a8d7d72ef8ec45b3ce28589f522e08c9777b1f22
[deliverable/binutils-gdb.git] / gdb / mn10200-tdep.c
1 /* Target-dependent code for the Matsushita MN10200 for GDB, the GNU debugger.
2 Copyright 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "inferior.h"
24 #include "target.h"
25 #include "value.h"
26 #include "bfd.h"
27 #include "gdb_string.h"
28 #include "gdbcore.h"
29 #include "symfile.h"
30 #include "regcache.h"
31
32
33 /* Should call_function allocate stack space for a struct return? */
34 int
35 mn10200_use_struct_convention (int gcc_p, struct type *type)
36 {
37 return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 8);
38 }
39 /* *INDENT-OFF* */
40 /* The main purpose of this file is dealing with prologues to extract
41 information about stack frames and saved registers.
42
43 For reference here's how prologues look on the mn10200:
44
45 With frame pointer:
46 mov fp,a0
47 mov sp,fp
48 add <size>,sp
49 Register saves for d2, d3, a1, a2 as needed. Saves start
50 at fp - <size> + <outgoing_args_size> and work towards higher
51 addresses. Note that the saves are actually done off the stack
52 pointer in the prologue! This makes for smaller code and easier
53 prologue scanning as the displacement fields will unlikely
54 be more than 8 bits!
55
56 Without frame pointer:
57 add <size>,sp
58 Register saves for d2, d3, a1, a2 as needed. Saves start
59 at sp + <outgoing_args_size> and work towards higher addresses.
60
61 Out of line prologue:
62 add <local size>,sp -- optional
63 jsr __prologue
64 add <outgoing_size>,sp -- optional
65
66 The stack pointer remains constant throughout the life of most
67 functions. As a result the compiler will usually omit the
68 frame pointer, so we must handle frame pointerless functions. */
69
70 /* Analyze the prologue to determine where registers are saved,
71 the end of the prologue, etc etc. Return the end of the prologue
72 scanned.
73
74 We store into FI (if non-null) several tidbits of information:
75
76 * stack_size -- size of this stack frame. Note that if we stop in
77 certain parts of the prologue/epilogue we may claim the size of the
78 current frame is zero. This happens when the current frame has
79 not been allocated yet or has already been deallocated.
80
81 * fsr -- Addresses of registers saved in the stack by this frame.
82
83 * status -- A (relatively) generic status indicator. It's a bitmask
84 with the following bits:
85
86 MY_FRAME_IN_SP: The base of the current frame is actually in
87 the stack pointer. This can happen for frame pointerless
88 functions, or cases where we're stopped in the prologue/epilogue
89 itself. For these cases mn10200_analyze_prologue will need up
90 update fi->frame before returning or analyzing the register
91 save instructions.
92
93 MY_FRAME_IN_FP: The base of the current frame is in the
94 frame pointer register ($a2).
95
96 CALLER_A2_IN_A0: $a2 from the caller's frame is temporarily
97 in $a0. This can happen if we're stopped in the prologue.
98
99 NO_MORE_FRAMES: Set this if the current frame is "start" or
100 if the first instruction looks like mov <imm>,sp. This tells
101 frame chain to not bother trying to unwind past this frame. */
102 /* *INDENT-ON* */
103
104
105
106
107 #define MY_FRAME_IN_SP 0x1
108 #define MY_FRAME_IN_FP 0x2
109 #define CALLER_A2_IN_A0 0x4
110 #define NO_MORE_FRAMES 0x8
111
112 static CORE_ADDR
113 mn10200_analyze_prologue (struct frame_info *fi, CORE_ADDR pc)
114 {
115 CORE_ADDR func_addr, func_end, addr, stop;
116 CORE_ADDR stack_size = 0;
117 unsigned char buf[4];
118 int status;
119 char *name;
120 int out_of_line_prologue = 0;
121
122 /* Use the PC in the frame if it's provided to look up the
123 start of this function. */
124 pc = (fi ? fi->pc : pc);
125
126 /* Find the start of this function. */
127 status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
128
129 /* Do nothing if we couldn't find the start of this function or if we're
130 stopped at the first instruction in the prologue. */
131 if (status == 0)
132 return pc;
133
134 /* If we're in start, then give up. */
135 if (strcmp (name, "start") == 0)
136 {
137 if (fi)
138 fi->status = NO_MORE_FRAMES;
139 return pc;
140 }
141
142 /* At the start of a function our frame is in the stack pointer. */
143 if (fi)
144 fi->status = MY_FRAME_IN_SP;
145
146 /* If we're physically on an RTS instruction, then our frame has already
147 been deallocated.
