*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / mn10300-tdep.c
1 /* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
2
3 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "target.h"
27 #include "value.h"
28 #include "bfd.h"
29 #include "gdb_string.h"
30 #include "gdbcore.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "arch-utils.h"
34 #include "gdb_assert.h"
35 #include "dis-asm.h"
36
37 #define D0_REGNUM 0
38 #define D2_REGNUM 2
39 #define D3_REGNUM 3
40 #define A0_REGNUM 4
41 #define A2_REGNUM 6
42 #define A3_REGNUM 7
43 #define MDR_REGNUM 10
44 #define PSW_REGNUM 11
45 #define LIR_REGNUM 12
46 #define LAR_REGNUM 13
47 #define MDRQ_REGNUM 14
48 #define E0_REGNUM 15
49 #define MCRH_REGNUM 26
50 #define MCRL_REGNUM 27
51 #define MCVF_REGNUM 28
52
53 enum movm_register_bits {
54 movm_exother_bit = 0x01,
55 movm_exreg1_bit = 0x02,
56 movm_exreg0_bit = 0x04,
57 movm_other_bit = 0x08,
58 movm_a3_bit = 0x10,
59 movm_a2_bit = 0x20,
60 movm_d3_bit = 0x40,
61 movm_d2_bit = 0x80
62 };
63
64 extern void _initialize_mn10300_tdep (void);
65 static CORE_ADDR mn10300_analyze_prologue (struct frame_info *fi,
66 CORE_ADDR pc);
67
68 /* mn10300 private data */
69 struct gdbarch_tdep
70 {
71 int am33_mode;
72 #define AM33_MODE (gdbarch_tdep (current_gdbarch)->am33_mode)
73 };
74
75 /* Additional info used by the frame */
76
77 struct frame_extra_info
78 {
79 int status;
80 int stack_size;
81 };
82
83
84 static char *
85 register_name (int reg, char **regs, long sizeof_regs)
86 {
87 if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
88 return NULL;
89 else
90 return regs[reg];
91 }
92
93 static const char *
94 mn10300_generic_register_name (int reg)
95 {
96 static char *regs[] =
97 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
98 "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
99 "", "", "", "", "", "", "", "",
100 "", "", "", "", "", "", "", "fp"
101 };
102 return register_name (reg, regs, sizeof regs);
103 }
104
105
106 static const char *
107 am33_register_name (int reg)
108 {
109 static char *regs[] =
110 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
111 "sp", "pc", "mdr", "psw", "lir", "lar", "",
112 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
113 "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
114 };
115 return register_name (reg, regs, sizeof regs);
116 }
117
118 static CORE_ADDR
119 mn10300_saved_pc_after_call (struct frame_info *fi)
120 {
121 return read_memory_integer (read_register (SP_REGNUM), 4);
122 }
123
124 static void
125 mn10300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
126 {
127 if (TYPE_CODE (type) == TYPE_CODE_PTR)
128 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (4), TYPE_LENGTH (type));
129 else
130 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (0), TYPE_LENGTH (type));
131 }
132
133 static void
134 mn10300_store_return_value (struct type *type, char *valbuf)
135 {
136 if (TYPE_CODE (type) == TYPE_CODE_PTR)
137 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (4), valbuf,
138 TYPE_LENGTH (type));
139 else
140 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (0), valbuf,
141 TYPE_LENGTH (type));
142 }
143
144 static struct frame_info *analyze_dummy_frame (CORE_ADDR, CORE_ADDR);
145 static struct frame_info *
146 analyze_dummy_frame (CORE_ADDR pc, CORE_ADDR frame)
147 {
148 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
149 struct frame_info *dummy
150 = deprecated_frame_xmalloc_with_cleanup (SIZEOF_FRAME_SAVED_REGS,
151 sizeof (struct frame_extra_info));
152 deprecated_update_frame_pc_hack (dummy, pc);
153 deprecated_update_frame_base_hack (dummy, frame);
154 get_frame_extra_info (dummy)->status = 0;
155 get_frame_extra_info (dummy)->stack_size = 0;
156 mn10300_analyze_prologue (dummy, pc);
157 do_cleanups (old_chain);
158 return dummy;
159 }
160
161 /* Values for frame_info.status */
162
163 #define MY_FRAME_IN_SP 0x1
164 #define MY_FRAME_IN_FP 0x2
165 #define NO_MORE_FRAMES 0x4
166
167
168 /* Should call_function allocate stack space for a struct return? */
169 static int
170 mn10300_use_struct_convention (int gcc_p, struct type *type)
171 {
172 return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 8);
173 }
174
175 /* The breakpoint instruction must be the same size as the smallest
176 instruction in the instruction set.
177
178 The Matsushita mn10x00 processors have single byte instructions
179 so we need a single byte breakpoint. Matsushita hasn't defined
180 one, so we defined it ourselves. */
181
182 const static unsigned char *
183 mn10300_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
184 {
185 static char breakpoint[] =
186 {0xff};
187 *bp_size = 1;
188 return breakpoint;
189 }
190
191
192 /* Fix fi->frame if it's bogus at this point. This is a helper
193 function for mn10300_analyze_prologue. */
194
195 static void
196 fix_frame_pointer (struct frame_info *fi, int stack_size)
197 {
198 if (fi && get_next_frame (fi) == NULL)
199 {
200 if (get_frame_extra_info (fi)->status & MY_FRAME_IN_SP)
201 deprecated_update_frame_base_hack (fi, read_sp () - stack_size);
202 else if (get_frame_extra_info (fi)->status & MY_FRAME_IN_FP)
203 deprecated_update_frame_base_hack (fi, read_register (A3_REGNUM));
204 }
205 }
206
207
208 /* Set offsets of registers saved by movm instruction.
