Add MN10300_MAX_REGISTER_SIZE
[deliverable/binutils-gdb.git] / gdb / mn10300-tdep.c
1 /* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
2
3 Copyright (C) 1996-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dis-asm.h"
23 #include "gdbtypes.h"
24 #include "regcache.h"
25 #include "gdbcore.h" /* For write_memory_unsigned_integer. */
26 #include "value.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "symtab.h"
31 #include "dwarf2-frame.h"
32 #include "osabi.h"
33 #include "infcall.h"
34 #include "prologue-value.h"
35 #include "target.h"
36
37 #include "mn10300-tdep.h"
38
39
40 /* The am33-2 has 64 registers. */
41 #define MN10300_MAX_NUM_REGS 64
42
43 /* Big enough to hold the size of the largest register in bytes. */
44 #define MN10300_MAX_REGISTER_SIZE 64
45
46 /* This structure holds the results of a prologue analysis. */
47 struct mn10300_prologue
48 {
49 /* The architecture for which we generated this prologue info. */
50 struct gdbarch *gdbarch;
51
52 /* The offset from the frame base to the stack pointer --- always
53 zero or negative.
54
55 Calling this a "size" is a bit misleading, but given that the
56 stack grows downwards, using offsets for everything keeps one
57 from going completely sign-crazy: you never change anything's
58 sign for an ADD instruction; always change the second operand's
59 sign for a SUB instruction; and everything takes care of
60 itself. */
61 int frame_size;
62
63 /* Non-zero if this function has initialized the frame pointer from
64 the stack pointer, zero otherwise. */
65 int has_frame_ptr;
66
67 /* If has_frame_ptr is non-zero, this is the offset from the frame
68 base to where the frame pointer points. This is always zero or
69 negative. */
70 int frame_ptr_offset;
71
72 /* The address of the first instruction at which the frame has been
73 set up and the arguments are where the debug info says they are
74 --- as best as we can tell. */
75 CORE_ADDR prologue_end;
76
77 /* reg_offset[R] is the offset from the CFA at which register R is
78 saved, or 1 if register R has not been saved. (Real values are
79 always zero or negative.) */
80 int reg_offset[MN10300_MAX_NUM_REGS];
81 };
82
83
84 /* Compute the alignment required by a type. */
85
86 static int
87 mn10300_type_align (struct type *type)
88 {
89 int i, align = 1;
90
91 switch (TYPE_CODE (type))
92 {
93 case TYPE_CODE_INT:
94 case TYPE_CODE_ENUM:
95 case TYPE_CODE_SET:
96 case TYPE_CODE_RANGE:
97 case TYPE_CODE_CHAR:
98 case TYPE_CODE_BOOL:
99 case TYPE_CODE_FLT:
100 case TYPE_CODE_PTR:
101 case TYPE_CODE_REF:
102 case TYPE_CODE_RVALUE_REF:
103 return TYPE_LENGTH (type);
104
105 case TYPE_CODE_COMPLEX:
106 return TYPE_LENGTH (type) / 2;
107
108 case TYPE_CODE_STRUCT:
109 case TYPE_CODE_UNION:
110 for (i = 0; i < TYPE_NFIELDS (type); i++)
111 {
112 int falign = mn10300_type_align (TYPE_FIELD_TYPE (type, i));
113 while (align < falign)
114 align <<= 1;
115 }
116 return align;
117
118 case TYPE_CODE_ARRAY:
119 /* HACK! Structures containing arrays, even small ones, are not
120 elligible for returning in registers. */
121 return 256;
122
123 case TYPE_CODE_TYPEDEF:
124 return mn10300_type_align (check_typedef (type));
125
126 default:
127 internal_error (__FILE__, __LINE__, _("bad switch"));
128 }
129 }
130
131 /* Should call_function allocate stack space for a struct return? */
132 static int
133 mn10300_use_struct_convention (struct type *type)
134 {
135 /* Structures bigger than a pair of words can't be returned in
136 registers. */
137 if (TYPE_LENGTH (type) > 8)
138 return 1;
139
140 switch (TYPE_CODE (type))
141 {
142 case TYPE_CODE_STRUCT:
143 case TYPE_CODE_UNION:
144 /* Structures with a single field are handled as the field
145 itself. */
146 if (TYPE_NFIELDS (type) == 1)
147 return mn10300_use_struct_convention (TYPE_FIELD_TYPE (type, 0));
148
149 /* Structures with word or double-word size are passed in memory, as
150 long as they require at least word alignment. */
151 if (mn10300_type_align (type) >= 4)
152 return 0;
153
154 return 1;
155
156 /* Arrays are addressable, so they're never returned in
157 registers. This condition can only hold when the array is
158 the only field of a struct or union. */
159 case TYPE_CODE_ARRAY:
160 return 1;
161
162 case TYPE_CODE_TYPEDEF:
163 return mn10300_use_struct_convention (check_typedef (type));
164
165 default:
166 return 0;
167 }
168 }
169
170 static void
171 mn10300_store_return_value (struct gdbarch *gdbarch, struct type *type,
172 struct regcache *regcache, const gdb_byte *valbuf)
173 {
174 int len = TYPE_LENGTH (type);
175 int reg, regsz;
176
177 if (TYPE_CODE (type) == TYPE_CODE_PTR)
178 reg = 4;
179 else
180 reg = 0;
181
182 regsz = register_size (gdbarch, reg);
183
184 if (len <= regsz)
185 regcache_raw_write_part (regcache, reg, 0, len, valbuf);
186 else if (len <= 2 * regsz)
187 {
188 regcache_raw_write (regcache, reg, valbuf);
189 gdb_assert (regsz == register_size (gdbarch, reg + 1));
190 regcache_raw_write_part (regcache, reg+1, 0,
191 len - regsz, valbuf + regsz);
192 }
193 else
194 internal_error (__FILE__, __LINE__,
195 _("Cannot store return value %d bytes long."), len);
196 }
197
198 static void
199 mn10300_extract_return_value (struct gdbarch *gdbarch, struct type *type,
200 struct regcache *regcache, void *valbuf)