148
149 fi->frame is bogus, we need to fix it. */
150 if (fi && fi->pc + 1 == func_end)
151 {
152 status = target_read_memory (fi->pc, buf, 1);
153 if (status != 0)
154 {
155 if (fi->next == NULL)
156 fi->frame = read_sp ();
157 return fi->pc;
158 }
159
160 if (buf[0] == 0xfe)
161 {
162 if (fi->next == NULL)
163 fi->frame = read_sp ();
164 return fi->pc;
165 }
166 }
167
168 /* Similarly if we're stopped on the first insn of a prologue as our
169 frame hasn't been allocated yet. */
170 if (fi && fi->pc == func_addr)
171 {
172 if (fi->next == NULL)
173 fi->frame = read_sp ();
174 return fi->pc;
175 }
176
177 /* Figure out where to stop scanning. */
178 stop = fi ? fi->pc : func_end;
179
180 /* Don't walk off the end of the function. */
181 stop = stop > func_end ? func_end : stop;
182
183 /* Start scanning on the first instruction of this function. */
184 addr = func_addr;
185
186 status = target_read_memory (addr, buf, 2);
187 if (status != 0)
188 {
189 if (fi && fi->next == NULL && fi->status & MY_FRAME_IN_SP)
190 fi->frame = read_sp ();
191 return addr;
192 }
193
194 /* First see if this insn sets the stack pointer; if so, it's something
195 we won't understand, so quit now. */
196 if (buf[0] == 0xdf
197 || (buf[0] == 0xf4 && buf[1] == 0x77))
198 {
199 if (fi)
200 fi->status = NO_MORE_FRAMES;
201 return addr;
202 }
203
204 /* Now see if we have a frame pointer.
205
206 Search for mov a2,a0 (0xf278)
207 then mov a3,a2 (0xf27e). */
208
209 if (buf[0] == 0xf2 && buf[1] == 0x78)
210 {
211 /* Our caller's $a2 will be found in $a0 now. Note it for
212 our callers. */
213 if (fi)
214 fi->status |= CALLER_A2_IN_A0;
215 addr += 2;
216 if (addr >= stop)
217 {
218 /* We still haven't allocated our local stack. Handle this
219 as if we stopped on the first or last insn of a function. */
220 if (fi && fi->next == NULL)
221 fi->frame = read_sp ();
222 return addr;
223 }
224
225 status = target_read_memory (addr, buf, 2);
226 if (status != 0)
227 {
228 if (fi && fi->next == NULL)
229 fi->frame = read_sp ();
230 return addr;
231 }
232 if (buf[0] == 0xf2 && buf[1] == 0x7e)
233 {
234 addr += 2;
235
236 /* Our frame pointer is valid now. */
237 if (fi)
238 {
239 fi->status |= MY_FRAME_IN_FP;
240 fi->status &= ~MY_FRAME_IN_SP;
241 }
242 if (addr >= stop)
243 return addr;
244 }
245 else
246 {
247 if (fi && fi->next == NULL)
248 fi->frame = read_sp ();
249 return addr;
250 }
251 }
252
253 /* Next we should allocate the local frame.
254
255 Search for add imm8,a3 (0xd3XX)
256 or add imm16,a3 (0xf70bXXXX)
257 or add imm24,a3 (0xf467XXXXXX).