209 This is a helper function for mn10300_analyze_prologue. */
210
211 static void
212 set_movm_offsets (struct frame_info *fi, int movm_args)
213 {
214 int offset = 0;
215
216 if (fi == NULL || movm_args == 0)
217 return;
218
219 if (movm_args & movm_other_bit)
220 {
221 /* The `other' bit leaves a blank area of four bytes at the
222 beginning of its block of saved registers, making it 32 bytes
223 long in total. */
224 deprecated_get_frame_saved_regs (fi)[LAR_REGNUM] = get_frame_base (fi) + offset + 4;
225 deprecated_get_frame_saved_regs (fi)[LIR_REGNUM] = get_frame_base (fi) + offset + 8;
226 deprecated_get_frame_saved_regs (fi)[MDR_REGNUM] = get_frame_base (fi) + offset + 12;
227 deprecated_get_frame_saved_regs (fi)[A0_REGNUM + 1] = get_frame_base (fi) + offset + 16;
228 deprecated_get_frame_saved_regs (fi)[A0_REGNUM] = get_frame_base (fi) + offset + 20;
229 deprecated_get_frame_saved_regs (fi)[D0_REGNUM + 1] = get_frame_base (fi) + offset + 24;
230 deprecated_get_frame_saved_regs (fi)[D0_REGNUM] = get_frame_base (fi) + offset + 28;
231 offset += 32;
232 }
233 if (movm_args & movm_a3_bit)
234 {
235 deprecated_get_frame_saved_regs (fi)[A3_REGNUM] = get_frame_base (fi) + offset;
236 offset += 4;
237 }
238 if (movm_args & movm_a2_bit)
239 {
240 deprecated_get_frame_saved_regs (fi)[A2_REGNUM] = get_frame_base (fi) + offset;
241 offset += 4;
242 }
243 if (movm_args & movm_d3_bit)
244 {
245 deprecated_get_frame_saved_regs (fi)[D3_REGNUM] = get_frame_base (fi) + offset;
246 offset += 4;
247 }
248 if (movm_args & movm_d2_bit)
249 {
250 deprecated_get_frame_saved_regs (fi)[D2_REGNUM] = get_frame_base (fi) + offset;
251 offset += 4;
252 }
253 if (AM33_MODE)
254 {
255 if (movm_args & movm_exother_bit)
256 {
257 deprecated_get_frame_saved_regs (fi)[MCVF_REGNUM] = get_frame_base (fi) + offset;
258 deprecated_get_frame_saved_regs (fi)[MCRL_REGNUM] = get_frame_base (fi) + offset + 4;
259 deprecated_get_frame_saved_regs (fi)[MCRH_REGNUM] = get_frame_base (fi) + offset + 8;
260 deprecated_get_frame_saved_regs (fi)[MDRQ_REGNUM] = get_frame_base (fi) + offset + 12;
261 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 1] = get_frame_base (fi) + offset + 16;
262 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 0] = get_frame_base (fi) + offset + 20;
263 offset += 24;
264 }
265 if (movm_args & movm_exreg1_bit)
266 {
267 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 7] = get_frame_base (fi) + offset;
268 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 6] = get_frame_base (fi) + offset + 4;
269 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 5] = get_frame_base (fi) + offset + 8;
270 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 4] = get_frame_base (fi) + offset + 12;
271 offset += 16;
272 }
273 if (movm_args & movm_exreg0_bit)
274 {
275 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 3] = get_frame_base (fi) + offset;
276 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 2] = get_frame_base (fi) + offset + 4;
277 offset += 8;
278 }
279 }
280 }
281
282
283 /* The main purpose of this file is dealing with prologues to extract
284 information about stack frames and saved registers.
285
286 In gcc/config/mn13000/mn10300.c, the expand_prologue prologue
287 function is pretty readable, and has a nice explanation of how the
288 prologue is generated. The prologues generated by that code will
289 have the following form (NOTE: the current code doesn't handle all
290 this!):
291
292 + If this is an old-style varargs function, then its arguments
293 need to be flushed back to the stack:
294
295 mov d0,(4,sp)
296 mov d1,(4,sp)
297
298 + If we use any of the callee-saved registers, save them now.
299
300 movm [some callee-saved registers],(sp)
301
302 + If we have any floating-point registers to save:
303
304 - Decrement the stack pointer to reserve space for the registers.
305 If the function doesn't need a frame pointer, we may combine
306 this with the adjustment that reserves space for the frame.
307
308 add -SIZE, sp
309
310 - Save the floating-point registers. We have two possible
311 strategies:
312
313 . Save them at fixed offset from the SP:
314
315 fmov fsN,(OFFSETN,sp)
316 fmov fsM,(OFFSETM,sp)
317 ...