201 {
202 gdb_byte buf[MN10300_MAX_REGISTER_SIZE];
203 int len = TYPE_LENGTH (type);
204 int reg, regsz;
205
206 if (TYPE_CODE (type) == TYPE_CODE_PTR)
207 reg = 4;
208 else
209 reg = 0;
210
211 regsz = register_size (gdbarch, reg);
212 gdb_assert (regsz <= MN10300_MAX_REGISTER_SIZE);
213 if (len <= regsz)
214 {
215 regcache_raw_read (regcache, reg, buf);
216 memcpy (valbuf, buf, len);
217 }
218 else if (len <= 2 * regsz)
219 {
220 regcache_raw_read (regcache, reg, buf);
221 memcpy (valbuf, buf, regsz);
222 gdb_assert (regsz == register_size (gdbarch, reg + 1));
223 regcache_raw_read (regcache, reg + 1, buf);
224 memcpy ((char *) valbuf + regsz, buf, len - regsz);
225 }
226 else
227 internal_error (__FILE__, __LINE__,
228 _("Cannot extract return value %d bytes long."), len);
229 }
230
231 /* Determine, for architecture GDBARCH, how a return value of TYPE
232 should be returned. If it is supposed to be returned in registers,
233 and READBUF is non-zero, read the appropriate value from REGCACHE,
234 and copy it into READBUF. If WRITEBUF is non-zero, write the value
235 from WRITEBUF into REGCACHE. */
236
237 static enum return_value_convention
238 mn10300_return_value (struct gdbarch *gdbarch, struct value *function,
239 struct type *type, struct regcache *regcache,
240 gdb_byte *readbuf, const gdb_byte *writebuf)
241 {
242 if (mn10300_use_struct_convention (type))
243 return RETURN_VALUE_STRUCT_CONVENTION;
244
245 if (readbuf)
246 mn10300_extract_return_value (gdbarch, type, regcache, readbuf);
247 if (writebuf)
248 mn10300_store_return_value (gdbarch, type, regcache, writebuf);
249
250 return RETURN_VALUE_REGISTER_CONVENTION;
251 }
252
253 static const char *
254 register_name (int reg, const char **regs, long sizeof_regs)
255 {
256 if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
257 return NULL;
258 else
259 return regs[reg];
260 }
261
262 static const char *
263 mn10300_generic_register_name (struct gdbarch *gdbarch, int reg)
264 {
265 static const char *regs[] =
266 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
267 "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
268 "", "", "", "", "", "", "", "",
269 "", "", "", "", "", "", "", "fp"
270 };
271 return register_name (reg, regs, sizeof regs);
272 }
273
274
275 static const char *
276 am33_register_name (struct gdbarch *gdbarch, int reg)
277 {
278 static const char *regs[] =
279 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
280 "sp", "pc", "mdr", "psw", "lir", "lar", "",
281 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
282 "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
283 };
284 return register_name (reg, regs, sizeof regs);
285 }
286
287 static const char *
288 am33_2_register_name (struct gdbarch *gdbarch, int reg)
289 {
290 static const char *regs[] =
291 {
292 "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
293 "sp", "pc", "mdr", "psw", "lir", "lar", "mdrq", "r0",
294 "r1", "r2", "r3", "r4", "r5", "r6", "r7", "ssp",
295 "msp", "usp", "mcrh", "mcrl", "mcvf", "fpcr", "", "",
296 "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7",
297 "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15",
298 "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23",
299 "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31"
300 };
301 return register_name (reg, regs, sizeof regs);
302 }
303
304 static struct type *
305 mn10300_register_type (struct gdbarch *gdbarch, int reg)
306 {
307 return builtin_type (gdbarch)->builtin_int;
308 }
309
310 static CORE_ADDR
311 mn10300_read_pc (struct regcache *regcache)
312 {
313 ULONGEST val;
314 regcache_cooked_read_unsigned (regcache, E_PC_REGNUM, &val);
315 return val;
316 }
317
318 static void
319 mn10300_write_pc (struct regcache *regcache, CORE_ADDR val)
320 {
321 regcache_cooked_write_unsigned (regcache, E_PC_REGNUM, val);
322 }
323
324 /* The breakpoint instruction must be the same size as the smallest
325 instruction in the instruction set.
326
327 The Matsushita mn10x00 processors have single byte instructions
328 so we need a single byte breakpoint. Matsushita hasn't defined
329 one, so we defined it ourselves. */
330 constexpr gdb_byte mn10300_break_insn[] = {0xff};
331
332 typedef BP_MANIPULATION (mn10300_break_insn) mn10300_breakpoint;
333
334 /* Model the semantics of pushing a register onto the stack. This
335 is a helper function for mn10300_analyze_prologue, below. */
336 static void
337 push_reg (pv_t *regs, struct pv_area *stack, int regnum)
338 {
339 regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], -4);
340 pv_area_store (stack, regs[E_SP_REGNUM], 4, regs[regnum]);
341 }
342
343 /* Translate an "r" register number extracted from an instruction encoding
344 into a GDB register number. Adapted from a simulator function
345 of the same name; see am33.igen. */
346 static int
347 translate_rreg (int rreg)
348 {
349 /* The higher register numbers actually correspond to the
350 basic machine's address and data registers. */
351 if (rreg > 7 && rreg < 12)
352 return E_A0_REGNUM + rreg - 8;
353 else if (rreg > 11 && rreg < 16)
354 return E_D0_REGNUM + rreg - 12;
355 else
356 return E_E0_REGNUM + rreg;
357 }
358
359 /* Find saved registers in a 'struct pv_area'; we pass this to pv_area_scan.
