*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / mn10300-tdep.c
1 /* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
2
3 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software
4 Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "target.h"
27 #include "value.h"
28 #include "bfd.h"
29 #include "gdb_string.h"
30 #include "gdbcore.h"
31 #include "symfile.h"
32 #include "regcache.h"
33 #include "arch-utils.h"
34
35 #define D0_REGNUM 0
36 #define D2_REGNUM 2
37 #define D3_REGNUM 3
38 #define A0_REGNUM 4
39 #define A2_REGNUM 6
40 #define A3_REGNUM 7
41 #define MDR_REGNUM 10
42 #define PSW_REGNUM 11
43 #define LIR_REGNUM 12
44 #define LAR_REGNUM 13
45 #define MDRQ_REGNUM 14
46 #define E0_REGNUM 15
47 #define MCRH_REGNUM 26
48 #define MCRL_REGNUM 27
49 #define MCVF_REGNUM 28
50
51 enum movm_register_bits {
52 movm_exother_bit = 0x01,
53 movm_exreg1_bit = 0x02,
54 movm_exreg0_bit = 0x04,
55 movm_other_bit = 0x08,
56 movm_a3_bit = 0x10,
57 movm_a2_bit = 0x20,
58 movm_d3_bit = 0x40,
59 movm_d2_bit = 0x80
60 };
61
62 extern void _initialize_mn10300_tdep (void);
63 static CORE_ADDR mn10300_analyze_prologue (struct frame_info *fi,
64 CORE_ADDR pc);
65
66 /* mn10300 private data */
67 struct gdbarch_tdep
68 {
69 int am33_mode;
70 #define AM33_MODE (gdbarch_tdep (current_gdbarch)->am33_mode)
71 };
72
73 /* Additional info used by the frame */
74
75 struct frame_extra_info
76 {
77 int status;
78 int stack_size;
79 };
80
81
82 static char *
83 register_name (int reg, char **regs, long sizeof_regs)
84 {
85 if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
86 return NULL;
87 else
88 return regs[reg];
89 }
90
91 static const char *
92 mn10300_generic_register_name (int reg)
93 {
94 static char *regs[] =
95 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
96 "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
97 "", "", "", "", "", "", "", "",
98 "", "", "", "", "", "", "", "fp"
99 };
100 return register_name (reg, regs, sizeof regs);
101 }
102
103
104 static const char *
105 am33_register_name (int reg)
106 {
107 static char *regs[] =
108 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
109 "sp", "pc", "mdr", "psw", "lir", "lar", "",
110 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
111 "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
112 };
113 return register_name (reg, regs, sizeof regs);
114 }
115
116 static CORE_ADDR
117 mn10300_saved_pc_after_call (struct frame_info *fi)
118 {
119 return read_memory_integer (read_register (SP_REGNUM), 4);
120 }
121
122 static void
123 mn10300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
124 {
125 if (TYPE_CODE (type) == TYPE_CODE_PTR)
126 memcpy (valbuf, regbuf + REGISTER_BYTE (4), TYPE_LENGTH (type));
127 else
128 memcpy (valbuf, regbuf + REGISTER_BYTE (0), TYPE_LENGTH (type));
129 }
130
131 static CORE_ADDR
132 mn10300_extract_struct_value_address (char *regbuf)
133 {
134 return extract_address (regbuf + REGISTER_BYTE (4),
135 REGISTER_RAW_SIZE (4));
136 }
137
138 static void
139 mn10300_store_return_value (struct type *type, char *valbuf)
140 {
141 if (TYPE_CODE (type) == TYPE_CODE_PTR)
142 deprecated_write_register_bytes (REGISTER_BYTE (4), valbuf,
143 TYPE_LENGTH (type));
144 else
145 deprecated_write_register_bytes (REGISTER_BYTE (0), valbuf,
146 TYPE_LENGTH (type));
147 }
148
149 static struct frame_info *analyze_dummy_frame (CORE_ADDR, CORE_ADDR);
150 static struct frame_info *
151 analyze_dummy_frame (CORE_ADDR pc, CORE_ADDR frame)
152 {
153 static struct frame_info *dummy = NULL;
154 if (dummy == NULL)
155 {
156 dummy = xmalloc (sizeof (struct frame_info));
157 dummy->saved_regs = xmalloc (SIZEOF_FRAME_SAVED_REGS);
158 dummy->extra_info = xmalloc (sizeof (struct frame_extra_info));
159 }
160 dummy->next = NULL;
161 dummy->prev = NULL;
162 dummy->pc = pc;
163 dummy->frame = frame;
164 dummy->extra_info->status = 0;
165 dummy->extra_info->stack_size = 0;
166 memset (dummy->saved_regs, '\000', SIZEOF_FRAME_SAVED_REGS);
167 mn10300_analyze_prologue (dummy, 0);
168 return dummy;
169 }
170
171 /* Values for frame_info.status */
172
173 #define MY_FRAME_IN_SP 0x1
174 #define MY_FRAME_IN_FP 0x2
175 #define NO_MORE_FRAMES 0x4
176
177
178 /* Should call_function allocate stack space for a struct return? */
179 static int
180 mn10300_use_struct_convention (int gcc_p, struct type *type)
181 {
182 return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 8);
183 }
184
185 /* The breakpoint instruction must be the same size as the smallest
186 instruction in the instruction set.