318
319 Note that, if OFFSETN happens to be zero, you'll get the
320 different opcode: fmov fsN,(sp)
321
322 . Or, set a0 to the start of the save area, and then use
323 post-increment addressing to save the FP registers.
324
325 mov sp, a0
326 add SIZE, a0
327 fmov fsN,(a0+)
328 fmov fsM,(a0+)
329 ...
330
331 + If the function needs a frame pointer, we set it here.
332
333 mov sp, a3
334
335 + Now we reserve space for the stack frame proper. This could be
336 merged into the `add -SIZE, sp' instruction for FP saves up
337 above, unless we needed to set the frame pointer in the previous
338 step, or the frame is so large that allocating the whole thing at
339 once would put the FP register save slots out of reach of the
340 addressing mode (128 bytes).
341
342 add -SIZE, sp
343
344 One day we might keep the stack pointer constant, that won't
345 change the code for prologues, but it will make the frame
346 pointerless case much more common. */
347
348 /* Analyze the prologue to determine where registers are saved,
349 the end of the prologue, etc etc. Return the end of the prologue
350 scanned.
351
352 We store into FI (if non-null) several tidbits of information:
353
354 * stack_size -- size of this stack frame. Note that if we stop in
355 certain parts of the prologue/epilogue we may claim the size of the
356 current frame is zero. This happens when the current frame has
357 not been allocated yet or has already been deallocated.
358
359 * fsr -- Addresses of registers saved in the stack by this frame.
360
361 * status -- A (relatively) generic status indicator. It's a bitmask
362 with the following bits:
363
364 MY_FRAME_IN_SP: The base of the current frame is actually in
365 the stack pointer. This can happen for frame pointerless
366 functions, or cases where we're stopped in the prologue/epilogue
367 itself. For these cases mn10300_analyze_prologue will need up
368 update fi->frame before returning or analyzing the register
369 save instructions.
370
371 MY_FRAME_IN_FP: The base of the current frame is in the
372 frame pointer register ($a3).
373
374 NO_MORE_FRAMES: Set this if the current frame is "start" or
375 if the first instruction looks like mov <imm>,sp. This tells
376 frame chain to not bother trying to unwind past this frame. */
377
378 static CORE_ADDR
379 mn10300_analyze_prologue (struct frame_info *fi, CORE_ADDR pc)
380 {
381 CORE_ADDR func_addr, func_end, addr, stop;
382 CORE_ADDR stack_size;
383 int imm_size;
384 unsigned char buf[4];
385 int status, movm_args = 0;
386 char *name;
387
388 /* Use the PC in the frame if it's provided to look up the
389 start of this function.
390
391 Note: kevinb/2003-07-16: We used to do the following here:
392 pc = (fi ? get_frame_pc (fi) : pc);
393 But this is (now) badly broken when called from analyze_dummy_frame().
394 */
395 pc = (pc ? pc : get_frame_pc (fi));
396
397 /* Find the start of this function. */
398 status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
399
400 /* Do nothing if we couldn't find the start of this function or if we're
401 stopped at the first instruction in the prologue. */
402 if (status == 0)
403 {
404 return pc;
405 }
406
407 /* If we're in start, then give up. */
408 if (strcmp (name, "start") == 0)
409 {
410 if (fi != NULL)
411 get_frame_extra_info (fi)->status = NO_MORE_FRAMES;
412 return pc;
413 }
414
415 /* At the start of a function our frame is in the stack pointer. */
416 if (fi)
417 get_frame_extra_info (fi)->status = MY_FRAME_IN_SP;
418
419 /* Get the next two bytes into buf, we need two because rets is a two
420 byte insn and the first isn't enough to uniquely identify it. */
421 status = read_memory_nobpt (pc, buf, 2);
422 if (status != 0)
423 return pc;
424
425 #if 0
426 /* Note: kevinb/2003-07-16: We shouldn't be making these sorts of
427 changes to the frame in prologue examination code. */
428 /* If we're physically on an "rets" instruction, then our frame has
429 already been deallocated. Note this can also be true for retf
430 and ret if they specify a size of zero.
431
432 In this case fi->frame is bogus, we need to fix it. */
433 if (fi && buf[0] == 0xf0 && buf[1] == 0xfc)
434 {
435 if (get_next_frame (fi) == NULL)
436 deprecated_update_frame_base_hack (fi, read_sp ());
437 return get_frame_pc (fi);
438 }
439
440 /* Similarly if we're stopped on the first insn of a prologue as our
441 frame hasn't been allocated yet. */
442 if (fi && get_frame_pc (fi) == func_addr)
443 {
444 if (get_next_frame (fi) == NULL)
445 deprecated_update_frame_base_hack (fi, read_sp ());
446 return get_frame_pc (fi);
447 }
448 #endif
449
450 /* Figure out where to stop scanning. */
451 stop = fi ? pc : func_end;
452
453 /* Don't walk off the end of the function. */
454 stop = stop > func_end ? func_end : stop;
455
456 /* Start scanning on the first instruction of this function. */
457 addr = func_addr;
458
459 /* Suck in two bytes. */
460 status = read_memory_nobpt (addr, buf, 2);
461 if (status != 0)
462 {
463 fix_frame_pointer (fi, 0);
464 return addr;
465 }
466
467 /* First see if this insn sets the stack pointer from a register; if
468 so, it's probably the initialization of the stack pointer in _start,
469 so mark this as the bottom-most frame. */
470 if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
471 {
472 if (fi)
473 get_frame_extra_info (fi)->status = NO_MORE_FRAMES;
474 return addr;
475 }
476
477 /* Now look for movm [regs],sp, which saves the callee saved registers.