258
259 If none of the above was found, then this prologue has
260 no stack, and therefore can't have any register saves,
261 so quit now. */
262 status = target_read_memory (addr, buf, 2);
263 if (status != 0)
264 {
265 if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
266 fi->frame = read_sp ();
267 return addr;
268 }
269 if (buf[0] == 0xd3)
270 {
271 stack_size = extract_signed_integer (&buf[1], 1);
272 if (fi)
273 fi->stack_size = stack_size;
274 addr += 2;
275 if (addr >= stop)
276 {
277 if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
278 fi->frame = read_sp () - stack_size;
279 return addr;
280 }
281 }
282 else if (buf[0] == 0xf7 && buf[1] == 0x0b)
283 {
284 status = target_read_memory (addr + 2, buf, 2);
285 if (status != 0)
286 {
287 if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
288 fi->frame = read_sp ();
289 return addr;
290 }
291 stack_size = extract_signed_integer (buf, 2);
292 if (fi)
293 fi->stack_size = stack_size;
294 addr += 4;
295 if (addr >= stop)
296 {
297 if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
298 fi->frame = read_sp () - stack_size;
299 return addr;
300 }
301 }
302 else if (buf[0] == 0xf4 && buf[1] == 0x67)
303 {
304 status = target_read_memory (addr + 2, buf, 3);
305 if (status != 0)
306 {
307 if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
308 fi->frame = read_sp ();
309 return addr;
310 }
311 stack_size = extract_signed_integer (buf, 3);
312 if (fi)
313 fi->stack_size = stack_size;
314 addr += 5;
315 if (addr >= stop)
316 {
317 if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
318 fi->frame = read_sp () - stack_size;
319 return addr;
320 }
321 }
322
323 /* Now see if we have a call to __prologue for an out of line
324 prologue. */
325 status = target_read_memory (addr, buf, 2);
326 if (status != 0)
327 return addr;
328
329 /* First check for 16bit pc-relative call to __prologue. */
330 if (buf[0] == 0xfd)
331 {
332 CORE_ADDR temp;
333 status = target_read_memory (addr + 1, buf, 2);
334 if (status != 0)
335 {
336 if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
337 fi->frame = read_sp ();
338 return addr;
339 }
340
341 /* Get the PC this instruction will branch to. */
342 temp = (extract_signed_integer (buf, 2) + addr + 3) & 0xffffff;
343
344 /* Get the name of the function at the target address. */
345 status = find_pc_partial_function (temp, &name, NULL, NULL);
346 if (status == 0)
347 {
348 if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
349 fi->frame = read_sp ();
350 return addr;
351 }
352
353 /* Note if it is an out of line prologue. */
354 out_of_line_prologue = (strcmp (name, "__prologue") == 0);
355
356 /* This sucks up 3 bytes of instruction space. */
357 if (out_of_line_prologue)
358 addr += 3;
359
360 if (addr >= stop)
361 {
362 if (fi && fi->next == NULL)
363 {
364 fi->stack_size -= 16;
365 fi->frame = read_sp () - fi->stack_size;
366 }
367 return addr;
368 }
369 }
370 /* Now check for the 24bit pc-relative call to __prologue. */
371 else if (buf[0] == 0xf4 && buf[1] == 0xe1)
372 {
373 CORE_ADDR temp;
374 status = target_read_memory (addr + 2, buf, 3);
375 if (status != 0)
376 {
377 if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
378 fi->frame = read_sp ();
379 return addr;
380 }
381
382 /* Get the PC this instruction will branch to. */
383 temp = (extract_signed_integer (buf, 3) + addr + 5) & 0xffffff;
384
385 /* Get the name of the function at the target address. */
386 status = find_pc_partial_function (temp, &name, NULL, NULL);
387 if (status == 0)
388 {
389 if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
390 fi->frame = read_sp ();
391 return addr;
392 }
393
394 /* Note if it is an out of line prologue. */
395 out_of_line_prologue = (strcmp (name, "__prologue") == 0);
396
397 /* This sucks up 5 bytes of instruction space. */
398 if (out_of_line_prologue)
399 addr += 5;
400
401 if (addr >= stop)
402 {
403 if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP))
404 {
405 fi->stack_size -= 16;
406 fi->frame = read_sp () - fi->stack_size;
407 }
408 return addr;
409 }
410 }
411
412 /* Now actually handle the out of line prologue. */
413 if (out_of_line_prologue)
414 {
415 int outgoing_args_size = 0;
416
417 /* First adjust the stack size for this function. The out of
418 line prologue saves 4 registers (16bytes of data). */
419 if (fi)
420 fi->stack_size -= 16;
421
422 /* Update fi->frame if necessary. */
423 if (fi && fi->next == NULL)
424 fi->frame = read_sp () - fi->stack_size;
425
426 /* After the out of line prologue, there may be another
427 stack adjustment for the outgoing arguments.
