EABI64:
5779 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
5780 set_gdbarch_store_return_value (gdbarch, mips_eabi_store_return_value);
5781 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5782 tdep->mips_default_saved_regsize = 8;
5783 tdep->mips_default_stack_argsize = 8;
5784 tdep->mips_fp_register_double = 1;
5785 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5786 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5787 tdep->gdb_target_is_mips64 = 1;
5788 tdep->default_mask_address_p = 0;
5789 set_gdbarch_long_bit (gdbarch, 64);
5790 set_gdbarch_ptr_bit (gdbarch, 64);
5791 set_gdbarch_long_long_bit (gdbarch, 64);
5792 set_gdbarch_reg_struct_has_addr (gdbarch,
5793 mips_eabi_reg_struct_has_addr);
5794 set_gdbarch_use_struct_convention (gdbarch,
5795 mips_eabi_use_struct_convention);
5796 break;
5797 case MIPS_ABI_N32:
5798 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
5799 set_gdbarch_store_return_value (gdbarch, mips_n32n64_store_return_value);
5800 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5801 tdep->mips_default_saved_regsize = 8;
5802 tdep->mips_default_stack_argsize = 8;
5803 tdep->mips_fp_register_double = 1;
5804 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5805 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5806 tdep->gdb_target_is_mips64 = 1;
5807 tdep->default_mask_address_p = 0;
5808 set_gdbarch_long_bit (gdbarch, 32);
5809 set_gdbarch_ptr_bit (gdbarch, 32);
5810 set_gdbarch_long_long_bit (gdbarch, 64);
5811
5812 /* Set up the disassembler info, so that we get the right
5813 register names from libopcodes. */
5814 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5815 tm_print_insn_info.arch = bfd_arch_mips;
5816 if (info.bfd_arch_info != NULL
5817 && info.bfd_arch_info->arch == bfd_arch_mips
5818 && info.bfd_arch_info->mach)
5819 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5820 else
5821 tm_print_insn_info.mach = bfd_mach_mips8000;
5822
5823 set_gdbarch_use_struct_convention (gdbarch,
5824 mips_n32n64_use_struct_convention);
5825 set_gdbarch_reg_struct_has_addr (gdbarch,
5826 mips_n32n64_reg_struct_has_addr);
5827 break;
5828 case MIPS_ABI_N64:
5829 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
5830 set_gdbarch_store_return_value (gdbarch, mips_n32n64_store_return_value);
5831 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5832 tdep->mips_default_saved_regsize = 8;
5833 tdep->mips_default_stack_argsize = 8;
5834 tdep->mips_fp_register_double = 1;
5835 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5836 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5837 tdep->gdb_target_is_mips64 = 1;
5838 tdep->default_mask_address_p = 0;
5839 set_gdbarch_long_bit (gdbarch, 64);
5840 set_gdbarch_ptr_bit (gdbarch, 64);
5841 set_gdbarch_long_long_bit (gdbarch, 64);
5842
5843 /* Set up the disassembler info, so that we get the right
5844 register names from libopcodes. */
5845 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5846 tm_print_insn_info.arch = bfd_arch_mips;
5847 if (info.bfd_arch_info != NULL
5848 && info.bfd_arch_info->arch == bfd_arch_mips
5849 && info.bfd_arch_info->mach)
5850 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5851 else
5852 tm_print_insn_info.mach = bfd_mach_mips8000;
5853
5854 set_gdbarch_use_struct_convention (gdbarch,
5855 mips_n32n64_use_struct_convention);
5856 set_gdbarch_reg_struct_has_addr (gdbarch,
5857 mips_n32n64_reg_struct_has_addr);
5858 break;
5859 default:
5860 internal_error (__FILE__, __LINE__,
5861 "unknown ABI in switch");
5862 }
5863
5864 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5865 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5866 comment:
5867
5868 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5869 flag in object files because to do so would make it impossible to
5870 link with libraries compiled without "-gp32". This is
5871 unnecessarily restrictive.
5872
5873 We could solve this problem by adding "-gp32" multilibs to gcc,
5874 but to set this flag before gcc is built with such multilibs will
5875 break too many systems.''
