Obvious fix: in entries for 1998-02-10 and 1998-02-06,
[deliverable/binutils-gdb.git] / gdb / mn10300-tdep.c
1 /* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
2 Copyright 1996, 1997, 1998, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "obstack.h"
26 #include "target.h"
27 #include "value.h"
28 #include "bfd.h"
29 #include "gdb_string.h"
30 #include "gdbcore.h"
31 #include "symfile.h"
32 #include "regcache.h"
33
34 extern void _initialize_mn10300_tdep (void);
35 static CORE_ADDR mn10300_analyze_prologue (struct frame_info *fi,
36 CORE_ADDR pc);
37
38 /* mn10300 private data */
39 struct gdbarch_tdep
40 {
41 int am33_mode;
42 #define AM33_MODE (gdbarch_tdep (current_gdbarch)->am33_mode)
43 };
44
45 /* Additional info used by the frame */
46
47 struct frame_extra_info
48 {
49 int status;
50 int stack_size;
51 };
52
53
54 static char *
55 register_name (int reg, char **regs, long sizeof_regs)
56 {
57 if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
58 return NULL;
59 else
60 return regs[reg];
61 }
62
63 static char *
64 mn10300_generic_register_name (int reg)
65 {
66 static char *regs[] =
67 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
68 "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
69 "", "", "", "", "", "", "", "",
70 "", "", "", "", "", "", "", "fp"
71 };
72 return register_name (reg, regs, sizeof regs);
73 }
74
75
76 static char *
77 am33_register_name (int reg)
78 {
79 static char *regs[] =
80 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
81 "sp", "pc", "mdr", "psw", "lir", "lar", "",
82 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
83 "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
84 };
85 return register_name (reg, regs, sizeof regs);
86 }
87
88 CORE_ADDR
89 mn10300_saved_pc_after_call (struct frame_info *fi)
90 {
91 return read_memory_integer (read_register (SP_REGNUM), 4);
92 }
93
94 void
95 mn10300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
96 {
97 if (TYPE_CODE (type) == TYPE_CODE_PTR)
98 memcpy (valbuf, regbuf + REGISTER_BYTE (4), TYPE_LENGTH (type));
99 else
100 memcpy (valbuf, regbuf + REGISTER_BYTE (0), TYPE_LENGTH (type));
101 }
102
103 CORE_ADDR
104 mn10300_extract_struct_value_address (char *regbuf)
105 {
106 return extract_address (regbuf + REGISTER_BYTE (4),
107 REGISTER_RAW_SIZE (4));
108 }
109
110 void
111 mn10300_store_return_value (struct type *type, char *valbuf)
112 {
113 if (TYPE_CODE (type) == TYPE_CODE_PTR)
114 write_register_bytes (REGISTER_BYTE (4), valbuf, TYPE_LENGTH (type));
115 else
116 write_register_bytes (REGISTER_BYTE (0), valbuf, TYPE_LENGTH (type));
117 }
118
119 static struct frame_info *analyze_dummy_frame (CORE_ADDR, CORE_ADDR);
120 static struct frame_info *
121 analyze_dummy_frame (CORE_ADDR pc, CORE_ADDR frame)
122 {
123 static struct frame_info *dummy = NULL;
124 if (dummy == NULL)
125 {
126 dummy = xmalloc (sizeof (struct frame_info));
127 dummy->saved_regs = xmalloc (SIZEOF_FRAME_SAVED_REGS);
128 dummy->extra_info = xmalloc (sizeof (struct frame_extra_info));
129 }
130 dummy->next = NULL;
131 dummy->prev = NULL;
132 dummy->pc = pc;
133 dummy->frame = frame;
134 dummy->extra_info->status = 0;
135 dummy->extra_info->stack_size = 0;
136 memset (dummy->saved_regs, '\000', SIZEOF_FRAME_SAVED_REGS);
137 mn10300_analyze_prologue (dummy, 0);
138 return dummy;
139 }
140
141 /* Values for frame_info.status */
142
143 #define MY_FRAME_IN_SP 0x1
144 #define MY_FRAME_IN_FP 0x2
145 #define NO_MORE_FRAMES 0x4
146
147
148 /* Should call_function allocate stack space for a struct return? */
149 int
150 mn10300_use_struct_convention (int gcc_p, struct type *type)
151 {
152 return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 8);
153 }
154
155 /* The breakpoint instruction must be the same size as the smallest
156 instruction in the instruction set.