360
361 If VALUE is a saved register, ADDR says it was saved at a constant
362 offset from the frame base, and SIZE indicates that the whole
363 register was saved, record its offset in RESULT_UNTYPED. */
364 static void
365 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
366 {
367 struct mn10300_prologue *result = (struct mn10300_prologue *) result_untyped;
368
369 if (value.kind == pvk_register
370 && value.k == 0
371 && pv_is_register (addr, E_SP_REGNUM)
372 && size == register_size (result->gdbarch, value.reg))
373 result->reg_offset[value.reg] = addr.k;
374 }
375
376 /* Analyze the prologue to determine where registers are saved,
377 the end of the prologue, etc. The result of this analysis is
378 returned in RESULT. See struct mn10300_prologue above for more
379 information. */
380 static void
381 mn10300_analyze_prologue (struct gdbarch *gdbarch,
382 CORE_ADDR start_pc, CORE_ADDR limit_pc,
383 struct mn10300_prologue *result)
384 {
385 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386 CORE_ADDR pc;
387 int rn;
388 pv_t regs[MN10300_MAX_NUM_REGS];
389 struct pv_area *stack;
390 struct cleanup *back_to;
391 CORE_ADDR after_last_frame_setup_insn = start_pc;
392 int am33_mode = AM33_MODE (gdbarch);
393
394 memset (result, 0, sizeof (*result));
395 result->gdbarch = gdbarch;
396
397 for (rn = 0; rn < MN10300_MAX_NUM_REGS; rn++)
398 {
399 regs[rn] = pv_register (rn, 0);
400 result->reg_offset[rn] = 1;
401 }
402 stack = make_pv_area (E_SP_REGNUM, gdbarch_addr_bit (gdbarch));
403 back_to = make_cleanup_free_pv_area (stack);
404
405 /* The typical call instruction will have saved the return address on the
406 stack. Space for the return address has already been preallocated in
407 the caller's frame. It's possible, such as when using -mrelax with gcc
408 that other registers were saved as well. If this happens, we really
409 have no chance of deciphering the frame. DWARF info can save the day
410 when this happens. */
411 pv_area_store (stack, regs[E_SP_REGNUM], 4, regs[E_PC_REGNUM]);
412
413 pc = start_pc;
414 while (pc < limit_pc)
415 {
416 int status;
417 gdb_byte instr[2];
418
419 /* Instructions can be as small as one byte; however, we usually
420 need at least two bytes to do the decoding, so fetch that many
421 to begin with. */
422 status = target_read_memory (pc, instr, 2);
423 if (status != 0)
424 break;
425
426 /* movm [regs], sp */
427 if (instr[0] == 0xcf)
428 {
429 gdb_byte save_mask;
430
431 save_mask = instr[1];
432
433 if ((save_mask & movm_exreg0_bit) && am33_mode)
434 {
435 push_reg (regs, stack, E_E2_REGNUM);
436 push_reg (regs, stack, E_E3_REGNUM);
437 }
438 if ((save_mask & movm_exreg1_bit) && am33_mode)
439 {
440 push_reg (regs, stack, E_E4_REGNUM);
441 push_reg (regs, stack, E_E5_REGNUM);
442 push_reg (regs, stack, E_E6_REGNUM);
443 push_reg (regs, stack, E_E7_REGNUM);
444 }
445 if ((save_mask & movm_exother_bit) && am33_mode)
446 {
447 push_reg (regs, stack, E_E0_REGNUM);
448 push_reg (regs, stack, E_E1_REGNUM);
449 push_reg (regs, stack, E_MDRQ_REGNUM);
450 push_reg (regs, stack, E_MCRH_REGNUM);
451 push_reg (regs, stack, E_MCRL_REGNUM);
452 push_reg (regs, stack, E_MCVF_REGNUM);
453 }
454 if (save_mask & movm_d2_bit)
455 push_reg (regs, stack, E_D2_REGNUM);
456 if (save_mask & movm_d3_bit)
457 push_reg (regs, stack, E_D3_REGNUM);
458 if (save_mask & movm_a2_bit)
459 push_reg (regs, stack, E_A2_REGNUM);
460 if (save_mask & movm_a3_bit)
461 push_reg (regs, stack, E_A3_REGNUM);
462 if (save_mask & movm_other_bit)
463 {
464 push_reg (regs, stack, E_D0_REGNUM);
465 push_reg (regs, stack, E_D1_REGNUM);
466 push_reg (regs, stack, E_A0_REGNUM);
467 push_reg (regs, stack, E_A1_REGNUM);
468 push_reg (regs, stack, E_MDR_REGNUM);
469 push_reg (regs, stack, E_LIR_REGNUM);
470 push_reg (regs, stack, E_LAR_REGNUM);
471 /* The `other' bit leaves a blank area of four bytes at
472 the beginning of its block of saved registers, making
473 it 32 bytes long in total. */
474 regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], -4);
475 }
476
477 pc += 2;
478 after_last_frame_setup_insn = pc;
479 }
480 /* mov sp, aN */
481 else if ((instr[0] & 0xfc) == 0x3c)
482 {
483 int aN = instr[0] & 0x03;
484
485 regs[E_A0_REGNUM + aN] = regs[E_SP_REGNUM];
486
487 pc += 1;
488 if (aN == 3)
489 after_last_frame_setup_insn = pc;
490 }
491 /* mov aM, aN */
492 else if ((instr[0] & 0xf0) == 0x90
493 && (instr[0] & 0x03) != ((instr[0] & 0x0c) >> 2))
494 {
495 int aN = instr[0] & 0x03;
496 int aM = (instr[0] & 0x0c) >> 2;
497
498 regs[E_A0_REGNUM + aN] = regs[E_A0_REGNUM + aM];
499
500 pc += 1;
501 }
502 /* mov dM, dN */
503 else if ((instr[0] & 0xf0) == 0x80
504 && (instr[0] & 0x03) != ((instr[0] & 0x0c) >> 2))
505 {
506 int dN = instr[0] & 0x03;
507 int dM = (instr[0] & 0x0c) >> 2;
508
509 regs[E_D0_REGNUM + dN] = regs[E_D0_REGNUM + dM];
510
511 pc += 1;
512 }
513 /* mov aM, dN */
514 else if (instr[0] == 0xf1 && (instr[1] & 0xf0) == 0xd0)
515 {
516 int dN = instr[1] & 0x03;
517 int aM = (instr[1] & 0x0c) >> 2;
518
519 regs[E_D0_REGNUM + dN] = regs[E_A0_REGNUM + aM];
520
521 pc += 2;
522 }
523 /* mov dM, aN */
524 else if (instr[0] == 0xf1 && (instr[1] & 0xf0) == 0xe0)
525 {
526 int aN = instr[1] & 0x03;
527 int dM = (instr[1] & 0x0c) >> 2;
528
529 regs[E_A0_REGNUM + aN] = regs[E_D0_REGNUM + dM];
530
531 pc += 2;
532 }
533 /* add imm8, SP */
534 else if (instr[0] == 0xf8 && instr[1] == 0xfe)
535 {
536 gdb_byte buf[1];
537 LONGEST imm8;
538
539
540 status = target_read_memory (pc + 2, buf, 1);
541 if (status != 0)
542 break;
543
544 imm8 = extract_signed_integer (buf, 1, byte_order);
545 regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm8);
546
547 pc += 3;
548 /* Stack pointer adjustments are frame related. */
549 after_last_frame_setup_insn = pc;
550 }
