2003-11-22 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / mn10300-tdep.c
1 /* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
2
3 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
4 Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "target.h"
27 #include "value.h"
28 #include "bfd.h"
29 #include "gdb_string.h"
30 #include "gdbcore.h"
31 #include "symfile.h"
32 #include "regcache.h"
33 #include "arch-utils.h"
34 #include "gdb_assert.h"
35 #include "dis-asm.h"
36
37 #define D0_REGNUM 0
38 #define D2_REGNUM 2
39 #define D3_REGNUM 3
40 #define A0_REGNUM 4
41 #define A2_REGNUM 6
42 #define A3_REGNUM 7
43 #define MDR_REGNUM 10
44 #define PSW_REGNUM 11
45 #define LIR_REGNUM 12
46 #define LAR_REGNUM 13
47 #define MDRQ_REGNUM 14
48 #define E0_REGNUM 15
49 #define MCRH_REGNUM 26
50 #define MCRL_REGNUM 27
51 #define MCVF_REGNUM 28
52
53 enum movm_register_bits {
54 movm_exother_bit = 0x01,
55 movm_exreg1_bit = 0x02,
56 movm_exreg0_bit = 0x04,
57 movm_other_bit = 0x08,
58 movm_a3_bit = 0x10,
59 movm_a2_bit = 0x20,
60 movm_d3_bit = 0x40,
61 movm_d2_bit = 0x80
62 };
63
64 extern void _initialize_mn10300_tdep (void);
65 static CORE_ADDR mn10300_analyze_prologue (struct frame_info *fi,
66 CORE_ADDR pc);
67
68 /* mn10300 private data */
69 struct gdbarch_tdep
70 {
71 int am33_mode;
72 #define AM33_MODE (gdbarch_tdep (current_gdbarch)->am33_mode)
73 };
74
75 /* Additional info used by the frame */
76
77 struct frame_extra_info
78 {
79 int status;
80 int stack_size;
81 };
82
83
84 static char *
85 register_name (int reg, char **regs, long sizeof_regs)
86 {
87 if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
88 return NULL;
89 else
90 return regs[reg];
91 }
92
93 static const char *
94 mn10300_generic_register_name (int reg)
95 {
96 static char *regs[] =
97 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
98 "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
99 "", "", "", "", "", "", "", "",
100 "", "", "", "", "", "", "", "fp"
101 };
102 return register_name (reg, regs, sizeof regs);
103 }
104
105
106 static const char *
107 am33_register_name (int reg)
108 {
109 static char *regs[] =
110 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
111 "sp", "pc", "mdr", "psw", "lir", "lar", "",
112 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
113 "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
114 };
115 return register_name (reg, regs, sizeof regs);
116 }
117
118 static CORE_ADDR
119 mn10300_saved_pc_after_call (struct frame_info *fi)
120 {
121 return read_memory_integer (read_register (SP_REGNUM), 4);
122 }
123
124 static void
125 mn10300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
126 {
127 if (TYPE_CODE (type) == TYPE_CODE_PTR)
128 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (4), TYPE_LENGTH (type));
129 else
130 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (0), TYPE_LENGTH (type));
131 }
132
133 static CORE_ADDR
134 mn10300_extract_struct_value_address (char *regbuf)
135 {
136 return extract_unsigned_integer (regbuf + DEPRECATED_REGISTER_BYTE (4),
137 DEPRECATED_REGISTER_RAW_SIZE (4));
138 }
139
140 static void
141 mn10300_store_return_value (struct type *type, char *valbuf)
142 {
143 if (TYPE_CODE (type) == TYPE_CODE_PTR)
144 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (4), valbuf,
145 TYPE_LENGTH (type));
146 else
147 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (0), valbuf,
148 TYPE_LENGTH (type));
149 }
150
151 static struct frame_info *analyze_dummy_frame (CORE_ADDR, CORE_ADDR);
152 static struct frame_info *
153 analyze_dummy_frame (CORE_ADDR pc, CORE_ADDR frame)
154 {
155 static struct frame_info *dummy = NULL;
156 if (dummy == NULL)
157 {
158 struct frame_extra_info *extra_info;
159 CORE_ADDR *saved_regs;
160 dummy = deprecated_frame_xmalloc ();
161 saved_regs = xmalloc (SIZEOF_FRAME_SAVED_REGS);
162 deprecated_set_frame_saved_regs_hack (dummy, saved_regs);
163 extra_info = XMALLOC (struct frame_extra_info);
164 deprecated_set_frame_extra_info_hack (dummy, extra_info);
165 }
166 deprecated_set_frame_next_hack (dummy, NULL);
167 deprecated_set_frame_prev_hack (dummy, NULL);
168 deprecated_update_frame_pc_hack (dummy, pc);
169 deprecated_update_frame_base_hack (dummy, frame);
170 get_frame_extra_info (dummy)->status = 0;
171 get_frame_extra_info (dummy)->stack_size = 0;
172 memset (deprecated_get_frame_saved_regs (dummy), '\000', SIZEOF_FRAME_SAVED_REGS);
173 mn10300_analyze_prologue (dummy, pc);
174 return dummy;
175 }
176
177 /* Values for frame_info.status */
178
179 #define MY_FRAME_IN_SP 0x1
180 #define MY_FRAME_IN_FP 0x2
181 #define NO_MORE_FRAMES 0x4
182
183
184 /* Should call_function allocate stack space for a struct return? */
185 static int
186 mn10300_use_struct_convention (int gcc_p, struct type *type)
187 {
188 return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 8);
189 }
190
191 /* The breakpoint instruction must be the same size as the smallest
192 instruction in the instruction set.
