PowerPC64 ELFv2 ABI: base support
[deliverable/binutils-gdb.git] / gdb / mn10300-tdep.c
1 /* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
2
3 Copyright (C) 1996-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dis-asm.h"
23 #include "gdbtypes.h"
24 #include "regcache.h"
25 #include <string.h>
26 #include "gdb_assert.h"
27 #include "gdbcore.h" /* For write_memory_unsigned_integer. */
28 #include "value.h"
29 #include "frame.h"
30 #include "frame-unwind.h"
31 #include "frame-base.h"
32 #include "symtab.h"
33 #include "dwarf2-frame.h"
34 #include "osabi.h"
35 #include "infcall.h"
36 #include "prologue-value.h"
37 #include "target.h"
38
39 #include "mn10300-tdep.h"
40
41
42 /* The am33-2 has 64 registers. */
43 #define MN10300_MAX_NUM_REGS 64
44
45 /* This structure holds the results of a prologue analysis. */
46 struct mn10300_prologue
47 {
48 /* The architecture for which we generated this prologue info. */
49 struct gdbarch *gdbarch;
50
51 /* The offset from the frame base to the stack pointer --- always
52 zero or negative.
53
54 Calling this a "size" is a bit misleading, but given that the
55 stack grows downwards, using offsets for everything keeps one
56 from going completely sign-crazy: you never change anything's
57 sign for an ADD instruction; always change the second operand's
58 sign for a SUB instruction; and everything takes care of
59 itself. */
60 int frame_size;
61
62 /* Non-zero if this function has initialized the frame pointer from
63 the stack pointer, zero otherwise. */
64 int has_frame_ptr;
65
66 /* If has_frame_ptr is non-zero, this is the offset from the frame
67 base to where the frame pointer points. This is always zero or
68 negative. */
69 int frame_ptr_offset;
70
71 /* The address of the first instruction at which the frame has been
72 set up and the arguments are where the debug info says they are
73 --- as best as we can tell. */
74 CORE_ADDR prologue_end;
75
76 /* reg_offset[R] is the offset from the CFA at which register R is
77 saved, or 1 if register R has not been saved. (Real values are
78 always zero or negative.) */
79 int reg_offset[MN10300_MAX_NUM_REGS];
80 };
81
82
83 /* Compute the alignment required by a type. */
84
85 static int
86 mn10300_type_align (struct type *type)
87 {
88 int i, align = 1;
89
90 switch (TYPE_CODE (type))
91 {
92 case TYPE_CODE_INT:
93 case TYPE_CODE_ENUM:
94 case TYPE_CODE_SET:
95 case TYPE_CODE_RANGE:
96 case TYPE_CODE_CHAR:
97 case TYPE_CODE_BOOL:
98 case TYPE_CODE_FLT:
99 case TYPE_CODE_PTR:
100 case TYPE_CODE_REF:
101 return TYPE_LENGTH (type);
102
103 case TYPE_CODE_COMPLEX:
104 return TYPE_LENGTH (type) / 2;
105
106 case TYPE_CODE_STRUCT:
107 case TYPE_CODE_UNION:
108 for (i = 0; i < TYPE_NFIELDS (type); i++)
109 {
110 int falign = mn10300_type_align (TYPE_FIELD_TYPE (type, i));
111 while (align < falign)
112 align <<= 1;
113 }
114 return align;
115
116 case TYPE_CODE_ARRAY:
117 /* HACK! Structures containing arrays, even small ones, are not
118 elligible for returning in registers. */
119 return 256;
120
121 case TYPE_CODE_TYPEDEF:
122 return mn10300_type_align (check_typedef (type));
123
124 default:
125 internal_error (__FILE__, __LINE__, _("bad switch"));
126 }
127 }
128
129 /* Should call_function allocate stack space for a struct return? */
130 static int
131 mn10300_use_struct_convention (struct type *type)
132 {
133 /* Structures bigger than a pair of words can't be returned in
134 registers. */
135 if (TYPE_LENGTH (type) > 8)
136 return 1;
137
138 switch (TYPE_CODE (type))
139 {
140 case TYPE_CODE_STRUCT:
141 case TYPE_CODE_UNION:
142 /* Structures with a single field are handled as the field
143 itself. */
144 if (TYPE_NFIELDS (type) == 1)
145 return mn10300_use_struct_convention (TYPE_FIELD_TYPE (type, 0));
146
147 /* Structures with word or double-word size are passed in memory, as
148 long as they require at least word alignment. */
149 if (mn10300_type_align (type) >= 4)
150 return 0;
151
152 return 1;
153
154 /* Arrays are addressable, so they're never returned in
155 registers. This condition can only hold when the array is
156 the only field of a struct or union. */
157 case TYPE_CODE_ARRAY:
158 return 1;
159
160 case TYPE_CODE_TYPEDEF:
161 return mn10300_use_struct_convention (check_typedef (type));
162
163 default:
164 return 0;
165 }
166 }
167
168 static void
169 mn10300_store_return_value (struct gdbarch *gdbarch, struct type *type,
170 struct regcache *regcache, const gdb_byte *valbuf)
171 {
172 int len = TYPE_LENGTH (type);
173 int reg, regsz;
174
175 if (TYPE_CODE (type) == TYPE_CODE_PTR)
176 reg = 4;
177 else
178 reg = 0;
179
180 regsz = register_size (gdbarch, reg);
181
182 if (len <= regsz)
183 regcache_raw_write_part (regcache, reg, 0, len, valbuf);
184 else if (len <= 2 * regsz)
185 {
186 regcache_raw_write (regcache, reg, valbuf);
187 gdb_assert (regsz == register_size (gdbarch, reg + 1));
188 regcache_raw_write_part (regcache, reg+1, 0,
189 len - regsz, valbuf + regsz);
190 }
191 else
192 internal_error (__FILE__, __LINE__,
193 _("Cannot store return value %d bytes long."), len);
194 }
195
196 static void
197 mn10300_extract_return_value (struct gdbarch *gdbarch, struct type *type,
198 struct regcache *regcache, void *valbuf)
199 {