478
479 At this time we don't know if fi->frame is valid, so we only note
480 that we encountered a movm instruction. Later, we'll set the entries
481 in fsr.regs as needed. */
482 if (buf[0] == 0xcf)
483 {
484 /* Extract the register list for the movm instruction. */
485 status = read_memory_nobpt (addr + 1, buf, 1);
486 movm_args = *buf;
487
488 addr += 2;
489
490 /* Quit now if we're beyond the stop point. */
491 if (addr >= stop)
492 {
493 /* Fix fi->frame since it's bogus at this point. */
494 if (fi && get_next_frame (fi) == NULL)
495 deprecated_update_frame_base_hack (fi, read_sp ());
496
497 /* Note if/where callee saved registers were saved. */
498 set_movm_offsets (fi, movm_args);
499 return addr;
500 }
501
502 /* Get the next two bytes so the prologue scan can continue. */
503 status = read_memory_nobpt (addr, buf, 2);
504 if (status != 0)
505 {
506 /* Fix fi->frame since it's bogus at this point. */
507 if (fi && get_next_frame (fi) == NULL)
508 deprecated_update_frame_base_hack (fi, read_sp ());
509
510 /* Note if/where callee saved registers were saved. */
511 set_movm_offsets (fi, movm_args);
512 return addr;
513 }
514 }
515
516 /* Now see if we set up a frame pointer via "mov sp,a3" */
517 if (buf[0] == 0x3f)
518 {
519 addr += 1;
520
521 /* The frame pointer is now valid. */
522 if (fi)
523 {
524 get_frame_extra_info (fi)->status |= MY_FRAME_IN_FP;
525 get_frame_extra_info (fi)->status &= ~MY_FRAME_IN_SP;
526 }
527
528 /* Quit now if we're beyond the stop point. */
529 if (addr >= stop)
530 {
531 /* Fix fi->frame if it's bogus at this point. */
532 fix_frame_pointer (fi, 0);
533
534 /* Note if/where callee saved registers were saved. */
535 set_movm_offsets (fi, movm_args);
536 return addr;
537 }
538
539 /* Get two more bytes so scanning can continue. */
540 status = read_memory_nobpt (addr, buf, 2);
541 if (status != 0)
542 {
543 /* Fix fi->frame if it's bogus at this point. */
544 fix_frame_pointer (fi, 0);
545
546 /* Note if/where callee saved registers were saved. */
547 set_movm_offsets (fi, movm_args);
548 return addr;
549 }
550 }
551
552 /* Next we should allocate the local frame. No more prologue insns
553 are found after allocating the local frame.
554
555 Search for add imm8,sp (0xf8feXX)
556 or add imm16,sp (0xfafeXXXX)
557 or add imm32,sp (0xfcfeXXXXXXXX).
558
559 If none of the above was found, then this prologue has no
560 additional stack. */
561
562 status = read_memory_nobpt (addr, buf, 2);
563 if (status != 0)
564 {
565 /* Fix fi->frame if it's bogus at this point. */
566 fix_frame_pointer (fi, 0);
567
568 /* Note if/where callee saved registers were saved. */
569 set_movm_offsets (fi, movm_args);
570 return addr;
571 }
572
573 imm_size = 0;
574 if (buf[0] == 0xf8 && buf[1] == 0xfe)
575 imm_size = 1;
576 else if (buf[0] == 0xfa && buf[1] == 0xfe)
577 imm_size = 2;
578 else if (buf[0] == 0xfc && buf[1] == 0xfe)
579 imm_size = 4;
580
581 if (imm_size != 0)
582 {
583 /* Suck in imm_size more bytes, they'll hold the size of the
584 current frame. */
585 status = read_memory_nobpt (addr + 2, buf, imm_size);
586 if (status != 0)
587 {
588 /* Fix fi->frame if it's bogus at this point. */
589 fix_frame_pointer (fi, 0);
590
591 /* Note if/where callee saved registers were saved. */
592 set_movm_offsets (fi, movm_args);
593 return addr;
594 }
595
596 /* Note the size of the stack in the frame info structure. */
597 stack_size = extract_signed_integer (buf, imm_size);
598 if (fi)
599 get_frame_extra_info (fi)->stack_size = stack_size;
600
601 /* We just consumed 2 + imm_size bytes. */
602 addr += 2 + imm_size;
603
604 /* No more prologue insns follow, so begin preparation to return. */
605 /* Fix fi->frame if it's bogus at this point. */
606 fix_frame_pointer (fi, stack_size);
607
608 /* Note if/where callee saved registers were saved. */
609 set_movm_offsets (fi, movm_args);
610 return addr;
611 }
612
613 /* We never found an insn which allocates local stack space, regardless
614 this is the end of the prologue. */
615 /* Fix fi->frame if it's bogus at this point. */
616 fix_frame_pointer (fi, 0);
617
618 /* Note if/where callee saved registers were saved. */
619 set_movm_offsets (fi, movm_args);
620 return addr;
621 }
622
623
624 /* Function: saved_regs_size
625 Return the size in bytes of the register save area, based on the
626 saved_regs array in FI. */
627 static int
628 saved_regs_size (struct frame_info *fi)
629 {
630 int adjust = 0;
631 int i;
632
633 /* Reserve four bytes for every register saved. */
634 for (i = 0; i < NUM_REGS; i++)
635 if (deprecated_get_frame_saved_regs (fi)[i])
636 adjust += 4;
637
638 /* If we saved LIR, then it's most likely we used a `movm'
639 instruction with the `other' bit set, in which case the SP is
640 decremented by an extra four bytes, "to simplify calculation
641 of the transfer area", according to the processor manual. */
642 if (deprecated_get_frame_saved_regs (fi)[LIR_REGNUM])
643 adjust += 4;
644
645 return adjust;
646 }
647
648
649 /* Function: frame_chain
650 Figure out and return the caller's frame pointer given current
651 frame_info struct.