193
194 The Matsushita mn10x00 processors have single byte instructions
195 so we need a single byte breakpoint. Matsushita hasn't defined
196 one, so we defined it ourselves. */
197
198 const static unsigned char *
199 mn10300_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
200 {
201 static char breakpoint[] =
202 {0xff};
203 *bp_size = 1;
204 return breakpoint;
205 }
206
207
208 /* Fix fi->frame if it's bogus at this point. This is a helper
209 function for mn10300_analyze_prologue. */
210
211 static void
212 fix_frame_pointer (struct frame_info *fi, int stack_size)
213 {
214 if (fi && get_next_frame (fi) == NULL)
215 {
216 if (get_frame_extra_info (fi)->status & MY_FRAME_IN_SP)
217 deprecated_update_frame_base_hack (fi, read_sp () - stack_size);
218 else if (get_frame_extra_info (fi)->status & MY_FRAME_IN_FP)
219 deprecated_update_frame_base_hack (fi, read_register (A3_REGNUM));
220 }
221 }
222
223
224 /* Set offsets of registers saved by movm instruction.
225 This is a helper function for mn10300_analyze_prologue. */
226
227 static void
228 set_movm_offsets (struct frame_info *fi, int movm_args)
229 {
230 int offset = 0;
231
232 if (fi == NULL || movm_args == 0)
233 return;
234
235 if (movm_args & movm_other_bit)
236 {
237 /* The `other' bit leaves a blank area of four bytes at the
238 beginning of its block of saved registers, making it 32 bytes
239 long in total. */
240 deprecated_get_frame_saved_regs (fi)[LAR_REGNUM] = get_frame_base (fi) + offset + 4;
241 deprecated_get_frame_saved_regs (fi)[LIR_REGNUM] = get_frame_base (fi) + offset + 8;
242 deprecated_get_frame_saved_regs (fi)[MDR_REGNUM] = get_frame_base (fi) + offset + 12;
243 deprecated_get_frame_saved_regs (fi)[A0_REGNUM + 1] = get_frame_base (fi) + offset + 16;
244 deprecated_get_frame_saved_regs (fi)[A0_REGNUM] = get_frame_base (fi) + offset + 20;
245 deprecated_get_frame_saved_regs (fi)[D0_REGNUM + 1] = get_frame_base (fi) + offset + 24;
246 deprecated_get_frame_saved_regs (fi)[D0_REGNUM] = get_frame_base (fi) + offset + 28;
247 offset += 32;
248 }
249 if (movm_args & movm_a3_bit)
250 {
251 deprecated_get_frame_saved_regs (fi)[A3_REGNUM] = get_frame_base (fi) + offset;
252 offset += 4;
253 }
254 if (movm_args & movm_a2_bit)
255 {
256 deprecated_get_frame_saved_regs (fi)[A2_REGNUM] = get_frame_base (fi) + offset;
257 offset += 4;
258 }
259 if (movm_args & movm_d3_bit)
260 {
261 deprecated_get_frame_saved_regs (fi)[D3_REGNUM] = get_frame_base (fi) + offset;
262 offset += 4;
263 }
264 if (movm_args & movm_d2_bit)
265 {
266 deprecated_get_frame_saved_regs (fi)[D2_REGNUM] = get_frame_base (fi) + offset;
267 offset += 4;
268 }
269 if (AM33_MODE)
270 {
271 if (movm_args & movm_exother_bit)
272 {
273 deprecated_get_frame_saved_regs (fi)[MCVF_REGNUM] = get_frame_base (fi) + offset;
274 deprecated_get_frame_saved_regs (fi)[MCRL_REGNUM] = get_frame_base (fi) + offset + 4;
275 deprecated_get_frame_saved_regs (fi)[MCRH_REGNUM] = get_frame_base (fi) + offset + 8;
276 deprecated_get_frame_saved_regs (fi)[MDRQ_REGNUM] = get_frame_base (fi) + offset + 12;
277 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 1] = get_frame_base (fi) + offset + 16;
278 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 0] = get_frame_base (fi) + offset + 20;
279 offset += 24;
280 }
281 if (movm_args & movm_exreg1_bit)
282 {
283 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 7] = get_frame_base (fi) + offset;
284 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 6] = get_frame_base (fi) + offset + 4;
285 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 5] = get_frame_base (fi) + offset + 8;
286 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 4] = get_frame_base (fi) + offset + 12;
287 offset += 16;
288 }
289 if (movm_args & movm_exreg0_bit)
290 {
291 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 3] = get_frame_base (fi) + offset;
292 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 2] = get_frame_base (fi) + offset + 4;
293 offset += 8;
294 }
295 }
296 }
297
298
299 /* The main purpose of this file is dealing with prologues to extract
300 information about stack frames and saved registers.
301
302 In gcc/config/mn13000/mn10300.c, the expand_prologue prologue
303 function is pretty readable, and has a nice explanation of how the
304 prologue is generated. The prologues generated by that code will
305 have the following form (NOTE: the current code doesn't handle all
306 this!):
307
308 + If this is an old-style varargs function, then its arguments
309 need to be flushed back to the stack:
310
311 mov d0,(4,sp)
312 mov d1,(4,sp)
313
314 + If we use any of the callee-saved registers, save them now.