200 gdb_byte buf[MAX_REGISTER_SIZE];
201 int len = TYPE_LENGTH (type);
202 int reg, regsz;
203
204 if (TYPE_CODE (type) == TYPE_CODE_PTR)
205 reg = 4;
206 else
207 reg = 0;
208
209 regsz = register_size (gdbarch, reg);
210 if (len <= regsz)
211 {
212 regcache_raw_read (regcache, reg, buf);
213 memcpy (valbuf, buf, len);
214 }
215 else if (len <= 2 * regsz)
216 {
217 regcache_raw_read (regcache, reg, buf);
218 memcpy (valbuf, buf, regsz);
219 gdb_assert (regsz == register_size (gdbarch, reg + 1));
220 regcache_raw_read (regcache, reg + 1, buf);
221 memcpy ((char *) valbuf + regsz, buf, len - regsz);
222 }
223 else
224 internal_error (__FILE__, __LINE__,
225 _("Cannot extract return value %d bytes long."), len);
226 }
227
228 /* Determine, for architecture GDBARCH, how a return value of TYPE
229 should be returned. If it is supposed to be returned in registers,
230 and READBUF is non-zero, read the appropriate value from REGCACHE,
231 and copy it into READBUF. If WRITEBUF is non-zero, write the value
232 from WRITEBUF into REGCACHE. */
233
234 static enum return_value_convention
235 mn10300_return_value (struct gdbarch *gdbarch, struct value *function,
236 struct type *type, struct regcache *regcache,
237 gdb_byte *readbuf, const gdb_byte *writebuf)
238 {
239 if (mn10300_use_struct_convention (type))
240 return RETURN_VALUE_STRUCT_CONVENTION;
241
242 if (readbuf)
243 mn10300_extract_return_value (gdbarch, type, regcache, readbuf);
244 if (writebuf)
245 mn10300_store_return_value (gdbarch, type, regcache, writebuf);
246
247 return RETURN_VALUE_REGISTER_CONVENTION;
248 }
249
250 static char *
251 register_name (int reg, char **regs, long sizeof_regs)
252 {
253 if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
254 return NULL;
255 else
256 return regs[reg];
257 }
258
259 static const char *
260 mn10300_generic_register_name (struct gdbarch *gdbarch, int reg)
261 {
262 static char *regs[] =
263 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
264 "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
265 "", "", "", "", "", "", "", "",
266 "", "", "", "", "", "", "", "fp"
267 };
268 return register_name (reg, regs, sizeof regs);
269 }
270
271
272 static const char *
273 am33_register_name (struct gdbarch *gdbarch, int reg)
274 {
275 static char *regs[] =
276 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
277 "sp", "pc", "mdr", "psw", "lir", "lar", "",
278 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
279 "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
280 };
281 return register_name (reg, regs, sizeof regs);
282 }
283
284 static const char *
285 am33_2_register_name (struct gdbarch *gdbarch, int reg)
286 {
287 static char *regs[] =
288 {
289 "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
290 "sp", "pc", "mdr", "psw", "lir", "lar", "mdrq", "r0",
291 "r1", "r2", "r3", "r4", "r5", "r6", "r7", "ssp",
292 "msp", "usp", "mcrh", "mcrl", "mcvf", "fpcr", "", "",
293 "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7",
294 "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15",
295 "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23",
296 "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31"
297 };
298 return register_name (reg, regs, sizeof regs);
299 }
300
301 static struct type *
302 mn10300_register_type (struct gdbarch *gdbarch, int reg)
303 {
304 return builtin_type (gdbarch)->builtin_int;
305 }
306
307 static CORE_ADDR
308 mn10300_read_pc (struct regcache *regcache)
309 {
310 ULONGEST val;
311 regcache_cooked_read_unsigned (regcache, E_PC_REGNUM, &val);
312 return val;
313 }
314
315 static void
316 mn10300_write_pc (struct regcache *regcache, CORE_ADDR val)
317 {
318 regcache_cooked_write_unsigned (regcache, E_PC_REGNUM, val);
319 }
320
321 /* The breakpoint instruction must be the same size as the smallest
322 instruction in the instruction set.
323
324 The Matsushita mn10x00 processors have single byte instructions
325 so we need a single byte breakpoint. Matsushita hasn't defined
326 one, so we defined it ourselves. */
327
328 static const unsigned char *
329 mn10300_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
330 int *bp_size)
331 {
332 static gdb_byte breakpoint[] = {0xff};
333 *bp_size = 1;
334 return breakpoint;
335 }
336
337 /* Model the semantics of pushing a register onto the stack. This
338 is a helper function for mn10300_analyze_prologue, below. */
339 static void
340 push_reg (pv_t *regs, struct pv_area *stack, int regnum)
341 {
342 regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], -4);
343 pv_area_store (stack, regs[E_SP_REGNUM], 4, regs[regnum]);
344 }
345
346 /* Translate an "r" register number extracted from an instruction encoding
347 into a GDB register number. Adapted from a simulator function
348 of the same name; see am33.igen. */
349 static int
350 translate_rreg (int rreg)
351 {
352 /* The higher register numbers actually correspond to the
353 basic machine's address and data registers. */
354 if (rreg > 7 && rreg < 12)
355 return E_A0_REGNUM + rreg - 8;
356 else if (rreg > 11 && rreg < 16)
357 return E_D0_REGNUM + rreg - 12;
358 else
359 return E_E0_REGNUM + rreg;
360 }
361
362 /* Find saved registers in a 'struct pv_area'; we pass this to pv_area_scan.