551 /* add imm16, SP */
552 else if (instr[0] == 0xfa && instr[1] == 0xfe)
553 {
554 gdb_byte buf[2];
555 LONGEST imm16;
556
557 status = target_read_memory (pc + 2, buf, 2);
558 if (status != 0)
559 break;
560
561 imm16 = extract_signed_integer (buf, 2, byte_order);
562 regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm16);
563
564 pc += 4;
565 /* Stack pointer adjustments are frame related. */
566 after_last_frame_setup_insn = pc;
567 }
568 /* add imm32, SP */
569 else if (instr[0] == 0xfc && instr[1] == 0xfe)
570 {
571 gdb_byte buf[4];
572 LONGEST imm32;
573
574 status = target_read_memory (pc + 2, buf, 4);
575 if (status != 0)
576 break;
577
578
579 imm32 = extract_signed_integer (buf, 4, byte_order);
580 regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm32);
581
582 pc += 6;
583 /* Stack pointer adjustments are frame related. */
584 after_last_frame_setup_insn = pc;
585 }
586 /* add imm8, aN */
587 else if ((instr[0] & 0xfc) == 0x20)
588 {
589 int aN;
590 LONGEST imm8;
591
592 aN = instr[0] & 0x03;
593 imm8 = extract_signed_integer (&instr[1], 1, byte_order);
594
595 regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN],
596 imm8);
597
598 pc += 2;
599 }
600 /* add imm16, aN */
601 else if (instr[0] == 0xfa && (instr[1] & 0xfc) == 0xd0)
602 {
603 int aN;
604 LONGEST imm16;
605 gdb_byte buf[2];
606
607 aN = instr[1] & 0x03;
608
609 status = target_read_memory (pc + 2, buf, 2);
610 if (status != 0)
611 break;
612
613
614 imm16 = extract_signed_integer (buf, 2, byte_order);
615
616 regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN],
617 imm16);
618
619 pc += 4;
620 }
621 /* add imm32, aN */
622 else if (instr[0] == 0xfc && (instr[1] & 0xfc) == 0xd0)
623 {
624 int aN;
625 LONGEST imm32;
626 gdb_byte buf[4];
627
628 aN = instr[1] & 0x03;
629
630 status = target_read_memory (pc + 2, buf, 4);
631 if (status != 0)
632 break;
633
634 imm32 = extract_signed_integer (buf, 2, byte_order);
635
636 regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN],
637 imm32);
638 pc += 6;
639 }
640 /* fmov fsM, (rN) */
641 else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x30)
642 {
643 int fsM, sM, Y, rN;
644 gdb_byte buf[1];
645
646 Y = (instr[1] & 0x02) >> 1;
647
648 status = target_read_memory (pc + 2, buf, 1);
649 if (status != 0)
650 break;
651
652 sM = (buf[0] & 0xf0) >> 4;
653 rN = buf[0] & 0x0f;
654 fsM = (Y << 4) | sM;
655
656 pv_area_store (stack, regs[translate_rreg (rN)], 4,
657 regs[E_FS0_REGNUM + fsM]);
658
659 pc += 3;
660 }
661 /* fmov fsM, (sp) */
662 else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x34)
663 {
664 int fsM, sM, Y;
665 gdb_byte buf[1];
666
667 Y = (instr[1] & 0x02) >> 1;
668
669 status = target_read_memory (pc + 2, buf, 1);
670 if (status != 0)
671 break;
672
673 sM = (buf[0] & 0xf0) >> 4;
674 fsM = (Y << 4) | sM;
675
676 pv_area_store (stack, regs[E_SP_REGNUM], 4,
677 regs[E_FS0_REGNUM + fsM]);
678
679 pc += 3;
680 }
681 /* fmov fsM, (rN, rI) */
682 else if (instr[0] == 0xfb && instr[1] == 0x37)
683 {
684 int fsM, sM, Z, rN, rI;
685 gdb_byte buf[2];
686
687
688 status = target_read_memory (pc + 2, buf, 2);
689 if (status != 0)
690 break;
691
692 rI = (buf[0] & 0xf0) >> 4;
693 rN = buf[0] & 0x0f;
694 sM = (buf[1] & 0xf0) >> 4;
695 Z = (buf[1] & 0x02) >> 1;
696 fsM = (Z << 4) | sM;
697
698 pv_area_store (stack,
699 pv_add (regs[translate_rreg (rN)],
700 regs[translate_rreg (rI)]),
701 4, regs[E_FS0_REGNUM + fsM]);
702
703 pc += 4;
704 }
705 /* fmov fsM, (d8, rN) */
706 else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x30)
707 {
708 int fsM, sM, Y, rN;
709 LONGEST d8;
710 gdb_byte buf[2];
711
712 Y = (instr[1] & 0x02) >> 1;
713
714 status = target_read_memory (pc + 2, buf, 2);
715 if (status != 0)
716 break;
717
718 sM = (buf[0] & 0xf0) >> 4;
719 rN = buf[0] & 0x0f;
720 fsM = (Y << 4) | sM;
721 d8 = extract_signed_integer (&buf[1], 1, byte_order);
722
723 pv_area_store (stack,
724 pv_add_constant (regs[translate_rreg (rN)], d8),
725 4, regs[E_FS0_REGNUM + fsM]);
726
727 pc += 4;
728 }
729 /* fmov fsM, (d24, rN) */
730 else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x30)
731 {
732 int fsM, sM, Y, rN;
733 LONGEST d24;
734 gdb_byte buf[4];
735
736 Y = (instr[1] & 0x02) >> 1;
737
738 status = target_read_memory (pc + 2, buf, 4);
739 if (status != 0)
740 break;
741
742 sM = (buf[0] & 0xf0) >> 4;
743 rN = buf[0] & 0x0f;
744 fsM = (Y << 4) | sM;
745 d24 = extract_signed_integer (&buf[1], 3, byte_order);
746
747 pv_area_store (stack,
748 pv_add_constant (regs[translate_rreg (rN)], d24),
749 4, regs[E_FS0_REGNUM + fsM]);
750
751 pc += 6;
752 }
753 /* fmov fsM, (d32, rN) */
754 else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x30)
755 {
756 int fsM, sM, Y, rN;
757 LONGEST d32;
758 gdb_byte buf[5];
759
760 Y = (instr[1] & 0x02) >> 1;
761
762 status = target_read_memory (pc + 2, buf, 5);
763 if (status != 0)
764 break;
765
766 sM = (buf[0] & 0xf0) >> 4;
767 rN = buf[0] & 0x0f;
768 fsM = (Y << 4) | sM;
769 d32 = extract_signed_integer (&buf[1], 4, byte_order);
770
771 pv_area_store (stack,
772 pv_add_constant (regs[translate_rreg (rN)], d32),
773 4, regs[E_FS0_REGNUM + fsM]);
774
775 pc += 7;
776 }
777 /* fmov fsM, (d8, SP) */
778 else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x34)
779 {
780 int fsM, sM, Y;
781 LONGEST d8;
782 gdb_byte buf[2];
783
784 Y = (instr[1] & 0x02) >> 1;
785
786 status = target_read_memory (pc + 2, buf, 2);
787 if (status != 0)
788 break;
789
790 sM = (buf[0] & 0xf0) >> 4;
791 fsM = (Y << 4) | sM;
792 d8 = extract_signed_integer (&buf[1], 1, byte_order);
793
794 pv_area_store (stack,
795 pv_add_constant (regs[E_SP_REGNUM], d8),
796 4, regs[E_FS0_REGNUM + fsM]);
797
798 pc += 4;
799 }
800 /* fmov fsM, (d24, SP) */
801 else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x34)