187
188 The Matsushita mn10x00 processors have single byte instructions
189 so we need a single byte breakpoint. Matsushita hasn't defined
190 one, so we defined it ourselves. */
191
192 const static unsigned char *
193 mn10300_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
194 {
195 static char breakpoint[] =
196 {0xff};
197 *bp_size = 1;
198 return breakpoint;
199 }
200
201
202 /* Fix fi->frame if it's bogus at this point. This is a helper
203 function for mn10300_analyze_prologue. */
204
205 static void
206 fix_frame_pointer (struct frame_info *fi, int stack_size)
207 {
208 if (fi && fi->next == NULL)
209 {
210 if (fi->extra_info->status & MY_FRAME_IN_SP)
211 fi->frame = read_sp () - stack_size;
212 else if (fi->extra_info->status & MY_FRAME_IN_FP)
213 fi->frame = read_register (A3_REGNUM);
214 }
215 }
216
217
218 /* Set offsets of registers saved by movm instruction.
219 This is a helper function for mn10300_analyze_prologue. */
220
221 static void
222 set_movm_offsets (struct frame_info *fi, int movm_args)
223 {
224 int offset = 0;
225
226 if (fi == NULL || movm_args == 0)
227 return;
228
229 if (movm_args & movm_other_bit)
230 {
231 /* The `other' bit leaves a blank area of four bytes at the
232 beginning of its block of saved registers, making it 32 bytes
233 long in total. */
234 fi->saved_regs[LAR_REGNUM] = fi->frame + offset + 4;
235 fi->saved_regs[LIR_REGNUM] = fi->frame + offset + 8;
236 fi->saved_regs[MDR_REGNUM] = fi->frame + offset + 12;
237 fi->saved_regs[A0_REGNUM + 1] = fi->frame + offset + 16;
238 fi->saved_regs[A0_REGNUM] = fi->frame + offset + 20;
239 fi->saved_regs[D0_REGNUM + 1] = fi->frame + offset + 24;
240 fi->saved_regs[D0_REGNUM] = fi->frame + offset + 28;
241 offset += 32;
242 }
243 if (movm_args & movm_a3_bit)
244 {
245 fi->saved_regs[A3_REGNUM] = fi->frame + offset;
246 offset += 4;
247 }
248 if (movm_args & movm_a2_bit)
249 {
250 fi->saved_regs[A2_REGNUM] = fi->frame + offset;
251 offset += 4;
252 }
253 if (movm_args & movm_d3_bit)
254 {
255 fi->saved_regs[D3_REGNUM] = fi->frame + offset;
256 offset += 4;
257 }
258 if (movm_args & movm_d2_bit)
259 {
260 fi->saved_regs[D2_REGNUM] = fi->frame + offset;
261 offset += 4;
262 }
263 if (AM33_MODE)
264 {
265 if (movm_args & movm_exother_bit)
266 {
267 fi->saved_regs[MCVF_REGNUM] = fi->frame + offset;
268 fi->saved_regs[MCRL_REGNUM] = fi->frame + offset + 4;
269 fi->saved_regs[MCRH_REGNUM] = fi->frame + offset + 8;
270 fi->saved_regs[MDRQ_REGNUM] = fi->frame + offset + 12;
271 fi->saved_regs[E0_REGNUM + 1] = fi->frame + offset + 16;
272 fi->saved_regs[E0_REGNUM + 0] = fi->frame + offset + 20;
273 offset += 24;
274 }
275 if (movm_args & movm_exreg1_bit)
276 {
277 fi->saved_regs[E0_REGNUM + 7] = fi->frame + offset;
278 fi->saved_regs[E0_REGNUM + 6] = fi->frame + offset + 4;
279 fi->saved_regs[E0_REGNUM + 5] = fi->frame + offset + 8;
280 fi->saved_regs[E0_REGNUM + 4] = fi->frame + offset + 12;
281 offset += 16;
282 }
283 if (movm_args & movm_exreg0_bit)
284 {
285 fi->saved_regs[E0_REGNUM + 3] = fi->frame + offset;
286 fi->saved_regs[E0_REGNUM + 2] = fi->frame + offset + 4;
287 offset += 8;
288 }
289 }
290 }
291
292
293 /* The main purpose of this file is dealing with prologues to extract
294 information about stack frames and saved registers.
295
296 In gcc/config/mn13000/mn10300.c, the expand_prologue prologue
297 function is pretty readable, and has a nice explanation of how the
298 prologue is generated. The prologues generated by that code will
299 have the following form (NOTE: the current code doesn't handle all
300 this!):
301
302 + If this is an old-style varargs function, then its arguments
303 need to be flushed back to the stack:
304
305 mov d0,(4,sp)
306 mov d1,(4,sp)
307
308 + If we use any of the callee-saved registers, save them now.
309
310 movm [some callee-saved registers],(sp)
311
312 + If we have any floating-point registers to save:
313
314 - Decrement the stack pointer to reserve space for the registers.