363
364 If VALUE is a saved register, ADDR says it was saved at a constant
365 offset from the frame base, and SIZE indicates that the whole
366 register was saved, record its offset in RESULT_UNTYPED. */
367 static void
368 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
369 {
370 struct mn10300_prologue *result = (struct mn10300_prologue *) result_untyped;
371
372 if (value.kind == pvk_register
373 && value.k == 0
374 && pv_is_register (addr, E_SP_REGNUM)
375 && size == register_size (result->gdbarch, value.reg))
376 result->reg_offset[value.reg] = addr.k;
377 }
378
379 /* Analyze the prologue to determine where registers are saved,
380 the end of the prologue, etc. The result of this analysis is
381 returned in RESULT. See struct mn10300_prologue above for more
382 information. */
383 static void
384 mn10300_analyze_prologue (struct gdbarch *gdbarch,
385 CORE_ADDR start_pc, CORE_ADDR limit_pc,
386 struct mn10300_prologue *result)
387 {
388 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
389 CORE_ADDR pc;
390 int rn;
391 pv_t regs[MN10300_MAX_NUM_REGS];
392 struct pv_area *stack;
393 struct cleanup *back_to;
394 CORE_ADDR after_last_frame_setup_insn = start_pc;
395 int am33_mode = AM33_MODE (gdbarch);
396
397 memset (result, 0, sizeof (*result));
398 result->gdbarch = gdbarch;
399
400 for (rn = 0; rn < MN10300_MAX_NUM_REGS; rn++)
401 {
402 regs[rn] = pv_register (rn, 0);
403 result->reg_offset[rn] = 1;
404 }
405 stack = make_pv_area (E_SP_REGNUM, gdbarch_addr_bit (gdbarch));
406 back_to = make_cleanup_free_pv_area (stack);
407
408 /* The typical call instruction will have saved the return address on the
409 stack. Space for the return address has already been preallocated in
410 the caller's frame. It's possible, such as when using -mrelax with gcc
411 that other registers were saved as well. If this happens, we really
412 have no chance of deciphering the frame. DWARF info can save the day
413 when this happens. */
414 pv_area_store (stack, regs[E_SP_REGNUM], 4, regs[E_PC_REGNUM]);
415
416 pc = start_pc;
417 while (pc < limit_pc)
418 {
419 int status;
420 gdb_byte instr[2];
421
422 /* Instructions can be as small as one byte; however, we usually
423 need at least two bytes to do the decoding, so fetch that many
424 to begin with. */
425 status = target_read_memory (pc, instr, 2);
426 if (status != 0)
427 break;
428
429 /* movm [regs], sp */
430 if (instr[0] == 0xcf)
431 {
432 gdb_byte save_mask;
433
434 save_mask = instr[1];
435
436 if ((save_mask & movm_exreg0_bit) && am33_mode)
437 {
438 push_reg (regs, stack, E_E2_REGNUM);
439 push_reg (regs, stack, E_E3_REGNUM);
440 }
441 if ((save_mask & movm_exreg1_bit) && am33_mode)
442 {
443 push_reg (regs, stack, E_E4_REGNUM);
444 push_reg (regs, stack, E_E5_REGNUM);
445 push_reg (regs, stack, E_E6_REGNUM);
446 push_reg (regs, stack, E_E7_REGNUM);
447 }
448 if ((save_mask & movm_exother_bit) && am33_mode)
449 {
450 push_reg (regs, stack, E_E0_REGNUM);
451 push_reg (regs, stack, E_E1_REGNUM);
452 push_reg (regs, stack, E_MDRQ_REGNUM);
453 push_reg (regs, stack, E_MCRH_REGNUM);
454 push_reg (regs, stack, E_MCRL_REGNUM);
455 push_reg (regs, stack, E_MCVF_REGNUM);
456 }
457 if (save_mask & movm_d2_bit)
458 push_reg (regs, stack, E_D2_REGNUM);
459 if (save_mask & movm_d3_bit)
460 push_reg (regs, stack, E_D3_REGNUM);
461 if (save_mask & movm_a2_bit)
462 push_reg (regs, stack, E_A2_REGNUM);
463 if (save_mask & movm_a3_bit)
464 push_reg (regs, stack, E_A3_REGNUM);
465 if (save_mask & movm_other_bit)
466 {
467 push_reg (regs, stack, E_D0_REGNUM);
468 push_reg (regs, stack, E_D1_REGNUM);
469 push_reg (regs, stack, E_A0_REGNUM);
470 push_reg (regs, stack, E_A1_REGNUM);
471 push_reg (regs, stack, E_MDR_REGNUM);
472 push_reg (regs, stack, E_LIR_REGNUM);
473 push_reg (regs, stack, E_LAR_REGNUM);
474 /* The `other' bit leaves a blank area of four bytes at
475 the beginning of its block of saved registers, making
476 it 32 bytes long in total. */
477 regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], -4);
478 }
479
480 pc += 2;
481 after_last_frame_setup_insn = pc;
482 }
483 /* mov sp, aN */
484 else if ((instr[0] & 0xfc) == 0x3c)
485 {
486 int aN = instr[0] & 0x03;
487
488 regs[E_A0_REGNUM + aN] = regs[E_SP_REGNUM];
489
490 pc += 1;
491 if (aN == 3)
492 after_last_frame_setup_insn = pc;
493 }
494 /* mov aM, aN */
495 else if ((instr[0] & 0xf0) == 0x90
496 && (instr[0] & 0x03) != ((instr[0] & 0x0c) >> 2))
497 {
498 int aN = instr[0] & 0x03;
499 int aM = (instr[0] & 0x0c) >> 2;
500
501 regs[E_A0_REGNUM + aN] = regs[E_A0_REGNUM + aM];
502
503 pc += 1;
504 }
505 /* mov dM, dN */
506 else if ((instr[0] & 0xf0) == 0x80
507 && (instr[0] & 0x03) != ((instr[0] & 0x0c) >> 2))
508 {
509 int dN = instr[0] & 0x03;
510 int dM = (instr[0] & 0x0c) >> 2;
511
512 regs[E_D0_REGNUM + dN] = regs[E_D0_REGNUM + dM];
513
514 pc += 1;
515 }
516 /* mov aM, dN */
517 else if (instr[0] == 0xf1 && (instr[1] & 0xf0) == 0xd0)
518 {
519 int dN = instr[1] & 0x03;
520 int aM = (instr[1] & 0x0c) >> 2;
521
522 regs[E_D0_REGNUM + dN] = regs[E_A0_REGNUM + aM];
523
524 pc += 2;
525 }
526 /* mov dM, aN */
527 else if (instr[0] == 0xf1 && (instr[1] & 0xf0) == 0xe0)
528 {
529 int aN = instr[1] & 0x03;
530 int dM = (instr[1] & 0x0c) >> 2;
531
532 regs[E_A0_REGNUM + aN] = regs[E_D0_REGNUM + dM];
533
534 pc += 2;
535 }
536 /* add imm8, SP */
537 else if (instr[0] == 0xf8 && instr[1] == 0xfe)
538 {
539 gdb_byte buf[1];
540 LONGEST imm8;
541
542
543 status = target_read_memory (pc + 2, buf, 1);
544 if (status != 0)
545 break;
546
547 imm8 = extract_signed_integer (buf, 1, byte_order);
548 regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm8);
549
550 pc += 3;
551 /* Stack pointer adjustments are frame related. */
552 after_last_frame_setup_insn = pc;
553 }
554 /* add imm16, SP */