802 {
803 int fsM, sM, Y;
804 LONGEST d24;
805 gdb_byte buf[4];
806
807 Y = (instr[1] & 0x02) >> 1;
808
809 status = target_read_memory (pc + 2, buf, 4);
810 if (status != 0)
811 break;
812
813 sM = (buf[0] & 0xf0) >> 4;
814 fsM = (Y << 4) | sM;
815 d24 = extract_signed_integer (&buf[1], 3, byte_order);
816
817 pv_area_store (stack,
818 pv_add_constant (regs[E_SP_REGNUM], d24),
819 4, regs[E_FS0_REGNUM + fsM]);
820
821 pc += 6;
822 }
823 /* fmov fsM, (d32, SP) */
824 else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x34)
825 {
826 int fsM, sM, Y;
827 LONGEST d32;
828 gdb_byte buf[5];
829
830 Y = (instr[1] & 0x02) >> 1;
831
832 status = target_read_memory (pc + 2, buf, 5);
833 if (status != 0)
834 break;
835
836 sM = (buf[0] & 0xf0) >> 4;
837 fsM = (Y << 4) | sM;
838 d32 = extract_signed_integer (&buf[1], 4, byte_order);
839
840 pv_area_store (stack,
841 pv_add_constant (regs[E_SP_REGNUM], d32),
842 4, regs[E_FS0_REGNUM + fsM]);
843
844 pc += 7;
845 }
846 /* fmov fsM, (rN+) */
847 else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x31)
848 {
849 int fsM, sM, Y, rN, rN_regnum;
850 gdb_byte buf[1];
851
852 Y = (instr[1] & 0x02) >> 1;
853
854 status = target_read_memory (pc + 2, buf, 1);
855 if (status != 0)
856 break;
857
858 sM = (buf[0] & 0xf0) >> 4;
859 rN = buf[0] & 0x0f;
860 fsM = (Y << 4) | sM;
861
862 rN_regnum = translate_rreg (rN);
863
864 pv_area_store (stack, regs[rN_regnum], 4,
865 regs[E_FS0_REGNUM + fsM]);
866 regs[rN_regnum] = pv_add_constant (regs[rN_regnum], 4);
867
868 pc += 3;
869 }
870 /* fmov fsM, (rN+, imm8) */
871 else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x31)
872 {
873 int fsM, sM, Y, rN, rN_regnum;
874 LONGEST imm8;
875 gdb_byte buf[2];
876
877 Y = (instr[1] & 0x02) >> 1;
878
879 status = target_read_memory (pc + 2, buf, 2);
880 if (status != 0)
881 break;
882
883 sM = (buf[0] & 0xf0) >> 4;
884 rN = buf[0] & 0x0f;
885 fsM = (Y << 4) | sM;
886 imm8 = extract_signed_integer (&buf[1], 1, byte_order);
887
888 rN_regnum = translate_rreg (rN);
889
890 pv_area_store (stack, regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]);
891 regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm8);
892
893 pc += 4;
894 }
895 /* fmov fsM, (rN+, imm24) */
896 else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x31)
897 {
898 int fsM, sM, Y, rN, rN_regnum;
899 LONGEST imm24;
900 gdb_byte buf[4];
901
902 Y = (instr[1] & 0x02) >> 1;
903
904 status = target_read_memory (pc + 2, buf, 4);
905 if (status != 0)
906 break;
907
908 sM = (buf[0] & 0xf0) >> 4;
909 rN = buf[0] & 0x0f;
910 fsM = (Y << 4) | sM;
911 imm24 = extract_signed_integer (&buf[1], 3, byte_order);
912
913 rN_regnum = translate_rreg (rN);
914
915 pv_area_store (stack, regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]);
916 regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm24);
917
918 pc += 6;
919 }
920 /* fmov fsM, (rN+, imm32) */
921 else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x31)
922 {
923 int fsM, sM, Y, rN, rN_regnum;
924 LONGEST imm32;
925 gdb_byte buf[5];
926
927 Y = (instr[1] & 0x02) >> 1;
928
929 status = target_read_memory (pc + 2, buf, 5);
930 if (status != 0)
931 break;
932
933 sM = (buf[0] & 0xf0) >> 4;
934 rN = buf[0] & 0x0f;
935 fsM = (Y << 4) | sM;
936 imm32 = extract_signed_integer (&buf[1], 4, byte_order);
937
938 rN_regnum = translate_rreg (rN);
939
940 pv_area_store (stack, regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]);
941 regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm32);
942
943 pc += 7;
944 }
945 /* mov imm8, aN */
946 else if ((instr[0] & 0xf0) == 0x90)
947 {
948 int aN = instr[0] & 0x03;
949 LONGEST imm8;
950
951 imm8 = extract_signed_integer (&instr[1], 1, byte_order);
952
953 regs[E_A0_REGNUM + aN] = pv_constant (imm8);
954 pc += 2;
955 }
956 /* mov imm16, aN */
957 else if ((instr[0] & 0xfc) == 0x24)
958 {
959 int aN = instr[0] & 0x03;
960 gdb_byte buf[2];
961 LONGEST imm16;
962
963 status = target_read_memory (pc + 1, buf, 2);
964 if (status != 0)
965 break;
966
967 imm16 = extract_signed_integer (buf, 2, byte_order);
968 regs[E_A0_REGNUM + aN] = pv_constant (imm16);
969 pc += 3;
970 }
971 /* mov imm32, aN */
972 else if (instr[0] == 0xfc && ((instr[1] & 0xfc) == 0xdc))
973 {
974 int aN = instr[1] & 0x03;
975 gdb_byte buf[4];
976 LONGEST imm32;
977
978 status = target_read_memory (pc + 2, buf, 4);
979 if (status != 0)
980 break;
981
982 imm32 = extract_signed_integer (buf, 4, byte_order);
983 regs[E_A0_REGNUM + aN] = pv_constant (imm32);
984 pc += 6;
985 }
986 /* mov imm8, dN */
987 else if ((instr[0] & 0xf0) == 0x80)
988 {
989 int dN = instr[0] & 0x03;
990 LONGEST imm8;
991
992 imm8 = extract_signed_integer (&instr[1], 1, byte_order);
993
994 regs[E_D0_REGNUM + dN] = pv_constant (imm8);
995 pc += 2;
996 }
997 /* mov imm16, dN */
998 else if ((instr[0] & 0xfc) == 0x2c)
999 {
1000 int dN = instr[0] & 0x03;
1001 gdb_byte buf[2];
1002 LONGEST imm16;
1003
1004 status = target_read_memory (pc + 1, buf, 2);
1005 if (status != 0)
1006 break;
1007
1008 imm16 = extract_signed_integer (buf, 2, byte_order);
1009 regs[E_D0_REGNUM + dN] = pv_constant (imm16);
1010 pc += 3;
1011 }
1012 /* mov imm32, dN */
1013 else if (instr[0] == 0xfc && ((instr[1] & 0xfc) == 0xcc))
1014 {
1015 int dN = instr[1] & 0x03;
1016 gdb_byte buf[4];
1017 LONGEST imm32;
1018
1019 status = target_read_memory (pc + 2, buf, 4);
1020 if (status != 0)
1021 break;
1022
1023 imm32 = extract_signed_integer (buf, 4, byte_order);
1024 regs[E_D0_REGNUM + dN] = pv_constant (imm32);
1025 pc += 6;
1026 }
1027 else
1028 {
1029 /* We've hit some instruction that we don't recognize. Hopefully,
1030 we have enough to do prologue analysis. */
1031 break;
1032 }
1033 }
1034
1035 /* Is the frame size (offset, really) a known constant? */