5876
5877 But even more unhelpfully, the default linker output target for
5878 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5879 for 64-bit programs - you need to change the ABI to change this,
5880 and not all gcc targets support that currently. Therefore using
5881 this flag to detect 32-bit mode would do the wrong thing given
5882 the current gcc - it would make GDB treat these 64-bit programs
5883 as 32-bit programs by default. */
5884
5885 /* enable/disable the MIPS FPU */
5886 if (!mips_fpu_type_auto)
5887 tdep->mips_fpu_type = mips_fpu_type;
5888 else if (info.bfd_arch_info != NULL
5889 && info.bfd_arch_info->arch == bfd_arch_mips)
5890 switch (info.bfd_arch_info->mach)
5891 {
5892 case bfd_mach_mips3900:
5893 case bfd_mach_mips4100:
5894 case bfd_mach_mips4111:
5895 tdep->mips_fpu_type = MIPS_FPU_NONE;
5896 break;
5897 case bfd_mach_mips4650:
5898 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5899 break;
5900 default:
5901 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5902 break;
5903 }
5904 else
5905 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5906
5907 /* MIPS version of register names. NOTE: At present the MIPS
5908 register name management is part way between the old -
5909 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
5910 Further work on it is required. */
5911 set_gdbarch_register_name (gdbarch, mips_register_name);
5912 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5913 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
5914 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
5915 set_gdbarch_read_sp (gdbarch, mips_read_sp);
5916 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
5917
5918 /* Add/remove bits from an address. The MIPS needs be careful to
5919 ensure that all 32 bit addresses are sign extended to 64 bits. */
5920 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5921
5922 /* There's a mess in stack frame creation. See comments in
5923 blockframe.c near reference to INIT_FRAME_PC_FIRST. */
5924 set_gdbarch_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
5925 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
5926
5927 /* Map debug register numbers onto internal register numbers. */
5928 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5929 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_ecoff_reg_to_regnum);
5930
5931 /* Initialize a frame */
5932 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
5933 set_gdbarch_frame_init_saved_regs (gdbarch, mips_frame_init_saved_regs);
5934
5935 /* MIPS version of CALL_DUMMY */
5936
5937 set_gdbarch_call_dummy_p (gdbarch, 1);
5938 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
5939 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
5940 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
5941 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
5942 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
5943 set_gdbarch_push_dummy_frame (gdbarch, mips_push_dummy_frame);
5944 set_gdbarch_pop_frame (gdbarch, mips_pop_frame);
5945 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
5946 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
5947 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
5948 set_gdbarch_call_dummy_length (gdbarch, 0);
5949 set_gdbarch_fix_call_dummy (gdbarch, mips_fix_call_dummy);
5950 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
5951 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
5952 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
5953 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
5954 set_gdbarch_register_convertible (gdbarch, mips_register_convertible);
5955 set_gdbarch_register_convert_to_virtual (gdbarch,
5956 mips_register_convert_to_virtual);
5957 set_gdbarch_register_convert_to_raw (gdbarch,
5958 mips_register_convert_to_raw);
5959
5960 set_gdbarch_coerce_float_to_double (gdbarch, mips_coerce_float_to_double);
5961
5962 set_gdbarch_frame_chain (gdbarch, mips_frame_chain);
5963 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
5964 set_gdbarch_frameless_function_invocation (gdbarch,
5965 generic_frameless_function_invocation_not);
5966 set_gdbarch_frame_saved_pc (gdbarch, mips_frame_saved_pc);
5967 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
5968 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
5969 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
5970 set_gdbarch_frame_args_skip (gdbarch, 0);
5971
5972 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
5973
5974 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5975 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5976 set_gdbarch_decr_pc_after_break (gdbarch, 0);