555 else if (instr[0] == 0xfa && instr[1] == 0xfe)
556 {
557 gdb_byte buf[2];
558 LONGEST imm16;
559
560 status = target_read_memory (pc + 2, buf, 2);
561 if (status != 0)
562 break;
563
564 imm16 = extract_signed_integer (buf, 2, byte_order);
565 regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm16);
566
567 pc += 4;
568 /* Stack pointer adjustments are frame related. */
569 after_last_frame_setup_insn = pc;
570 }
571 /* add imm32, SP */
572 else if (instr[0] == 0xfc && instr[1] == 0xfe)
573 {
574 gdb_byte buf[4];
575 LONGEST imm32;
576
577 status = target_read_memory (pc + 2, buf, 4);
578 if (status != 0)
579 break;
580
581
582 imm32 = extract_signed_integer (buf, 4, byte_order);
583 regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm32);
584
585 pc += 6;
586 /* Stack pointer adjustments are frame related. */
587 after_last_frame_setup_insn = pc;
588 }
589 /* add imm8, aN */
590 else if ((instr[0] & 0xfc) == 0x20)
591 {
592 int aN;
593 LONGEST imm8;
594
595 aN = instr[0] & 0x03;
596 imm8 = extract_signed_integer (&instr[1], 1, byte_order);
597
598 regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN],
599 imm8);
600
601 pc += 2;
602 }
603 /* add imm16, aN */
604 else if (instr[0] == 0xfa && (instr[1] & 0xfc) == 0xd0)
605 {
606 int aN;
607 LONGEST imm16;
608 gdb_byte buf[2];
609
610 aN = instr[1] & 0x03;
611
612 status = target_read_memory (pc + 2, buf, 2);
613 if (status != 0)
614 break;
615
616
617 imm16 = extract_signed_integer (buf, 2, byte_order);
618
619 regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN],
620 imm16);
621
622 pc += 4;
623 }
624 /* add imm32, aN */
625 else if (instr[0] == 0xfc && (instr[1] & 0xfc) == 0xd0)
626 {
627 int aN;
628 LONGEST imm32;
629 gdb_byte buf[4];
630
631 aN = instr[1] & 0x03;
632
633 status = target_read_memory (pc + 2, buf, 4);
634 if (status != 0)
635 break;
636
637 imm32 = extract_signed_integer (buf, 2, byte_order);
638
639 regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN],
640 imm32);
641 pc += 6;
642 }
643 /* fmov fsM, (rN) */
644 else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x30)
645 {
646 int fsM, sM, Y, rN;
647 gdb_byte buf[1];
648
649 Y = (instr[1] & 0x02) >> 1;
650
651 status = target_read_memory (pc + 2, buf, 1);
652 if (status != 0)
653 break;
654
655 sM = (buf[0] & 0xf0) >> 4;
656 rN = buf[0] & 0x0f;
657 fsM = (Y << 4) | sM;
658
659 pv_area_store (stack, regs[translate_rreg (rN)], 4,
660 regs[E_FS0_REGNUM + fsM]);
661
662 pc += 3;
663 }
664 /* fmov fsM, (sp) */
665 else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x34)
666 {
667 int fsM, sM, Y;
668 gdb_byte buf[1];
669
670 Y = (instr[1] & 0x02) >> 1;
671
672 status = target_read_memory (pc + 2, buf, 1);
673 if (status != 0)
674 break;
675
676 sM = (buf[0] & 0xf0) >> 4;
677 fsM = (Y << 4) | sM;
678
679 pv_area_store (stack, regs[E_SP_REGNUM], 4,
680 regs[E_FS0_REGNUM + fsM]);
681
682 pc += 3;
683 }
684 /* fmov fsM, (rN, rI) */
685 else if (instr[0] == 0xfb && instr[1] == 0x37)
686 {
687 int fsM, sM, Z, rN, rI;
688 gdb_byte buf[2];
689
690
691 status = target_read_memory (pc + 2, buf, 2);
692 if (status != 0)
693 break;
694
695 rI = (buf[0] & 0xf0) >> 4;
696 rN = buf[0] & 0x0f;
697 sM = (buf[1] & 0xf0) >> 4;
698 Z = (buf[1] & 0x02) >> 1;
699 fsM = (Z << 4) | sM;
700
701 pv_area_store (stack,
702 pv_add (regs[translate_rreg (rN)],
703 regs[translate_rreg (rI)]),
704 4, regs[E_FS0_REGNUM + fsM]);
705
706 pc += 4;
707 }
708 /* fmov fsM, (d8, rN) */
709 else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x30)
710 {
711 int fsM, sM, Y, rN;
712 LONGEST d8;
713 gdb_byte buf[2];
714
715 Y = (instr[1] & 0x02) >> 1;
716
717 status = target_read_memory (pc + 2, buf, 2);
718 if (status != 0)
719 break;
720
721 sM = (buf[0] & 0xf0) >> 4;
722 rN = buf[0] & 0x0f;
723 fsM = (Y << 4) | sM;
724 d8 = extract_signed_integer (&buf[1], 1, byte_order);
725
726 pv_area_store (stack,
727 pv_add_constant (regs[translate_rreg (rN)], d8),
728 4, regs[E_FS0_REGNUM + fsM]);
729
730 pc += 4;
731 }
732 /* fmov fsM, (d24, rN) */
733 else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x30)
734 {
735 int fsM, sM, Y, rN;
736 LONGEST d24;
737 gdb_byte buf[4];
738
739 Y = (instr[1] & 0x02) >> 1;
740
741 status = target_read_memory (pc + 2, buf, 4);
742 if (status != 0)
743 break;
744
745 sM = (buf[0] & 0xf0) >> 4;
746 rN = buf[0] & 0x0f;
747 fsM = (Y << 4) | sM;
748 d24 = extract_signed_integer (&buf[1], 3, byte_order);
749
750 pv_area_store (stack,
751 pv_add_constant (regs[translate_rreg (rN)], d24),
752 4, regs[E_FS0_REGNUM + fsM]);
753
754 pc += 6;
755 }
756 /* fmov fsM, (d32, rN) */
757 else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x30)
758 {
759 int fsM, sM, Y, rN;
760 LONGEST d32;
761 gdb_byte buf[5];
762
763 Y = (instr[1] & 0x02) >> 1;
764
765 status = target_read_memory (pc + 2, buf, 5);
766 if (status != 0)
767 break;
768
769 sM = (buf[0] & 0xf0) >> 4;
770 rN = buf[0] & 0x0f;
771 fsM = (Y << 4) | sM;
772 d32 = extract_signed_integer (&buf[1], 4, byte_order);
773
774 pv_area_store (stack,
775 pv_add_constant (regs[translate_rreg (rN)], d32),
776 4, regs[E_FS0_REGNUM + fsM]);
777
778 pc += 7;
779 }
780 /* fmov fsM, (d8, SP) */
781 else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x34)
782 {
783 int fsM, sM, Y;
784 LONGEST d8;
785 gdb_byte buf[2];
786
787 Y = (instr[1] & 0x02) >> 1;
788
789 status = target_read_memory (pc + 2, buf, 2);
790 if (status != 0)
791 break;
792
793 sM = (buf[0] & 0xf0) >> 4;
794 fsM = (Y << 4) | sM;
795 d8 = extract_signed_integer (&buf[1], 1, byte_order);
796
797 pv_area_store (stack,
798 pv_add_constant (regs[E_SP_REGNUM], d8),
799 4, regs[E_FS0_REGNUM + fsM]);
800
801 pc += 4;
802 }
803 /* fmov fsM, (d24, SP) */
804 else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x34)
805 {
806 int fsM, sM, Y;