428
429 Search for add imm8,a3 (0xd3XX)
430 or add imm16,a3 (0xf70bXXXX)
431 or add imm24,a3 (0xf467XXXXXX). */
432
433 status = target_read_memory (addr, buf, 2);
434 if (status != 0)
435 {
436 if (fi)
437 {
438 fi->fsr.regs[2] = fi->frame + fi->stack_size + 4;
439 fi->fsr.regs[3] = fi->frame + fi->stack_size + 8;
440 fi->fsr.regs[5] = fi->frame + fi->stack_size + 12;
441 fi->fsr.regs[6] = fi->frame + fi->stack_size + 16;
442 }
443 return addr;
444 }
445
446 if (buf[0] == 0xd3)
447 {
448 outgoing_args_size = extract_signed_integer (&buf[1], 1);
449 addr += 2;
450 }
451 else if (buf[0] == 0xf7 && buf[1] == 0x0b)
452 {
453 status = target_read_memory (addr + 2, buf, 2);
454 if (status != 0)
455 {
456 if (fi)
457 {
458 fi->fsr.regs[2] = fi->frame + fi->stack_size + 4;
459 fi->fsr.regs[3] = fi->frame + fi->stack_size + 8;
460 fi->fsr.regs[5] = fi->frame + fi->stack_size + 12;
461 fi->fsr.regs[6] = fi->frame + fi->stack_size + 16;
462 }
463 return addr;
464 }
465 outgoing_args_size = extract_signed_integer (buf, 2);
466 addr += 4;
467 }
468 else if (buf[0] == 0xf4 && buf[1] == 0x67)
469 {
470 status = target_read_memory (addr + 2, buf, 3);
471 if (status != 0)
472 {
473 if (fi && fi->next == NULL)
474 {
475 fi->fsr.regs[2] = fi->frame + fi->stack_size + 4;
476 fi->fsr.regs[3] = fi->frame + fi->stack_size + 8;
477 fi->fsr.regs[5] = fi->frame + fi->stack_size + 12;
478 fi->fsr.regs[6] = fi->frame + fi->stack_size + 16;
479 }
480 return addr;
481 }
482 outgoing_args_size = extract_signed_integer (buf, 3);
483 addr += 5;
484 }
485 else
486 outgoing_args_size = 0;
487
488 /* Now that we know the size of the outgoing arguments, fix
489 fi->frame again if this is the innermost frame. */
490 if (fi && fi->next == NULL)
491 fi->frame -= outgoing_args_size;
492
493 /* Note the register save information and update the stack
494 size for this frame too. */
495 if (fi)
496 {
497 fi->fsr.regs[2] = fi->frame + fi->stack_size + 4;
498 fi->fsr.regs[3] = fi->frame + fi->stack_size + 8;
499 fi->fsr.regs[5] = fi->frame + fi->stack_size + 12;
500 fi->fsr.regs[6] = fi->frame + fi->stack_size + 16;
501 fi->stack_size += outgoing_args_size;
502 }
503 /* There can be no more prologue insns, so return now. */
504 return addr;
505 }
506
507 /* At this point fi->frame needs to be correct.
508
509 If MY_FRAME_IN_SP is set and we're the innermost frame, then we
510 need to fix fi->frame so that backtracing, find_frame_saved_regs,
511 etc work correctly. */
512 if (fi && fi->next == NULL && (fi->status & MY_FRAME_IN_SP) != 0)
513 fi->frame = read_sp () - fi->stack_size;
514
515 /* And last we have the register saves. These are relatively
516 simple because they're physically done off the stack pointer,
517 and thus the number of different instructions we need to
518 check is greatly reduced because we know the displacements
519 will be small.