157
158 The Matsushita mn10x00 processors have single byte instructions
159 so we need a single byte breakpoint. Matsushita hasn't defined
160 one, so we defined it ourselves. */
161
162 unsigned char *
163 mn10300_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
164 {
165 static char breakpoint[] =
166 {0xff};
167 *bp_size = 1;
168 return breakpoint;
169 }
170
171
172 /* Fix fi->frame if it's bogus at this point. This is a helper
173 function for mn10300_analyze_prologue. */
174
175 static void
176 fix_frame_pointer (struct frame_info *fi, int stack_size)
177 {
178 if (fi && fi->next == NULL)
179 {
180 if (fi->extra_info->status & MY_FRAME_IN_SP)
181 fi->frame = read_sp () - stack_size;
182 else if (fi->extra_info->status & MY_FRAME_IN_FP)
183 fi->frame = read_register (A3_REGNUM);
184 }
185 }
186
187
188 /* Set offsets of registers saved by movm instruction.
189 This is a helper function for mn10300_analyze_prologue. */
190
191 static void
192 set_movm_offsets (struct frame_info *fi, int movm_args)
193 {
194 int offset = 0;
195
196 if (fi == NULL || movm_args == 0)
197 return;
198
199 if (movm_args & 0x10)
200 {
201 fi->saved_regs[A3_REGNUM] = fi->frame + offset;
202 offset += 4;
203 }
204 if (movm_args & 0x20)
205 {
206 fi->saved_regs[A2_REGNUM] = fi->frame + offset;
207 offset += 4;
208 }
209 if (movm_args & 0x40)
210 {
211 fi->saved_regs[D3_REGNUM] = fi->frame + offset;
212 offset += 4;
213 }
214 if (movm_args & 0x80)
215 {
216 fi->saved_regs[D2_REGNUM] = fi->frame + offset;
217 offset += 4;
218 }
219 if (AM33_MODE && movm_args & 0x02)
220 {
221 fi->saved_regs[E0_REGNUM + 5] = fi->frame + offset;
222 fi->saved_regs[E0_REGNUM + 4] = fi->frame + offset + 4;
223 fi->saved_regs[E0_REGNUM + 3] = fi->frame + offset + 8;
224 fi->saved_regs[E0_REGNUM + 2] = fi->frame + offset + 12;
225 }
226 }
227
228
229 /* The main purpose of this file is dealing with prologues to extract
230 information about stack frames and saved registers.
231
232 For reference here's how prologues look on the mn10300:
233
234 With frame pointer:
235 movm [d2,d3,a2,a3],sp
236 mov sp,a3
237 add <size>,sp
238
239 Without frame pointer:
240 movm [d2,d3,a2,a3],sp (if needed)
241 add <size>,sp
242
243 One day we might keep the stack pointer constant, that won't
244 change the code for prologues, but it will make the frame
245 pointerless case much more common. */
246
247 /* Analyze the prologue to determine where registers are saved,
248 the end of the prologue, etc etc. Return the end of the prologue
249 scanned.
250
251 We store into FI (if non-null) several tidbits of information:
252
253 * stack_size -- size of this stack frame. Note that if we stop in
254 certain parts of the prologue/epilogue we may claim the size of the
255 current frame is zero. This happens when the current frame has
256 not been allocated yet or has already been deallocated.
257
258 * fsr -- Addresses of registers saved in the stack by this frame.
259
260 * status -- A (relatively) generic status indicator. It's a bitmask
261 with the following bits:
262
263 MY_FRAME_IN_SP: The base of the current frame is actually in
264 the stack pointer. This can happen for frame pointerless
265 functions, or cases where we're stopped in the prologue/epilogue
266 itself. For these cases mn10300_analyze_prologue will need up
267 update fi->frame before returning or analyzing the register
268 save instructions.
