* gdb.java/jv-print.exp: Fix p '' and p ''' tests to deal with
[deliverable/binutils-gdb.git] / gdb / mn10300-tdep.c
1 /* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
2
3 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software
4 Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "target.h"
27 #include "value.h"
28 #include "bfd.h"
29 #include "gdb_string.h"
30 #include "gdbcore.h"
31 #include "symfile.h"
32 #include "regcache.h"
33 #include "arch-utils.h"
34
35 #define D0_REGNUM 0
36 #define D2_REGNUM 2
37 #define D3_REGNUM 3
38 #define A0_REGNUM 4
39 #define A2_REGNUM 6
40 #define A3_REGNUM 7
41 #define MDR_REGNUM 10
42 #define PSW_REGNUM 11
43 #define LIR_REGNUM 12
44 #define LAR_REGNUM 13
45 #define MDRQ_REGNUM 14
46 #define E0_REGNUM 15
47 #define MCRH_REGNUM 26
48 #define MCRL_REGNUM 27
49 #define MCVF_REGNUM 28
50
51 enum movm_register_bits {
52 movm_exother_bit = 0x01,
53 movm_exreg1_bit = 0x02,
54 movm_exreg0_bit = 0x04,
55 movm_other_bit = 0x08,
56 movm_a3_bit = 0x10,
57 movm_a2_bit = 0x20,
58 movm_d3_bit = 0x40,
59 movm_d2_bit = 0x80
60 };
61
62 extern void _initialize_mn10300_tdep (void);
63 static CORE_ADDR mn10300_analyze_prologue (struct frame_info *fi,
64 CORE_ADDR pc);
65
66 /* mn10300 private data */
67 struct gdbarch_tdep
68 {
69 int am33_mode;
70 #define AM33_MODE (gdbarch_tdep (current_gdbarch)->am33_mode)
71 };
72
73 /* Additional info used by the frame */
74
75 struct frame_extra_info
76 {
77 int status;
78 int stack_size;
79 };
80
81
82 static char *
83 register_name (int reg, char **regs, long sizeof_regs)
84 {
85 if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
86 return NULL;
87 else
88 return regs[reg];
89 }
90
91 static const char *
92 mn10300_generic_register_name (int reg)
93 {
94 static char *regs[] =
95 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
96 "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
97 "", "", "", "", "", "", "", "",
98 "", "", "", "", "", "", "", "fp"
99 };
100 return register_name (reg, regs, sizeof regs);
101 }
102
103
104 static const char *
105 am33_register_name (int reg)
106 {
107 static char *regs[] =
108 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
109 "sp", "pc", "mdr", "psw", "lir", "lar", "",
110 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
111 "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
112 };
113 return register_name (reg, regs, sizeof regs);
114 }
115
116 static CORE_ADDR
117 mn10300_saved_pc_after_call (struct frame_info *fi)
118 {
119 return read_memory_integer (read_register (SP_REGNUM), 4);
120 }
121
122 static void
123 mn10300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
124 {
125 if (TYPE_CODE (type) == TYPE_CODE_PTR)
126 memcpy (valbuf, regbuf + REGISTER_BYTE (4), TYPE_LENGTH (type));
127 else
128 memcpy (valbuf, regbuf + REGISTER_BYTE (0), TYPE_LENGTH (type));
129 }
130
131 static CORE_ADDR
132 mn10300_extract_struct_value_address (char *regbuf)
133 {
134 return extract_address (regbuf + REGISTER_BYTE (4),
135 REGISTER_RAW_SIZE (4));
136 }
137
138 static void
139 mn10300_store_return_value (struct type *type, char *valbuf)
140 {
141 if (TYPE_CODE (type) == TYPE_CODE_PTR)
142 write_register_bytes (REGISTER_BYTE (4), valbuf, TYPE_LENGTH (type));
143 else
144 write_register_bytes (REGISTER_BYTE (0), valbuf, TYPE_LENGTH (type));
145 }
146
147 static struct frame_info *analyze_dummy_frame (CORE_ADDR, CORE_ADDR);
148 static struct frame_info *
149 analyze_dummy_frame (CORE_ADDR pc, CORE_ADDR frame)
150 {
151 static struct frame_info *dummy = NULL;
152 if (dummy == NULL)
153 {
154 dummy = xmalloc (sizeof (struct frame_info));
155 dummy->saved_regs = xmalloc (SIZEOF_FRAME_SAVED_REGS);
156 dummy->extra_info = xmalloc (sizeof (struct frame_extra_info));
157 }
158 dummy->next = NULL;
159 dummy->prev = NULL;
160 dummy->pc = pc;
161 dummy->frame = frame;
162 dummy->extra_info->status = 0;
163 dummy->extra_info->stack_size = 0;
164 memset (dummy->saved_regs, '\000', SIZEOF_FRAME_SAVED_REGS);
165 mn10300_analyze_prologue (dummy, 0);
166 return dummy;
167 }
168
169 /* Values for frame_info.status */
170
171 #define MY_FRAME_IN_SP 0x1
172 #define MY_FRAME_IN_FP 0x2
173 #define NO_MORE_FRAMES 0x4
174
175
176 /* Should call_function allocate stack space for a struct return? */
177 static int
178 mn10300_use_struct_convention (int gcc_p, struct type *type)
179 {
180 return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 8);
181 }
182
183 /* The breakpoint instruction must be the same size as the smallest
184 instruction in the instruction set.