5977
5978 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5979 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
5980
5981 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5982 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5983 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
5984
5985 set_gdbarch_function_start_offset (gdbarch, 0);
5986
5987 /* There are MIPS targets which do not yet use this since they still
5988 define REGISTER_VIRTUAL_TYPE. */
5989 set_gdbarch_register_virtual_type (gdbarch, mips_register_virtual_type);
5990 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
5991
5992 set_gdbarch_do_registers_info (gdbarch, mips_do_registers_info);
5993 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
5994
5995 /* Hook in OS ABI-specific overrides, if they have been registered. */
5996 gdbarch_init_osabi (info, gdbarch, osabi);
5997
5998 set_gdbarch_store_struct_return (gdbarch, mips_store_struct_return);
5999 set_gdbarch_extract_struct_value_address (gdbarch,
6000 mips_extract_struct_value_address);
6001 return gdbarch;
6002 }
6003
6004 static void
6005 mips_abi_update (char *ignore_args, int from_tty,
6006 struct cmd_list_element *c)
6007 {
6008 struct gdbarch_info info;
6009
6010 /* Force the architecture to update, and (if it's a MIPS architecture)
6011 mips_gdbarch_init will take care of the rest. */
6012 gdbarch_info_init (&info);
6013 gdbarch_update_p (info);
6014 }
6015
6016 static void
6017 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6018 {
6019 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6020 if (tdep != NULL)
6021 {
6022 int ef_mips_arch;
6023 int ef_mips_32bitmode;
6024 /* determine the ISA */
6025 switch (tdep->elf_flags & EF_MIPS_ARCH)
6026 {
6027 case E_MIPS_ARCH_1:
6028 ef_mips_arch = 1;
6029 break;
6030 case E_MIPS_ARCH_2:
6031 ef_mips_arch = 2;
6032 break;
6033 case E_MIPS_ARCH_3:
6034 ef_mips_arch = 3;
6035 break;
6036 case E_MIPS_ARCH_4:
6037 ef_mips_arch = 4;
6038 break;
6039 default:
6040 ef_mips_arch = 0;
6041 break;
6042 }
6043 /* determine the size of a pointer */
6044 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
6045 fprintf_unfiltered (file,
6046 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
6047 tdep->elf_flags);
6048 fprintf_unfiltered (file,
6049 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6050 ef_mips_32bitmode);
6051 fprintf_unfiltered (file,
6052 "mips_dump_tdep: ef_mips_arch = %d\n",
6053 ef_mips_arch);
6054 fprintf_unfiltered (file,
6055 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6056 tdep->mips_abi,
6057 mips_abi_strings[tdep->mips_abi]);
6058 fprintf_unfiltered (file,
6059 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6060 mips_mask_address_p (),
6061 tdep->default_mask_address_p);
6062 }
6063 fprintf_unfiltered (file,
6064 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6065 FP_REGISTER_DOUBLE);
6066 fprintf_unfiltered (file,
6067 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6068 MIPS_DEFAULT_FPU_TYPE,
6069 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6070 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6071 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6072 : "???"));
6073 fprintf_unfiltered (file,
6074 "mips_dump_tdep: MIPS_EABI = %d\n",
6075 MIPS_EABI);
6076 fprintf_unfiltered (file,
6077 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6078 MIPS_LAST_FP_ARG_REGNUM,
6079 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
6080 fprintf_unfiltered (file,
6081 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6082 MIPS_FPU_TYPE,
6083 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6084 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6085 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6086 : "???"));
6087 fprintf_unfiltered (file,
6088 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6089 MIPS_DEFAULT_SAVED_REGSIZE);
6090 fprintf_unfiltered (file,
6091 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6092 FP_REGISTER_DOUBLE);
6093 fprintf_unfiltered (file,
6094 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6095 MIPS_DEFAULT_STACK_ARGSIZE);
6096 fprintf_unfiltered (file,
6097 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6098 MIPS_STACK_ARGSIZE);
6099 fprintf_unfiltered (file,
6100 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6101 MIPS_REGSIZE);
6102 fprintf_unfiltered (file,
6103 "mips_dump_tdep: A0_REGNUM = %d\n",
6104 A0_REGNUM);
6105 fprintf_unfiltered (file,
6106 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6107 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6108 fprintf_unfiltered (file,
