2004-10-07 Kei Sakamoto <sakamoto.kei@renesas.com>
[deliverable/binutils-gdb.git] / gdb / mn10300-tdep.c
1 /* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
2
3 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "target.h"
27 #include "value.h"
28 #include "bfd.h"
29 #include "gdb_string.h"
30 #include "gdbcore.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "arch-utils.h"
34 #include "gdb_assert.h"
35 #include "dis-asm.h"
36
37 #define D0_REGNUM 0
38 #define D2_REGNUM 2
39 #define D3_REGNUM 3
40 #define A0_REGNUM 4
41 #define A2_REGNUM 6
42 #define A3_REGNUM 7
43 #define MDR_REGNUM 10
44 #define PSW_REGNUM 11
45 #define LIR_REGNUM 12
46 #define LAR_REGNUM 13
47 #define MDRQ_REGNUM 14
48 #define E0_REGNUM 15
49 #define MCRH_REGNUM 26
50 #define MCRL_REGNUM 27
51 #define MCVF_REGNUM 28
52
53 enum movm_register_bits {
54 movm_exother_bit = 0x01,
55 movm_exreg1_bit = 0x02,
56 movm_exreg0_bit = 0x04,
57 movm_other_bit = 0x08,
58 movm_a3_bit = 0x10,
59 movm_a2_bit = 0x20,
60 movm_d3_bit = 0x40,
61 movm_d2_bit = 0x80
62 };
63
64 extern void _initialize_mn10300_tdep (void);
65 static CORE_ADDR mn10300_analyze_prologue (struct frame_info *fi,
66 CORE_ADDR pc);
67
68 /* mn10300 private data */
69 struct gdbarch_tdep
70 {
71 int am33_mode;
72 #define AM33_MODE (gdbarch_tdep (current_gdbarch)->am33_mode)
73 };
74
75 /* Additional info used by the frame */
76
77 struct frame_extra_info
78 {
79 int status;
80 int stack_size;
81 };
82
83
84 static char *
85 register_name (int reg, char **regs, long sizeof_regs)
86 {
87 if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
88 return NULL;
89 else
90 return regs[reg];
91 }
92
93 static const char *
94 mn10300_generic_register_name (int reg)
95 {
96 static char *regs[] =
97 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
98 "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
99 "", "", "", "", "", "", "", "",
100 "", "", "", "", "", "", "", "fp"
101 };
102 return register_name (reg, regs, sizeof regs);
103 }
104
105
106 static const char *
107 am33_register_name (int reg)
108 {
109 static char *regs[] =
110 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
111 "sp", "pc", "mdr", "psw", "lir", "lar", "",
112 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
113 "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
114 };
115 return register_name (reg, regs, sizeof regs);
116 }
117
118 static CORE_ADDR
119 mn10300_saved_pc_after_call (struct frame_info *fi)
120 {
121 return read_memory_integer (read_register (SP_REGNUM), 4);
122 }
123
124 static void
125 mn10300_extract_return_value (struct gdbarch *gdbarch, struct type *type,
126 struct regcache *regcache, void *valbuf)
127 {
128 char buf[MAX_REGISTER_SIZE];
129 int len = TYPE_LENGTH (type);
130 int reg, regsz;
131
132 if (TYPE_CODE (type) == TYPE_CODE_PTR)
133 reg = 4;
134 else
135 reg = 0;
136
137 regsz = register_size (gdbarch, reg);
138 if (len <= regsz)
139 {
140 regcache_raw_read (regcache, reg, buf);
141 memcpy (valbuf, buf, len);
142 }
143 else if (len <= 2 * regsz)