315
316 movm [some callee-saved registers],(sp)
317
318 + If we have any floating-point registers to save:
319
320 - Decrement the stack pointer to reserve space for the registers.
321 If the function doesn't need a frame pointer, we may combine
322 this with the adjustment that reserves space for the frame.
323
324 add -SIZE, sp
325
326 - Save the floating-point registers. We have two possible
327 strategies:
328
329 . Save them at fixed offset from the SP:
330
331 fmov fsN,(OFFSETN,sp)
332 fmov fsM,(OFFSETM,sp)
333 ...
334
335 Note that, if OFFSETN happens to be zero, you'll get the
336 different opcode: fmov fsN,(sp)
337
338 . Or, set a0 to the start of the save area, and then use
339 post-increment addressing to save the FP registers.
340
341 mov sp, a0
342 add SIZE, a0
343 fmov fsN,(a0+)
344 fmov fsM,(a0+)
345 ...
346
347 + If the function needs a frame pointer, we set it here.
348
349 mov sp, a3
350
351 + Now we reserve space for the stack frame proper. This could be
352 merged into the `add -SIZE, sp' instruction for FP saves up
353 above, unless we needed to set the frame pointer in the previous
354 step, or the frame is so large that allocating the whole thing at
355 once would put the FP register save slots out of reach of the
356 addressing mode (128 bytes).
357
358 add -SIZE, sp
359
360 One day we might keep the stack pointer constant, that won't
361 change the code for prologues, but it will make the frame
362 pointerless case much more common. */
363
364 /* Analyze the prologue to determine where registers are saved,
365 the end of the prologue, etc etc. Return the end of the prologue
366 scanned.
367
368 We store into FI (if non-null) several tidbits of information:
369
370 * stack_size -- size of this stack frame. Note that if we stop in
371 certain parts of the prologue/epilogue we may claim the size of the
372 current frame is zero. This happens when the current frame has
373 not been allocated yet or has already been deallocated.
374
375 * fsr -- Addresses of registers saved in the stack by this frame.
376
377 * status -- A (relatively) generic status indicator. It's a bitmask
378 with the following bits:
379
380 MY_FRAME_IN_SP: The base of the current frame is actually in
381 the stack pointer. This can happen for frame pointerless
382 functions, or cases where we're stopped in the prologue/epilogue
383 itself. For these cases mn10300_analyze_prologue will need up
384 update fi->frame before returning or analyzing the register
385 save instructions.
386
387 MY_FRAME_IN_FP: The base of the current frame is in the
388 frame pointer register ($a3).
389
390 NO_MORE_FRAMES: Set this if the current frame is "start" or
391 if the first instruction looks like mov <imm>,sp. This tells
392 frame chain to not bother trying to unwind past this frame. */
393
394 static CORE_ADDR
395 mn10300_analyze_prologue (struct frame_info *fi, CORE_ADDR pc)
396 {
397 CORE_ADDR func_addr, func_end, addr, stop;
398 CORE_ADDR stack_size;
399 int imm_size;
400 unsigned char buf[4];
401 int status, movm_args = 0;
402 char *name;
403
404 /* Use the PC in the frame if it's provided to look up the
405 start of this function.
406
407 Note: kevinb/2003-07-16: We used to do the following here:
408 pc = (fi ? get_frame_pc (fi) : pc);
409 But this is (now) badly broken when called from analyze_dummy_frame().
410 */
411 pc = (pc ? pc : get_frame_pc (fi));
412
413 /* Find the start of this function. */
414 status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
415
416 /* Do nothing if we couldn't find the start of this function or if we're
417 stopped at the first instruction in the prologue. */
418 if (status == 0)
419 {
420 return pc;
421 }
422
423 /* If we're in start, then give up. */
424 if (strcmp (name, "start") == 0)
425 {
426 if (fi != NULL)
427 get_frame_extra_info (fi)->status = NO_MORE_FRAMES;
428 return pc;
429 }
430
431 /* At the start of a function our frame is in the stack pointer. */
432 if (fi)
433 get_frame_extra_info (fi)->status = MY_FRAME_IN_SP;
434
435 /* Get the next two bytes into buf, we need two because rets is a two
436 byte insn and the first isn't enough to uniquely identify it. */
437 status = read_memory_nobpt (pc, buf, 2);
438 if (status != 0)
439 return pc;
440
441 #if 0
442 /* Note: kevinb/2003-07-16: We shouldn't be making these sorts of
443 changes to the frame in prologue examination code. */
444 /* If we're physically on an "rets" instruction, then our frame has
445 already been deallocated. Note this can also be true for retf
446 and ret if they specify a size of zero.