315 If the function doesn't need a frame pointer, we may combine
316 this with the adjustment that reserves space for the frame.
317
318 add -SIZE, sp
319
320 - Save the floating-point registers. We have two possible
321 strategies:
322
323 . Save them at fixed offset from the SP:
324
325 fmov fsN,(OFFSETN,sp)
326 fmov fsM,(OFFSETM,sp)
327 ...
328
329 Note that, if OFFSETN happens to be zero, you'll get the
330 different opcode: fmov fsN,(sp)
331
332 . Or, set a0 to the start of the save area, and then use
333 post-increment addressing to save the FP registers.
334
335 mov sp, a0
336 add SIZE, a0
337 fmov fsN,(a0+)
338 fmov fsM,(a0+)
339 ...
340
341 + If the function needs a frame pointer, we set it here.
342
343 mov sp, a3
344
345 + Now we reserve space for the stack frame proper. This could be
346 merged into the `add -SIZE, sp' instruction for FP saves up
347 above, unless we needed to set the frame pointer in the previous
348 step, or the frame is so large that allocating the whole thing at
349 once would put the FP register save slots out of reach of the
350 addressing mode (128 bytes).
351
352 add -SIZE, sp
353
354 One day we might keep the stack pointer constant, that won't
355 change the code for prologues, but it will make the frame
356 pointerless case much more common. */
357
358 /* Analyze the prologue to determine where registers are saved,
359 the end of the prologue, etc etc. Return the end of the prologue
360 scanned.
361
362 We store into FI (if non-null) several tidbits of information:
363
364 * stack_size -- size of this stack frame. Note that if we stop in
365 certain parts of the prologue/epilogue we may claim the size of the
366 current frame is zero. This happens when the current frame has
367 not been allocated yet or has already been deallocated.
368
369 * fsr -- Addresses of registers saved in the stack by this frame.
370
371 * status -- A (relatively) generic status indicator. It's a bitmask
372 with the following bits:
373
374 MY_FRAME_IN_SP: The base of the current frame is actually in
375 the stack pointer. This can happen for frame pointerless
376 functions, or cases where we're stopped in the prologue/epilogue
377 itself. For these cases mn10300_analyze_prologue will need up
378 update fi->frame before returning or analyzing the register
379 save instructions.
380
381 MY_FRAME_IN_FP: The base of the current frame is in the
382 frame pointer register ($a3).
383
384 NO_MORE_FRAMES: Set this if the current frame is "start" or
385 if the first instruction looks like mov <imm>,sp. This tells
386 frame chain to not bother trying to unwind past this frame. */
387
388 static CORE_ADDR
389 mn10300_analyze_prologue (struct frame_info *fi, CORE_ADDR pc)
390 {
391 CORE_ADDR func_addr, func_end, addr, stop;
392 CORE_ADDR stack_size;
393 int imm_size;
394 unsigned char buf[4];
395 int status, movm_args = 0;
396 char *name;
397
398 /* Use the PC in the frame if it's provided to look up the
399 start of this function. */
400 pc = (fi ? fi->pc : pc);
401
402 /* Find the start of this function. */
403 status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
404
405 /* Do nothing if we couldn't find the start of this function or if we're
406 stopped at the first instruction in the prologue. */
407 if (status == 0)
408 {
409 return pc;
410 }
411
412 /* If we're in start, then give up. */
413 if (strcmp (name, "start") == 0)
414 {
415 if (fi != NULL)
416 fi->extra_info->status = NO_MORE_FRAMES;
417 return pc;
418 }
419
420 /* At the start of a function our frame is in the stack pointer. */
421 if (fi)
422 fi->extra_info->status = MY_FRAME_IN_SP;
423
424 /* Get the next two bytes into buf, we need two because rets is a two
425 byte insn and the first isn't enough to uniquely identify it. */
426 status = read_memory_nobpt (pc, buf, 2);
427 if (status != 0)
428 return pc;
429
430 /* If we're physically on an "rets" instruction, then our frame has
431 already been deallocated. Note this can also be true for retf
432 and ret if they specify a size of zero.
433
434 In this case fi->frame is bogus, we need to fix it. */
435 if (fi && buf[0] == 0xf0 && buf[1] == 0xfc)
436 {
437 if (fi->next == NULL)
438 fi->frame = read_sp ();
439 return fi->pc;
440 }
441
442 /* Similarly if we're stopped on the first insn of a prologue as our
443 frame hasn't been allocated yet. */
444 if (fi && fi->pc == func_addr)
445 {
446 if (fi->next == NULL)
447 fi->frame = read_sp ();
448 return fi->pc;
449 }
450
451 /* Figure out where to stop scanning. */
452 stop = fi ? fi->pc : func_end;
453
454 /* Don't walk off the end of the function. */
455 stop = stop > func_end ? func_end : stop;
456
457 /* Start scanning on the first instruction of this function. */
458 addr = func_addr;
459
460 /* Suck in two bytes. */
461 status = read_memory_nobpt (addr, buf, 2);
462 if (status != 0)
463 {
464 fix_frame_pointer (fi, 0);
465 return addr;
466 }
467
468 /* First see if this insn sets the stack pointer from a register; if
469 so, it's probably the initialization of the stack pointer in _start,
470 so mark this as the bottom-most frame. */
471 if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
472 {
473 if (fi)
474 fi->extra_info->status = NO_MORE_FRAMES;
475 return addr;
476 }
477
478 /* Now look for movm [regs],sp, which saves the callee saved registers.