807 LONGEST d24;
808 gdb_byte buf[4];
809
810 Y = (instr[1] & 0x02) >> 1;
811
812 status = target_read_memory (pc + 2, buf, 4);
813 if (status != 0)
814 break;
815
816 sM = (buf[0] & 0xf0) >> 4;
817 fsM = (Y << 4) | sM;
818 d24 = extract_signed_integer (&buf[1], 3, byte_order);
819
820 pv_area_store (stack,
821 pv_add_constant (regs[E_SP_REGNUM], d24),
822 4, regs[E_FS0_REGNUM + fsM]);
823
824 pc += 6;
825 }
826 /* fmov fsM, (d32, SP) */
827 else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x34)
828 {
829 int fsM, sM, Y;
830 LONGEST d32;
831 gdb_byte buf[5];
832
833 Y = (instr[1] & 0x02) >> 1;
834
835 status = target_read_memory (pc + 2, buf, 5);
836 if (status != 0)
837 break;
838
839 sM = (buf[0] & 0xf0) >> 4;
840 fsM = (Y << 4) | sM;
841 d32 = extract_signed_integer (&buf[1], 4, byte_order);
842
843 pv_area_store (stack,
844 pv_add_constant (regs[E_SP_REGNUM], d32),
845 4, regs[E_FS0_REGNUM + fsM]);
846
847 pc += 7;
848 }
849 /* fmov fsM, (rN+) */
850 else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x31)
851 {
852 int fsM, sM, Y, rN, rN_regnum;
853 gdb_byte buf[1];
854
855 Y = (instr[1] & 0x02) >> 1;
856
857 status = target_read_memory (pc + 2, buf, 1);
858 if (status != 0)
859 break;
860
861 sM = (buf[0] & 0xf0) >> 4;
862 rN = buf[0] & 0x0f;
863 fsM = (Y << 4) | sM;
864
865 rN_regnum = translate_rreg (rN);
866
867 pv_area_store (stack, regs[rN_regnum], 4,
868 regs[E_FS0_REGNUM + fsM]);
869 regs[rN_regnum] = pv_add_constant (regs[rN_regnum], 4);
870
871 pc += 3;
872 }
873 /* fmov fsM, (rN+, imm8) */
874 else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x31)
875 {
876 int fsM, sM, Y, rN, rN_regnum;
877 LONGEST imm8;
878 gdb_byte buf[2];
879
880 Y = (instr[1] & 0x02) >> 1;
881
882 status = target_read_memory (pc + 2, buf, 2);
883 if (status != 0)
884 break;
885
886 sM = (buf[0] & 0xf0) >> 4;
887 rN = buf[0] & 0x0f;
888 fsM = (Y << 4) | sM;
889 imm8 = extract_signed_integer (&buf[1], 1, byte_order);
890
891 rN_regnum = translate_rreg (rN);
892
893 pv_area_store (stack, regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]);
894 regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm8);
895
896 pc += 4;
897 }
898 /* fmov fsM, (rN+, imm24) */
899 else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x31)
900 {
901 int fsM, sM, Y, rN, rN_regnum;
902 LONGEST imm24;
903 gdb_byte buf[4];
904
905 Y = (instr[1] & 0x02) >> 1;
906
907 status = target_read_memory (pc + 2, buf, 4);
908 if (status != 0)
909 break;
910
911 sM = (buf[0] & 0xf0) >> 4;
912 rN = buf[0] & 0x0f;
913 fsM = (Y << 4) | sM;
914 imm24 = extract_signed_integer (&buf[1], 3, byte_order);
915
916 rN_regnum = translate_rreg (rN);
917
918 pv_area_store (stack, regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]);
919 regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm24);
920
921 pc += 6;
922 }
923 /* fmov fsM, (rN+, imm32) */
924 else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x31)
925 {
926 int fsM, sM, Y, rN, rN_regnum;
927 LONGEST imm32;
928 gdb_byte buf[5];
929
930 Y = (instr[1] & 0x02) >> 1;
931
932 status = target_read_memory (pc + 2, buf, 5);
933 if (status != 0)
934 break;
935
936 sM = (buf[0] & 0xf0) >> 4;
937 rN = buf[0] & 0x0f;
938 fsM = (Y << 4) | sM;
939 imm32 = extract_signed_integer (&buf[1], 4, byte_order);
940
941 rN_regnum = translate_rreg (rN);
942
943 pv_area_store (stack, regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]);
944 regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm32);
945
946 pc += 7;
947 }
948 /* mov imm8, aN */
949 else if ((instr[0] & 0xf0) == 0x90)
950 {
951 int aN = instr[0] & 0x03;
952 LONGEST imm8;
953
954 imm8 = extract_signed_integer (&instr[1], 1, byte_order);
955
956 regs[E_A0_REGNUM + aN] = pv_constant (imm8);
957 pc += 2;
958 }
959 /* mov imm16, aN */
960 else if ((instr[0] & 0xfc) == 0x24)
961 {
962 int aN = instr[0] & 0x03;
963 gdb_byte buf[2];
964 LONGEST imm16;
965
966 status = target_read_memory (pc + 1, buf, 2);
967 if (status != 0)
968 break;
969
970 imm16 = extract_signed_integer (buf, 2, byte_order);
971 regs[E_A0_REGNUM + aN] = pv_constant (imm16);
972 pc += 3;
973 }
974 /* mov imm32, aN */
975 else if (instr[0] == 0xfc && ((instr[1] & 0xfc) == 0xdc))
976 {
977 int aN = instr[1] & 0x03;
978 gdb_byte buf[4];
979 LONGEST imm32;
980
981 status = target_read_memory (pc + 2, buf, 4);
982 if (status != 0)
983 break;
984
985 imm32 = extract_signed_integer (buf, 4, byte_order);
986 regs[E_A0_REGNUM + aN] = pv_constant (imm32);
987 pc += 6;
988 }
989 /* mov imm8, dN */
990 else if ((instr[0] & 0xf0) == 0x80)
991 {
992 int dN = instr[0] & 0x03;
993 LONGEST imm8;
994
995 imm8 = extract_signed_integer (&instr[1], 1, byte_order);
996
997 regs[E_D0_REGNUM + dN] = pv_constant (imm8);
998 pc += 2;
999 }
1000 /* mov imm16, dN */
1001 else if ((instr[0] & 0xfc) == 0x2c)
1002 {
1003 int dN = instr[0] & 0x03;
1004 gdb_byte buf[2];
1005 LONGEST imm16;
1006
1007 status = target_read_memory (pc + 1, buf, 2);
1008 if (status != 0)
1009 break;
1010
1011 imm16 = extract_signed_integer (buf, 2, byte_order);
1012 regs[E_D0_REGNUM + dN] = pv_constant (imm16);
1013 pc += 3;
1014 }
1015 /* mov imm32, dN */
1016 else if (instr[0] == 0xfc && ((instr[1] & 0xfc) == 0xcc))
1017 {
1018 int dN = instr[1] & 0x03;
1019 gdb_byte buf[4];
1020 LONGEST imm32;
1021
1022 status = target_read_memory (pc + 2, buf, 4);
1023 if (status != 0)
1024 break;
1025
1026 imm32 = extract_signed_integer (buf, 4, byte_order);
1027 regs[E_D0_REGNUM + dN] = pv_constant (imm32);
1028 pc += 6;
1029 }
1030 else
1031 {
1032 /* We've hit some instruction that we don't recognize. Hopefully,
1033 we have enough to do prologue analysis. */
1034 break;
1035 }
1036 }
1037
1038 /* Is the frame size (offset, really) a known constant? */
1039 if (pv_is_register (regs[E_SP_REGNUM], E_SP_REGNUM))