447
448 In this case fi->frame is bogus, we need to fix it. */
449 if (fi && buf[0] == 0xf0 && buf[1] == 0xfc)
450 {
451 if (get_next_frame (fi) == NULL)
452 deprecated_update_frame_base_hack (fi, read_sp ());
453 return get_frame_pc (fi);
454 }
455
456 /* Similarly if we're stopped on the first insn of a prologue as our
457 frame hasn't been allocated yet. */
458 if (fi && get_frame_pc (fi) == func_addr)
459 {
460 if (get_next_frame (fi) == NULL)
461 deprecated_update_frame_base_hack (fi, read_sp ());
462 return get_frame_pc (fi);
463 }
464 #endif
465
466 /* Figure out where to stop scanning. */
467 stop = fi ? pc : func_end;
468
469 /* Don't walk off the end of the function. */
470 stop = stop > func_end ? func_end : stop;
471
472 /* Start scanning on the first instruction of this function. */
473 addr = func_addr;
474
475 /* Suck in two bytes. */
476 status = read_memory_nobpt (addr, buf, 2);
477 if (status != 0)
478 {
479 fix_frame_pointer (fi, 0);
480 return addr;
481 }
482
483 /* First see if this insn sets the stack pointer from a register; if
484 so, it's probably the initialization of the stack pointer in _start,
485 so mark this as the bottom-most frame. */
486 if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
487 {
488 if (fi)
489 get_frame_extra_info (fi)->status = NO_MORE_FRAMES;
490 return addr;
491 }
492
493 /* Now look for movm [regs],sp, which saves the callee saved registers.
494
495 At this time we don't know if fi->frame is valid, so we only note
496 that we encountered a movm instruction. Later, we'll set the entries
497 in fsr.regs as needed. */
498 if (buf[0] == 0xcf)
499 {
500 /* Extract the register list for the movm instruction. */
501 status = read_memory_nobpt (addr + 1, buf, 1);
502 movm_args = *buf;
503
504 addr += 2;
505
506 /* Quit now if we're beyond the stop point. */
507 if (addr >= stop)
508 {
509 /* Fix fi->frame since it's bogus at this point. */
510 if (fi && get_next_frame (fi) == NULL)
511 deprecated_update_frame_base_hack (fi, read_sp ());
512
513 /* Note if/where callee saved registers were saved. */
514 set_movm_offsets (fi, movm_args);
515 return addr;
516 }
517
518 /* Get the next two bytes so the prologue scan can continue. */
519 status = read_memory_nobpt (addr, buf, 2);
520 if (status != 0)
521 {
522 /* Fix fi->frame since it's bogus at this point. */
523 if (fi && get_next_frame (fi) == NULL)
524 deprecated_update_frame_base_hack (fi, read_sp ());
525
526 /* Note if/where callee saved registers were saved. */
527 set_movm_offsets (fi, movm_args);
528 return addr;
529 }
530 }
531
532 /* Now see if we set up a frame pointer via "mov sp,a3" */
533 if (buf[0] == 0x3f)
534 {
535 addr += 1;
536
537 /* The frame pointer is now valid. */
538 if (fi)
539 {
540 get_frame_extra_info (fi)->status |= MY_FRAME_IN_FP;
541 get_frame_extra_info (fi)->status &= ~MY_FRAME_IN_SP;
542 }
543
544 /* Quit now if we're beyond the stop point. */
545 if (addr >= stop)
546 {
547 /* Fix fi->frame if it's bogus at this point. */
548 fix_frame_pointer (fi, 0);
549
550 /* Note if/where callee saved registers were saved. */
551 set_movm_offsets (fi, movm_args);
552 return addr;
553 }
554
555 /* Get two more bytes so scanning can continue. */
556 status = read_memory_nobpt (addr, buf, 2);
557 if (status != 0)
558 {
559 /* Fix fi->frame if it's bogus at this point. */
560 fix_frame_pointer (fi, 0);
561
562 /* Note if/where callee saved registers were saved. */
563 set_movm_offsets (fi, movm_args);
564 return addr;
565 }
566 }
567
568 /* Next we should allocate the local frame. No more prologue insns
569 are found after allocating the local frame.
570
571 Search for add imm8,sp (0xf8feXX)
572 or add imm16,sp (0xfafeXXXX)
573 or add imm32,sp (0xfcfeXXXXXXXX).
574
575 If none of the above was found, then this prologue has no
576 additional stack. */
577
578 status = read_memory_nobpt (addr, buf, 2);
579 if (status != 0)
580 {
581 /* Fix fi->frame if it's bogus at this point. */
582 fix_frame_pointer (fi, 0);
583
584 /* Note if/where callee saved registers were saved. */
585 set_movm_offsets (fi, movm_args);
586 return addr;
587 }
588
589 imm_size = 0;
590 if (buf[0] == 0xf8 && buf[1] == 0xfe)
591 imm_size = 1;
592 else if (buf[0] == 0xfa && buf[1] == 0xfe)
593 imm_size = 2;
594 else if (buf[0] == 0xfc && buf[1] == 0xfe)
595 imm_size = 4;
596
597 if (imm_size != 0)
598 {
599 /* Suck in imm_size more bytes, they'll hold the size of the
600 current frame. */
601 status = read_memory_nobpt (addr + 2, buf, imm_size);
602 if (status != 0)
603 {
604 /* Fix fi->frame if it's bogus at this point. */
605 fix_frame_pointer (fi, 0);
606
607 /* Note if/where callee saved registers were saved. */
608 set_movm_offsets (fi, movm_args);
609 return addr;
610 }
611
612 /* Note the size of the stack in the frame info structure. */
613 stack_size = extract_signed_integer (buf, imm_size);
614 if (fi)
615 get_frame_extra_info (fi)->stack_size = stack_size;
616
617 /* We just consumed 2 + imm_size bytes. */
618 addr += 2 + imm_size;
619
620 /* No more prologue insns follow, so begin preparation to return. */
621 /* Fix fi->frame if it's bogus at this point. */
622 fix_frame_pointer (fi, stack_size);
623
624 /* Note if/where callee saved registers were saved. */
625 set_movm_offsets (fi, movm_args);
626 return addr;
627 }
628
629 /* We never found an insn which allocates local stack space, regardless
630 this is the end of the prologue. */
631 /* Fix fi->frame if it's bogus at this point. */
632 fix_frame_pointer (fi, 0);
633
634 /* Note if/where callee saved registers were saved. */
635 set_movm_offsets (fi, movm_args);
636 return addr;
637 }
638
639
640 /* Function: saved_regs_size
641 Return the size in bytes of the register save area, based on the
642 saved_regs array in FI. */
643 static int
644 saved_regs_size (struct frame_info *fi)
645 {
646 int adjust = 0;
647 int i;
648
649 /* Reserve four bytes for every register saved. */
650 for (i = 0; i < NUM_REGS; i++)
651 if (deprecated_get_frame_saved_regs (fi)[i])
652 adjust += 4;
653
654 /* If we saved LIR, then it's most likely we used a `movm'
655 instruction with the `other' bit set, in which case the SP is
656 decremented by an extra four bytes, "to simplify calculation
657 of the transfer area", according to the processor manual. */
658 if (deprecated_get_frame_saved_regs (fi)[LIR_REGNUM])
659 adjust += 4;
660
661 return adjust;
662 }
663
664
665 /* Function: frame_chain
666 Figure out and return the caller's frame pointer given current
667 frame_info struct.