185
186 The Matsushita mn10x00 processors have single byte instructions
187 so we need a single byte breakpoint. Matsushita hasn't defined
188 one, so we defined it ourselves. */
189
190 const static unsigned char *
191 mn10300_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
192 {
193 static char breakpoint[] =
194 {0xff};
195 *bp_size = 1;
196 return breakpoint;
197 }
198
199
200 /* Fix fi->frame if it's bogus at this point. This is a helper
201 function for mn10300_analyze_prologue. */
202
203 static void
204 fix_frame_pointer (struct frame_info *fi, int stack_size)
205 {
206 if (fi && fi->next == NULL)
207 {
208 if (fi->extra_info->status & MY_FRAME_IN_SP)
209 fi->frame = read_sp () - stack_size;
210 else if (fi->extra_info->status & MY_FRAME_IN_FP)
211 fi->frame = read_register (A3_REGNUM);
212 }
213 }
214
215
216 /* Set offsets of registers saved by movm instruction.
217 This is a helper function for mn10300_analyze_prologue. */
218
219 static void
220 set_movm_offsets (struct frame_info *fi, int movm_args)
221 {
222 int offset = 0;
223
224 if (fi == NULL || movm_args == 0)
225 return;
226
227 if (movm_args & movm_other_bit)
228 {
229 /* The `other' bit leaves a blank area of four bytes at the
230 beginning of its block of saved registers, making it 32 bytes
231 long in total. */
232 fi->saved_regs[LAR_REGNUM] = fi->frame + offset + 4;
233 fi->saved_regs[LIR_REGNUM] = fi->frame + offset + 8;
234 fi->saved_regs[MDR_REGNUM] = fi->frame + offset + 12;
235 fi->saved_regs[A0_REGNUM + 1] = fi->frame + offset + 16;
236 fi->saved_regs[A0_REGNUM] = fi->frame + offset + 20;
237 fi->saved_regs[D0_REGNUM + 1] = fi->frame + offset + 24;
238 fi->saved_regs[D0_REGNUM] = fi->frame + offset + 28;
239 offset += 32;
240 }
241 if (movm_args & movm_a3_bit)
242 {
243 fi->saved_regs[A3_REGNUM] = fi->frame + offset;
244 offset += 4;
245 }
246 if (movm_args & movm_a2_bit)
247 {
248 fi->saved_regs[A2_REGNUM] = fi->frame + offset;
249 offset += 4;
250 }
251 if (movm_args & movm_d3_bit)
252 {
253 fi->saved_regs[D3_REGNUM] = fi->frame + offset;
254 offset += 4;
255 }
256 if (movm_args & movm_d2_bit)
257 {
258 fi->saved_regs[D2_REGNUM] = fi->frame + offset;
259 offset += 4;
260 }
261 if (AM33_MODE)
262 {
263 if (movm_args & movm_exother_bit)
264 {
265 fi->saved_regs[MCVF_REGNUM] = fi->frame + offset;
266 fi->saved_regs[MCRL_REGNUM] = fi->frame + offset + 4;
267 fi->saved_regs[MCRH_REGNUM] = fi->frame + offset + 8;
268 fi->saved_regs[MDRQ_REGNUM] = fi->frame + offset + 12;
269 fi->saved_regs[E0_REGNUM + 1] = fi->frame + offset + 16;
270 fi->saved_regs[E0_REGNUM + 0] = fi->frame + offset + 20;
271 offset += 24;
272 }
273 if (movm_args & movm_exreg1_bit)
274 {
275 fi->saved_regs[E0_REGNUM + 7] = fi->frame + offset;
276 fi->saved_regs[E0_REGNUM + 6] = fi->frame + offset + 4;
277 fi->saved_regs[E0_REGNUM + 5] = fi->frame + offset + 8;
278 fi->saved_regs[E0_REGNUM + 4] = fi->frame + offset + 12;
279 offset += 16;
280 }
281 if (movm_args & movm_exreg0_bit)
282 {
283 fi->saved_regs[E0_REGNUM + 3] = fi->frame + offset;
284 fi->saved_regs[E0_REGNUM + 2] = fi->frame + offset + 4;
285 offset += 8;
286 }
287 }
288 }
289
290
291 /* The main purpose of this file is dealing with prologues to extract
292 information about stack frames and saved registers.
293
294 In gcc/config/mn13000/mn10300.c, the expand_prologue prologue
295 function is pretty readable, and has a nice explanation of how the
296 prologue is generated. The prologues generated by that code will
297 have the following form (NOTE: the current code doesn't handle all
298 this!):
299
300 + If this is an old-style varargs function, then its arguments
301 need to be flushed back to the stack:
302
303 mov d0,(4,sp)
304 mov d1,(4,sp)
305
306 + If we use any of the callee-saved registers, save them now.
307
308 movm [some callee-saved registers],(sp)
309
310 + If we have any floating-point registers to save:
311
312 - Decrement the stack pointer to reserve space for the registers.