144 {
145 regcache_raw_read (regcache, reg, buf);
146 memcpy (valbuf, buf, regsz);
147 gdb_assert (regsz == register_size (gdbarch, reg + 1));
148 regcache_raw_read (regcache, reg + 1, buf);
149 memcpy ((char *) valbuf + regsz, buf, len - regsz);
150 }
151 else
152 internal_error (__FILE__, __LINE__,
153 "Cannot extract return value %d bytes long.", len);
154 }
155
156 static void
157 mn10300_store_return_value (struct gdbarch *gdbarch, struct type *type,
158 struct regcache *regcache, const void *valbuf)
159 {
160 int len = TYPE_LENGTH (type);
161 int reg, regsz;
162
163 if (TYPE_CODE (type) == TYPE_CODE_PTR)
164 reg = 4;
165 else
166 reg = 0;
167
168 regsz = register_size (gdbarch, reg);
169
170 if (len <= regsz)
171 regcache_raw_write_part (regcache, reg, 0, len, valbuf);
172 else if (len <= 2 * regsz)
173 {
174 regcache_raw_write (regcache, reg, valbuf);
175 gdb_assert (regsz == register_size (gdbarch, reg + 1));
176 regcache_raw_write_part (regcache, reg+1, 0,
177 len - regsz, (char *) valbuf + regsz);
178 }
179 else
180 internal_error (__FILE__, __LINE__,
181 "Cannot store return value %d bytes long.", len);
182 }
183
184 static struct frame_info *analyze_dummy_frame (CORE_ADDR, CORE_ADDR);
185 static struct frame_info *
186 analyze_dummy_frame (CORE_ADDR pc, CORE_ADDR frame)
187 {
188 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
189 struct frame_info *dummy
190 = deprecated_frame_xmalloc_with_cleanup (SIZEOF_FRAME_SAVED_REGS,
191 sizeof (struct frame_extra_info));
192 deprecated_update_frame_pc_hack (dummy, pc);
193 deprecated_update_frame_base_hack (dummy, frame);
194 get_frame_extra_info (dummy)->status = 0;
195 get_frame_extra_info (dummy)->stack_size = 0;
196 mn10300_analyze_prologue (dummy, pc);
197 do_cleanups (old_chain);
198 return dummy;
199 }
200
201 /* Values for frame_info.status */
202
203 #define MY_FRAME_IN_SP 0x1
204 #define MY_FRAME_IN_FP 0x2
205 #define NO_MORE_FRAMES 0x4
206
207 /* Compute the alignment required by a type. */
208
209 static int
210 mn10300_type_align (struct type *type)
211 {
212 int i, align = 1;
213
214 switch (TYPE_CODE (type))
215 {
216 case TYPE_CODE_INT:
217 case TYPE_CODE_ENUM:
218 case TYPE_CODE_SET:
219 case TYPE_CODE_RANGE:
220 case TYPE_CODE_CHAR:
221 case TYPE_CODE_BOOL:
222 case TYPE_CODE_FLT:
223 case TYPE_CODE_PTR:
224 case TYPE_CODE_REF:
225 return TYPE_LENGTH (type);
226
227 case TYPE_CODE_COMPLEX:
228 return TYPE_LENGTH (type) / 2;
229
230 case TYPE_CODE_STRUCT:
231 case TYPE_CODE_UNION:
232 for (i = 0; i < TYPE_NFIELDS (type); i++)
233 {
234 int falign = mn10300_type_align (TYPE_FIELD_TYPE (type, i));
235 while (align < falign)
236 align <<= 1;
237 }
238 return align;
239
240 case TYPE_CODE_ARRAY:
241 /* HACK! Structures containing arrays, even small ones, are not
242 elligible for returning in registers. */
243 return 256;
244
245 case TYPE_CODE_TYPEDEF:
246 return mn10300_type_align (check_typedef (type));
247
248 default:
249 internal_error (__FILE__, __LINE__, "bad switch");
250 }
251 }
252