1036 if (pv_is_register (regs[E_SP_REGNUM], E_SP_REGNUM))
1037 result->frame_size = regs[E_SP_REGNUM].k;
1038
1039 /* Was the frame pointer initialized? */
1040 if (pv_is_register (regs[E_A3_REGNUM], E_SP_REGNUM))
1041 {
1042 result->has_frame_ptr = 1;
1043 result->frame_ptr_offset = regs[E_A3_REGNUM].k;
1044 }
1045
1046 /* Record where all the registers were saved. */
1047 pv_area_scan (stack, check_for_saved, (void *) result);
1048
1049 result->prologue_end = after_last_frame_setup_insn;
1050
1051 do_cleanups (back_to);
1052 }
1053
1054 /* Function: skip_prologue
1055 Return the address of the first inst past the prologue of the function. */
1056
1057 static CORE_ADDR
1058 mn10300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1059 {
1060 const char *name;
1061 CORE_ADDR func_addr, func_end;
1062 struct mn10300_prologue p;
1063
1064 /* Try to find the extent of the function that contains PC. */
1065 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
1066 return pc;
1067
1068 mn10300_analyze_prologue (gdbarch, pc, func_end, &p);
1069 return p.prologue_end;
1070 }
1071
1072 /* Wrapper for mn10300_analyze_prologue: find the function start;
1073 use the current frame PC as the limit, then
1074 invoke mn10300_analyze_prologue and return its result. */
1075 static struct mn10300_prologue *
1076 mn10300_analyze_frame_prologue (struct frame_info *this_frame,
1077 void **this_prologue_cache)
1078 {
1079 if (!*this_prologue_cache)
1080 {
1081 CORE_ADDR func_start, stop_addr;
1082
1083 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct mn10300_prologue);
1084
1085 func_start = get_frame_func (this_frame);
1086 stop_addr = get_frame_pc (this_frame);
1087
1088 /* If we couldn't find any function containing the PC, then
1089 just initialize the prologue cache, but don't do anything. */
1090 if (!func_start)
1091 stop_addr = func_start;
1092
1093 mn10300_analyze_prologue (get_frame_arch (this_frame),
1094 func_start, stop_addr,
1095 ((struct mn10300_prologue *)
1096 *this_prologue_cache));
1097 }
1098
1099 return (struct mn10300_prologue *) *this_prologue_cache;
1100 }
1101
1102 /* Given the next frame and a prologue cache, return this frame's
1103 base. */
1104 static CORE_ADDR
1105 mn10300_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
1106 {
1107 struct mn10300_prologue *p
1108 = mn10300_analyze_frame_prologue (this_frame, this_prologue_cache);
1109
1110 /* In functions that use alloca, the distance between the stack
1111 pointer and the frame base varies dynamically, so we can't use
1112 the SP plus static information like prologue analysis to find the
1113 frame base. However, such functions must have a frame pointer,
1114 to be able to restore the SP on exit. So whenever we do have a
1115 frame pointer, use that to find the base. */
1116 if (p->has_frame_ptr)
1117 {
1118 CORE_ADDR fp = get_frame_register_unsigned (this_frame, E_A3_REGNUM);
1119 return fp - p->frame_ptr_offset;
1120 }
1121 else
1122 {
1123 CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
1124 return sp - p->frame_size;
1125 }
1126 }
1127
1128 /* Here is a dummy implementation. */
1129 static struct frame_id
1130 mn10300_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1131 {
1132 CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
1133 CORE_ADDR pc = get_frame_register_unsigned (this_frame, E_PC_REGNUM);
1134 return frame_id_build (sp, pc);
1135 }
1136
1137 static void
1138 mn10300_frame_this_id (struct frame_info *this_frame,
1139 void **this_prologue_cache,
1140 struct frame_id *this_id)
1141 {
1142 *this_id = frame_id_build (mn10300_frame_base (this_frame,
1143 this_prologue_cache),
1144 get_frame_func (this_frame));
1145
1146 }
1147
1148 static struct value *
1149 mn10300_frame_prev_register (struct frame_info *this_frame,
1150 void **this_prologue_cache, int regnum)
1151 {
1152 struct mn10300_prologue *p
1153 = mn10300_analyze_frame_prologue (this_frame, this_prologue_cache);
1154 CORE_ADDR frame_base = mn10300_frame_base (this_frame, this_prologue_cache);
1155
1156 if (regnum == E_SP_REGNUM)
1157 return frame_unwind_got_constant (this_frame, regnum, frame_base);
1158
1159 /* If prologue analysis says we saved this register somewhere,
1160 return a description of the stack slot holding it. */
1161 if (p->reg_offset[regnum] != 1)
1162 return frame_unwind_got_memory (this_frame, regnum,
1163 frame_base + p->reg_offset[regnum]);
1164
1165 /* Otherwise, presume we haven't changed the value of this
1166 register, and get it from the next frame. */
1167 return frame_unwind_got_register (this_frame, regnum, regnum);
1168 }
1169
1170 static const struct frame_unwind mn10300_frame_unwind = {
1171 NORMAL_FRAME,
1172 default_frame_unwind_stop_reason,
1173 mn10300_frame_this_id,
1174 mn10300_frame_prev_register,
1175 NULL,
1176 default_frame_sniffer
1177 };
1178
1179 static CORE_ADDR
1180 mn10300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1181 {
1182 ULONGEST pc;
1183
1184 pc = frame_unwind_register_unsigned (this_frame, E_PC_REGNUM);
1185 return pc;
1186 }
1187
1188 static CORE_ADDR
1189 mn10300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1190 {
1191 ULONGEST sp;
1192
1193 sp = frame_unwind_register_unsigned (this_frame, E_SP_REGNUM);
1194 return sp;
1195 }
1196
1197 static void
1198 mn10300_frame_unwind_init (struct gdbarch *gdbarch)
1199 {
1200 dwarf2_append_unwinders (gdbarch);
1201 frame_unwind_append_unwinder (gdbarch, &mn10300_frame_unwind);
1202 set_gdbarch_dummy_id (gdbarch, mn10300_dummy_id);
1203 set_gdbarch_unwind_pc (gdbarch, mn10300_unwind_pc);
1204 set_gdbarch_unwind_sp (gdbarch, mn10300_unwind_sp);
1205 }
1206
1207 /* Function: push_dummy_call
1208 *
1209 * Set up machine state for a target call, including
1210 * function arguments, stack, return address, etc.