520
521 Search for movx d2,(X,a3) (0xf55eXX)
522 then movx d3,(X,a3) (0xf55fXX)
523 then mov a1,(X,a3) (0x5dXX) No frame pointer case
524 then mov a2,(X,a3) (0x5eXX) No frame pointer case
525 or mov a0,(X,a3) (0x5cXX) Frame pointer case. */
526
527 status = target_read_memory (addr, buf, 2);
528 if (status != 0)
529 return addr;
530 if (buf[0] == 0xf5 && buf[1] == 0x5e)
531 {
532 if (fi)
533 {
534 status = target_read_memory (addr + 2, buf, 1);
535 if (status != 0)
536 return addr;
537 fi->fsr.regs[2] = (fi->frame + stack_size
538 + extract_signed_integer (buf, 1));
539 }
540 addr += 3;
541 if (addr >= stop)
542 return addr;
543 status = target_read_memory (addr, buf, 2);
544 if (status != 0)
545 return addr;
546 }
547 if (buf[0] == 0xf5 && buf[1] == 0x5f)
548 {
549 if (fi)
550 {
551 status = target_read_memory (addr + 2, buf, 1);
552 if (status != 0)
553 return addr;
554 fi->fsr.regs[3] = (fi->frame + stack_size
555 + extract_signed_integer (buf, 1));
556 }
557 addr += 3;
558 if (addr >= stop)
559 return addr;
560 status = target_read_memory (addr, buf, 2);
561 if (status != 0)
562 return addr;
563 }
564 if (buf[0] == 0x5d)
565 {
566 if (fi)
567 {
568 status = target_read_memory (addr + 1, buf, 1);
569 if (status != 0)
570 return addr;
571 fi->fsr.regs[5] = (fi->frame + stack_size
572 + extract_signed_integer (buf, 1));
573 }
574 addr += 2;
575 if (addr >= stop)
576 return addr;
577 status = target_read_memory (addr, buf, 2);
578 if (status != 0)
579 return addr;
580 }
581 if (buf[0] == 0x5e || buf[0] == 0x5c)
582 {
583 if (fi)
584 {
585 status = target_read_memory (addr + 1, buf, 1);
586 if (status != 0)
587 return addr;
588 fi->fsr.regs[6] = (fi->frame + stack_size
589 + extract_signed_integer (buf, 1));
590 fi->status &= ~CALLER_A2_IN_A0;
591 }
592 addr += 2;
593 if (addr >= stop)
594 return addr;
595 return addr;
596 }
597 return addr;
598 }
599
600 /* Function: frame_chain
601 Figure out and return the caller's frame pointer given current
602 frame_info struct.
603
604 We don't handle dummy frames yet but we would probably just return the
605 stack pointer that was in use at the time the function call was made? */
606
607 CORE_ADDR
608 mn10200_frame_chain (struct frame_info *fi)
609 {
610 struct frame_info dummy_frame;
611
612 /* Walk through the prologue to determine the stack size,
613 location of saved registers, end of the prologue, etc. */
614 if (fi->status == 0)
615 mn10200_analyze_prologue (fi, (CORE_ADDR) 0);
616
617 /* Quit now if mn10200_analyze_prologue set NO_MORE_FRAMES. */
618 if (fi->status & NO_MORE_FRAMES)
619 return 0;
620
621 /* Now that we've analyzed our prologue, determine the frame
622 pointer for our caller.
623
624 If our caller has a frame pointer, then we need to
625 find the entry value of $a2 to our function.
626
627 If CALLER_A2_IN_A0, then the chain is in $a0.
628
629 If fsr.regs[6] is nonzero, then it's at the memory
630 location pointed to by fsr.regs[6].
631
632 Else it's still in $a2.
633
634 If our caller does not have a frame pointer, then his
635 frame base is fi->frame + -caller's stack size + 4. */
636
637 /* The easiest way to get that info is to analyze our caller's frame.