1040 result->frame_size = regs[E_SP_REGNUM].k;
1041
1042 /* Was the frame pointer initialized? */
1043 if (pv_is_register (regs[E_A3_REGNUM], E_SP_REGNUM))
1044 {
1045 result->has_frame_ptr = 1;
1046 result->frame_ptr_offset = regs[E_A3_REGNUM].k;
1047 }
1048
1049 /* Record where all the registers were saved. */
1050 pv_area_scan (stack, check_for_saved, (void *) result);
1051
1052 result->prologue_end = after_last_frame_setup_insn;
1053
1054 do_cleanups (back_to);
1055 }
1056
1057 /* Function: skip_prologue
1058 Return the address of the first inst past the prologue of the function. */
1059
1060 static CORE_ADDR
1061 mn10300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1062 {
1063 const char *name;
1064 CORE_ADDR func_addr, func_end;
1065 struct mn10300_prologue p;
1066
1067 /* Try to find the extent of the function that contains PC. */
1068 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
1069 return pc;
1070
1071 mn10300_analyze_prologue (gdbarch, pc, func_end, &p);
1072 return p.prologue_end;
1073 }
1074
1075 /* Wrapper for mn10300_analyze_prologue: find the function start;
1076 use the current frame PC as the limit, then
1077 invoke mn10300_analyze_prologue and return its result. */
1078 static struct mn10300_prologue *
1079 mn10300_analyze_frame_prologue (struct frame_info *this_frame,
1080 void **this_prologue_cache)
1081 {
1082 if (!*this_prologue_cache)
1083 {
1084 CORE_ADDR func_start, stop_addr;
1085
1086 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct mn10300_prologue);
1087
1088 func_start = get_frame_func (this_frame);
1089 stop_addr = get_frame_pc (this_frame);
1090
1091 /* If we couldn't find any function containing the PC, then
1092 just initialize the prologue cache, but don't do anything. */
1093 if (!func_start)
1094 stop_addr = func_start;
1095
1096 mn10300_analyze_prologue (get_frame_arch (this_frame),
1097 func_start, stop_addr, *this_prologue_cache);
1098 }
1099
1100 return *this_prologue_cache;
1101 }
1102
1103 /* Given the next frame and a prologue cache, return this frame's
1104 base. */
1105 static CORE_ADDR
1106 mn10300_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
1107 {
1108 struct mn10300_prologue *p
1109 = mn10300_analyze_frame_prologue (this_frame, this_prologue_cache);
1110
1111 /* In functions that use alloca, the distance between the stack
1112 pointer and the frame base varies dynamically, so we can't use
1113 the SP plus static information like prologue analysis to find the
1114 frame base. However, such functions must have a frame pointer,
1115 to be able to restore the SP on exit. So whenever we do have a
1116 frame pointer, use that to find the base. */
1117 if (p->has_frame_ptr)
1118 {
1119 CORE_ADDR fp = get_frame_register_unsigned (this_frame, E_A3_REGNUM);
1120 return fp - p->frame_ptr_offset;
1121 }
1122 else
1123 {
1124 CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
1125 return sp - p->frame_size;
1126 }
1127 }
1128
1129 /* Here is a dummy implementation. */
1130 static struct frame_id
1131 mn10300_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1132 {
1133 CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
1134 CORE_ADDR pc = get_frame_register_unsigned (this_frame, E_PC_REGNUM);
1135 return frame_id_build (sp, pc);
1136 }
1137
1138 static void
1139 mn10300_frame_this_id (struct frame_info *this_frame,
1140 void **this_prologue_cache,
1141 struct frame_id *this_id)
1142 {
1143 *this_id = frame_id_build (mn10300_frame_base (this_frame,
1144 this_prologue_cache),
1145 get_frame_func (this_frame));
1146
1147 }
1148
1149 static struct value *
1150 mn10300_frame_prev_register (struct frame_info *this_frame,
1151 void **this_prologue_cache, int regnum)
1152 {
1153 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1154 struct mn10300_prologue *p
1155 = mn10300_analyze_frame_prologue (this_frame, this_prologue_cache);
1156 CORE_ADDR frame_base = mn10300_frame_base (this_frame, this_prologue_cache);
1157 int reg_size = register_size (get_frame_arch (this_frame), regnum);
1158
1159 if (regnum == E_SP_REGNUM)
1160 return frame_unwind_got_constant (this_frame, regnum, frame_base);
1161
1162 /* If prologue analysis says we saved this register somewhere,
1163 return a description of the stack slot holding it. */
1164 if (p->reg_offset[regnum] != 1)
1165 return frame_unwind_got_memory (this_frame, regnum,
1166 frame_base + p->reg_offset[regnum]);
1167
1168 /* Otherwise, presume we haven't changed the value of this
1169 register, and get it from the next frame. */
1170 return frame_unwind_got_register (this_frame, regnum, regnum);
1171 }
1172
1173 static const struct frame_unwind mn10300_frame_unwind = {
1174 NORMAL_FRAME,
1175 default_frame_unwind_stop_reason,
1176 mn10300_frame_this_id,
1177 mn10300_frame_prev_register,
1178 NULL,
1179 default_frame_sniffer
1180 };
1181
1182 static CORE_ADDR
1183 mn10300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1184 {
1185 ULONGEST pc;
1186
1187 pc = frame_unwind_register_unsigned (this_frame, E_PC_REGNUM);
1188 return pc;
1189 }
1190
1191 static CORE_ADDR
1192 mn10300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1193 {
1194 ULONGEST sp;
1195
1196 sp = frame_unwind_register_unsigned (this_frame, E_SP_REGNUM);
1197 return sp;
1198 }
1199
1200 static void
1201 mn10300_frame_unwind_init (struct gdbarch *gdbarch)
1202 {
1203 dwarf2_append_unwinders (gdbarch);
1204 frame_unwind_append_unwinder (gdbarch, &mn10300_frame_unwind);
1205 set_gdbarch_dummy_id (gdbarch, mn10300_dummy_id);
1206 set_gdbarch_unwind_pc (gdbarch, mn10300_unwind_pc);
1207 set_gdbarch_unwind_sp (gdbarch, mn10300_unwind_sp);
1208 }
1209
1210 /* Function: push_dummy_call
1211 *
1212 * Set up machine state for a target call, including
1213 * function arguments, stack, return address, etc.