313 If the function doesn't need a frame pointer, we may combine
314 this with the adjustment that reserves space for the frame.
315
316 add -SIZE, sp
317
318 - Save the floating-point registers. We have two possible
319 strategies:
320
321 . Save them at fixed offset from the SP:
322
323 fmov fsN,(OFFSETN,sp)
324 fmov fsM,(OFFSETM,sp)
325 ...
326
327 Note that, if OFFSETN happens to be zero, you'll get the
328 different opcode: fmov fsN,(sp)
329
330 . Or, set a0 to the start of the save area, and then use
331 post-increment addressing to save the FP registers.
332
333 mov sp, a0
334 add SIZE, a0
335 fmov fsN,(a0+)
336 fmov fsM,(a0+)
337 ...
338
339 + If the function needs a frame pointer, we set it here.
340
341 mov sp, a3
342
343 + Now we reserve space for the stack frame proper. This could be
344 merged into the `add -SIZE, sp' instruction for FP saves up
345 above, unless we needed to set the frame pointer in the previous
346 step, or the frame is so large that allocating the whole thing at
347 once would put the FP register save slots out of reach of the
348 addressing mode (128 bytes).
349
350 add -SIZE, sp
351
352 One day we might keep the stack pointer constant, that won't
353 change the code for prologues, but it will make the frame
354 pointerless case much more common. */
355
356 /* Analyze the prologue to determine where registers are saved,
357 the end of the prologue, etc etc. Return the end of the prologue
358 scanned.
359
360 We store into FI (if non-null) several tidbits of information:
361
362 * stack_size -- size of this stack frame. Note that if we stop in
363 certain parts of the prologue/epilogue we may claim the size of the
364 current frame is zero. This happens when the current frame has
365 not been allocated yet or has already been deallocated.
366
367 * fsr -- Addresses of registers saved in the stack by this frame.
368
369 * status -- A (relatively) generic status indicator. It's a bitmask
370 with the following bits:
371
372 MY_FRAME_IN_SP: The base of the current frame is actually in
373 the stack pointer. This can happen for frame pointerless
374 functions, or cases where we're stopped in the prologue/epilogue
375 itself. For these cases mn10300_analyze_prologue will need up
376 update fi->frame before returning or analyzing the register
377 save instructions.
378
379 MY_FRAME_IN_FP: The base of the current frame is in the
380 frame pointer register ($a3).
381
382 NO_MORE_FRAMES: Set this if the current frame is "start" or
383 if the first instruction looks like mov <imm>,sp. This tells
384 frame chain to not bother trying to unwind past this frame. */
385
386 static CORE_ADDR
387 mn10300_analyze_prologue (struct frame_info *fi, CORE_ADDR pc)
388 {
389 CORE_ADDR func_addr, func_end, addr, stop;
390 CORE_ADDR stack_size;
391 int imm_size;
392 unsigned char buf[4];
393 int status, movm_args = 0;
394 char *name;
395
396 /* Use the PC in the frame if it's provided to look up the
397 start of this function. */
398 pc = (fi ? fi->pc : pc);
399
400 /* Find the start of this function. */
401 status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
402
403 /* Do nothing if we couldn't find the start of this function or if we're
404 stopped at the first instruction in the prologue. */
405 if (status == 0)
406 {
407 return pc;
408 }
409
410 /* If we're in start, then give up. */
411 if (strcmp (name, "start") == 0)
412 {
413 if (fi != NULL)
414 fi->extra_info->status = NO_MORE_FRAMES;
415 return pc;
416 }
417
418 /* At the start of a function our frame is in the stack pointer. */
419 if (fi)
420 fi->extra_info->status = MY_FRAME_IN_SP;
421
422 /* Get the next two bytes into buf, we need two because rets is a two
423 byte insn and the first isn't enough to uniquely identify it. */
424 status = read_memory_nobpt (pc, buf, 2);
425 if (status != 0)
426 return pc;
427
428 /* If we're physically on an "rets" instruction, then our frame has
429 already been deallocated. Note this can also be true for retf
430 and ret if they specify a size of zero.
431
432 In this case fi->frame is bogus, we need to fix it. */
433 if (fi && buf[0] == 0xf0 && buf[1] == 0xfc)
434 {
435 if (fi->next == NULL)
436 fi->frame = read_sp ();
437 return fi->pc;
438 }
439
440 /* Similarly if we're stopped on the first insn of a prologue as our
441 frame hasn't been allocated yet. */
442 if (fi && fi->pc == func_addr)
443 {
444 if (fi->next == NULL)
445 fi->frame = read_sp ();
446 return fi->pc;
447 }
448
449 /* Figure out where to stop scanning. */
450 stop = fi ? fi->pc : func_end;
451
452 /* Don't walk off the end of the function. */
453 stop = stop > func_end ? func_end : stop;
454
455 /* Start scanning on the first instruction of this function. */
456 addr = func_addr;
457
458 /* Suck in two bytes. */
459 status = read_memory_nobpt (addr, buf, 2);
460 if (status != 0)
461 {
462 fix_frame_pointer (fi, 0);
463 return addr;
464 }
465
466 /* First see if this insn sets the stack pointer from a register; if
467 so, it's probably the initialization of the stack pointer in _start,
468 so mark this as the bottom-most frame. */
469 if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
470 {
471 if (fi)
472 fi->extra_info->status = NO_MORE_FRAMES;
473 return addr;
474 }
475
476 /* Now look for movm [regs],sp, which saves the callee saved registers.