269
270 MY_FRAME_IN_FP: The base of the current frame is in the
271 frame pointer register ($a2).
272
273 NO_MORE_FRAMES: Set this if the current frame is "start" or
274 if the first instruction looks like mov <imm>,sp. This tells
275 frame chain to not bother trying to unwind past this frame. */
276
277 static CORE_ADDR
278 mn10300_analyze_prologue (struct frame_info *fi, CORE_ADDR pc)
279 {
280 CORE_ADDR func_addr, func_end, addr, stop;
281 CORE_ADDR stack_size;
282 int imm_size;
283 unsigned char buf[4];
284 int status, movm_args = 0;
285 char *name;
286
287 /* Use the PC in the frame if it's provided to look up the
288 start of this function. */
289 pc = (fi ? fi->pc : pc);
290
291 /* Find the start of this function. */
292 status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
293
294 /* Do nothing if we couldn't find the start of this function or if we're
295 stopped at the first instruction in the prologue. */
296 if (status == 0)
297 {
298 return pc;
299 }
300
301 /* If we're in start, then give up. */
302 if (strcmp (name, "start") == 0)
303 {
304 if (fi != NULL)
305 fi->extra_info->status = NO_MORE_FRAMES;
306 return pc;
307 }
308
309 /* At the start of a function our frame is in the stack pointer. */
310 if (fi)
311 fi->extra_info->status = MY_FRAME_IN_SP;
312
313 /* Get the next two bytes into buf, we need two because rets is a two
314 byte insn and the first isn't enough to uniquely identify it. */
315 status = read_memory_nobpt (pc, buf, 2);
316 if (status != 0)
317 return pc;
318
319 /* If we're physically on an "rets" instruction, then our frame has
320 already been deallocated. Note this can also be true for retf
321 and ret if they specify a size of zero.
322
323 In this case fi->frame is bogus, we need to fix it. */
324 if (fi && buf[0] == 0xf0 && buf[1] == 0xfc)
325 {
326 if (fi->next == NULL)
327 fi->frame = read_sp ();
328 return fi->pc;
329 }
330
331 /* Similarly if we're stopped on the first insn of a prologue as our
332 frame hasn't been allocated yet. */
333 if (fi && fi->pc == func_addr)
334 {
335 if (fi->next == NULL)
336 fi->frame = read_sp ();
337 return fi->pc;
338 }
339
340 /* Figure out where to stop scanning. */
341 stop = fi ? fi->pc : func_end;
342
343 /* Don't walk off the end of the function. */
344 stop = stop > func_end ? func_end : stop;
345
346 /* Start scanning on the first instruction of this function. */
347 addr = func_addr;
348
349 /* Suck in two bytes. */
350 status = read_memory_nobpt (addr, buf, 2);
351 if (status != 0)
352 {
353 fix_frame_pointer (fi, 0);
354 return addr;
355 }
356
357 /* First see if this insn sets the stack pointer; if so, it's something
358 we won't understand, so quit now. */
359 if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
360 {
361 if (fi)
362 fi->extra_info->status = NO_MORE_FRAMES;
363 return addr;
364 }
365
366 /* Now look for movm [regs],sp, which saves the callee saved registers.