479
480 At this time we don't know if fi->frame is valid, so we only note
481 that we encountered a movm instruction. Later, we'll set the entries
482 in fsr.regs as needed. */
483 if (buf[0] == 0xcf)
484 {
485 /* Extract the register list for the movm instruction. */
486 status = read_memory_nobpt (addr + 1, buf, 1);
487 movm_args = *buf;
488
489 addr += 2;
490
491 /* Quit now if we're beyond the stop point. */
492 if (addr >= stop)
493 {
494 /* Fix fi->frame since it's bogus at this point. */
495 if (fi && fi->next == NULL)
496 fi->frame = read_sp ();
497
498 /* Note if/where callee saved registers were saved. */
499 set_movm_offsets (fi, movm_args);
500 return addr;
501 }
502
503 /* Get the next two bytes so the prologue scan can continue. */
504 status = read_memory_nobpt (addr, buf, 2);
505 if (status != 0)
506 {
507 /* Fix fi->frame since it's bogus at this point. */
508 if (fi && fi->next == NULL)
509 fi->frame = read_sp ();
510
511 /* Note if/where callee saved registers were saved. */
512 set_movm_offsets (fi, movm_args);
513 return addr;
514 }
515 }
516
517 /* Now see if we set up a frame pointer via "mov sp,a3" */
518 if (buf[0] == 0x3f)
519 {
520 addr += 1;
521
522 /* The frame pointer is now valid. */
523 if (fi)
524 {
525 fi->extra_info->status |= MY_FRAME_IN_FP;
526 fi->extra_info->status &= ~MY_FRAME_IN_SP;
527 }
528
529 /* Quit now if we're beyond the stop point. */
530 if (addr >= stop)
531 {
532 /* Fix fi->frame if it's bogus at this point. */
533 fix_frame_pointer (fi, 0);
534
535 /* Note if/where callee saved registers were saved. */
536 set_movm_offsets (fi, movm_args);
537 return addr;
538 }
539
540 /* Get two more bytes so scanning can continue. */
541 status = read_memory_nobpt (addr, buf, 2);
542 if (status != 0)
543 {
544 /* Fix fi->frame if it's bogus at this point. */
545 fix_frame_pointer (fi, 0);
546
547 /* Note if/where callee saved registers were saved. */
548 set_movm_offsets (fi, movm_args);
549 return addr;
550 }
551 }
552
553 /* Next we should allocate the local frame. No more prologue insns
554 are found after allocating the local frame.
555
556 Search for add imm8,sp (0xf8feXX)
557 or add imm16,sp (0xfafeXXXX)
558 or add imm32,sp (0xfcfeXXXXXXXX).
559
560 If none of the above was found, then this prologue has no
561 additional stack. */
562
563 status = read_memory_nobpt (addr, buf, 2);
564 if (status != 0)
565 {
566 /* Fix fi->frame if it's bogus at this point. */
567 fix_frame_pointer (fi, 0);
568
569 /* Note if/where callee saved registers were saved. */
570 set_movm_offsets (fi, movm_args);
571 return addr;
572 }
573
574 imm_size = 0;
575 if (buf[0] == 0xf8 && buf[1] == 0xfe)
576 imm_size = 1;
577 else if (buf[0] == 0xfa && buf[1] == 0xfe)
578 imm_size = 2;
579 else if (buf[0] == 0xfc && buf[1] == 0xfe)
580 imm_size = 4;
581
582 if (imm_size != 0)
583 {
584 /* Suck in imm_size more bytes, they'll hold the size of the
585 current frame. */
586 status = read_memory_nobpt (addr + 2, buf, imm_size);
587 if (status != 0)
588 {
589 /* Fix fi->frame if it's bogus at this point. */
590 fix_frame_pointer (fi, 0);
591
592 /* Note if/where callee saved registers were saved. */
593 set_movm_offsets (fi, movm_args);
594 return addr;
595 }
596
597 /* Note the size of the stack in the frame info structure. */
598 stack_size = extract_signed_integer (buf, imm_size);
599 if (fi)
600 fi->extra_info->stack_size = stack_size;
601
602 /* We just consumed 2 + imm_size bytes. */
603 addr += 2 + imm_size;
604
605 /* No more prologue insns follow, so begin preparation to return. */
606 /* Fix fi->frame if it's bogus at this point. */
607 fix_frame_pointer (fi, stack_size);
608
609 /* Note if/where callee saved registers were saved. */
610 set_movm_offsets (fi, movm_args);
611 return addr;
612 }
613
614 /* We never found an insn which allocates local stack space, regardless
615 this is the end of the prologue. */
616 /* Fix fi->frame if it's bogus at this point. */
617 fix_frame_pointer (fi, 0);
618
619 /* Note if/where callee saved registers were saved. */
620 set_movm_offsets (fi, movm_args);
621 return addr;
622 }
623
624
625 /* Function: saved_regs_size
626 Return the size in bytes of the register save area, based on the
627 saved_regs array in FI. */
628 static int
629 saved_regs_size (struct frame_info *fi)
630 {
631 int adjust = 0;
632 int i;
633
634 /* Reserve four bytes for every register saved. */
635 for (i = 0; i < NUM_REGS; i++)
636 if (fi->saved_regs[i])
637 adjust += 4;
638
639 /* If we saved LIR, then it's most likely we used a `movm'
640 instruction with the `other' bit set, in which case the SP is
641 decremented by an extra four bytes, "to simplify calculation
642 of the transfer area", according to the processor manual. */
643 if (fi->saved_regs[LIR_REGNUM])
644 adjust += 4;
645
646 return adjust;
647 }
648
649
650 /* Function: frame_chain
651 Figure out and return the caller's frame pointer given current
652 frame_info struct.