477
478 At this time we don't know if fi->frame is valid, so we only note
479 that we encountered a movm instruction. Later, we'll set the entries
480 in fsr.regs as needed. */
481 if (buf[0] == 0xcf)
482 {
483 /* Extract the register list for the movm instruction. */
484 status = read_memory_nobpt (addr + 1, buf, 1);
485 movm_args = *buf;
486
487 addr += 2;
488
489 /* Quit now if we're beyond the stop point. */
490 if (addr >= stop)
491 {
492 /* Fix fi->frame since it's bogus at this point. */
493 if (fi && fi->next == NULL)
494 fi->frame = read_sp ();
495
496 /* Note if/where callee saved registers were saved. */
497 set_movm_offsets (fi, movm_args);
498 return addr;
499 }
500
501 /* Get the next two bytes so the prologue scan can continue. */
502 status = read_memory_nobpt (addr, buf, 2);
503 if (status != 0)
504 {
505 /* Fix fi->frame since it's bogus at this point. */
506 if (fi && fi->next == NULL)
507 fi->frame = read_sp ();
508
509 /* Note if/where callee saved registers were saved. */
510 set_movm_offsets (fi, movm_args);
511 return addr;
512 }
513 }
514
515 /* Now see if we set up a frame pointer via "mov sp,a3" */
516 if (buf[0] == 0x3f)
517 {
518 addr += 1;
519
520 /* The frame pointer is now valid. */
521 if (fi)
522 {
523 fi->extra_info->status |= MY_FRAME_IN_FP;
524 fi->extra_info->status &= ~MY_FRAME_IN_SP;
525 }
526
527 /* Quit now if we're beyond the stop point. */
528 if (addr >= stop)
529 {
530 /* Fix fi->frame if it's bogus at this point. */
531 fix_frame_pointer (fi, 0);
532
533 /* Note if/where callee saved registers were saved. */
534 set_movm_offsets (fi, movm_args);
535 return addr;
536 }
537
538 /* Get two more bytes so scanning can continue. */
539 status = read_memory_nobpt (addr, buf, 2);
540 if (status != 0)
541 {
542 /* Fix fi->frame if it's bogus at this point. */
543 fix_frame_pointer (fi, 0);
544
545 /* Note if/where callee saved registers were saved. */
546 set_movm_offsets (fi, movm_args);
547 return addr;
548 }
549 }
550
551 /* Next we should allocate the local frame. No more prologue insns
552 are found after allocating the local frame.
553
554 Search for add imm8,sp (0xf8feXX)
555 or add imm16,sp (0xfafeXXXX)
556 or add imm32,sp (0xfcfeXXXXXXXX).
557
558 If none of the above was found, then this prologue has no
559 additional stack. */
560
561 status = read_memory_nobpt (addr, buf, 2);
562 if (status != 0)
563 {
564 /* Fix fi->frame if it's bogus at this point. */
565 fix_frame_pointer (fi, 0);
566
567 /* Note if/where callee saved registers were saved. */
568 set_movm_offsets (fi, movm_args);
569 return addr;
570 }
571
572 imm_size = 0;
573 if (buf[0] == 0xf8 && buf[1] == 0xfe)
574 imm_size = 1;
575 else if (buf[0] == 0xfa && buf[1] == 0xfe)
576 imm_size = 2;
577 else if (buf[0] == 0xfc && buf[1] == 0xfe)
578 imm_size = 4;
579
580 if (imm_size != 0)
581 {
582 /* Suck in imm_size more bytes, they'll hold the size of the
583 current frame. */
584 status = read_memory_nobpt (addr + 2, buf, imm_size);
585 if (status != 0)
586 {
587 /* Fix fi->frame if it's bogus at this point. */
588 fix_frame_pointer (fi, 0);
589
590 /* Note if/where callee saved registers were saved. */
591 set_movm_offsets (fi, movm_args);
592 return addr;
593 }
594
595 /* Note the size of the stack in the frame info structure. */
596 stack_size = extract_signed_integer (buf, imm_size);
597 if (fi)
598 fi->extra_info->stack_size = stack_size;
599
600 /* We just consumed 2 + imm_size bytes. */
601 addr += 2 + imm_size;
602
603 /* No more prologue insns follow, so begin preparation to return. */
604 /* Fix fi->frame if it's bogus at this point. */
605 fix_frame_pointer (fi, stack_size);
606
607 /* Note if/where callee saved registers were saved. */
608 set_movm_offsets (fi, movm_args);
609 return addr;
610 }
611
612 /* We never found an insn which allocates local stack space, regardless
613 this is the end of the prologue. */
614 /* Fix fi->frame if it's bogus at this point. */
615 fix_frame_pointer (fi, 0);
616
617 /* Note if/where callee saved registers were saved. */
618 set_movm_offsets (fi, movm_args);
619 return addr;
620 }
621
622
623 /* Function: saved_regs_size
624 Return the size in bytes of the register save area, based on the
625 saved_regs array in FI. */
626 static int
627 saved_regs_size (struct frame_info *fi)
628 {
629 int adjust = 0;
630 int i;
631
632 /* Reserve four bytes for every register saved. */
633 for (i = 0; i < NUM_REGS; i++)
634 if (fi->saved_regs[i])
635 adjust += 4;
636
637 /* If we saved LIR, then it's most likely we used a `movm'
638 instruction with the `other' bit set, in which case the SP is
639 decremented by an extra four bytes, "to simplify calculation
640 of the transfer area", according to the processor manual. */
641 if (fi->saved_regs[LIR_REGNUM])
642 adjust += 4;
643
644 return adjust;
645 }
646
647
648 /* Function: frame_chain
649 Figure out and return the caller's frame pointer given current
650 frame_info struct.