6109 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6110 XSTRING (ATTACH_DETACH));
6111 fprintf_unfiltered (file,
6112 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6113 BADVADDR_REGNUM);
6114 fprintf_unfiltered (file,
6115 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
6116 fprintf_unfiltered (file,
6117 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6118 CAUSE_REGNUM);
6119 fprintf_unfiltered (file,
6120 "mips_dump_tdep: CPLUS_MARKER = %c\n",
6121 CPLUS_MARKER);
6122 fprintf_unfiltered (file,
6123 "mips_dump_tdep: DEFAULT_MIPS_TYPE = %s\n",
6124 DEFAULT_MIPS_TYPE);
6125 fprintf_unfiltered (file,
6126 "mips_dump_tdep: DO_REGISTERS_INFO # %s\n",
6127 XSTRING (DO_REGISTERS_INFO));
6128 fprintf_unfiltered (file,
6129 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6130 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6131 fprintf_unfiltered (file,
6132 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6133 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
6134 fprintf_unfiltered (file,
6135 "mips_dump_tdep: ELF_MAKE_MSYMBOL_SPECIAL # %s\n",
6136 XSTRING (ELF_MAKE_MSYMBOL_SPECIAL (SYM, MSYM)));
6137 fprintf_unfiltered (file,
6138 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6139 FCRCS_REGNUM);
6140 fprintf_unfiltered (file,
6141 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6142 FCRIR_REGNUM);
6143 fprintf_unfiltered (file,
6144 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6145 FIRST_EMBED_REGNUM);
6146 fprintf_unfiltered (file,
6147 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6148 FPA0_REGNUM);
6149 fprintf_unfiltered (file,
6150 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6151 GDB_TARGET_IS_MIPS64);
6152 fprintf_unfiltered (file,
6153 "mips_dump_tdep: GDB_TARGET_MASK_DISAS_PC # %s\n",
6154 XSTRING (GDB_TARGET_MASK_DISAS_PC (PC)));
6155 fprintf_unfiltered (file,
6156 "mips_dump_tdep: GDB_TARGET_UNMASK_DISAS_PC # %s\n",
6157 XSTRING (GDB_TARGET_UNMASK_DISAS_PC (PC)));
6158 fprintf_unfiltered (file,
6159 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
6160 GEN_REG_SAVE_MASK);
6161 fprintf_unfiltered (file,
6162 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
6163 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
6164 fprintf_unfiltered (file,
6165 "mips_dump_tdep: HI_REGNUM = %d\n",
6166 HI_REGNUM);
6167 fprintf_unfiltered (file,
6168 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
6169 fprintf_unfiltered (file,
6170 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
6171 fprintf_unfiltered (file,
6172 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6173 XSTRING (IGNORE_HELPER_CALL (PC)));
6174 fprintf_unfiltered (file,
6175 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6176 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6177 fprintf_unfiltered (file,
6178 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6179 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6180 fprintf_unfiltered (file,
6181 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
6182 fprintf_unfiltered (file,
6183 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6184 LAST_EMBED_REGNUM);
6185 fprintf_unfiltered (file,
6186 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
6187 fprintf_unfiltered (file,
6188 "mips_dump_tdep: LO_REGNUM = %d\n",
6189 LO_REGNUM);
6190 #ifdef MACHINE_CPROC_FP_OFFSET
6191 fprintf_unfiltered (file,
6192 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6193 MACHINE_CPROC_FP_OFFSET);
6194 #endif
6195 #ifdef MACHINE_CPROC_PC_OFFSET
6196 fprintf_unfiltered (file,
6197 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6198 MACHINE_CPROC_PC_OFFSET);
6199 #endif
6200 #ifdef MACHINE_CPROC_SP_OFFSET
6201 fprintf_unfiltered (file,
6202 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6203 MACHINE_CPROC_SP_OFFSET);
6204 #endif
6205 fprintf_unfiltered (file,
6206 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
6207 fprintf_unfiltered (file,
6208 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
6209 fprintf_unfiltered (file,
6210 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6211 MIPS16_INSTLEN);
6212 fprintf_unfiltered (file,
6213 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
6214 fprintf_unfiltered (file,
6215 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6216 fprintf_unfiltered (file,
6217 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6218 fprintf_unfiltered (file,
6219 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6220 MIPS_INSTLEN);
6221 fprintf_unfiltered (file,