653
654 We don't handle dummy frames yet but we would probably just return the
655 stack pointer that was in use at the time the function call was made? */
656
657 static CORE_ADDR
658 mn10300_frame_chain (struct frame_info *fi)
659 {
660 struct frame_info *dummy;
661 /* Walk through the prologue to determine the stack size,
662 location of saved registers, end of the prologue, etc. */
663 if (fi->extra_info->status == 0)
664 mn10300_analyze_prologue (fi, (CORE_ADDR) 0);
665
666 /* Quit now if mn10300_analyze_prologue set NO_MORE_FRAMES. */
667 if (fi->extra_info->status & NO_MORE_FRAMES)
668 return 0;
669
670 /* Now that we've analyzed our prologue, determine the frame
671 pointer for our caller.
672
673 If our caller has a frame pointer, then we need to
674 find the entry value of $a3 to our function.
675
676 If fsr.regs[A3_REGNUM] is nonzero, then it's at the memory
677 location pointed to by fsr.regs[A3_REGNUM].
678
679 Else it's still in $a3.
680
681 If our caller does not have a frame pointer, then his
682 frame base is fi->frame + -caller's stack size. */
683
684 /* The easiest way to get that info is to analyze our caller's frame.
685 So we set up a dummy frame and call mn10300_analyze_prologue to
686 find stuff for us. */
687 dummy = analyze_dummy_frame (FRAME_SAVED_PC (fi), fi->frame);
688
689 if (dummy->extra_info->status & MY_FRAME_IN_FP)
690 {
691 /* Our caller has a frame pointer. So find the frame in $a3 or
692 in the stack. */
693 if (fi->saved_regs[A3_REGNUM])
694 return (read_memory_integer (fi->saved_regs[A3_REGNUM], REGISTER_SIZE));
695 else
696 return read_register (A3_REGNUM);
697 }
698 else
699 {
700 int adjust = saved_regs_size (fi);
701
702 /* Our caller does not have a frame pointer. So his frame starts
703 at the base of our frame (fi->frame) + register save space
704 + <his size>. */
705 return fi->frame + adjust + -dummy->extra_info->stack_size;
706 }
707 }
708
709 /* Function: skip_prologue
710 Return the address of the first inst past the prologue of the function. */
711
712 static CORE_ADDR
713 mn10300_skip_prologue (CORE_ADDR pc)
714 {
715 /* We used to check the debug symbols, but that can lose if
716 we have a null prologue. */
717 return mn10300_analyze_prologue (NULL, pc);
718 }
719
720 /* generic_pop_current_frame calls this function if the current
721 frame isn't a dummy frame. */
722 static void
723 mn10300_pop_frame_regular (struct frame_info *frame)
724 {
725 int regnum;
726
727 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
728
729 /* Restore any saved registers. */
730 for (regnum = 0; regnum < NUM_REGS; regnum++)
731 if (frame->saved_regs[regnum] != 0)
732 {
733 ULONGEST value;
734
735 value = read_memory_unsigned_integer (frame->saved_regs[regnum],
736 REGISTER_RAW_SIZE (regnum));
737 write_register (regnum, value);
738 }
739
740 /* Actually cut back the stack. */
741 write_register (SP_REGNUM, get_frame_base (frame));
742
743 /* Don't we need to set the PC?!? XXX FIXME. */
744 }
745
746 /* Function: pop_frame
747 This routine gets called when either the user uses the `return'
748 command, or the call dummy breakpoint gets hit. */
749 static void
750 mn10300_pop_frame (void)
751 {
752 /* This function checks for and handles generic dummy frames, and
753 calls back to our function for ordinary frames. */
754 generic_pop_current_frame (mn10300_pop_frame_regular);
755
756 /* Throw away any cached frame information. */
757 flush_cached_frames ();
758 }
759
760 /* Function: push_arguments
761 Setup arguments for a call to the target. Arguments go in
762 order on the stack. */
763
764 static CORE_ADDR
765 mn10300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
766 int struct_return, CORE_ADDR struct_addr)
767 {
768 int argnum = 0;
769 int len = 0;
770 int stack_offset = 0;
771 int regsused = struct_return ? 1 : 0;
772
773 /* This should be a nop, but align the stack just in case something
774 went wrong. Stacks are four byte aligned on the mn10300. */
775 sp &= ~3;
776
777 /* Now make space on the stack for the args.