253 /* Should call_function allocate stack space for a struct return? */
254 static int
255 mn10300_use_struct_convention (struct type *type)
256 {
257 /* Structures bigger than a pair of words can't be returned in
258 registers. */
259 if (TYPE_LENGTH (type) > 8)
260 return 1;
261
262 switch (TYPE_CODE (type))
263 {
264 case TYPE_CODE_STRUCT:
265 case TYPE_CODE_UNION:
266 /* Structures with a single field are handled as the field
267 itself. */
268 if (TYPE_NFIELDS (type) == 1)
269 return mn10300_use_struct_convention (TYPE_FIELD_TYPE (type, 0));
270
271 /* Structures with word or double-word size are passed in memory, as
272 long as they require at least word alignment. */
273 if (mn10300_type_align (type) >= 4)
274 return 0;
275
276 return 1;
277
278 /* Arrays are addressable, so they're never returned in
279 registers. This condition can only hold when the array is
280 the only field of a struct or union. */
281 case TYPE_CODE_ARRAY:
282 return 1;
283
284 case TYPE_CODE_TYPEDEF:
285 return mn10300_use_struct_convention (check_typedef (type));
286
287 default:
288 return 0;
289 }
290 }
291
292 /* Determine, for architecture GDBARCH, how a return value of TYPE
293 should be returned. If it is supposed to be returned in registers,
294 and READBUF is non-zero, read the appropriate value from REGCACHE,
295 and copy it into READBUF. If WRITEBUF is non-zero, write the value
296 from WRITEBUF into REGCACHE. */
297
298 static enum return_value_convention
299 mn10300_return_value (struct gdbarch *gdbarch, struct type *type,
300 struct regcache *regcache, void *readbuf,
301 const void *writebuf)
302 {
303 if (mn10300_use_struct_convention (type))
304 return RETURN_VALUE_STRUCT_CONVENTION;
305
306 if (readbuf)
307 mn10300_extract_return_value (gdbarch, type, regcache, readbuf);
308 if (writebuf)
309 mn10300_store_return_value (gdbarch, type, regcache, writebuf);
310
311 return RETURN_VALUE_REGISTER_CONVENTION;
312 }
313
314 /* The breakpoint instruction must be the same size as the smallest
315 instruction in the instruction set.
316
317 The Matsushita mn10x00 processors have single byte instructions
318 so we need a single byte breakpoint. Matsushita hasn't defined
319 one, so we defined it ourselves. */
320
321 const static unsigned char *
322 mn10300_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
323 {
324 static char breakpoint[] =
325 {0xff};
326 *bp_size = 1;
327 return breakpoint;
328 }
329
330
331 /* Fix fi->frame if it's bogus at this point. This is a helper
332 function for mn10300_analyze_prologue. */
333
334 static void
335 fix_frame_pointer (struct frame_info *fi, int stack_size)
336 {
337 if (fi && get_next_frame (fi) == NULL)
338 {
339 if (get_frame_extra_info (fi)->status & MY_FRAME_IN_SP)
340 deprecated_update_frame_base_hack (fi, read_sp () - stack_size);
341 else if (get_frame_extra_info (fi)->status & MY_FRAME_IN_FP)
342 deprecated_update_frame_base_hack (fi, read_register (A3_REGNUM));
343 }
344 }
345
346
347 /* Set offsets of registers saved by movm instruction.