652
653 We don't handle dummy frames yet but we would probably just return the
654 stack pointer that was in use at the time the function call was made? */
655
656 static CORE_ADDR
657 mn10300_frame_chain (struct frame_info *fi)
658 {
659 struct frame_info *dummy;
660 /* Walk through the prologue to determine the stack size,
661 location of saved registers, end of the prologue, etc. */
662 if (get_frame_extra_info (fi)->status == 0)
663 mn10300_analyze_prologue (fi, (CORE_ADDR) 0);
664
665 /* Quit now if mn10300_analyze_prologue set NO_MORE_FRAMES. */
666 if (get_frame_extra_info (fi)->status & NO_MORE_FRAMES)
667 return 0;
668
669 /* Now that we've analyzed our prologue, determine the frame
670 pointer for our caller.
671
672 If our caller has a frame pointer, then we need to
673 find the entry value of $a3 to our function.
674
675 If fsr.regs[A3_REGNUM] is nonzero, then it's at the memory
676 location pointed to by fsr.regs[A3_REGNUM].
677
678 Else it's still in $a3.
679
680 If our caller does not have a frame pointer, then his
681 frame base is fi->frame + -caller's stack size. */
682
683 /* The easiest way to get that info is to analyze our caller's frame.
684 So we set up a dummy frame and call mn10300_analyze_prologue to
685 find stuff for us. */
686 dummy = analyze_dummy_frame (DEPRECATED_FRAME_SAVED_PC (fi), get_frame_base (fi));
687
688 if (get_frame_extra_info (dummy)->status & MY_FRAME_IN_FP)
689 {
690 /* Our caller has a frame pointer. So find the frame in $a3 or
691 in the stack. */
692 if (deprecated_get_frame_saved_regs (fi)[A3_REGNUM])
693 return (read_memory_integer (deprecated_get_frame_saved_regs (fi)[A3_REGNUM],
694 DEPRECATED_REGISTER_SIZE));
695 else
696 return read_register (A3_REGNUM);
697 }
698 else
699 {
700 int adjust = saved_regs_size (fi);
701
702 /* Our caller does not have a frame pointer. So his frame starts
703 at the base of our frame (fi->frame) + register save space
704 + <his size>. */
705 return get_frame_base (fi) + adjust + -get_frame_extra_info (dummy)->stack_size;
706 }
707 }
708
709 /* Function: skip_prologue
710 Return the address of the first inst past the prologue of the function. */
711
712 static CORE_ADDR
713 mn10300_skip_prologue (CORE_ADDR pc)
714 {
715 /* We used to check the debug symbols, but that can lose if
716 we have a null prologue. */
717 return mn10300_analyze_prologue (NULL, pc);
718 }
719
720 /* generic_pop_current_frame calls this function if the current
721 frame isn't a dummy frame. */
722 static void
723 mn10300_pop_frame_regular (struct frame_info *frame)
724 {
725 int regnum;
726
727 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
728
729 /* Restore any saved registers. */
730 for (regnum = 0; regnum < NUM_REGS; regnum++)
731 if (deprecated_get_frame_saved_regs (frame)[regnum] != 0)
732 {
733 ULONGEST value;
734
735 value = read_memory_unsigned_integer (deprecated_get_frame_saved_regs (frame)[regnum],
736 DEPRECATED_REGISTER_RAW_SIZE (regnum));
737 write_register (regnum, value);
738 }
739
740 /* Actually cut back the stack. */
741 write_register (SP_REGNUM, get_frame_base (frame));
742
743 /* Don't we need to set the PC?!? XXX FIXME. */
744 }
745
746 /* Function: pop_frame
747 This routine gets called when either the user uses the `return'
748 command, or the call dummy breakpoint gets hit. */
749 static void
750 mn10300_pop_frame (void)
751 {
752 /* This function checks for and handles generic dummy frames, and
753 calls back to our function for ordinary frames. */
754 generic_pop_current_frame (mn10300_pop_frame_regular);
755
756 /* Throw away any cached frame information. */
757 flush_cached_frames ();
758 }
759
760 /* Function: push_arguments
761 Setup arguments for a call to the target. Arguments go in
762 order on the stack. */
763
764 static CORE_ADDR
765 mn10300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
766 int struct_return, CORE_ADDR struct_addr)
767 {
768 int argnum = 0;
769 int len = 0;
770 int stack_offset = 0;
771 int regsused = struct_return ? 1 : 0;
772
773 /* This should be a nop, but align the stack just in case something
774 went wrong. Stacks are four byte aligned on the mn10300. */
775 sp &= ~3;
776
777 /* Now make space on the stack for the args.