1211 *
1212 */
1213
1214 static CORE_ADDR
1215 mn10300_push_dummy_call (struct gdbarch *gdbarch,
1216 struct value *target_func,
1217 struct regcache *regcache,
1218 CORE_ADDR bp_addr,
1219 int nargs, struct value **args,
1220 CORE_ADDR sp,
1221 int struct_return,
1222 CORE_ADDR struct_addr)
1223 {
1224 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1225 const int push_size = register_size (gdbarch, E_PC_REGNUM);
1226 int regs_used;
1227 int len, arg_len;
1228 int stack_offset = 0;
1229 int argnum;
1230 const gdb_byte *val;
1231 gdb_byte valbuf[MN10300_MAX_REGISTER_SIZE];
1232
1233 /* This should be a nop, but align the stack just in case something
1234 went wrong. Stacks are four byte aligned on the mn10300. */
1235 sp &= ~3;
1236
1237 /* Now make space on the stack for the args.
1238
1239 XXX This doesn't appear to handle pass-by-invisible reference
1240 arguments. */
1241 regs_used = struct_return ? 1 : 0;
1242 for (len = 0, argnum = 0; argnum < nargs; argnum++)
1243 {
1244 arg_len = (TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3;
1245 while (regs_used < 2 && arg_len > 0)
1246 {
1247 regs_used++;
1248 arg_len -= push_size;
1249 }
1250 len += arg_len;
1251 }
1252
1253 /* Allocate stack space. */
1254 sp -= len;
1255
1256 if (struct_return)
1257 {
1258 regs_used = 1;
1259 regcache_cooked_write_unsigned (regcache, E_D0_REGNUM, struct_addr);
1260 }
1261 else
1262 regs_used = 0;
1263
1264 /* Push all arguments onto the stack. */
1265 for (argnum = 0; argnum < nargs; argnum++)
1266 {
1267 /* FIXME what about structs? Unions? */
1268 if (TYPE_CODE (value_type (*args)) == TYPE_CODE_STRUCT
1269 && TYPE_LENGTH (value_type (*args)) > 8)
1270 {
1271 /* Change to pointer-to-type. */
1272 arg_len = push_size;
1273 gdb_assert (push_size <= MN10300_MAX_REGISTER_SIZE);
1274 store_unsigned_integer (valbuf, push_size, byte_order,
1275 value_address (*args));
1276 val = &valbuf[0];
1277 }
1278 else
1279 {
1280 arg_len = TYPE_LENGTH (value_type (*args));
1281 val = value_contents (*args);
1282 }
1283
1284 while (regs_used < 2 && arg_len > 0)
1285 {
1286 regcache_cooked_write_unsigned (regcache, regs_used,
1287 extract_unsigned_integer (val, push_size, byte_order));
1288 val += push_size;
1289 arg_len -= push_size;
1290 regs_used++;
1291 }
1292
1293 while (arg_len > 0)
1294 {
1295 write_memory (sp + stack_offset, val, push_size);
1296 arg_len -= push_size;
1297 val += push_size;
1298 stack_offset += push_size;
1299 }
1300
1301 args++;
1302 }
1303
1304 /* Make space for the flushback area. */
1305 sp -= 8;
1306
1307 /* Push the return address that contains the magic breakpoint. */
1308 sp -= 4;
1309 write_memory_unsigned_integer (sp, push_size, byte_order, bp_addr);
1310
1311 /* The CPU also writes the return address always into the
1312 MDR register on "call". */
1313 regcache_cooked_write_unsigned (regcache, E_MDR_REGNUM, bp_addr);
1314
1315 /* Update $sp. */
1316 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
1317
1318 /* On the mn10300, it's possible to move some of the stack adjustment
1319 and saving of the caller-save registers out of the prologue and
1320 into the call sites. (When using gcc, this optimization can
1321 occur when using the -mrelax switch.) If this occurs, the dwarf2
1322 info will reflect this fact. We can test to see if this is the
1323 case by creating a new frame using the current stack pointer and
1324 the address of the function that we're about to call. We then
1325 unwind SP and see if it's different than the SP of our newly
1326 created frame. If the SP values are the same, the caller is not
1327 expected to allocate any additional stack. On the other hand, if
1328 the SP values are different, the difference determines the
1329 additional stack that must be allocated.
1330
1331 Note that we don't update the return value though because that's
1332 the value of the stack just after pushing the arguments, but prior
1333 to performing the call. This value is needed in order to
1334 construct the frame ID of the dummy call. */
1335 {
1336 CORE_ADDR func_addr = find_function_addr (target_func, NULL);
1337 CORE_ADDR unwound_sp
1338 = mn10300_unwind_sp (gdbarch, create_new_frame (sp, func_addr));
1339 if (sp != unwound_sp)
1340 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM,
1341 sp - (unwound_sp - sp));
1342 }
1343
1344 return sp;
1345 }
1346
1347 /* If DWARF2 is a register number appearing in Dwarf2 debug info, then
1348 mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB
1349 register number. Why don't Dwarf2 and GDB use the same numbering?