668
669 We don't handle dummy frames yet but we would probably just return the
670 stack pointer that was in use at the time the function call was made? */
671
672 static CORE_ADDR
673 mn10300_frame_chain (struct frame_info *fi)
674 {
675 struct frame_info *dummy;
676 /* Walk through the prologue to determine the stack size,
677 location of saved registers, end of the prologue, etc. */
678 if (get_frame_extra_info (fi)->status == 0)
679 mn10300_analyze_prologue (fi, (CORE_ADDR) 0);
680
681 /* Quit now if mn10300_analyze_prologue set NO_MORE_FRAMES. */
682 if (get_frame_extra_info (fi)->status & NO_MORE_FRAMES)
683 return 0;
684
685 /* Now that we've analyzed our prologue, determine the frame
686 pointer for our caller.
687
688 If our caller has a frame pointer, then we need to
689 find the entry value of $a3 to our function.
690
691 If fsr.regs[A3_REGNUM] is nonzero, then it's at the memory
692 location pointed to by fsr.regs[A3_REGNUM].
693
694 Else it's still in $a3.
695
696 If our caller does not have a frame pointer, then his
697 frame base is fi->frame + -caller's stack size. */
698
699 /* The easiest way to get that info is to analyze our caller's frame.
700 So we set up a dummy frame and call mn10300_analyze_prologue to
701 find stuff for us. */
702 dummy = analyze_dummy_frame (DEPRECATED_FRAME_SAVED_PC (fi), get_frame_base (fi));
703
704 if (get_frame_extra_info (dummy)->status & MY_FRAME_IN_FP)
705 {
706 /* Our caller has a frame pointer. So find the frame in $a3 or
707 in the stack. */
708 if (deprecated_get_frame_saved_regs (fi)[A3_REGNUM])
709 return (read_memory_integer (deprecated_get_frame_saved_regs (fi)[A3_REGNUM],
710 DEPRECATED_REGISTER_SIZE));
711 else
712 return read_register (A3_REGNUM);
713 }
714 else
715 {
716 int adjust = saved_regs_size (fi);
717
718 /* Our caller does not have a frame pointer. So his frame starts
719 at the base of our frame (fi->frame) + register save space
720 + <his size>. */
721 return get_frame_base (fi) + adjust + -get_frame_extra_info (dummy)->stack_size;
722 }
723 }
724
725 /* Function: skip_prologue
726 Return the address of the first inst past the prologue of the function. */
727
728 static CORE_ADDR
729 mn10300_skip_prologue (CORE_ADDR pc)
730 {
731 /* We used to check the debug symbols, but that can lose if
732 we have a null prologue. */
733 return mn10300_analyze_prologue (NULL, pc);
734 }
735
736 /* generic_pop_current_frame calls this function if the current
737 frame isn't a dummy frame. */
738 static void
739 mn10300_pop_frame_regular (struct frame_info *frame)
740 {
741 int regnum;
742
743 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
744
745 /* Restore any saved registers. */
746 for (regnum = 0; regnum < NUM_REGS; regnum++)
747 if (deprecated_get_frame_saved_regs (frame)[regnum] != 0)
748 {
749 ULONGEST value;
750
751 value = read_memory_unsigned_integer (deprecated_get_frame_saved_regs (frame)[regnum],
752 DEPRECATED_REGISTER_RAW_SIZE (regnum));
753 write_register (regnum, value);
754 }
755
756 /* Actually cut back the stack. */
757 write_register (SP_REGNUM, get_frame_base (frame));
758
759 /* Don't we need to set the PC?!? XXX FIXME. */
760 }
761
762 /* Function: pop_frame
763 This routine gets called when either the user uses the `return'
764 command, or the call dummy breakpoint gets hit. */
765 static void
766 mn10300_pop_frame (void)
767 {
768 /* This function checks for and handles generic dummy frames, and
769 calls back to our function for ordinary frames. */
770 generic_pop_current_frame (mn10300_pop_frame_regular);
771
772 /* Throw away any cached frame information. */
773 flush_cached_frames ();
774 }
775
776 /* Function: push_arguments
777 Setup arguments for a call to the target. Arguments go in
778 order on the stack. */
779
780 static CORE_ADDR
781 mn10300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
782 int struct_return, CORE_ADDR struct_addr)
783 {
784 int argnum = 0;
785 int len = 0;
786 int stack_offset = 0;
787 int regsused = struct_return ? 1 : 0;
788
789 /* This should be a nop, but align the stack just in case something
790 went wrong. Stacks are four byte aligned on the mn10300. */
791 sp &= ~3;
792
793 /* Now make space on the stack for the args.