348 This is a helper function for mn10300_analyze_prologue. */
349
350 static void
351 set_movm_offsets (struct frame_info *fi, int movm_args)
352 {
353 int offset = 0;
354
355 if (fi == NULL || movm_args == 0)
356 return;
357
358 if (movm_args & movm_other_bit)
359 {
360 /* The `other' bit leaves a blank area of four bytes at the
361 beginning of its block of saved registers, making it 32 bytes
362 long in total. */
363 deprecated_get_frame_saved_regs (fi)[LAR_REGNUM] = get_frame_base (fi) + offset + 4;
364 deprecated_get_frame_saved_regs (fi)[LIR_REGNUM] = get_frame_base (fi) + offset + 8;
365 deprecated_get_frame_saved_regs (fi)[MDR_REGNUM] = get_frame_base (fi) + offset + 12;
366 deprecated_get_frame_saved_regs (fi)[A0_REGNUM + 1] = get_frame_base (fi) + offset + 16;
367 deprecated_get_frame_saved_regs (fi)[A0_REGNUM] = get_frame_base (fi) + offset + 20;
368 deprecated_get_frame_saved_regs (fi)[D0_REGNUM + 1] = get_frame_base (fi) + offset + 24;
369 deprecated_get_frame_saved_regs (fi)[D0_REGNUM] = get_frame_base (fi) + offset + 28;
370 offset += 32;
371 }
372 if (movm_args & movm_a3_bit)
373 {
374 deprecated_get_frame_saved_regs (fi)[A3_REGNUM] = get_frame_base (fi) + offset;
375 offset += 4;
376 }
377 if (movm_args & movm_a2_bit)
378 {
379 deprecated_get_frame_saved_regs (fi)[A2_REGNUM] = get_frame_base (fi) + offset;
380 offset += 4;
381 }
382 if (movm_args & movm_d3_bit)
383 {
384 deprecated_get_frame_saved_regs (fi)[D3_REGNUM] = get_frame_base (fi) + offset;
385 offset += 4;
386 }
387 if (movm_args & movm_d2_bit)
388 {
389 deprecated_get_frame_saved_regs (fi)[D2_REGNUM] = get_frame_base (fi) + offset;
390 offset += 4;
391 }
392 if (AM33_MODE)
393 {
394 if (movm_args & movm_exother_bit)
395 {
396 deprecated_get_frame_saved_regs (fi)[MCVF_REGNUM] = get_frame_base (fi) + offset;
397 deprecated_get_frame_saved_regs (fi)[MCRL_REGNUM] = get_frame_base (fi) + offset + 4;
398 deprecated_get_frame_saved_regs (fi)[MCRH_REGNUM] = get_frame_base (fi) + offset + 8;
399 deprecated_get_frame_saved_regs (fi)[MDRQ_REGNUM] = get_frame_base (fi) + offset + 12;
400 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 1] = get_frame_base (fi) + offset + 16;
401 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 0] = get_frame_base (fi) + offset + 20;
402 offset += 24;
403 }
404 if (movm_args & movm_exreg1_bit)
405 {
406 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 7] = get_frame_base (fi) + offset;
407 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 6] = get_frame_base (fi) + offset + 4;
408 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 5] = get_frame_base (fi) + offset + 8;
409 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 4] = get_frame_base (fi) + offset + 12;
410 offset += 16;
411 }
412 if (movm_args & movm_exreg0_bit)
413 {
414 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 3] = get_frame_base (fi) + offset;
415 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 2] = get_frame_base (fi) + offset + 4;
416 offset += 8;
417 }
418 }
419 }
420
421
422 /* The main purpose of this file is dealing with prologues to extract
423 information about stack frames and saved registers.
424
425 In gcc/config/mn13000/mn10300.c, the expand_prologue prologue
426 function is pretty readable, and has a nice explanation of how the
427 prologue is generated. The prologues generated by that code will
428 have the following form (NOTE: the current code doesn't handle all
429 this!):
430
431 + If this is an old-style varargs function, then its arguments
432 need to be flushed back to the stack:
433
434 mov d0,(4,sp)
435 mov d1,(4,sp)
436
437 + If we use any of the callee-saved registers, save them now.
438
439 movm [some callee-saved registers],(sp)
440
441 + If we have any floating-point registers to save:
442
443 - Decrement the stack pointer to reserve space for the registers.
444 If the function doesn't need a frame pointer, we may combine
445 this with the adjustment that reserves space for the frame.
446
447 add -SIZE, sp
448
449 - Save the floating-point registers. We have two possible
450 strategies:
451
452 . Save them at fixed offset from the SP:
453
454 fmov fsN,(OFFSETN,sp)
455 fmov fsM,(OFFSETM,sp)
456 ...
457
458 Note that, if OFFSETN happens to be zero, you'll get the
459 different opcode: fmov fsN,(sp)
460
461 . Or, set a0 to the start of the save area, and then use
462 post-increment addressing to save the FP registers.
463
464 mov sp, a0
465 add SIZE, a0
466 fmov fsN,(a0+)
467 fmov fsM,(a0+)
468 ...