651
652 We don't handle dummy frames yet but we would probably just return the
653 stack pointer that was in use at the time the function call was made? */
654
655 static CORE_ADDR
656 mn10300_frame_chain (struct frame_info *fi)
657 {
658 struct frame_info *dummy;
659 /* Walk through the prologue to determine the stack size,
660 location of saved registers, end of the prologue, etc. */
661 if (fi->extra_info->status == 0)
662 mn10300_analyze_prologue (fi, (CORE_ADDR) 0);
663
664 /* Quit now if mn10300_analyze_prologue set NO_MORE_FRAMES. */
665 if (fi->extra_info->status & NO_MORE_FRAMES)
666 return 0;
667
668 /* Now that we've analyzed our prologue, determine the frame
669 pointer for our caller.
670
671 If our caller has a frame pointer, then we need to
672 find the entry value of $a3 to our function.
673
674 If fsr.regs[A3_REGNUM] is nonzero, then it's at the memory
675 location pointed to by fsr.regs[A3_REGNUM].
676
677 Else it's still in $a3.
678
679 If our caller does not have a frame pointer, then his
680 frame base is fi->frame + -caller's stack size. */
681
682 /* The easiest way to get that info is to analyze our caller's frame.
683 So we set up a dummy frame and call mn10300_analyze_prologue to
684 find stuff for us. */
685 dummy = analyze_dummy_frame (FRAME_SAVED_PC (fi), fi->frame);
686
687 if (dummy->extra_info->status & MY_FRAME_IN_FP)
688 {
689 /* Our caller has a frame pointer. So find the frame in $a3 or
690 in the stack. */
691 if (fi->saved_regs[A3_REGNUM])
692 return (read_memory_integer (fi->saved_regs[A3_REGNUM], REGISTER_SIZE));
693 else
694 return read_register (A3_REGNUM);
695 }
696 else
697 {
698 int adjust = saved_regs_size (fi);
699
700 /* Our caller does not have a frame pointer. So his frame starts
701 at the base of our frame (fi->frame) + register save space
702 + <his size>. */
703 return fi->frame + adjust + -dummy->extra_info->stack_size;
704 }
705 }
706
707 /* Function: skip_prologue
708 Return the address of the first inst past the prologue of the function. */
709
710 static CORE_ADDR
711 mn10300_skip_prologue (CORE_ADDR pc)
712 {
713 /* We used to check the debug symbols, but that can lose if
714 we have a null prologue. */
715 return mn10300_analyze_prologue (NULL, pc);
716 }
717
718 /* generic_pop_current_frame calls this function if the current
719 frame isn't a dummy frame. */
720 static void
721 mn10300_pop_frame_regular (struct frame_info *frame)
722 {
723 int regnum;
724
725 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
726
727 /* Restore any saved registers. */
728 for (regnum = 0; regnum < NUM_REGS; regnum++)
729 if (frame->saved_regs[regnum] != 0)
730 {
731 ULONGEST value;
732
733 value = read_memory_unsigned_integer (frame->saved_regs[regnum],
734 REGISTER_RAW_SIZE (regnum));
735 write_register (regnum, value);
736 }
737
738 /* Actually cut back the stack. */
739 write_register (SP_REGNUM, FRAME_FP (frame));
740
741 /* Don't we need to set the PC?!? XXX FIXME. */
742 }
743
744 /* Function: pop_frame
745 This routine gets called when either the user uses the `return'
746 command, or the call dummy breakpoint gets hit. */
747 static void
748 mn10300_pop_frame (void)
749 {
750 /* This function checks for and handles generic dummy frames, and
751 calls back to our function for ordinary frames. */
752 generic_pop_current_frame (mn10300_pop_frame_regular);
753
754 /* Throw away any cached frame information. */
755 flush_cached_frames ();
756 }
757
758 /* Function: push_arguments
759 Setup arguments for a call to the target. Arguments go in
760 order on the stack. */
761
762 static CORE_ADDR
763 mn10300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
764 int struct_return, CORE_ADDR struct_addr)
765 {
766 int argnum = 0;
767 int len = 0;
768 int stack_offset = 0;
769 int regsused = struct_return ? 1 : 0;
770
771 /* This should be a nop, but align the stack just in case something
772 went wrong. Stacks are four byte aligned on the mn10300. */
773 sp &= ~3;
774
775 /* Now make space on the stack for the args.