794
795 XXX This doesn't appear to handle pass-by-invisible reference
796 arguments. */
797 for (argnum = 0; argnum < nargs; argnum++)
798 {
799 int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3;
800
801 while (regsused < 2 && arg_length > 0)
802 {
803 regsused++;
804 arg_length -= 4;
805 }
806 len += arg_length;
807 }
808
809 /* Allocate stack space. */
810 sp -= len;
811
812 regsused = struct_return ? 1 : 0;
813 /* Push all arguments onto the stack. */
814 for (argnum = 0; argnum < nargs; argnum++)
815 {
816 int len;
817 char *val;
818
819 /* XXX Check this. What about UNIONS? */
820 if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
821 && TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
822 {
823 /* XXX Wrong, we want a pointer to this argument. */
824 len = TYPE_LENGTH (VALUE_TYPE (*args));
825 val = (char *) VALUE_CONTENTS (*args);
826 }
827 else
828 {
829 len = TYPE_LENGTH (VALUE_TYPE (*args));
830 val = (char *) VALUE_CONTENTS (*args);
831 }
832
833 while (regsused < 2 && len > 0)
834 {
835 write_register (regsused, extract_unsigned_integer (val, 4));
836 val += 4;
837 len -= 4;
838 regsused++;
839 }
840
841 while (len > 0)
842 {
843 write_memory (sp + stack_offset, val, 4);
844 len -= 4;
845 val += 4;
846 stack_offset += 4;
847 }
848
849 args++;
850 }
851
852 /* Make space for the flushback area. */
853 sp -= 8;
854 return sp;
855 }
856
857 /* Function: push_return_address (pc)
858 Set up the return address for the inferior function call.
859 Needed for targets where we don't actually execute a JSR/BSR instruction */
860
861 static CORE_ADDR
862 mn10300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
863 {
864 unsigned char buf[4];
865
866 store_unsigned_integer (buf, 4, entry_point_address ());
867 write_memory (sp - 4, buf, 4);
868 return sp - 4;
869 }
870
871 /* Function: store_struct_return (addr,sp)
872 Store the structure value return address for an inferior function
873 call. */
874
875 static void
876 mn10300_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
877 {
878 /* The structure return address is passed as the first argument. */
879 write_register (0, addr);
880 }
881
882 /* Function: frame_saved_pc
883 Find the caller of this frame. We do this by seeing if RP_REGNUM
884 is saved in the stack anywhere, otherwise we get it from the
885 registers. If the inner frame is a dummy frame, return its PC
886 instead of RP, because that's where "caller" of the dummy-frame
887 will be found. */
888
889 static CORE_ADDR
890 mn10300_frame_saved_pc (struct frame_info *fi)
891 {
892 int adjust = saved_regs_size (fi);
893
894 return (read_memory_integer (get_frame_base (fi) + adjust,
895 DEPRECATED_REGISTER_SIZE));
896 }
897
898 /* Function: mn10300_init_extra_frame_info
899 Setup the frame's frame pointer, pc, and frame addresses for saved
900 registers. Most of the work is done in mn10300_analyze_prologue().
901
902 Note that when we are called for the last frame (currently active frame),
903 that get_frame_pc (fi) and fi->frame will already be setup. However, fi->frame will
904 be valid only if this routine uses FP. For previous frames, fi-frame will
905 always be correct. mn10300_analyze_prologue will fix fi->frame if
906 it's not valid.
907
908 We can be called with the PC in the call dummy under two
909 circumstances. First, during normal backtracing, second, while
910 figuring out the frame pointer just prior to calling the target
911 function (see call_function_by_hand). */
912
913 static void
914 mn10300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
915 {
916 if (get_next_frame (fi))
917 deprecated_update_frame_pc_hack (fi, DEPRECATED_FRAME_SAVED_PC (get_next_frame (fi)));
918
919 frame_saved_regs_zalloc (fi);
920 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
921
922 get_frame_extra_info (fi)->status = 0;
923 get_frame_extra_info (fi)->stack_size = 0;
924
925 mn10300_analyze_prologue (fi, 0);
926 }
927
928
929 /* This function's job is handled by init_extra_frame_info. */
930 static void
931 mn10300_frame_init_saved_regs (struct frame_info *frame)
932 {
933 }
934
935
936 /* Function: mn10300_virtual_frame_pointer
937 Return the register that the function uses for a frame pointer,
938 plus any necessary offset to be applied to the register before
939 any frame pointer offsets. */
940
941 static void
942 mn10300_virtual_frame_pointer (CORE_ADDR pc,
943 int *reg,
944 LONGEST *offset)
945 {
946 struct frame_info *dummy = analyze_dummy_frame (pc, 0);
947 /* Set up a dummy frame_info, Analyze the prolog and fill in the
948 extra info. */
949 /* Results will tell us which type of frame it uses. */
950 if (get_frame_extra_info (dummy)->status & MY_FRAME_IN_SP)
951 {
952 *reg = SP_REGNUM;
953 *offset = -(get_frame_extra_info (dummy)->stack_size);
954 }
955 else
956 {
957 *reg = A3_REGNUM;
958 *offset = 0;
959 }
960 }
961
962 static int
963 mn10300_reg_struct_has_addr (int gcc_p, struct type *type)
964 {
965 return (TYPE_LENGTH (type) > 8);
966 }
967
968 static struct type *
969 mn10300_register_virtual_type (int reg)
970 {
971 return builtin_type_int;
972 }
973
974 static int
975 mn10300_register_byte (int reg)
976 {
977 return (reg * 4);
978 }
979
980 static int
981 mn10300_register_virtual_size (int reg)
982 {
983 return 4;
984 }
985
986 static int
987 mn10300_register_raw_size (int reg)
988 {
989 return 4;
990 }
991
992 /* If DWARF2 is a register number appearing in Dwarf2 debug info, then
993 mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB
994 register number. Why don't Dwarf2 and GDB use the same numbering?