469
470 + If the function needs a frame pointer, we set it here.
471
472 mov sp, a3
473
474 + Now we reserve space for the stack frame proper. This could be
475 merged into the `add -SIZE, sp' instruction for FP saves up
476 above, unless we needed to set the frame pointer in the previous
477 step, or the frame is so large that allocating the whole thing at
478 once would put the FP register save slots out of reach of the
479 addressing mode (128 bytes).
480
481 add -SIZE, sp
482
483 One day we might keep the stack pointer constant, that won't
484 change the code for prologues, but it will make the frame
485 pointerless case much more common. */
486
487 /* Analyze the prologue to determine where registers are saved,
488 the end of the prologue, etc etc. Return the end of the prologue
489 scanned.
490
491 We store into FI (if non-null) several tidbits of information:
492
493 * stack_size -- size of this stack frame. Note that if we stop in
494 certain parts of the prologue/epilogue we may claim the size of the
495 current frame is zero. This happens when the current frame has
496 not been allocated yet or has already been deallocated.
497
498 * fsr -- Addresses of registers saved in the stack by this frame.
499
500 * status -- A (relatively) generic status indicator. It's a bitmask
501 with the following bits:
502
503 MY_FRAME_IN_SP: The base of the current frame is actually in
504 the stack pointer. This can happen for frame pointerless
505 functions, or cases where we're stopped in the prologue/epilogue
506 itself. For these cases mn10300_analyze_prologue will need up
507 update fi->frame before returning or analyzing the register
508 save instructions.
509
510 MY_FRAME_IN_FP: The base of the current frame is in the
511 frame pointer register ($a3).
512
513 NO_MORE_FRAMES: Set this if the current frame is "start" or
514 if the first instruction looks like mov <imm>,sp. This tells
515 frame chain to not bother trying to unwind past this frame. */
516
517 static CORE_ADDR
518 mn10300_analyze_prologue (struct frame_info *fi, CORE_ADDR pc)
519 {
520 CORE_ADDR func_addr, func_end, addr, stop;
521 CORE_ADDR stack_size;
522 int imm_size;
523 unsigned char buf[4];
524 int status, movm_args = 0;
525 char *name;
526
527 /* Use the PC in the frame if it's provided to look up the
528 start of this function.
529
530 Note: kevinb/2003-07-16: We used to do the following here:
531 pc = (fi ? get_frame_pc (fi) : pc);
532 But this is (now) badly broken when called from analyze_dummy_frame().
533 */
534 pc = (pc ? pc : get_frame_pc (fi));
535
536 /* Find the start of this function. */
537 status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
538
539 /* Do nothing if we couldn't find the start of this function or if we're
540 stopped at the first instruction in the prologue. */
541 if (status == 0)
542 {
543 return pc;
544 }
545
546 /* If we're in start, then give up. */
547 if (strcmp (name, "start") == 0)
548 {
549 if (fi != NULL)
550 get_frame_extra_info (fi)->status = NO_MORE_FRAMES;
551 return pc;
552 }
553
554 /* At the start of a function our frame is in the stack pointer. */
555 if (fi)
556 get_frame_extra_info (fi)->status = MY_FRAME_IN_SP;
557
558 /* Get the next two bytes into buf, we need two because rets is a two
559 byte insn and the first isn't enough to uniquely identify it. */
560 status = deprecated_read_memory_nobpt (pc, buf, 2);
561 if (status != 0)
562 return pc;
563
564 #if 0
565 /* Note: kevinb/2003-07-16: We shouldn't be making these sorts of
566 changes to the frame in prologue examination code. */
567 /* If we're physically on an "rets" instruction, then our frame has
568 already been deallocated. Note this can also be true for retf
569 and ret if they specify a size of zero.