776
777 XXX This doesn't appear to handle pass-by-invisible reference
778 arguments. */
779 for (argnum = 0; argnum < nargs; argnum++)
780 {
781 int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3;
782
783 while (regsused < 2 && arg_length > 0)
784 {
785 regsused++;
786 arg_length -= 4;
787 }
788 len += arg_length;
789 }
790
791 /* Allocate stack space. */
792 sp -= len;
793
794 regsused = struct_return ? 1 : 0;
795 /* Push all arguments onto the stack. */
796 for (argnum = 0; argnum < nargs; argnum++)
797 {
798 int len;
799 char *val;
800
801 /* XXX Check this. What about UNIONS? */
802 if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
803 && TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
804 {
805 /* XXX Wrong, we want a pointer to this argument. */
806 len = TYPE_LENGTH (VALUE_TYPE (*args));
807 val = (char *) VALUE_CONTENTS (*args);
808 }
809 else
810 {
811 len = TYPE_LENGTH (VALUE_TYPE (*args));
812 val = (char *) VALUE_CONTENTS (*args);
813 }
814
815 while (regsused < 2 && len > 0)
816 {
817 write_register (regsused, extract_unsigned_integer (val, 4));
818 val += 4;
819 len -= 4;
820 regsused++;
821 }
822
823 while (len > 0)
824 {
825 write_memory (sp + stack_offset, val, 4);
826 len -= 4;
827 val += 4;
828 stack_offset += 4;
829 }
830
831 args++;
832 }
833
834 /* Make space for the flushback area. */
835 sp -= 8;
836 return sp;
837 }
838
839 /* Function: push_return_address (pc)
840 Set up the return address for the inferior function call.
841 Needed for targets where we don't actually execute a JSR/BSR instruction */
842
843 static CORE_ADDR
844 mn10300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
845 {
846 unsigned char buf[4];
847
848 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
849 write_memory (sp - 4, buf, 4);
850 return sp - 4;
851 }
852
853 /* Function: store_struct_return (addr,sp)
854 Store the structure value return address for an inferior function
855 call. */
856
857 static void
858 mn10300_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
859 {
860 /* The structure return address is passed as the first argument. */
861 write_register (0, addr);
862 }
863
864 /* Function: frame_saved_pc
865 Find the caller of this frame. We do this by seeing if RP_REGNUM
866 is saved in the stack anywhere, otherwise we get it from the
867 registers. If the inner frame is a dummy frame, return its PC
868 instead of RP, because that's where "caller" of the dummy-frame
869 will be found. */
870
871 static CORE_ADDR
872 mn10300_frame_saved_pc (struct frame_info *fi)
873 {
874 int adjust = saved_regs_size (fi);
875
876 return (read_memory_integer (fi->frame + adjust, REGISTER_SIZE));
877 }
878
879 /* Function: mn10300_init_extra_frame_info
880 Setup the frame's frame pointer, pc, and frame addresses for saved
881 registers. Most of the work is done in mn10300_analyze_prologue().
882
883 Note that when we are called for the last frame (currently active frame),
884 that fi->pc and fi->frame will already be setup. However, fi->frame will
885 be valid only if this routine uses FP. For previous frames, fi-frame will
886 always be correct. mn10300_analyze_prologue will fix fi->frame if
887 it's not valid.
888
889 We can be called with the PC in the call dummy under two circumstances.
890 First, during normal backtracing, second, while figuring out the frame
891 pointer just prior to calling the target function (see run_stack_dummy). */
892
893 static void
894 mn10300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
895 {
896 if (fi->next)
897 fi->pc = FRAME_SAVED_PC (fi->next);
898
899 frame_saved_regs_zalloc (fi);
900 fi->extra_info = (struct frame_extra_info *)
901 frame_obstack_alloc (sizeof (struct frame_extra_info));
902
903 fi->extra_info->status = 0;
904 fi->extra_info->stack_size = 0;
905
906 mn10300_analyze_prologue (fi, 0);
907 }
908
909
910 /* This function's job is handled by init_extra_frame_info. */
911 static void
912 mn10300_frame_init_saved_regs (struct frame_info *frame)
913 {
914 }
915
916
917 /* Function: mn10300_virtual_frame_pointer
918 Return the register that the function uses for a frame pointer,
919 plus any necessary offset to be applied to the register before
920 any frame pointer offsets. */
921
922 static void
923 mn10300_virtual_frame_pointer (CORE_ADDR pc,
924 int *reg,
925 LONGEST *offset)
926 {
927 struct frame_info *dummy = analyze_dummy_frame (pc, 0);
928 /* Set up a dummy frame_info, Analyze the prolog and fill in the
929 extra info. */
930 /* Results will tell us which type of frame it uses. */
931 if (dummy->extra_info->status & MY_FRAME_IN_SP)
932 {
933 *reg = SP_REGNUM;
934 *offset = -(dummy->extra_info->stack_size);
935 }
936 else
937 {
938 *reg = A3_REGNUM;
939 *offset = 0;
940 }
941 }
942
943 static int
944 mn10300_reg_struct_has_addr (int gcc_p, struct type *type)
945 {
946 return (TYPE_LENGTH (type) > 8);
947 }
948
949 static struct type *
950 mn10300_register_virtual_type (int reg)
951 {
952 return builtin_type_int;
953 }
954
955 static int
956 mn10300_register_byte (int reg)
957 {
958 return (reg * 4);
959 }
960
961 static int
962 mn10300_register_virtual_size (int reg)
963 {
964 return 4;
965 }
966
967 static int
968 mn10300_register_raw_size (int reg)
969 {
970 return 4;
971 }
972
973 /* If DWARF2 is a register number appearing in Dwarf2 debug info, then
974 mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB
975 register number. Why don't Dwarf2 and GDB use the same numbering?