6222 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6223 MIPS_LAST_ARG_REGNUM,
6224 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
6225 fprintf_unfiltered (file,
6226 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6227 MIPS_NUMREGS);
6228 fprintf_unfiltered (file,
6229 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6230 fprintf_unfiltered (file,
6231 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6232 MIPS_SAVED_REGSIZE);
6233 fprintf_unfiltered (file,
6234 "mips_dump_tdep: MSYMBOL_IS_SPECIAL = function?\n");
6235 fprintf_unfiltered (file,
6236 "mips_dump_tdep: MSYMBOL_SIZE # %s\n",
6237 XSTRING (MSYMBOL_SIZE (MSYM)));
6238 fprintf_unfiltered (file,
6239 "mips_dump_tdep: OP_LDFPR = used?\n");
6240 fprintf_unfiltered (file,
6241 "mips_dump_tdep: OP_LDGPR = used?\n");
6242 fprintf_unfiltered (file,
6243 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
6244 fprintf_unfiltered (file,
6245 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
6246 fprintf_unfiltered (file,
6247 "mips_dump_tdep: PRID_REGNUM = %d\n",
6248 PRID_REGNUM);
6249 fprintf_unfiltered (file,
6250 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6251 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6252 fprintf_unfiltered (file,
6253 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6254 fprintf_unfiltered (file,
6255 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6256 fprintf_unfiltered (file,
6257 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6258 fprintf_unfiltered (file,
6259 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6260 fprintf_unfiltered (file,
6261 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6262 fprintf_unfiltered (file,
6263 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6264 fprintf_unfiltered (file,
6265 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6266 fprintf_unfiltered (file,
6267 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6268 fprintf_unfiltered (file,
6269 "mips_dump_tdep: PROC_PC_REG = function?\n");
6270 fprintf_unfiltered (file,
6271 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6272 fprintf_unfiltered (file,
6273 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6274 fprintf_unfiltered (file,
6275 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6276 fprintf_unfiltered (file,
6277 "mips_dump_tdep: PS_REGNUM = %d\n",
6278 PS_REGNUM);
6279 fprintf_unfiltered (file,
6280 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
6281 PUSH_FP_REGNUM);
6282 fprintf_unfiltered (file,
6283 "mips_dump_tdep: RA_REGNUM = %d\n",
6284 RA_REGNUM);
6285 fprintf_unfiltered (file,
6286 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
6287 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6288 fprintf_unfiltered (file,
6289 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
6290 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6291 fprintf_unfiltered (file,
6292 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6293 fprintf_unfiltered (file,
6294 "mips_dump_tdep: ROUND_DOWN = function?\n");
6295 fprintf_unfiltered (file,
6296 "mips_dump_tdep: ROUND_UP = function?\n");
6297 #ifdef SAVED_BYTES
6298 fprintf_unfiltered (file,
6299 "mips_dump_tdep: SAVED_BYTES = %d\n",
6300 SAVED_BYTES);
6301 #endif
6302 #ifdef SAVED_FP
6303 fprintf_unfiltered (file,
6304 "mips_dump_tdep: SAVED_FP = %d\n",
6305 SAVED_FP);
6306 #endif
6307 #ifdef SAVED_PC
6308 fprintf_unfiltered (file,
6309 "mips_dump_tdep: SAVED_PC = %d\n",
6310 SAVED_PC);
6311 #endif
6312 fprintf_unfiltered (file,
6313 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6314 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6315 fprintf_unfiltered (file,
6316 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6317 fprintf_unfiltered (file,
6318 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6319 SIGFRAME_BASE);
6320 fprintf_unfiltered (file,
6321 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6322 SIGFRAME_FPREGSAVE_OFF);
6323 fprintf_unfiltered (file,
6324 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6325 SIGFRAME_PC_OFF);
6326 fprintf_unfiltered (file,
6327 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6328 SIGFRAME_REGSAVE_OFF);
6329 fprintf_unfiltered (file,
6330 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6331 SIGFRAME_REG_SIZE);
6332 fprintf_unfiltered (file,
6333 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6334 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6335 fprintf_unfiltered (file,
6336 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6337 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6338 fprintf_unfiltered (file,