778
779 XXX This doesn't appear to handle pass-by-invisible reference
780 arguments. */
781 for (argnum = 0; argnum < nargs; argnum++)
782 {
783 int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3;
784
785 while (regsused < 2 && arg_length > 0)
786 {
787 regsused++;
788 arg_length -= 4;
789 }
790 len += arg_length;
791 }
792
793 /* Allocate stack space. */
794 sp -= len;
795
796 regsused = struct_return ? 1 : 0;
797 /* Push all arguments onto the stack. */
798 for (argnum = 0; argnum < nargs; argnum++)
799 {
800 int len;
801 char *val;
802
803 /* XXX Check this. What about UNIONS? */
804 if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
805 && TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
806 {
807 /* XXX Wrong, we want a pointer to this argument. */
808 len = TYPE_LENGTH (VALUE_TYPE (*args));
809 val = (char *) VALUE_CONTENTS (*args);
810 }
811 else
812 {
813 len = TYPE_LENGTH (VALUE_TYPE (*args));
814 val = (char *) VALUE_CONTENTS (*args);
815 }
816
817 while (regsused < 2 && len > 0)
818 {
819 write_register (regsused, extract_unsigned_integer (val, 4));
820 val += 4;
821 len -= 4;
822 regsused++;
823 }
824
825 while (len > 0)
826 {
827 write_memory (sp + stack_offset, val, 4);
828 len -= 4;
829 val += 4;
830 stack_offset += 4;
831 }
832
833 args++;
834 }
835
836 /* Make space for the flushback area. */
837 sp -= 8;
838 return sp;
839 }
840
841 /* Function: push_return_address (pc)
842 Set up the return address for the inferior function call.
843 Needed for targets where we don't actually execute a JSR/BSR instruction */
844
845 static CORE_ADDR
846 mn10300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
847 {
848 unsigned char buf[4];
849
850 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
851 write_memory (sp - 4, buf, 4);
852 return sp - 4;
853 }
854
855 /* Function: store_struct_return (addr,sp)
856 Store the structure value return address for an inferior function
857 call. */
858
859 static void
860 mn10300_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
861 {
862 /* The structure return address is passed as the first argument. */
863 write_register (0, addr);
864 }
865
866 /* Function: frame_saved_pc
867 Find the caller of this frame. We do this by seeing if RP_REGNUM
868 is saved in the stack anywhere, otherwise we get it from the
869 registers. If the inner frame is a dummy frame, return its PC
870 instead of RP, because that's where "caller" of the dummy-frame
871 will be found. */
872
873 static CORE_ADDR
874 mn10300_frame_saved_pc (struct frame_info *fi)
875 {
876 int adjust = saved_regs_size (fi);
877
878 return (read_memory_integer (fi->frame + adjust, REGISTER_SIZE));
879 }
880
881 /* Function: mn10300_init_extra_frame_info
882 Setup the frame's frame pointer, pc, and frame addresses for saved
883 registers. Most of the work is done in mn10300_analyze_prologue().
884
885 Note that when we are called for the last frame (currently active frame),
886 that fi->pc and fi->frame will already be setup. However, fi->frame will
887 be valid only if this routine uses FP. For previous frames, fi-frame will
888 always be correct. mn10300_analyze_prologue will fix fi->frame if
889 it's not valid.
890
891 We can be called with the PC in the call dummy under two circumstances.
892 First, during normal backtracing, second, while figuring out the frame
893 pointer just prior to calling the target function (see run_stack_dummy). */
894
895 static void
896 mn10300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
897 {
898 if (fi->next)
899 fi->pc = FRAME_SAVED_PC (fi->next);
900
901 frame_saved_regs_zalloc (fi);
902 fi->extra_info = (struct frame_extra_info *)
903 frame_obstack_alloc (sizeof (struct frame_extra_info));
904
905 fi->extra_info->status = 0;
906 fi->extra_info->stack_size = 0;
907
908 mn10300_analyze_prologue (fi, 0);
909 }
910
911
912 /* This function's job is handled by init_extra_frame_info. */
913 static void
914 mn10300_frame_init_saved_regs (struct frame_info *frame)
915 {
916 }
917
918
919 /* Function: mn10300_virtual_frame_pointer
920 Return the register that the function uses for a frame pointer,
921 plus any necessary offset to be applied to the register before
922 any frame pointer offsets. */
923
924 static void
925 mn10300_virtual_frame_pointer (CORE_ADDR pc,
926 int *reg,
927 LONGEST *offset)
928 {
929 struct frame_info *dummy = analyze_dummy_frame (pc, 0);
930 /* Set up a dummy frame_info, Analyze the prolog and fill in the
931 extra info. */
932 /* Results will tell us which type of frame it uses. */
933 if (dummy->extra_info->status & MY_FRAME_IN_SP)
934 {
935 *reg = SP_REGNUM;
936 *offset = -(dummy->extra_info->stack_size);
937 }
938 else
939 {
940 *reg = A3_REGNUM;
941 *offset = 0;
942 }
943 }
944
945 static int
946 mn10300_reg_struct_has_addr (int gcc_p, struct type *type)
947 {
948 return (TYPE_LENGTH (type) > 8);
949 }
950
951 static struct type *
952 mn10300_register_virtual_type (int reg)
953 {
954 return builtin_type_int;
955 }
956
957 static int
958 mn10300_register_byte (int reg)
959 {
960 return (reg * 4);
961 }
962
963 static int
964 mn10300_register_virtual_size (int reg)
965 {
966 return 4;
967 }
968
969 static int
970 mn10300_register_raw_size (int reg)
971 {
972 return 4;
973 }
974
975 /* If DWARF2 is a register number appearing in Dwarf2 debug info, then
976 mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB
977 register number. Why don't Dwarf2 and GDB use the same numbering?