367
368 At this time we don't know if fi->frame is valid, so we only note
369 that we encountered a movm instruction. Later, we'll set the entries
370 in fsr.regs as needed. */
371 if (buf[0] == 0xcf)
372 {
373 /* Extract the register list for the movm instruction. */
374 status = read_memory_nobpt (addr + 1, buf, 1);
375 movm_args = *buf;
376
377 addr += 2;
378
379 /* Quit now if we're beyond the stop point. */
380 if (addr >= stop)
381 {
382 /* Fix fi->frame since it's bogus at this point. */
383 if (fi && fi->next == NULL)
384 fi->frame = read_sp ();
385
386 /* Note if/where callee saved registers were saved. */
387 set_movm_offsets (fi, movm_args);
388 return addr;
389 }
390
391 /* Get the next two bytes so the prologue scan can continue. */
392 status = read_memory_nobpt (addr, buf, 2);
393 if (status != 0)
394 {
395 /* Fix fi->frame since it's bogus at this point. */
396 if (fi && fi->next == NULL)
397 fi->frame = read_sp ();
398
399 /* Note if/where callee saved registers were saved. */
400 set_movm_offsets (fi, movm_args);
401 return addr;
402 }
403 }
404
405 /* Now see if we set up a frame pointer via "mov sp,a3" */
406 if (buf[0] == 0x3f)
407 {
408 addr += 1;
409
410 /* The frame pointer is now valid. */
411 if (fi)
412 {
413 fi->extra_info->status |= MY_FRAME_IN_FP;
414 fi->extra_info->status &= ~MY_FRAME_IN_SP;
415 }
416
417 /* Quit now if we're beyond the stop point. */
418 if (addr >= stop)
419 {
420 /* Fix fi->frame if it's bogus at this point. */
421 fix_frame_pointer (fi, 0);
422
423 /* Note if/where callee saved registers were saved. */
424 set_movm_offsets (fi, movm_args);
425 return addr;
426 }
427
428 /* Get two more bytes so scanning can continue. */
429 status = read_memory_nobpt (addr, buf, 2);
430 if (status != 0)
431 {
432 /* Fix fi->frame if it's bogus at this point. */
433 fix_frame_pointer (fi, 0);
434
435 /* Note if/where callee saved registers were saved. */
436 set_movm_offsets (fi, movm_args);
437 return addr;
438 }
439 }
440
441 /* Next we should allocate the local frame. No more prologue insns
442 are found after allocating the local frame.
443
444 Search for add imm8,sp (0xf8feXX)
445 or add imm16,sp (0xfafeXXXX)
446 or add imm32,sp (0xfcfeXXXXXXXX).
447
448 If none of the above was found, then this prologue has no
449 additional stack. */
450
451 status = read_memory_nobpt (addr, buf, 2);
452 if (status != 0)
453 {
454 /* Fix fi->frame if it's bogus at this point. */
455 fix_frame_pointer (fi, 0);
456
457 /* Note if/where callee saved registers were saved. */
458 set_movm_offsets (fi, movm_args);
459 return addr;
460 }
461
462 imm_size = 0;
463 if (buf[0] == 0xf8 && buf[1] == 0xfe)
464 imm_size = 1;
465 else if (buf[0] == 0xfa && buf[1] == 0xfe)
466 imm_size = 2;
467 else if (buf[0] == 0xfc && buf[1] == 0xfe)
468 imm_size = 4;
469
470 if (imm_size != 0)
471 {
472 /* Suck in imm_size more bytes, they'll hold the size of the
473 current frame. */
474 status = read_memory_nobpt (addr + 2, buf, imm_size);
475 if (status != 0)
476 {
477 /* Fix fi->frame if it's bogus at this point. */
478 fix_frame_pointer (fi, 0);
479
480 /* Note if/where callee saved registers were saved. */
481 set_movm_offsets (fi, movm_args);
482 return addr;
483 }
484
485 /* Note the size of the stack in the frame info structure. */
486 stack_size = extract_signed_integer (buf, imm_size);
487 if (fi)
488 fi->extra_info->stack_size = stack_size;
489
490 /* We just consumed 2 + imm_size bytes. */
491 addr += 2 + imm_size;
492
493 /* No more prologue insns follow, so begin preparation to return. */
494 /* Fix fi->frame if it's bogus at this point. */
495 fix_frame_pointer (fi, stack_size);
496
497 /* Note if/where callee saved registers were saved. */
498 set_movm_offsets (fi, movm_args);
499 return addr;
500 }
501
502 /* We never found an insn which allocates local stack space, regardless
503 this is the end of the prologue. */
504 /* Fix fi->frame if it's bogus at this point. */
505 fix_frame_pointer (fi, 0);
506
507 /* Note if/where callee saved registers were saved. */
508 set_movm_offsets (fi, movm_args);
509 return addr;
510 }
511
512 /* Function: frame_chain
513 Figure out and return the caller's frame pointer given current
514 frame_info struct.