6339 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6340 SOFTWARE_SINGLE_STEP_P ());
6341 fprintf_unfiltered (file,
6342 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6343 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6344 #ifdef STACK_END_ADDR
6345 fprintf_unfiltered (file,
6346 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6347 STACK_END_ADDR);
6348 #endif
6349 fprintf_unfiltered (file,
6350 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6351 XSTRING (STEP_SKIPS_DELAY (PC)));
6352 fprintf_unfiltered (file,
6353 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6354 STEP_SKIPS_DELAY_P);
6355 fprintf_unfiltered (file,
6356 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6357 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6358 fprintf_unfiltered (file,
6359 "mips_dump_tdep: T9_REGNUM = %d\n",
6360 T9_REGNUM);
6361 fprintf_unfiltered (file,
6362 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6363 fprintf_unfiltered (file,
6364 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6365 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6366 fprintf_unfiltered (file,
6367 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6368 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6369 fprintf_unfiltered (file,
6370 "mips_dump_tdep: TARGET_MIPS = used?\n");
6371 fprintf_unfiltered (file,
6372 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
6373 XSTRING (TM_PRINT_INSN_MACH));
6374 #ifdef TRACE_CLEAR
6375 fprintf_unfiltered (file,
6376 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6377 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6378 #endif
6379 #ifdef TRACE_FLAVOR
6380 fprintf_unfiltered (file,
6381 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6382 TRACE_FLAVOR);
6383 #endif
6384 #ifdef TRACE_FLAVOR_SIZE
6385 fprintf_unfiltered (file,
6386 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6387 TRACE_FLAVOR_SIZE);
6388 #endif
6389 #ifdef TRACE_SET
6390 fprintf_unfiltered (file,
6391 "mips_dump_tdep: TRACE_SET # %s\n",
6392 XSTRING (TRACE_SET (X,STATE)));
6393 #endif
6394 fprintf_unfiltered (file,
6395 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
6396 #ifdef UNUSED_REGNUM
6397 fprintf_unfiltered (file,
6398 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6399 UNUSED_REGNUM);
6400 #endif
6401 fprintf_unfiltered (file,
6402 "mips_dump_tdep: V0_REGNUM = %d\n",
6403 V0_REGNUM);
6404 fprintf_unfiltered (file,
6405 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6406 (long) VM_MIN_ADDRESS);
6407 #ifdef VX_NUM_REGS
6408 fprintf_unfiltered (file,
6409 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6410 VX_NUM_REGS);
6411 #endif
6412 fprintf_unfiltered (file,
6413 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6414 ZERO_REGNUM);
6415 fprintf_unfiltered (file,
6416 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6417 _PROC_MAGIC_);
6418
6419 fprintf_unfiltered (file,
6420 "mips_dump_tdep: OS ABI = %s\n",
6421 gdbarch_osabi_name (tdep->osabi));
6422 }
6423
6424 void
6425 _initialize_mips_tdep (void)
6426 {
6427 static struct cmd_list_element *mipsfpulist = NULL;
6428 struct cmd_list_element *c;
6429
6430 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6431 if (MIPS_ABI_LAST + 1
6432 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6433 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6434
6435 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6436 if (!tm_print_insn) /* Someone may have already set it */
6437 tm_print_insn = gdb_print_insn_mips;
6438
6439 /* Add root prefix command for all "set mips"/"show mips" commands */
6440 add_prefix_cmd ("mips", no_class, set_mips_command,
6441 "Various MIPS specific commands.",
6442 &setmipscmdlist, "set mips ", 0, &setlist);
6443
6444 add_prefix_cmd ("mips", no_class, show_mips_command,
6445 "Various MIPS specific commands.",
6446 &showmipscmdlist, "show mips ", 0, &showlist);
6447
6448 /* Allow the user to override the saved register size. */
6449 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
6450 class_obscure,
6451 size_enums,
6452 &mips_saved_regsize_string, "\
6453 Set size of general purpose registers saved on the stack.\n\
6454 This option can be set to one of:\n\
6455 32 - Force GDB to treat saved GP registers as 32-bit\n\
6456 64 - Force GDB to treat saved GP registers as 64-bit\n\
6457 auto - Allow GDB to use the target's default setting or autodetect the\n\
6458 saved GP register size from information contained in the executable.\n\
6459 (default: auto)",
6460 &setmipscmdlist),
6461 &showmipscmdlist);
6462