995 Who knows? But since people have object files lying around with
996 the existing Dwarf2 numbering, and other people have written stubs
997 to work with the existing GDB, neither of them can change. So we
998 just have to cope. */
999 static int
1000 mn10300_dwarf2_reg_to_regnum (int dwarf2)
1001 {
1002 /* This table is supposed to be shaped like the REGISTER_NAMES
1003 initializer in gcc/config/mn10300/mn10300.h. Registers which
1004 appear in GCC's numbering, but have no counterpart in GDB's
1005 world, are marked with a -1. */
1006 static int dwarf2_to_gdb[] = {
1007 0, 1, 2, 3, 4, 5, 6, 7, -1, 8,
1008 15, 16, 17, 18, 19, 20, 21, 22
1009 };
1010 int gdb;
1011
1012 if (dwarf2 < 0
1013 || dwarf2 >= (sizeof (dwarf2_to_gdb) / sizeof (dwarf2_to_gdb[0]))
1014 || dwarf2_to_gdb[dwarf2] == -1)
1015 internal_error (__FILE__, __LINE__,
1016 "bogus register number in debug info: %d", dwarf2);
1017
1018 return dwarf2_to_gdb[dwarf2];
1019 }
1020
1021 static void
1022 mn10300_print_register (const char *name, int regnum, int reg_width)
1023 {
1024 char raw_buffer[MAX_REGISTER_SIZE];
1025
1026 if (reg_width)
1027 printf_filtered ("%*s: ", reg_width, name);
1028 else
1029 printf_filtered ("%s: ", name);
1030
1031 /* Get the data */
1032 if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
1033 {
1034 printf_filtered ("[invalid]");
1035 return;
1036 }
1037 else
1038 {
1039 int byte;
1040 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1041 {
1042 for (byte = DEPRECATED_REGISTER_RAW_SIZE (regnum) - DEPRECATED_REGISTER_VIRTUAL_SIZE (regnum);
1043 byte < DEPRECATED_REGISTER_RAW_SIZE (regnum);
1044 byte++)
1045 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
1046 }
1047 else
1048 {
1049 for (byte = DEPRECATED_REGISTER_VIRTUAL_SIZE (regnum) - 1;
1050 byte >= 0;
1051 byte--)
1052 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
1053 }
1054 }
1055 }
1056
1057 static void
1058 mn10300_do_registers_info (int regnum, int fpregs)
1059 {
1060 if (regnum >= 0)
1061 {
1062 const char *name = REGISTER_NAME (regnum);
1063 if (name == NULL || name[0] == '\0')
1064 error ("Not a valid register for the current processor type");
1065 mn10300_print_register (name, regnum, 0);
1066 printf_filtered ("\n");
1067 }
1068 else
1069 {
1070 /* print registers in an array 4x8 */
1071 int r;
1072 int reg;
1073 const int nr_in_row = 4;
1074 const int reg_width = 4;
1075 for (r = 0; r < NUM_REGS; r += nr_in_row)
1076 {
1077 int c;
1078 int printing = 0;
1079 int padding = 0;
1080 for (c = r; c < r + nr_in_row; c++)
1081 {
1082 const char *name = REGISTER_NAME (c);
1083 if (name != NULL && *name != '\0')
1084 {
1085 printing = 1;
1086 while (padding > 0)
1087 {
1088 printf_filtered (" ");
1089 padding--;
1090 }
1091 mn10300_print_register (name, c, reg_width);
1092 printf_filtered (" ");
1093 }
1094 else
1095 {
1096 padding += (reg_width + 2 + 8 + 1);
1097 }
1098 }
1099 if (printing)
1100 printf_filtered ("\n");
1101 }
1102 }
1103 }
1104
1105 static CORE_ADDR
1106 mn10300_read_fp (void)
1107 {
1108 /* That's right, we're using the stack pointer as our frame pointer. */
1109 gdb_assert (SP_REGNUM >= 0);
1110 return read_register (SP_REGNUM);
1111 }
1112
1113 /* Dump out the mn10300 speciic architecture information. */
1114
1115 static void
1116 mn10300_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1117 {
1118 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1119 fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
1120 tdep->am33_mode);
1121 }
1122
1123 static struct gdbarch *
1124 mn10300_gdbarch_init (struct gdbarch_info info,
1125 struct gdbarch_list *arches)
1126 {
1127 static LONGEST mn10300_call_dummy_words[] = { 0 };
1128 struct gdbarch *gdbarch;
1129 struct gdbarch_tdep *tdep = NULL;
1130 int am33_mode;
1131 gdbarch_register_name_ftype *register_name;
1132 int mach;
1133 int num_regs;
1134
1135 arches = gdbarch_list_lookup_by_info (arches, &info);
1136 if (arches != NULL)
1137 return arches->gdbarch;
1138 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1139 gdbarch = gdbarch_alloc (&info, tdep);
1140
1141 if (info.bfd_arch_info != NULL
1142 && info.bfd_arch_info->arch == bfd_arch_mn10300)
1143 mach = info.bfd_arch_info->mach;
1144 else