1214 *
1215 */
1216
1217 static CORE_ADDR
1218 mn10300_push_dummy_call (struct gdbarch *gdbarch,
1219 struct value *target_func,
1220 struct regcache *regcache,
1221 CORE_ADDR bp_addr,
1222 int nargs, struct value **args,
1223 CORE_ADDR sp,
1224 int struct_return,
1225 CORE_ADDR struct_addr)
1226 {
1227 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1228 const int push_size = register_size (gdbarch, E_PC_REGNUM);
1229 int regs_used;
1230 int len, arg_len;
1231 int stack_offset = 0;
1232 int argnum;
1233 const gdb_byte *val;
1234 gdb_byte valbuf[MAX_REGISTER_SIZE];
1235
1236 /* This should be a nop, but align the stack just in case something
1237 went wrong. Stacks are four byte aligned on the mn10300. */
1238 sp &= ~3;
1239
1240 /* Now make space on the stack for the args.
1241
1242 XXX This doesn't appear to handle pass-by-invisible reference
1243 arguments. */
1244 regs_used = struct_return ? 1 : 0;
1245 for (len = 0, argnum = 0; argnum < nargs; argnum++)
1246 {
1247 arg_len = (TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3;
1248 while (regs_used < 2 && arg_len > 0)
1249 {
1250 regs_used++;
1251 arg_len -= push_size;
1252 }
1253 len += arg_len;
1254 }
1255
1256 /* Allocate stack space. */
1257 sp -= len;
1258
1259 if (struct_return)
1260 {
1261 regs_used = 1;
1262 regcache_cooked_write_unsigned (regcache, E_D0_REGNUM, struct_addr);
1263 }
1264 else
1265 regs_used = 0;
1266
1267 /* Push all arguments onto the stack. */
1268 for (argnum = 0; argnum < nargs; argnum++)
1269 {
1270 /* FIXME what about structs? Unions? */
1271 if (TYPE_CODE (value_type (*args)) == TYPE_CODE_STRUCT
1272 && TYPE_LENGTH (value_type (*args)) > 8)
1273 {
1274 /* Change to pointer-to-type. */
1275 arg_len = push_size;
1276 store_unsigned_integer (valbuf, push_size, byte_order,
1277 value_address (*args));
1278 val = &valbuf[0];
1279 }
1280 else
1281 {
1282 arg_len = TYPE_LENGTH (value_type (*args));
1283 val = value_contents (*args);
1284 }
1285
1286 while (regs_used < 2 && arg_len > 0)
1287 {
1288 regcache_cooked_write_unsigned (regcache, regs_used,
1289 extract_unsigned_integer (val, push_size, byte_order));
1290 val += push_size;
1291 arg_len -= push_size;
1292 regs_used++;
1293 }
1294
1295 while (arg_len > 0)
1296 {
1297 write_memory (sp + stack_offset, val, push_size);
1298 arg_len -= push_size;
1299 val += push_size;
1300 stack_offset += push_size;
1301 }
1302
1303 args++;
1304 }
1305
1306 /* Make space for the flushback area. */
1307 sp -= 8;
1308
1309 /* Push the return address that contains the magic breakpoint. */
1310 sp -= 4;
1311 write_memory_unsigned_integer (sp, push_size, byte_order, bp_addr);
1312
1313 /* The CPU also writes the return address always into the
1314 MDR register on "call". */
1315 regcache_cooked_write_unsigned (regcache, E_MDR_REGNUM, bp_addr);
1316
1317 /* Update $sp. */
1318 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
1319
1320 /* On the mn10300, it's possible to move some of the stack adjustment
1321 and saving of the caller-save registers out of the prologue and
1322 into the call sites. (When using gcc, this optimization can
1323 occur when using the -mrelax switch.) If this occurs, the dwarf2
1324 info will reflect this fact. We can test to see if this is the
1325 case by creating a new frame using the current stack pointer and
1326 the address of the function that we're about to call. We then
1327 unwind SP and see if it's different than the SP of our newly
1328 created frame. If the SP values are the same, the caller is not
1329 expected to allocate any additional stack. On the other hand, if
1330 the SP values are different, the difference determines the
1331 additional stack that must be allocated.
1332
1333 Note that we don't update the return value though because that's
1334 the value of the stack just after pushing the arguments, but prior
1335 to performing the call. This value is needed in order to
1336 construct the frame ID of the dummy call. */
1337 {
1338 CORE_ADDR func_addr = find_function_addr (target_func, NULL);
1339 CORE_ADDR unwound_sp
1340 = mn10300_unwind_sp (gdbarch, create_new_frame (sp, func_addr));
1341 if (sp != unwound_sp)
1342 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM,
1343 sp - (unwound_sp - sp));
1344 }
1345
1346 return sp;
1347 }
1348
1349 /* If DWARF2 is a register number appearing in Dwarf2 debug info, then
1350 mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB
1351 register number. Why don't Dwarf2 and GDB use the same numbering?