515
516 We don't handle dummy frames yet but we would probably just return the
517 stack pointer that was in use at the time the function call was made? */
518
519 CORE_ADDR
520 mn10300_frame_chain (struct frame_info *fi)
521 {
522 struct frame_info *dummy;
523 /* Walk through the prologue to determine the stack size,
524 location of saved registers, end of the prologue, etc. */
525 if (fi->extra_info->status == 0)
526 mn10300_analyze_prologue (fi, (CORE_ADDR) 0);
527
528 /* Quit now if mn10300_analyze_prologue set NO_MORE_FRAMES. */
529 if (fi->extra_info->status & NO_MORE_FRAMES)
530 return 0;
531
532 /* Now that we've analyzed our prologue, determine the frame
533 pointer for our caller.
534
535 If our caller has a frame pointer, then we need to
536 find the entry value of $a3 to our function.
537
538 If fsr.regs[A3_REGNUM] is nonzero, then it's at the memory
539 location pointed to by fsr.regs[A3_REGNUM].
540
541 Else it's still in $a3.
542
543 If our caller does not have a frame pointer, then his
544 frame base is fi->frame + -caller's stack size. */
545
546 /* The easiest way to get that info is to analyze our caller's frame.
547 So we set up a dummy frame and call mn10300_analyze_prologue to
548 find stuff for us. */
549 dummy = analyze_dummy_frame (FRAME_SAVED_PC (fi), fi->frame);
550
551 if (dummy->extra_info->status & MY_FRAME_IN_FP)
552 {
553 /* Our caller has a frame pointer. So find the frame in $a3 or
554 in the stack. */
555 if (fi->saved_regs[A3_REGNUM])
556 return (read_memory_integer (fi->saved_regs[A3_REGNUM], REGISTER_SIZE));
557 else
558 return read_register (A3_REGNUM);
559 }
560 else
561 {
562 int adjust = 0;
563
564 adjust += (fi->saved_regs[D2_REGNUM] ? 4 : 0);
565 adjust += (fi->saved_regs[D3_REGNUM] ? 4 : 0);
566 adjust += (fi->saved_regs[A2_REGNUM] ? 4 : 0);
567 adjust += (fi->saved_regs[A3_REGNUM] ? 4 : 0);
568 if (AM33_MODE)
569 {
570 adjust += (fi->saved_regs[E0_REGNUM + 5] ? 4 : 0);
571 adjust += (fi->saved_regs[E0_REGNUM + 4] ? 4 : 0);
572 adjust += (fi->saved_regs[E0_REGNUM + 3] ? 4 : 0);
573 adjust += (fi->saved_regs[E0_REGNUM + 2] ? 4 : 0);
574 }
575
576 /* Our caller does not have a frame pointer. So his frame starts
577 at the base of our frame (fi->frame) + register save space
578 + <his size>. */
579 return fi->frame + adjust + -dummy->extra_info->stack_size;
580 }
581 }
582
583 /* Function: skip_prologue
584 Return the address of the first inst past the prologue of the function. */
585
586 CORE_ADDR
587 mn10300_skip_prologue (CORE_ADDR pc)
588 {
589 /* We used to check the debug symbols, but that can lose if
590 we have a null prologue. */
591 return mn10300_analyze_prologue (NULL, pc);
592 }
593
594
595 /* Function: pop_frame
596 This routine gets called when either the user uses the `return'
597 command, or the call dummy breakpoint gets hit. */
598
599 void
600 mn10300_pop_frame (struct frame_info *frame)
601 {
602 int regnum;
603
604 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
605 generic_pop_dummy_frame ();
606 else
607 {
608 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
609
610 /* Restore any saved registers. */
611 for (regnum = 0; regnum < NUM_REGS; regnum++)
612 if (frame->saved_regs[regnum] != 0)
613 {
614 ULONGEST value;
615
616 value = read_memory_unsigned_integer (frame->saved_regs[regnum],
617 REGISTER_RAW_SIZE (regnum));
618 write_register (regnum, value);
619 }
620
621 /* Actually cut back the stack. */
622 write_register (SP_REGNUM, FRAME_FP (frame));
623
624 /* Don't we need to set the PC?!? XXX FIXME. */
625 }
626
627 /* Throw away any cached frame information. */
628 flush_cached_frames ();
629 }
630
631 /* Function: push_arguments
632 Setup arguments for a call to the target. Arguments go in
633 order on the stack. */
634
635 CORE_ADDR
636 mn10300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
637 int struct_return, CORE_ADDR struct_addr)
638 {
639 int argnum = 0;
640 int len = 0;
641 int stack_offset = 0;
642 int regsused = struct_return ? 1 : 0;
643
644 /* This should be a nop, but align the stack just in case something
645 went wrong. Stacks are four byte aligned on the mn10300. */
646 sp &= ~3;
647
648 /* Now make space on the stack for the args.