638
639 So we set up a dummy frame and call mn10200_analyze_prologue to
640 find stuff for us. */
641 dummy_frame.pc = FRAME_SAVED_PC (fi);
642 dummy_frame.frame = fi->frame;
643 memset (dummy_frame.fsr.regs, '\000', sizeof dummy_frame.fsr.regs);
644 dummy_frame.status = 0;
645 dummy_frame.stack_size = 0;
646 mn10200_analyze_prologue (&dummy_frame, 0);
647
648 if (dummy_frame.status & MY_FRAME_IN_FP)
649 {
650 /* Our caller has a frame pointer. So find the frame in $a2, $a0,
651 or in the stack. */
652 if (fi->fsr.regs[6])
653 return (read_memory_integer (fi->fsr.regs[FP_REGNUM], REGISTER_SIZE)
654 & 0xffffff);
655 else if (fi->status & CALLER_A2_IN_A0)
656 return read_register (4);
657 else
658 return read_register (FP_REGNUM);
659 }
660 else
661 {
662 /* Our caller does not have a frame pointer. So his frame starts
663 at the base of our frame (fi->frame) + <his size> + 4 (saved pc). */
664 return fi->frame + -dummy_frame.stack_size + 4;
665 }
666 }
667
668 /* Function: skip_prologue
669 Return the address of the first inst past the prologue of the function. */
670
671 CORE_ADDR
672 mn10200_skip_prologue (CORE_ADDR pc)
673 {
674 /* We used to check the debug symbols, but that can lose if
675 we have a null prologue. */
676 return mn10200_analyze_prologue (NULL, pc);
677 }
678
679 /* Function: pop_frame
680 This routine gets called when either the user uses the `return'
681 command, or the call dummy breakpoint gets hit. */
682
683 void
684 mn10200_pop_frame (struct frame_info *frame)
685 {
686 int regnum;
687
688 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
689 generic_pop_dummy_frame ();
690 else
691 {
692 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
693
694 /* Restore any saved registers. */
695 for (regnum = 0; regnum < NUM_REGS; regnum++)
696 if (frame->fsr.regs[regnum] != 0)
697 {
698 ULONGEST value;
699
700 value = read_memory_unsigned_integer (frame->fsr.regs[regnum],
701 REGISTER_RAW_SIZE (regnum));
702 write_register (regnum, value);
703 }
704
705 /* Actually cut back the stack. */
706 write_register (SP_REGNUM, FRAME_FP (frame));
707
708 /* Don't we need to set the PC?!? XXX FIXME. */
709 }
710
711 /* Throw away any cached frame information. */
712 flush_cached_frames ();
713 }
714
715 /* Function: push_arguments
716 Setup arguments for a call to the target. Arguments go in
717 order on the stack. */
718
719 CORE_ADDR
720 mn10200_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
721 unsigned char struct_return, CORE_ADDR struct_addr)
722 {
723 int argnum = 0;
724 int len = 0;
725 int stack_offset = 0;
726 int regsused = struct_return ? 1 : 0;
727
728 /* This should be a nop, but align the stack just in case something
729 went wrong. Stacks are two byte aligned on the mn10200. */
730 sp &= ~1;
731
732 /* Now make space on the stack for the args.