978 Who knows? But since people have object files lying around with
979 the existing Dwarf2 numbering, and other people have written stubs
980 to work with the existing GDB, neither of them can change. So we
981 just have to cope. */
982 static int
983 mn10300_dwarf2_reg_to_regnum (int dwarf2)
984 {
985 /* This table is supposed to be shaped like the REGISTER_NAMES
986 initializer in gcc/config/mn10300/mn10300.h. Registers which
987 appear in GCC's numbering, but have no counterpart in GDB's
988 world, are marked with a -1. */
989 static int dwarf2_to_gdb[] = {
990 0, 1, 2, 3, 4, 5, 6, 7, -1, 8,
991 15, 16, 17, 18, 19, 20, 21, 22
992 };
993 int gdb;
994
995 if (dwarf2 < 0
996 || dwarf2 >= (sizeof (dwarf2_to_gdb) / sizeof (dwarf2_to_gdb[0]))
997 || dwarf2_to_gdb[dwarf2] == -1)
998 internal_error (__FILE__, __LINE__,
999 "bogus register number in debug info: %d", dwarf2);
1000
1001 return dwarf2_to_gdb[dwarf2];
1002 }
1003
1004 static void
1005 mn10300_print_register (const char *name, int regnum, int reg_width)
1006 {
1007 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
1008
1009 if (reg_width)
1010 printf_filtered ("%*s: ", reg_width, name);
1011 else
1012 printf_filtered ("%s: ", name);
1013
1014 /* Get the data */
1015 if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
1016 {
1017 printf_filtered ("[invalid]");
1018 return;
1019 }
1020 else
1021 {
1022 int byte;
1023 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1024 {
1025 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
1026 byte < REGISTER_RAW_SIZE (regnum);
1027 byte++)
1028 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
1029 }
1030 else
1031 {
1032 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
1033 byte >= 0;
1034 byte--)
1035 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
1036 }
1037 }
1038 }
1039
1040 static void
1041 mn10300_do_registers_info (int regnum, int fpregs)
1042 {
1043 if (regnum >= 0)
1044 {
1045 const char *name = REGISTER_NAME (regnum);
1046 if (name == NULL || name[0] == '\0')
1047 error ("Not a valid register for the current processor type");
1048 mn10300_print_register (name, regnum, 0);
1049 printf_filtered ("\n");
1050 }
1051 else
1052 {
1053 /* print registers in an array 4x8 */
1054 int r;
1055 int reg;
1056 const int nr_in_row = 4;
1057 const int reg_width = 4;
1058 for (r = 0; r < NUM_REGS; r += nr_in_row)
1059 {
1060 int c;
1061 int printing = 0;
1062 int padding = 0;
1063 for (c = r; c < r + nr_in_row; c++)
1064 {
1065 const char *name = REGISTER_NAME (c);
1066 if (name != NULL && *name != '\0')
1067 {
1068 printing = 1;
1069 while (padding > 0)
1070 {
1071 printf_filtered (" ");
1072 padding--;
1073 }
1074 mn10300_print_register (name, c, reg_width);
1075 printf_filtered (" ");
1076 }
1077 else
1078 {
1079 padding += (reg_width + 2 + 8 + 1);
1080 }
1081 }
1082 if (printing)
1083 printf_filtered ("\n");
1084 }
1085 }
1086 }
1087
1088 /* Dump out the mn10300 speciic architecture information. */
1089
1090 static void
1091 mn10300_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1092 {
1093 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1094 fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
1095 tdep->am33_mode);
1096 }
1097
1098 static struct gdbarch *
1099 mn10300_gdbarch_init (struct gdbarch_info info,
1100 struct gdbarch_list *arches)
1101 {
1102 static LONGEST mn10300_call_dummy_words[] = { 0 };
1103 struct gdbarch *gdbarch;
1104 struct gdbarch_tdep *tdep = NULL;
1105 int am33_mode;
1106 gdbarch_register_name_ftype *register_name;
1107 int mach;
1108 int num_regs;
1109
1110 arches = gdbarch_list_lookup_by_info (arches, &info);
1111 if (arches != NULL)
1112 return arches->gdbarch;
1113 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1114 gdbarch = gdbarch_alloc (&info, tdep);
1115
1116 if (info.bfd_arch_info != NULL
1117 && info.bfd_arch_info->arch == bfd_arch_mn10300)
1118 mach = info.bfd_arch_info->mach;
1119 else
1120 mach = 0;
1121 switch (mach)
1122 {
1123 case 0:
1124 case bfd_mach_mn10300:
1125 am33_mode = 0;
1126 register_name = mn10300_generic_register_name;
1127 num_regs = 32;
1128 break;
1129 case bfd_mach_am33:
1130 am33_mode = 1;
1131 register_name = am33_register_name;
1132 num_regs = 32;
1133 break;
1134 default:
1135 internal_error (__FILE__, __LINE__,
1136 "mn10300_gdbarch_init: Unknown mn10300 variant");
1137 return NULL; /* keep GCC happy. */
1138 }
1139
1140 /* Registers. */
1141 set_gdbarch_num_regs (gdbarch, num_regs);
1142 set_gdbarch_register_name (gdbarch, register_name);
1143 set_gdbarch_register_size (gdbarch, 4);
1144 set_gdbarch_register_bytes (gdbarch,
1145 num_regs * gdbarch_register_size (gdbarch));
1146 set_gdbarch_max_register_raw_size (gdbarch, 4);
1147 set_gdbarch_register_raw_size (gdbarch, mn10300_register_raw_size);
1148 set_gdbarch_register_byte (gdbarch, mn10300_register_byte);
1149 set_gdbarch_max_register_virtual_size (gdbarch, 4);
1150 set_gdbarch_register_virtual_size (gdbarch, mn10300_register_virtual_size);
1151 set_gdbarch_register_virtual_type (gdbarch, mn10300_register_virtual_type);
1152 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum);
1153 set_gdbarch_deprecated_do_registers_info (gdbarch, mn10300_do_registers_info);
1154 set_gdbarch_sp_regnum (gdbarch, 8);
1155 set_gdbarch_pc_regnum (gdbarch, 9);
1156 set_gdbarch_fp_regnum (gdbarch, 31);
1157 set_gdbarch_virtual_frame_pointer (gdbarch, mn10300_virtual_frame_pointer);
1158
1159 /* Breakpoints. */
1160 set_gdbarch_breakpoint_from_pc (gdbarch, mn10300_breakpoint_from_pc);
1161 set_gdbarch_function_start_offset (gdbarch, 0);
1162 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1163
1164 /* Stack unwinding. */
1165 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
1166 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1167 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
1168 set_gdbarch_saved_pc_after_call (gdbarch, mn10300_saved_pc_after_call);
1169 set_gdbarch_init_extra_frame_info (gdbarch, mn10300_init_extra_frame_info);
1170 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_noop);
1171 set_gdbarch_frame_init_saved_regs (gdbarch, mn10300_frame_init_saved_regs);
1172 set_gdbarch_frame_chain (gdbarch, mn10300_frame_chain);
1173 set_gdbarch_frame_saved_pc (gdbarch, mn10300_frame_saved_pc);
1174 set_gdbarch_deprecated_extract_return_value (gdbarch, mn10300_extract_return_value);
1175 set_gdbarch_deprecated_extract_struct_value_address
1176 (gdbarch, mn10300_extract_struct_value_address);
1177 set_gdbarch_deprecated_store_return_value (gdbarch, mn10300_store_return_value);
1178 set_gdbarch_store_struct_return (gdbarch, mn10300_store_struct_return);
1179 set_gdbarch_pop_frame (gdbarch, mn10300_pop_frame);
1180 set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue);
1181 set_gdbarch_frame_args_skip (gdbarch, 0);
1182 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1183 /* That's right, we're using the stack pointer as our frame pointer. */
1184 set_gdbarch_read_fp (gdbarch, generic_target_read_sp);
1185
1186 /* Calling functions in the inferior from GDB. */
1187 set_gdbarch_call_dummy_p (gdbarch, 1);
1188 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1189 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1190 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1191 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1192 set_gdbarch_call_dummy_words (gdbarch, mn10300_call_dummy_words);
1193 set_gdbarch_sizeof_call_dummy_words (gdbarch,
1194 sizeof (mn10300_call_dummy_words));
1195 set_gdbarch_call_dummy_length (gdbarch, 0);
1196 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1197 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1198 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
1199 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1200 set_gdbarch_push_arguments (gdbarch, mn10300_push_arguments);
1201 set_gdbarch_reg_struct_has_addr (gdbarch, mn10300_reg_struct_has_addr);
1202 set_gdbarch_push_return_address (gdbarch, mn10300_push_return_address);
1203 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
1204 set_gdbarch_use_struct_convention (gdbarch, mn10300_use_struct_convention);
1205
1206 tdep->am33_mode = am33_mode;
1207
1208 return gdbarch;
1209 }
1210
1211 void
1212 _initialize_mn10300_tdep (void)
1213 {
1214 /* printf("_initialize_mn10300_tdep\n"); */
1215
1216 tm_print_insn = print_insn_mn10300;
1217
1218 register_gdbarch_init (bfd_arch_mn10300, mn10300_gdbarch_init);
1219 }
This page took 0.076404 seconds and 4 git commands to generate.