649
650 XXX This doesn't appear to handle pass-by-invisible reference
651 arguments. */
652 for (argnum = 0; argnum < nargs; argnum++)
653 {
654 int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3;
655
656 while (regsused < 2 && arg_length > 0)
657 {
658 regsused++;
659 arg_length -= 4;
660 }
661 len += arg_length;
662 }
663
664 /* Allocate stack space. */
665 sp -= len;
666
667 regsused = struct_return ? 1 : 0;
668 /* Push all arguments onto the stack. */
669 for (argnum = 0; argnum < nargs; argnum++)
670 {
671 int len;
672 char *val;
673
674 /* XXX Check this. What about UNIONS? */
675 if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
676 && TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
677 {
678 /* XXX Wrong, we want a pointer to this argument. */
679 len = TYPE_LENGTH (VALUE_TYPE (*args));
680 val = (char *) VALUE_CONTENTS (*args);
681 }
682 else
683 {
684 len = TYPE_LENGTH (VALUE_TYPE (*args));
685 val = (char *) VALUE_CONTENTS (*args);
686 }
687
688 while (regsused < 2 && len > 0)
689 {
690 write_register (regsused, extract_unsigned_integer (val, 4));
691 val += 4;
692 len -= 4;
693 regsused++;
694 }
695
696 while (len > 0)
697 {
698 write_memory (sp + stack_offset, val, 4);
699 len -= 4;
700 val += 4;
701 stack_offset += 4;
702 }
703
704 args++;
705 }
706
707 /* Make space for the flushback area. */
708 sp -= 8;
709 return sp;
710 }
711
712 /* Function: push_return_address (pc)
713 Set up the return address for the inferior function call.
714 Needed for targets where we don't actually execute a JSR/BSR instruction */
715
716 CORE_ADDR
717 mn10300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
718 {
719 unsigned char buf[4];
720
721 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
722 write_memory (sp - 4, buf, 4);
723 return sp - 4;
724 }
725
726 /* Function: store_struct_return (addr,sp)
727 Store the structure value return address for an inferior function
728 call. */
729
730 CORE_ADDR
731 mn10300_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
732 {
733 /* The structure return address is passed as the first argument. */
734 write_register (0, addr);
735 return sp;
736 }
737
738 /* Function: frame_saved_pc
739 Find the caller of this frame. We do this by seeing if RP_REGNUM
740 is saved in the stack anywhere, otherwise we get it from the
741 registers. If the inner frame is a dummy frame, return its PC
742 instead of RP, because that's where "caller" of the dummy-frame
743 will be found. */
744
745 CORE_ADDR
746 mn10300_frame_saved_pc (struct frame_info *fi)
747 {
748 int adjust = 0;
749
750 adjust += (fi->saved_regs[D2_REGNUM] ? 4 : 0);
751 adjust += (fi->saved_regs[D3_REGNUM] ? 4 : 0);
752 adjust += (fi->saved_regs[A2_REGNUM] ? 4 : 0);
753 adjust += (fi->saved_regs[A3_REGNUM] ? 4 : 0);
754 if (AM33_MODE)
755 {
756 adjust += (fi->saved_regs[E0_REGNUM + 5] ? 4 : 0);
757 adjust += (fi->saved_regs[E0_REGNUM + 4] ? 4 : 0);
758 adjust += (fi->saved_regs[E0_REGNUM + 3] ? 4 : 0);
759 adjust += (fi->saved_regs[E0_REGNUM + 2] ? 4 : 0);
760 }
761
762 return (read_memory_integer (fi->frame + adjust, REGISTER_SIZE));
763 }
764
765 /* Function: mn10300_init_extra_frame_info
766 Setup the frame's frame pointer, pc, and frame addresses for saved
767 registers. Most of the work is done in mn10300_analyze_prologue().