778
779 XXX This doesn't appear to handle pass-by-invisible reference
780 arguments. */
781 for (argnum = 0; argnum < nargs; argnum++)
782 {
783 int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3;
784
785 while (regsused < 2 && arg_length > 0)
786 {
787 regsused++;
788 arg_length -= 4;
789 }
790 len += arg_length;
791 }
792
793 /* Allocate stack space. */
794 sp -= len;
795
796 regsused = struct_return ? 1 : 0;
797 /* Push all arguments onto the stack. */
798 for (argnum = 0; argnum < nargs; argnum++)
799 {
800 int len;
801 char *val;
802
803 /* XXX Check this. What about UNIONS? */
804 if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
805 && TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
806 {
807 /* XXX Wrong, we want a pointer to this argument. */
808 len = TYPE_LENGTH (VALUE_TYPE (*args));
809 val = (char *) VALUE_CONTENTS (*args);
810 }
811 else
812 {
813 len = TYPE_LENGTH (VALUE_TYPE (*args));
814 val = (char *) VALUE_CONTENTS (*args);
815 }
816
817 while (regsused < 2 && len > 0)
818 {
819 write_register (regsused, extract_unsigned_integer (val, 4));
820 val += 4;
821 len -= 4;
822 regsused++;
823 }
824
825 while (len > 0)
826 {
827 write_memory (sp + stack_offset, val, 4);
828 len -= 4;
829 val += 4;
830 stack_offset += 4;
831 }
832
833 args++;
834 }
835
836 /* Make space for the flushback area. */
837 sp -= 8;
838 return sp;
839 }
840
841 /* Function: push_return_address (pc)
842 Set up the return address for the inferior function call.
843 Needed for targets where we don't actually execute a JSR/BSR instruction */
844
845 static CORE_ADDR
846 mn10300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
847 {
848 unsigned char buf[4];
849
850 store_unsigned_integer (buf, 4, entry_point_address ());
851 write_memory (sp - 4, buf, 4);
852 return sp - 4;
853 }
854
855 /* Function: store_struct_return (addr,sp)
856 Store the structure value return address for an inferior function
857 call. */
858
859 static void
860 mn10300_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
861 {
862 /* The structure return address is passed as the first argument. */
863 write_register (0, addr);
864 }
865
866 /* Function: frame_saved_pc
867 Find the caller of this frame. We do this by seeing if RP_REGNUM
868 is saved in the stack anywhere, otherwise we get it from the
869 registers. If the inner frame is a dummy frame, return its PC
870 instead of RP, because that's where "caller" of the dummy-frame
871 will be found. */
872
873 static CORE_ADDR
874 mn10300_frame_saved_pc (struct frame_info *fi)
875 {
876 int adjust = saved_regs_size (fi);
877
878 return (read_memory_integer (get_frame_base (fi) + adjust,
879 DEPRECATED_REGISTER_SIZE));
880 }
881
882 /* Function: mn10300_init_extra_frame_info
883 Setup the frame's frame pointer, pc, and frame addresses for saved
884 registers. Most of the work is done in mn10300_analyze_prologue().
885
886 Note that when we are called for the last frame (currently active frame),
887 that get_frame_pc (fi) and fi->frame will already be setup. However, fi->frame will
888 be valid only if this routine uses FP. For previous frames, fi-frame will
889 always be correct. mn10300_analyze_prologue will fix fi->frame if
890 it's not valid.
891
892 We can be called with the PC in the call dummy under two
893 circumstances. First, during normal backtracing, second, while
894 figuring out the frame pointer just prior to calling the target
895 function (see call_function_by_hand). */
896
897 static void
898 mn10300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
899 {
900 if (get_next_frame (fi))
901 deprecated_update_frame_pc_hack (fi, DEPRECATED_FRAME_SAVED_PC (get_next_frame (fi)));
902
903 frame_saved_regs_zalloc (fi);
904 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
905
906 get_frame_extra_info (fi)->status = 0;
907 get_frame_extra_info (fi)->stack_size = 0;
908
909 mn10300_analyze_prologue (fi, 0);
910 }
911
912
913 /* This function's job is handled by init_extra_frame_info. */
914 static void
915 mn10300_frame_init_saved_regs (struct frame_info *frame)
916 {
917 }
918
919
920 /* Function: mn10300_virtual_frame_pointer
921 Return the register that the function uses for a frame pointer,
922 plus any necessary offset to be applied to the register before
923 any frame pointer offsets. */
924
925 static void
926 mn10300_virtual_frame_pointer (CORE_ADDR pc,
927 int *reg,
928 LONGEST *offset)
929 {
930 struct frame_info *dummy = analyze_dummy_frame (pc, 0);
931 /* Set up a dummy frame_info, Analyze the prolog and fill in the
932 extra info. */
933 /* Results will tell us which type of frame it uses. */
934 if (get_frame_extra_info (dummy)->status & MY_FRAME_IN_SP)
935 {
936 *reg = SP_REGNUM;
937 *offset = -(get_frame_extra_info (dummy)->stack_size);
938 }
939 else
940 {
941 *reg = A3_REGNUM;
942 *offset = 0;
943 }
944 }
945
946 static int
947 mn10300_reg_struct_has_addr (int gcc_p, struct type *type)
948 {
949 return (TYPE_LENGTH (type) > 8);
950 }
951
952 static struct type *
953 mn10300_register_virtual_type (int reg)
954 {
955 return builtin_type_int;
956 }
957
958 static int
959 mn10300_register_byte (int reg)
960 {
961 return (reg * 4);
962 }
963
964 static int
965 mn10300_register_virtual_size (int reg)
966 {
967 return 4;
968 }
969
970 static int
971 mn10300_register_raw_size (int reg)
972 {
973 return 4;
974 }
975
976 /* If DWARF2 is a register number appearing in Dwarf2 debug info, then
977 mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB
978 register number. Why don't Dwarf2 and GDB use the same numbering?