1352 Who knows? But since people have object files lying around with
1353 the existing Dwarf2 numbering, and other people have written stubs
1354 to work with the existing GDB, neither of them can change. So we
1355 just have to cope. */
1356 static int
1357 mn10300_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int dwarf2)
1358 {
1359 /* This table is supposed to be shaped like the gdbarch_register_name
1360 initializer in gcc/config/mn10300/mn10300.h. Registers which
1361 appear in GCC's numbering, but have no counterpart in GDB's
1362 world, are marked with a -1. */
1363 static int dwarf2_to_gdb[] = {
1364 E_D0_REGNUM, E_D1_REGNUM, E_D2_REGNUM, E_D3_REGNUM,
1365 E_A0_REGNUM, E_A1_REGNUM, E_A2_REGNUM, E_A3_REGNUM,
1366 -1, E_SP_REGNUM,
1367
1368 E_E0_REGNUM, E_E1_REGNUM, E_E2_REGNUM, E_E3_REGNUM,
1369 E_E4_REGNUM, E_E5_REGNUM, E_E6_REGNUM, E_E7_REGNUM,
1370
1371 E_FS0_REGNUM + 0, E_FS0_REGNUM + 1, E_FS0_REGNUM + 2, E_FS0_REGNUM + 3,
1372 E_FS0_REGNUM + 4, E_FS0_REGNUM + 5, E_FS0_REGNUM + 6, E_FS0_REGNUM + 7,
1373
1374 E_FS0_REGNUM + 8, E_FS0_REGNUM + 9, E_FS0_REGNUM + 10, E_FS0_REGNUM + 11,
1375 E_FS0_REGNUM + 12, E_FS0_REGNUM + 13, E_FS0_REGNUM + 14, E_FS0_REGNUM + 15,
1376
1377 E_FS0_REGNUM + 16, E_FS0_REGNUM + 17, E_FS0_REGNUM + 18, E_FS0_REGNUM + 19,
1378 E_FS0_REGNUM + 20, E_FS0_REGNUM + 21, E_FS0_REGNUM + 22, E_FS0_REGNUM + 23,
1379
1380 E_FS0_REGNUM + 24, E_FS0_REGNUM + 25, E_FS0_REGNUM + 26, E_FS0_REGNUM + 27,
1381 E_FS0_REGNUM + 28, E_FS0_REGNUM + 29, E_FS0_REGNUM + 30, E_FS0_REGNUM + 31,
1382
1383 E_MDR_REGNUM, E_PSW_REGNUM, E_PC_REGNUM
1384 };
1385
1386 if (dwarf2 < 0
1387 || dwarf2 >= ARRAY_SIZE (dwarf2_to_gdb))
1388 {
1389 warning (_("Bogus register number in debug info: %d"), dwarf2);
1390 return -1;
1391 }
1392
1393 return dwarf2_to_gdb[dwarf2];
1394 }
1395
1396 static struct gdbarch *
1397 mn10300_gdbarch_init (struct gdbarch_info info,
1398 struct gdbarch_list *arches)
1399 {
1400 struct gdbarch *gdbarch;
1401 struct gdbarch_tdep *tdep;
1402 int num_regs;
1403
1404 arches = gdbarch_list_lookup_by_info (arches, &info);
1405 if (arches != NULL)
1406 return arches->gdbarch;
1407
1408 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1409 gdbarch = gdbarch_alloc (&info, tdep);
1410
1411 switch (info.bfd_arch_info->mach)
1412 {
1413 case 0:
1414 case bfd_mach_mn10300:
1415 set_gdbarch_register_name (gdbarch, mn10300_generic_register_name);
1416 tdep->am33_mode = 0;
1417 num_regs = 32;
1418 break;
1419 case bfd_mach_am33:
1420 set_gdbarch_register_name (gdbarch, am33_register_name);
1421 tdep->am33_mode = 1;
1422 num_regs = 32;
1423 break;
1424 case bfd_mach_am33_2:
1425 set_gdbarch_register_name (gdbarch, am33_2_register_name);
1426 tdep->am33_mode = 2;
1427 num_regs = 64;
1428 set_gdbarch_fp0_regnum (gdbarch, 32);
1429 break;
1430 default:
1431 internal_error (__FILE__, __LINE__,
1432 _("mn10300_gdbarch_init: Unknown mn10300 variant"));
1433 break;
1434 }
1435
1436 /* By default, chars are unsigned. */
1437 set_gdbarch_char_signed (gdbarch, 0);
1438
1439 /* Registers. */
1440 set_gdbarch_num_regs (gdbarch, num_regs);
1441 set_gdbarch_register_type (gdbarch, mn10300_register_type);
1442 set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue);
1443 set_gdbarch_read_pc (gdbarch, mn10300_read_pc);
1444 set_gdbarch_write_pc (gdbarch, mn10300_write_pc);
1445 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1446 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1447 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum);
1448
1449 /* Stack unwinding. */
1450 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1451 /* Breakpoints. */
1452 set_gdbarch_breakpoint_from_pc (gdbarch, mn10300_breakpoint_from_pc);
1453 /* decr_pc_after_break? */
1454 /* Disassembly. */
1455 set_gdbarch_print_insn (gdbarch, print_insn_mn10300);
1456
1457 /* Stage 2 */
1458 set_gdbarch_return_value (gdbarch, mn10300_return_value);
1459
1460 /* Stage 3 -- get target calls working. */
1461 set_gdbarch_push_dummy_call (gdbarch, mn10300_push_dummy_call);
1462 /* set_gdbarch_return_value (store, extract) */
1463
1464
1465 mn10300_frame_unwind_init (gdbarch);
1466
1467 /* Hook in ABI-specific overrides, if they have been registered. */
1468 gdbarch_init_osabi (info, gdbarch);
1469
1470 return gdbarch;
1471 }
1472
1473 /* Dump out the mn10300 specific architecture information. */
1474
1475 static void
1476 mn10300_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
1477 {
1478 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1479 fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
1480 tdep->am33_mode);
1481 }
1482
1483 /* Provide a prototype to silence -Wmissing-prototypes. */
1484 extern initialize_file_ftype _initialize_mn10300_tdep;
1485
1486 void
1487 _initialize_mn10300_tdep (void)
1488 {
1489 gdbarch_register (bfd_arch_mn10300, mn10300_gdbarch_init, mn10300_dump_tdep);
1490 }
1491
This page took 0.081837 seconds and 4 git commands to generate.