6463 /* Allow the user to override the argument stack size. */
6464 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6465 class_obscure,
6466 size_enums,
6467 &mips_stack_argsize_string, "\
6468 Set the amount of stack space reserved for each argument.\n\
6469 This option can be set to one of:\n\
6470 32 - Force GDB to allocate 32-bit chunks per argument\n\
6471 64 - Force GDB to allocate 64-bit chunks per argument\n\
6472 auto - Allow GDB to determine the correct setting from the current\n\
6473 target and executable (default)",
6474 &setmipscmdlist),
6475 &showmipscmdlist);
6476
6477 /* Allow the user to override the ABI. */
6478 c = add_set_enum_cmd
6479 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6480 "Set the ABI used by this program.\n"
6481 "This option can be set to one of:\n"
6482 " auto - the default ABI associated with the current binary\n"
6483 " o32\n"
6484 " o64\n"
6485 " n32\n"
6486 " n64\n"
6487 " eabi32\n"
6488 " eabi64",
6489 &setmipscmdlist);
6490 add_show_from_set (c, &showmipscmdlist);
6491 set_cmd_sfunc (c, mips_abi_update);
6492
6493 /* Let the user turn off floating point and set the fence post for
6494 heuristic_proc_start. */
6495
6496 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6497 "Set use of MIPS floating-point coprocessor.",
6498 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6499 add_cmd ("single", class_support, set_mipsfpu_single_command,
6500 "Select single-precision MIPS floating-point coprocessor.",
6501 &mipsfpulist);
6502 add_cmd ("double", class_support, set_mipsfpu_double_command,
6503 "Select double-precision MIPS floating-point coprocessor.",
6504 &mipsfpulist);
6505 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6506 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6507 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6508 add_cmd ("none", class_support, set_mipsfpu_none_command,
6509 "Select no MIPS floating-point coprocessor.",
6510 &mipsfpulist);
6511 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6512 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6513 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6514 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6515 "Select MIPS floating-point coprocessor automatically.",
6516 &mipsfpulist);
6517 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6518 "Show current use of MIPS floating-point coprocessor target.",
6519 &showlist);
6520
6521 /* We really would like to have both "0" and "unlimited" work, but
6522 command.c doesn't deal with that. So make it a var_zinteger
6523 because the user can always use "999999" or some such for unlimited. */
6524 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6525 (char *) &heuristic_fence_post,
6526 "\
6527 Set the distance searched for the start of a function.\n\
6528 If you are debugging a stripped executable, GDB needs to search through the\n\
6529 program for the start of a function. This command sets the distance of the\n\
6530 search. The only need to set it is when debugging a stripped executable.",
6531 &setlist);
6532 /* We need to throw away the frame cache when we set this, since it
6533 might change our ability to get backtraces. */
6534 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
6535 add_show_from_set (c, &showlist);
6536
6537 /* Allow the user to control whether the upper bits of 64-bit
6538 addresses should be zeroed. */
6539 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6540 Set zeroing of upper 32 bits of 64-bit addresses.\n\
6541 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6542 allow GDB to determine the correct value.\n", "\
6543 Show zeroing of upper 32 bits of 64-bit addresses.",
6544 NULL, show_mask_address,
6545 &setmipscmdlist, &showmipscmdlist);
6546
6547 /* Allow the user to control the size of 32 bit registers within the
6548 raw remote packet. */
6549 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6550 class_obscure,
6551 var_boolean,
6552 (char *)&mips64_transfers_32bit_regs_p, "\
6553 Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6554 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6555 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6556 64 bits for others. Use \"off\" to disable compatibility mode",
6557 &setlist),
6558 &showlist);
6559
6560 /* Debug this files internals. */
6561 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6562 &mips_debug, "Set mips debugging.\n\
6563 When non-zero, mips specific debugging is enabled.", &setdebuglist),
6564 &showdebuglist);
6565 }
This page took 0.188969 seconds and 5 git commands to generate.