768
769 Note that when we are called for the last frame (currently active frame),
770 that fi->pc and fi->frame will already be setup. However, fi->frame will
771 be valid only if this routine uses FP. For previous frames, fi-frame will
772 always be correct. mn10300_analyze_prologue will fix fi->frame if
773 it's not valid.
774
775 We can be called with the PC in the call dummy under two circumstances.
776 First, during normal backtracing, second, while figuring out the frame
777 pointer just prior to calling the target function (see run_stack_dummy). */
778
779 void
780 mn10300_init_extra_frame_info (struct frame_info *fi)
781 {
782 if (fi->next)
783 fi->pc = FRAME_SAVED_PC (fi->next);
784
785 frame_saved_regs_zalloc (fi);
786 fi->extra_info = (struct frame_extra_info *)
787 frame_obstack_alloc (sizeof (struct frame_extra_info));
788
789 fi->extra_info->status = 0;
790 fi->extra_info->stack_size = 0;
791
792 mn10300_analyze_prologue (fi, 0);
793 }
794
795 /* Function: mn10300_virtual_frame_pointer
796 Return the register that the function uses for a frame pointer,
797 plus any necessary offset to be applied to the register before
798 any frame pointer offsets. */
799
800 void
801 mn10300_virtual_frame_pointer (CORE_ADDR pc, long *reg, long *offset)
802 {
803 struct frame_info *dummy = analyze_dummy_frame (pc, 0);
804 /* Set up a dummy frame_info, Analyze the prolog and fill in the
805 extra info. */
806 /* Results will tell us which type of frame it uses. */
807 if (dummy->extra_info->status & MY_FRAME_IN_SP)
808 {
809 *reg = SP_REGNUM;
810 *offset = -(dummy->extra_info->stack_size);
811 }
812 else
813 {
814 *reg = A3_REGNUM;
815 *offset = 0;
816 }
817 }
818
819 static int
820 mn10300_reg_struct_has_addr (int gcc_p, struct type *type)
821 {
822 return (TYPE_LENGTH (type) > 8);
823 }
824
825 static struct type *
826 mn10300_register_virtual_type (int reg)
827 {
828 return builtin_type_int;
829 }
830
831 static int
832 mn10300_register_byte (int reg)
833 {
834 return (reg * 4);
835 }
836
837 static int
838 mn10300_register_virtual_size (int reg)
839 {
840 return 4;
841 }
842
843 static int
844 mn10300_register_raw_size (int reg)
845 {
846 return 4;
847 }
848
849 static void
850 mn10300_print_register (const char *name, int regnum, int reg_width)
851 {
852 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
853
854 if (reg_width)
855 printf_filtered ("%*s: ", reg_width, name);
856 else
857 printf_filtered ("%s: ", name);
858
859 /* Get the data */
860 if (read_relative_register_raw_bytes (regnum, raw_buffer))
861 {
862 printf_filtered ("[invalid]");
863 return;
864 }
865 else
866 {
867 int byte;
868 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
869 {
870 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
871 byte < REGISTER_RAW_SIZE (regnum);
872 byte++)
873 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
874 }
875 else
876 {
877 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
878 byte >= 0;
879 byte--)
880 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
881 }
882 }
883 }
884
885 static void
886 mn10300_do_registers_info (int regnum, int fpregs)
887 {
888 if (regnum >= 0)
889 {
890 const char *name = REGISTER_NAME (regnum);
891 if (name == NULL || name[0] == '\0')
892 error ("Not a valid register for the current processor type");
893 mn10300_print_register (name, regnum, 0);
894 printf_filtered ("\n");
895 }
896 else
897 {
898 /* print registers in an array 4x8 */
899 int r;
900 int reg;
901 const int nr_in_row = 4;