570
571 In this case fi->frame is bogus, we need to fix it. */
572 if (fi && buf[0] == 0xf0 && buf[1] == 0xfc)
573 {
574 if (get_next_frame (fi) == NULL)
575 deprecated_update_frame_base_hack (fi, read_sp ());
576 return get_frame_pc (fi);
577 }
578
579 /* Similarly if we're stopped on the first insn of a prologue as our
580 frame hasn't been allocated yet. */
581 if (fi && get_frame_pc (fi) == func_addr)
582 {
583 if (get_next_frame (fi) == NULL)
584 deprecated_update_frame_base_hack (fi, read_sp ());
585 return get_frame_pc (fi);
586 }
587 #endif
588
589 /* Figure out where to stop scanning. */
590 stop = fi ? pc : func_end;
591
592 /* Don't walk off the end of the function. */
593 stop = stop > func_end ? func_end : stop;
594
595 /* Start scanning on the first instruction of this function. */
596 addr = func_addr;
597
598 /* Suck in two bytes. */
599 if (addr + 2 >= stop
600 || (status = deprecated_read_memory_nobpt (addr, buf, 2)) != 0)
601 {
602 fix_frame_pointer (fi, 0);
603 return addr;
604 }
605
606 /* First see if this insn sets the stack pointer from a register; if
607 so, it's probably the initialization of the stack pointer in _start,
608 so mark this as the bottom-most frame. */
609 if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
610 {
611 if (fi)
612 get_frame_extra_info (fi)->status = NO_MORE_FRAMES;
613 return addr;
614 }
615
616 /* Now look for movm [regs],sp, which saves the callee saved registers.
617
618 At this time we don't know if fi->frame is valid, so we only note
619 that we encountered a movm instruction. Later, we'll set the entries
620 in fsr.regs as needed. */
621 if (buf[0] == 0xcf)
622 {
623 /* Extract the register list for the movm instruction. */
624 status = deprecated_read_memory_nobpt (addr + 1, buf, 1);
625 movm_args = *buf;
626
627 addr += 2;
628
629 /* Quit now if we're beyond the stop point. */
630 if (addr >= stop)
631 {
632 /* Fix fi->frame since it's bogus at this point. */
633 if (fi && get_next_frame (fi) == NULL)
634 deprecated_update_frame_base_hack (fi, read_sp ());
635
636 /* Note if/where callee saved registers were saved. */
637 set_movm_offsets (fi, movm_args);
638 return addr;
639 }
640
641 /* Get the next two bytes so the prologue scan can continue. */
642 status = deprecated_read_memory_nobpt (addr, buf, 2);
643 if (status != 0)
644 {
645 /* Fix fi->frame since it's bogus at this point. */
646 if (fi && get_next_frame (fi) == NULL)
647 deprecated_update_frame_base_hack (fi, read_sp ());
648
649 /* Note if/where callee saved registers were saved. */
650 set_movm_offsets (fi, movm_args);
651 return addr;
652 }
653 }
654
655 /* Now see if we set up a frame pointer via "mov sp,a3" */
656 if (buf[0] == 0x3f)
657 {
658 addr += 1;
659
660 /* The frame pointer is now valid. */
661 if (fi)
662 {
663 get_frame_extra_info (fi)->status |= MY_FRAME_IN_FP;
664 get_frame_extra_info (fi)->status &= ~MY_FRAME_IN_SP;
665 }
666
667 /* Quit now if we're beyond the stop point. */
668 if (addr >= stop)
669 {
670 /* Fix fi->frame if it's bogus at this point. */
671 fix_frame_pointer (fi, 0);
672
673 /* Note if/where callee saved registers were saved. */
674 set_movm_offsets (fi, movm_args);
675 return addr;
676 }
677
678 /* Get two more bytes so scanning can continue. */
679 status = deprecated_read_memory_nobpt (addr, buf, 2);
680 if (status != 0)
681 {
682 /* Fix fi->frame if it's bogus at this point. */
683 fix_frame_pointer (fi, 0);
684
685 /* Note if/where callee saved registers were saved. */
686 set_movm_offsets (fi, movm_args);
687 return addr;
688 }
689 }
690
691 /* Next we should allocate the local frame. No more prologue insns
692 are found after allocating the local frame.