976 Who knows? But since people have object files lying around with
977 the existing Dwarf2 numbering, and other people have written stubs
978 to work with the existing GDB, neither of them can change. So we
979 just have to cope. */
980 static int
981 mn10300_dwarf2_reg_to_regnum (int dwarf2)
982 {
983 /* This table is supposed to be shaped like the REGISTER_NAMES
984 initializer in gcc/config/mn10300/mn10300.h. Registers which
985 appear in GCC's numbering, but have no counterpart in GDB's
986 world, are marked with a -1. */
987 static int dwarf2_to_gdb[] = {
988 0, 1, 2, 3, 4, 5, 6, 7, -1, 8,
989 15, 16, 17, 18, 19, 20, 21, 22
990 };
991 int gdb;
992
993 if (dwarf2 < 0
994 || dwarf2 >= (sizeof (dwarf2_to_gdb) / sizeof (dwarf2_to_gdb[0]))
995 || dwarf2_to_gdb[dwarf2] == -1)
996 internal_error (__FILE__, __LINE__,
997 "bogus register number in debug info: %d", dwarf2);
998
999 return dwarf2_to_gdb[dwarf2];
1000 }
1001
1002 static void
1003 mn10300_print_register (const char *name, int regnum, int reg_width)
1004 {
1005 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
1006
1007 if (reg_width)
1008 printf_filtered ("%*s: ", reg_width, name);
1009 else
1010 printf_filtered ("%s: ", name);
1011
1012 /* Get the data */
1013 if (!frame_register_read (selected_frame, regnum, raw_buffer))
1014 {
1015 printf_filtered ("[invalid]");
1016 return;
1017 }
1018 else
1019 {
1020 int byte;
1021 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1022 {
1023 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
1024 byte < REGISTER_RAW_SIZE (regnum);
1025 byte++)
1026 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
1027 }
1028 else
1029 {
1030 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
1031 byte >= 0;
1032 byte--)
1033 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
1034 }
1035 }
1036 }
1037
1038 static void
1039 mn10300_do_registers_info (int regnum, int fpregs)
1040 {
1041 if (regnum >= 0)
1042 {
1043 const char *name = REGISTER_NAME (regnum);
1044 if (name == NULL || name[0] == '\0')
1045 error ("Not a valid register for the current processor type");
1046 mn10300_print_register (name, regnum, 0);
1047 printf_filtered ("\n");
1048 }
1049 else
1050 {
1051 /* print registers in an array 4x8 */
1052 int r;
1053 int reg;
1054 const int nr_in_row = 4;
1055 const int reg_width = 4;
1056 for (r = 0; r < NUM_REGS; r += nr_in_row)
1057 {
1058 int c;
1059 int printing = 0;
1060 int padding = 0;
1061 for (c = r; c < r + nr_in_row; c++)
1062 {
1063 const char *name = REGISTER_NAME (c);
1064 if (name != NULL && *name != '\0')
1065 {
1066 printing = 1;
1067 while (padding > 0)
1068 {
1069 printf_filtered (" ");
1070 padding--;
1071 }
1072 mn10300_print_register (name, c, reg_width);
1073 printf_filtered (" ");
1074 }
1075 else
1076 {
1077 padding += (reg_width + 2 + 8 + 1);
1078 }
1079 }
1080 if (printing)
1081 printf_filtered ("\n");
1082 }
1083 }
1084 }
1085
1086 /* Dump out the mn10300 speciic architecture information. */
1087
1088 static void
1089 mn10300_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1090 {
1091 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1092 fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
1093 tdep->am33_mode);
1094 }
1095
1096 static struct gdbarch *
1097 mn10300_gdbarch_init (struct gdbarch_info info,
1098 struct gdbarch_list *arches)
1099 {
1100 static LONGEST mn10300_call_dummy_words[] = { 0 };
1101 struct gdbarch *gdbarch;
1102 struct gdbarch_tdep *tdep = NULL;
1103 int am33_mode;
1104 gdbarch_register_name_ftype *register_name;
1105 int mach;
1106 int num_regs;
1107
1108 arches = gdbarch_list_lookup_by_info (arches, &info);
1109 if (arches != NULL)
1110 return arches->gdbarch;
1111 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1112 gdbarch = gdbarch_alloc (&info, tdep);
1113
1114 if (info.bfd_arch_info != NULL
1115 && info.bfd_arch_info->arch == bfd_arch_mn10300)
1116 mach = info.bfd_arch_info->mach;
1117 else
1118 mach = 0;
1119 switch (mach)
1120 {
1121 case 0:
1122 case bfd_mach_mn10300:
1123 am33_mode = 0;
1124 register_name = mn10300_generic_register_name;
1125 num_regs = 32;
1126 break;
1127 case bfd_mach_am33:
1128 am33_mode = 1;
1129 register_name = am33_register_name;
1130 num_regs = 32;
1131 break;
1132 default:
1133 internal_error (__FILE__, __LINE__,
1134 "mn10300_gdbarch_init: Unknown mn10300 variant");
1135 return NULL; /* keep GCC happy. */
1136 }