979 Who knows? But since people have object files lying around with
980 the existing Dwarf2 numbering, and other people have written stubs
981 to work with the existing GDB, neither of them can change. So we
982 just have to cope. */
983 static int
984 mn10300_dwarf2_reg_to_regnum (int dwarf2)
985 {
986 /* This table is supposed to be shaped like the REGISTER_NAMES
987 initializer in gcc/config/mn10300/mn10300.h. Registers which
988 appear in GCC's numbering, but have no counterpart in GDB's
989 world, are marked with a -1. */
990 static int dwarf2_to_gdb[] = {
991 0, 1, 2, 3, 4, 5, 6, 7, -1, 8,
992 15, 16, 17, 18, 19, 20, 21, 22
993 };
994 int gdb;
995
996 if (dwarf2 < 0
997 || dwarf2 >= (sizeof (dwarf2_to_gdb) / sizeof (dwarf2_to_gdb[0]))
998 || dwarf2_to_gdb[dwarf2] == -1)
999 internal_error (__FILE__, __LINE__,
1000 "bogus register number in debug info: %d", dwarf2);
1001
1002 return dwarf2_to_gdb[dwarf2];
1003 }
1004
1005 static void
1006 mn10300_print_register (const char *name, int regnum, int reg_width)
1007 {
1008 char raw_buffer[MAX_REGISTER_SIZE];
1009
1010 if (reg_width)
1011 printf_filtered ("%*s: ", reg_width, name);
1012 else
1013 printf_filtered ("%s: ", name);
1014
1015 /* Get the data */
1016 if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
1017 {
1018 printf_filtered ("[invalid]");
1019 return;
1020 }
1021 else
1022 {
1023 int byte;
1024 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1025 {
1026 for (byte = DEPRECATED_REGISTER_RAW_SIZE (regnum) - DEPRECATED_REGISTER_VIRTUAL_SIZE (regnum);
1027 byte < DEPRECATED_REGISTER_RAW_SIZE (regnum);
1028 byte++)
1029 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
1030 }
1031 else
1032 {
1033 for (byte = DEPRECATED_REGISTER_VIRTUAL_SIZE (regnum) - 1;
1034 byte >= 0;
1035 byte--)
1036 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
1037 }
1038 }
1039 }
1040
1041 static void
1042 mn10300_do_registers_info (int regnum, int fpregs)
1043 {
1044 if (regnum >= 0)
1045 {
1046 const char *name = REGISTER_NAME (regnum);
1047 if (name == NULL || name[0] == '\0')
1048 error ("Not a valid register for the current processor type");
1049 mn10300_print_register (name, regnum, 0);
1050 printf_filtered ("\n");
1051 }
1052 else
1053 {
1054 /* print registers in an array 4x8 */
1055 int r;
1056 int reg;
1057 const int nr_in_row = 4;
1058 const int reg_width = 4;
1059 for (r = 0; r < NUM_REGS; r += nr_in_row)
1060 {
1061 int c;
1062 int printing = 0;
1063 int padding = 0;
1064 for (c = r; c < r + nr_in_row; c++)
1065 {
1066 const char *name = REGISTER_NAME (c);
1067 if (name != NULL && *name != '\0')
1068 {
1069 printing = 1;
1070 while (padding > 0)
1071 {
1072 printf_filtered (" ");
1073 padding--;
1074 }
1075 mn10300_print_register (name, c, reg_width);
1076 printf_filtered (" ");
1077 }
1078 else
1079 {
1080 padding += (reg_width + 2 + 8 + 1);
1081 }
1082 }
1083 if (printing)
1084 printf_filtered ("\n");
1085 }
1086 }
1087 }
1088
1089 static CORE_ADDR
1090 mn10300_read_fp (void)
1091 {
1092 /* That's right, we're using the stack pointer as our frame pointer. */
1093 gdb_assert (SP_REGNUM >= 0);
1094 return read_register (SP_REGNUM);
1095 }
1096
1097 /* Dump out the mn10300 speciic architecture information. */
1098
1099 static void
1100 mn10300_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1101 {
1102 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1103 fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
1104 tdep->am33_mode);
1105 }
1106
1107 static struct gdbarch *
1108 mn10300_gdbarch_init (struct gdbarch_info info,
1109 struct gdbarch_list *arches)
1110 {
1111 static LONGEST mn10300_call_dummy_words[] = { 0 };
1112 struct gdbarch *gdbarch;
1113 struct gdbarch_tdep *tdep = NULL;
1114 int am33_mode;
1115 gdbarch_register_name_ftype *register_name;
1116 int mach;
1117 int num_regs;
1118
1119 arches = gdbarch_list_lookup_by_info (arches, &info);
1120 if (arches != NULL)
1121 return arches->gdbarch;
1122 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1123 gdbarch = gdbarch_alloc (&info, tdep);
1124
1125 if (info.bfd_arch_info != NULL