733
734 XXX This doesn't appear to handle pass-by-invisible reference
735 arguments. */
736 for (argnum = 0; argnum < nargs; argnum++)
737 {
738 int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 1) & ~1;
739
740 /* If we've used all argument registers, then this argument is
741 pushed. */
742 if (regsused >= 2 || arg_length > 4)
743 {
744 regsused = 2;
745 len += arg_length;
746 }
747 /* We know we've got some arg register space left. If this argument
748 will fit entirely in regs, then put it there. */
749 else if (arg_length <= 2
750 || TYPE_CODE (VALUE_TYPE (args[argnum])) == TYPE_CODE_PTR)
751 {
752 regsused++;
753 }
754 else if (regsused == 0)
755 {
756 regsused = 2;
757 }
758 else
759 {
760 regsused = 2;
761 len += arg_length;
762 }
763 }
764
765 /* Allocate stack space. */
766 sp -= len;
767
768 regsused = struct_return ? 1 : 0;
769 /* Push all arguments onto the stack. */
770 for (argnum = 0; argnum < nargs; argnum++)
771 {
772 int len;
773 char *val;
774
775 /* XXX Check this. What about UNIONS? */
776 if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
777 && TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
778 {
779 /* XXX Wrong, we want a pointer to this argument. */
780 len = TYPE_LENGTH (VALUE_TYPE (*args));
781 val = (char *) VALUE_CONTENTS (*args);
782 }
783 else
784 {
785 len = TYPE_LENGTH (VALUE_TYPE (*args));
786 val = (char *) VALUE_CONTENTS (*args);
787 }
788
789 if (regsused < 2
790 && (len <= 2
791 || TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_PTR))
792 {
793 write_register (regsused, extract_unsigned_integer (val, 4));
794 regsused++;
795 }
796 else if (regsused == 0 && len == 4)
797 {
798 write_register (regsused, extract_unsigned_integer (val, 2));
799 write_register (regsused + 1, extract_unsigned_integer (val + 2, 2));
800 regsused = 2;
801 }
802 else
803 {
804 regsused = 2;
805 while (len > 0)
806 {
807 write_memory (sp + stack_offset, val, 2);
808
809 len -= 2;
810 val += 2;
811 stack_offset += 2;
812 }
813 }
814 args++;
815 }
816
817 return sp;
818 }
819
820 /* Function: push_return_address (pc)
821 Set up the return address for the inferior function call.
822 Needed for targets where we don't actually execute a JSR/BSR instruction */
823
824 CORE_ADDR
825 mn10200_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
826 {
827 unsigned char buf[4];
828
829 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
830 write_memory (sp - 4, buf, 4);
831 return sp - 4;
832 }
833
834 /* Function: store_struct_return (addr,sp)
835 Store the structure value return address for an inferior function
836 call. */
837
838 CORE_ADDR
839 mn10200_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
840 {
841 /* The structure return address is passed as the first argument. */
842 write_register (0, addr);
843 return sp;
844 }
845
846 /* Function: frame_saved_pc
847 Find the caller of this frame. We do this by seeing if RP_REGNUM
848 is saved in the stack anywhere, otherwise we get it from the
849 registers. If the inner frame is a dummy frame, return its PC
850 instead of RP, because that's where "caller" of the dummy-frame
851 will be found. */
852
853 CORE_ADDR
854 mn10200_frame_saved_pc (struct frame_info *fi)
855 {
856 /* The saved PC will always be at the base of the current frame. */
857 return (read_memory_integer (fi->frame, REGISTER_SIZE) & 0xffffff);
858 }
859
860 /* Function: init_extra_frame_info
861 Setup the frame's frame pointer, pc, and frame addresses for saved
862 registers. Most of the work is done in mn10200_analyze_prologue().
863
864 Note that when we are called for the last frame (currently active frame),
865 that fi->pc and fi->frame will already be setup. However, fi->frame will
866 be valid only if this routine uses FP. For previous frames, fi-frame will
867 always be correct. mn10200_analyze_prologue will fix fi->frame if
868 it's not valid.
869
870 We can be called with the PC in the call dummy under two circumstances.
871 First, during normal backtracing, second, while figuring out the frame
872 pointer just prior to calling the target function (see run_stack_dummy). */
873
874 void
875 mn10200_init_extra_frame_info (struct frame_info *fi)
876 {
877 if (fi->next)
878 fi->pc = FRAME_SAVED_PC (fi->next);
879
880 memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
881 fi->status = 0;
882 fi->stack_size = 0;
883
884 mn10200_analyze_prologue (fi, 0);
885 }
886
887 void
888 _initialize_mn10200_tdep (void)
889 {
890 tm_print_insn = print_insn_mn10200;
891 }
This page took 0.045176 seconds and 3 git commands to generate.