1137
1138 /* Registers. */
1139 set_gdbarch_num_regs (gdbarch, num_regs);
1140 set_gdbarch_register_name (gdbarch, register_name);
1141 set_gdbarch_register_size (gdbarch, 4);
1142 set_gdbarch_register_bytes (gdbarch,
1143 num_regs * gdbarch_register_size (gdbarch));
1144 set_gdbarch_max_register_raw_size (gdbarch, 4);
1145 set_gdbarch_register_raw_size (gdbarch, mn10300_register_raw_size);
1146 set_gdbarch_register_byte (gdbarch, mn10300_register_byte);
1147 set_gdbarch_max_register_virtual_size (gdbarch, 4);
1148 set_gdbarch_register_virtual_size (gdbarch, mn10300_register_virtual_size);
1149 set_gdbarch_register_virtual_type (gdbarch, mn10300_register_virtual_type);
1150 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum);
1151 set_gdbarch_do_registers_info (gdbarch, mn10300_do_registers_info);
1152 set_gdbarch_sp_regnum (gdbarch, 8);
1153 set_gdbarch_pc_regnum (gdbarch, 9);
1154 set_gdbarch_fp_regnum (gdbarch, 31);
1155 set_gdbarch_virtual_frame_pointer (gdbarch, mn10300_virtual_frame_pointer);
1156
1157 /* Breakpoints. */
1158 set_gdbarch_breakpoint_from_pc (gdbarch, mn10300_breakpoint_from_pc);
1159 set_gdbarch_function_start_offset (gdbarch, 0);
1160 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1161
1162 /* Stack unwinding. */
1163 set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register);
1164 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
1165 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1166 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
1167 set_gdbarch_saved_pc_after_call (gdbarch, mn10300_saved_pc_after_call);
1168 set_gdbarch_init_extra_frame_info (gdbarch, mn10300_init_extra_frame_info);
1169 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
1170 set_gdbarch_frame_init_saved_regs (gdbarch, mn10300_frame_init_saved_regs);
1171 set_gdbarch_frame_chain (gdbarch, mn10300_frame_chain);
1172 set_gdbarch_frame_saved_pc (gdbarch, mn10300_frame_saved_pc);
1173 set_gdbarch_deprecated_extract_return_value (gdbarch, mn10300_extract_return_value);
1174 set_gdbarch_deprecated_extract_struct_value_address
1175 (gdbarch, mn10300_extract_struct_value_address);
1176 set_gdbarch_store_return_value (gdbarch, mn10300_store_return_value);
1177 set_gdbarch_store_struct_return (gdbarch, mn10300_store_struct_return);
1178 set_gdbarch_pop_frame (gdbarch, mn10300_pop_frame);
1179 set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue);
1180 set_gdbarch_frame_args_skip (gdbarch, 0);
1181 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
1182 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
1183 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1184 /* That's right, we're using the stack pointer as our frame pointer. */
1185 set_gdbarch_read_fp (gdbarch, generic_target_read_sp);
1186
1187 /* Calling functions in the inferior from GDB. */
1188 set_gdbarch_call_dummy_p (gdbarch, 1);
1189 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1190 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1191 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1192 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1193 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1194 set_gdbarch_call_dummy_words (gdbarch, mn10300_call_dummy_words);
1195 set_gdbarch_sizeof_call_dummy_words (gdbarch,
1196 sizeof (mn10300_call_dummy_words));
1197 set_gdbarch_call_dummy_length (gdbarch, 0);
1198 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1199 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1200 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
1201 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1202 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1203 set_gdbarch_push_arguments (gdbarch, mn10300_push_arguments);
1204 set_gdbarch_reg_struct_has_addr (gdbarch, mn10300_reg_struct_has_addr);
1205 set_gdbarch_push_return_address (gdbarch, mn10300_push_return_address);
1206 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
1207 set_gdbarch_use_struct_convention (gdbarch, mn10300_use_struct_convention);
1208
1209 tdep->am33_mode = am33_mode;
1210
1211 return gdbarch;
1212 }
1213
1214 void
1215 _initialize_mn10300_tdep (void)
1216 {
1217 /* printf("_initialize_mn10300_tdep\n"); */
1218
1219 tm_print_insn = print_insn_mn10300;
1220
1221 register_gdbarch_init (bfd_arch_mn10300, mn10300_gdbarch_init);
1222 }
This page took 0.064415 seconds and 4 git commands to generate.