1126 && info.bfd_arch_info->arch == bfd_arch_mn10300)
1127 mach = info.bfd_arch_info->mach;
1128 else
1129 mach = 0;
1130 switch (mach)
1131 {
1132 case 0:
1133 case bfd_mach_mn10300:
1134 am33_mode = 0;
1135 register_name = mn10300_generic_register_name;
1136 num_regs = 32;
1137 break;
1138 case bfd_mach_am33:
1139 am33_mode = 1;
1140 register_name = am33_register_name;
1141 num_regs = 32;
1142 break;
1143 default:
1144 internal_error (__FILE__, __LINE__,
1145 "mn10300_gdbarch_init: Unknown mn10300 variant");
1146 return NULL; /* keep GCC happy. */
1147 }
1148
1149 /* Registers. */
1150 set_gdbarch_num_regs (gdbarch, num_regs);
1151 set_gdbarch_register_name (gdbarch, register_name);
1152 set_gdbarch_deprecated_register_size (gdbarch, 4);
1153 set_gdbarch_deprecated_register_bytes (gdbarch, num_regs * gdbarch_deprecated_register_size (gdbarch));
1154 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 4);
1155 set_gdbarch_deprecated_register_raw_size (gdbarch, mn10300_register_raw_size);
1156 set_gdbarch_deprecated_register_byte (gdbarch, mn10300_register_byte);
1157 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 4);
1158 set_gdbarch_deprecated_register_virtual_size (gdbarch, mn10300_register_virtual_size);
1159 set_gdbarch_deprecated_register_virtual_type (gdbarch, mn10300_register_virtual_type);
1160 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum);
1161 set_gdbarch_deprecated_do_registers_info (gdbarch, mn10300_do_registers_info);
1162 set_gdbarch_sp_regnum (gdbarch, 8);
1163 set_gdbarch_pc_regnum (gdbarch, 9);
1164 set_gdbarch_deprecated_fp_regnum (gdbarch, 31);
1165 set_gdbarch_virtual_frame_pointer (gdbarch, mn10300_virtual_frame_pointer);
1166
1167 /* Breakpoints. */
1168 set_gdbarch_breakpoint_from_pc (gdbarch, mn10300_breakpoint_from_pc);
1169
1170 /* Stack unwinding. */
1171 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1172 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mn10300_saved_pc_after_call);
1173 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mn10300_init_extra_frame_info);
1174 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mn10300_frame_init_saved_regs);
1175 set_gdbarch_deprecated_frame_chain (gdbarch, mn10300_frame_chain);
1176 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mn10300_frame_saved_pc);
1177 set_gdbarch_deprecated_extract_return_value (gdbarch, mn10300_extract_return_value);
1178 set_gdbarch_deprecated_store_return_value (gdbarch, mn10300_store_return_value);
1179 set_gdbarch_deprecated_store_struct_return (gdbarch, mn10300_store_struct_return);
1180 set_gdbarch_deprecated_pop_frame (gdbarch, mn10300_pop_frame);
1181 set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue);
1182 /* That's right, we're using the stack pointer as our frame pointer. */
1183 set_gdbarch_deprecated_target_read_fp (gdbarch, mn10300_read_fp);
1184
1185 /* Calling functions in the inferior from GDB. */
1186 set_gdbarch_deprecated_call_dummy_words (gdbarch, mn10300_call_dummy_words);
1187 set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, sizeof (mn10300_call_dummy_words));
1188 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
1189 set_gdbarch_deprecated_push_arguments (gdbarch, mn10300_push_arguments);
1190 set_gdbarch_deprecated_reg_struct_has_addr
1191 (gdbarch, mn10300_reg_struct_has_addr);
1192 set_gdbarch_deprecated_push_return_address (gdbarch, mn10300_push_return_address);
1193 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
1194 set_gdbarch_use_struct_convention (gdbarch, mn10300_use_struct_convention);
1195
1196 tdep->am33_mode = am33_mode;
1197
1198 /* Should be using push_dummy_call. */
1199 set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp);
1200
1201 set_gdbarch_print_insn (gdbarch, print_insn_mn10300);
1202
1203 return gdbarch;
1204 }
1205
1206 void
1207 _initialize_mn10300_tdep (void)
1208 {
1209 /* printf("_initialize_mn10300_tdep\n"); */
1210 gdbarch_register (bfd_arch_mn10300, mn10300_gdbarch_init, mn10300_dump_tdep);
1211 }
This page took 0.054176 seconds and 4 git commands to generate.