902 const int reg_width = 4;
903 for (r = 0; r < NUM_REGS; r += nr_in_row)
904 {
905 int c;
906 int printing = 0;
907 int padding = 0;
908 for (c = r; c < r + nr_in_row; c++)
909 {
910 const char *name = REGISTER_NAME (c);
911 if (name != NULL && *name != '\0')
912 {
913 printing = 1;
914 while (padding > 0)
915 {
916 printf_filtered (" ");
917 padding--;
918 }
919 mn10300_print_register (name, c, reg_width);
920 printf_filtered (" ");
921 }
922 else
923 {
924 padding += (reg_width + 2 + 8 + 1);
925 }
926 }
927 if (printing)
928 printf_filtered ("\n");
929 }
930 }
931 }
932
933 /* Dump out the mn10300 speciic architecture information. */
934
935 static void
936 mn10300_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
937 {
938 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
939 fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
940 tdep->am33_mode);
941 }
942
943 static struct gdbarch *
944 mn10300_gdbarch_init (struct gdbarch_info info,
945 struct gdbarch_list *arches)
946 {
947 struct gdbarch *gdbarch;
948 struct gdbarch_tdep *tdep = NULL;
949 int am33_mode;
950 gdbarch_register_name_ftype *register_name;
951 int mach;
952 int num_regs;
953
954 arches = gdbarch_list_lookup_by_info (arches, &info);
955 if (arches != NULL)
956 return arches->gdbarch;
957 tdep = xmalloc (sizeof (struct gdbarch_tdep));
958 gdbarch = gdbarch_alloc (&info, tdep);
959
960 if (info.bfd_arch_info != NULL
961 && info.bfd_arch_info->arch == bfd_arch_mn10300)
962 mach = info.bfd_arch_info->mach;
963 else
964 mach = 0;
965 switch (mach)
966 {
967 case 0:
968 case bfd_mach_mn10300:
969 am33_mode = 0;
970 register_name = mn10300_generic_register_name;
971 num_regs = 32;
972 break;
973 case bfd_mach_am33:
974 am33_mode = 1;
975 register_name = am33_register_name;
976 num_regs = 32;
977 break;
978 default:
979 internal_error (__FILE__, __LINE__,
980 "mn10300_gdbarch_init: Unknown mn10300 variant");
981 return NULL; /* keep GCC happy. */
982 }
983
984 set_gdbarch_register_size (gdbarch, 4);
985 set_gdbarch_max_register_raw_size (gdbarch, 4);
986 set_gdbarch_register_virtual_type (gdbarch, mn10300_register_virtual_type);
987 set_gdbarch_register_byte (gdbarch, mn10300_register_byte);
988 set_gdbarch_register_virtual_size (gdbarch, mn10300_register_virtual_size);
989 set_gdbarch_register_raw_size (gdbarch, mn10300_register_raw_size);
990 set_gdbarch_call_dummy_p (gdbarch, 1);
991 set_gdbarch_register_name (gdbarch, register_name);
992 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
993 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 0);
994 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
995 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
996 set_gdbarch_push_arguments (gdbarch, mn10300_push_arguments);
997 set_gdbarch_push_return_address (gdbarch, mn10300_push_return_address);
998 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
999 set_gdbarch_reg_struct_has_addr (gdbarch, mn10300_reg_struct_has_addr);
1000 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
1001 set_gdbarch_num_regs (gdbarch, num_regs);
1002 set_gdbarch_do_registers_info (gdbarch, mn10300_do_registers_info);
1003
1004 tdep->am33_mode = am33_mode;
1005
1006 return gdbarch;
1007 }
1008
1009 void
1010 _initialize_mn10300_tdep (void)
1011 {
1012 /* printf("_initialize_mn10300_tdep\n"); */
1013
1014 tm_print_insn = print_insn_mn10300;
1015
1016 register_gdbarch_init (bfd_arch_mn10300, mn10300_gdbarch_init);
1017 }
This page took 0.06352 seconds and 4 git commands to generate.