1145 mach = 0;
1146 switch (mach)
1147 {
1148 case 0:
1149 case bfd_mach_mn10300:
1150 am33_mode = 0;
1151 register_name = mn10300_generic_register_name;
1152 num_regs = 32;
1153 break;
1154 case bfd_mach_am33:
1155 am33_mode = 1;
1156 register_name = am33_register_name;
1157 num_regs = 32;
1158 break;
1159 default:
1160 internal_error (__FILE__, __LINE__,
1161 "mn10300_gdbarch_init: Unknown mn10300 variant");
1162 return NULL; /* keep GCC happy. */
1163 }
1164
1165 /* Registers. */
1166 set_gdbarch_num_regs (gdbarch, num_regs);
1167 set_gdbarch_register_name (gdbarch, register_name);
1168 set_gdbarch_deprecated_register_size (gdbarch, 4);
1169 set_gdbarch_deprecated_register_bytes (gdbarch, num_regs * gdbarch_deprecated_register_size (gdbarch));
1170 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 4);
1171 set_gdbarch_deprecated_register_raw_size (gdbarch, mn10300_register_raw_size);
1172 set_gdbarch_deprecated_register_byte (gdbarch, mn10300_register_byte);
1173 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 4);
1174 set_gdbarch_deprecated_register_virtual_size (gdbarch, mn10300_register_virtual_size);
1175 set_gdbarch_deprecated_register_virtual_type (gdbarch, mn10300_register_virtual_type);
1176 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum);
1177 set_gdbarch_deprecated_do_registers_info (gdbarch, mn10300_do_registers_info);
1178 set_gdbarch_sp_regnum (gdbarch, 8);
1179 set_gdbarch_pc_regnum (gdbarch, 9);
1180 set_gdbarch_deprecated_fp_regnum (gdbarch, 31);
1181 set_gdbarch_virtual_frame_pointer (gdbarch, mn10300_virtual_frame_pointer);
1182
1183 /* Breakpoints. */
1184 set_gdbarch_breakpoint_from_pc (gdbarch, mn10300_breakpoint_from_pc);
1185 set_gdbarch_function_start_offset (gdbarch, 0);
1186 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1187
1188 /* Stack unwinding. */
1189 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1190 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mn10300_saved_pc_after_call);
1191 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mn10300_init_extra_frame_info);
1192 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mn10300_frame_init_saved_regs);
1193 set_gdbarch_deprecated_frame_chain (gdbarch, mn10300_frame_chain);
1194 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mn10300_frame_saved_pc);
1195 set_gdbarch_deprecated_extract_return_value (gdbarch, mn10300_extract_return_value);
1196 set_gdbarch_deprecated_extract_struct_value_address
1197 (gdbarch, mn10300_extract_struct_value_address);
1198 set_gdbarch_deprecated_store_return_value (gdbarch, mn10300_store_return_value);
1199 set_gdbarch_deprecated_store_struct_return (gdbarch, mn10300_store_struct_return);
1200 set_gdbarch_deprecated_pop_frame (gdbarch, mn10300_pop_frame);
1201 set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue);
1202 set_gdbarch_frame_args_skip (gdbarch, 0);
1203 /* That's right, we're using the stack pointer as our frame pointer. */
1204 set_gdbarch_deprecated_target_read_fp (gdbarch, mn10300_read_fp);
1205
1206 /* Calling functions in the inferior from GDB. */
1207 set_gdbarch_deprecated_call_dummy_words (gdbarch, mn10300_call_dummy_words);
1208 set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, sizeof (mn10300_call_dummy_words));
1209 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
1210 set_gdbarch_deprecated_push_arguments (gdbarch, mn10300_push_arguments);
1211 set_gdbarch_deprecated_reg_struct_has_addr
1212 (gdbarch, mn10300_reg_struct_has_addr);
1213 set_gdbarch_deprecated_push_return_address (gdbarch, mn10300_push_return_address);
1214 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
1215 set_gdbarch_use_struct_convention (gdbarch, mn10300_use_struct_convention);
1216
1217 tdep->am33_mode = am33_mode;
1218
1219 /* Should be using push_dummy_call. */
1220 set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp);
1221
1222 set_gdbarch_print_insn (gdbarch, print_insn_mn10300);
1223
1224 return gdbarch;
1225 }
1226
1227 void
1228 _initialize_mn10300_tdep (void)
1229 {
1230 /* printf("_initialize_mn10300_tdep\n"); */
1231
1232 register_gdbarch_init (bfd_arch_mn10300, mn10300_gdbarch_init);
1233 }
This page took 0.054378 seconds and 4 git commands to generate.