1350 Who knows? But since people have object files lying around with
1351 the existing Dwarf2 numbering, and other people have written stubs
1352 to work with the existing GDB, neither of them can change. So we
1353 just have to cope. */
1354 static int
1355 mn10300_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int dwarf2)
1356 {
1357 /* This table is supposed to be shaped like the gdbarch_register_name
1358 initializer in gcc/config/mn10300/mn10300.h. Registers which
1359 appear in GCC's numbering, but have no counterpart in GDB's
1360 world, are marked with a -1. */
1361 static int dwarf2_to_gdb[] = {
1362 E_D0_REGNUM, E_D1_REGNUM, E_D2_REGNUM, E_D3_REGNUM,
1363 E_A0_REGNUM, E_A1_REGNUM, E_A2_REGNUM, E_A3_REGNUM,
1364 -1, E_SP_REGNUM,
1365
1366 E_E0_REGNUM, E_E1_REGNUM, E_E2_REGNUM, E_E3_REGNUM,
1367 E_E4_REGNUM, E_E5_REGNUM, E_E6_REGNUM, E_E7_REGNUM,
1368
1369 E_FS0_REGNUM + 0, E_FS0_REGNUM + 1, E_FS0_REGNUM + 2, E_FS0_REGNUM + 3,
1370 E_FS0_REGNUM + 4, E_FS0_REGNUM + 5, E_FS0_REGNUM + 6, E_FS0_REGNUM + 7,
1371
1372 E_FS0_REGNUM + 8, E_FS0_REGNUM + 9, E_FS0_REGNUM + 10, E_FS0_REGNUM + 11,
1373 E_FS0_REGNUM + 12, E_FS0_REGNUM + 13, E_FS0_REGNUM + 14, E_FS0_REGNUM + 15,
1374
1375 E_FS0_REGNUM + 16, E_FS0_REGNUM + 17, E_FS0_REGNUM + 18, E_FS0_REGNUM + 19,
1376 E_FS0_REGNUM + 20, E_FS0_REGNUM + 21, E_FS0_REGNUM + 22, E_FS0_REGNUM + 23,
1377
1378 E_FS0_REGNUM + 24, E_FS0_REGNUM + 25, E_FS0_REGNUM + 26, E_FS0_REGNUM + 27,
1379 E_FS0_REGNUM + 28, E_FS0_REGNUM + 29, E_FS0_REGNUM + 30, E_FS0_REGNUM + 31,
1380
1381 E_MDR_REGNUM, E_PSW_REGNUM, E_PC_REGNUM
1382 };
1383
1384 if (dwarf2 < 0
1385 || dwarf2 >= ARRAY_SIZE (dwarf2_to_gdb))
1386 return -1;
1387
1388 return dwarf2_to_gdb[dwarf2];
1389 }
1390
1391 static struct gdbarch *
1392 mn10300_gdbarch_init (struct gdbarch_info info,
1393 struct gdbarch_list *arches)
1394 {
1395 struct gdbarch *gdbarch;
1396 struct gdbarch_tdep *tdep;
1397 int num_regs;
1398
1399 arches = gdbarch_list_lookup_by_info (arches, &info);
1400 if (arches != NULL)
1401 return arches->gdbarch;
1402
1403 tdep = XCNEW (struct gdbarch_tdep);
1404 gdbarch = gdbarch_alloc (&info, tdep);
1405
1406 switch (info.bfd_arch_info->mach)
1407 {
1408 case 0:
1409 case bfd_mach_mn10300:
1410 set_gdbarch_register_name (gdbarch, mn10300_generic_register_name);
1411 tdep->am33_mode = 0;
1412 num_regs = 32;
1413 break;
1414 case bfd_mach_am33:
1415 set_gdbarch_register_name (gdbarch, am33_register_name);
1416 tdep->am33_mode = 1;
1417 num_regs = 32;
1418 break;
1419 case bfd_mach_am33_2:
1420 set_gdbarch_register_name (gdbarch, am33_2_register_name);
1421 tdep->am33_mode = 2;
1422 num_regs = 64;
1423 set_gdbarch_fp0_regnum (gdbarch, 32);
1424 break;
1425 default:
1426 internal_error (__FILE__, __LINE__,
1427 _("mn10300_gdbarch_init: Unknown mn10300 variant"));
1428 break;
1429 }
1430
1431 /* By default, chars are unsigned. */
1432 set_gdbarch_char_signed (gdbarch, 0);
1433
1434 /* Registers. */
1435 set_gdbarch_num_regs (gdbarch, num_regs);
1436 set_gdbarch_register_type (gdbarch, mn10300_register_type);
1437 set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue);
1438 set_gdbarch_read_pc (gdbarch, mn10300_read_pc);
1439 set_gdbarch_write_pc (gdbarch, mn10300_write_pc);
1440 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1441 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1442 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum);
1443
1444 /* Stack unwinding. */
1445 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1446 /* Breakpoints. */
1447 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1448 mn10300_breakpoint::kind_from_pc);
1449 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1450 mn10300_breakpoint::bp_from_kind);
1451 /* decr_pc_after_break? */
1452
1453 /* Stage 2 */
1454 set_gdbarch_return_value (gdbarch, mn10300_return_value);
1455
1456 /* Stage 3 -- get target calls working. */
1457 set_gdbarch_push_dummy_call (gdbarch, mn10300_push_dummy_call);
1458 /* set_gdbarch_return_value (store, extract) */
1459
1460
1461 mn10300_frame_unwind_init (gdbarch);
1462
1463 /* Hook in ABI-specific overrides, if they have been registered. */
1464 gdbarch_init_osabi (info, gdbarch);
1465
1466 return gdbarch;
1467 }
1468
1469 /* Dump out the mn10300 specific architecture information. */
1470
1471 static void
1472 mn10300_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
1473 {
1474 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1475 fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
1476 tdep->am33_mode);
1477 }
1478
1479 /* Provide a prototype to silence -Wmissing-prototypes. */
1480 extern initialize_file_ftype _initialize_mn10300_tdep;
1481
1482 void
1483 _initialize_mn10300_tdep (void)
1484 {
1485 gdbarch_register (bfd_arch_mn10300, mn10300_gdbarch_init, mn10300_dump_tdep);
1486 }
1487
This page took 0.08635 seconds and 4 git commands to generate.