693
694 Search for add imm8,sp (0xf8feXX)
695 or add imm16,sp (0xfafeXXXX)
696 or add imm32,sp (0xfcfeXXXXXXXX).
697
698 If none of the above was found, then this prologue has no
699 additional stack. */
700
701 status = deprecated_read_memory_nobpt (addr, buf, 2);
702 if (status != 0)
703 {
704 /* Fix fi->frame if it's bogus at this point. */
705 fix_frame_pointer (fi, 0);
706
707 /* Note if/where callee saved registers were saved. */
708 set_movm_offsets (fi, movm_args);
709 return addr;
710 }
711
712 imm_size = 0;
713 if (buf[0] == 0xf8 && buf[1] == 0xfe)
714 imm_size = 1;
715 else if (buf[0] == 0xfa && buf[1] == 0xfe)
716 imm_size = 2;
717 else if (buf[0] == 0xfc && buf[1] == 0xfe)
718 imm_size = 4;
719
720 if (imm_size != 0)
721 {
722 /* Suck in imm_size more bytes, they'll hold the size of the
723 current frame. */
724 status = deprecated_read_memory_nobpt (addr + 2, buf, imm_size);
725 if (status != 0)
726 {
727 /* Fix fi->frame if it's bogus at this point. */
728 fix_frame_pointer (fi, 0);
729
730 /* Note if/where callee saved registers were saved. */
731 set_movm_offsets (fi, movm_args);
732 return addr;
733 }
734
735 /* Note the size of the stack in the frame info structure. */
736 stack_size = extract_signed_integer (buf, imm_size);
737 if (fi)
738 get_frame_extra_info (fi)->stack_size = stack_size;
739
740 /* We just consumed 2 + imm_size bytes. */
741 addr += 2 + imm_size;
742
743 /* No more prologue insns follow, so begin preparation to return. */
744 /* Fix fi->frame if it's bogus at this point. */
745 fix_frame_pointer (fi, stack_size);
746
747 /* Note if/where callee saved registers were saved. */
748 set_movm_offsets (fi, movm_args);
749 return addr;
750 }
751
752 /* We never found an insn which allocates local stack space, regardless
753 this is the end of the prologue. */
754 /* Fix fi->frame if it's bogus at this point. */
755 fix_frame_pointer (fi, 0);
756
757 /* Note if/where callee saved registers were saved. */
758 set_movm_offsets (fi, movm_args);
759 return addr;
760 }
761
762
763 /* Function: saved_regs_size
764 Return the size in bytes of the register save area, based on the
765 saved_regs array in FI. */
766 static int
767 saved_regs_size (struct frame_info *fi)
768 {
769 int adjust = 0;
770 int i;
771
772 /* Reserve four bytes for every register saved. */
773 for (i = 0; i < NUM_REGS; i++)
774 if (deprecated_get_frame_saved_regs (fi)[i])
775 adjust += 4;
776
777 /* If we saved LIR, then it's most likely we used a `movm'
778 instruction with the `other' bit set, in which case the SP is
779 decremented by an extra four bytes, "to simplify calculation
780 of the transfer area", according to the processor manual. */
781 if (deprecated_get_frame_saved_regs (fi)[LIR_REGNUM])
782 adjust += 4;
783
784 return adjust;
785 }
786
787
788 /* Function: frame_chain
789 Figure out and return the caller's frame pointer given current
790 frame_info struct.
791
792 We don't handle dummy frames yet but we would probably just return the
793 stack pointer that was in use at the time the function call was made? */
794
795 static CORE_ADDR
796 mn10300_frame_chain (struct frame_info *fi)
797 {
798 struct frame_info *dummy;
799 /* Walk through the prologue to determine the stack size,
800 location of saved registers, end of the prologue, etc. */
801 if (get_frame_extra_info (fi)->status == 0)
802 mn10300_analyze_prologue (fi, (CORE_ADDR) 0);
803
804 /* Quit now if mn10300_analyze_prologue set NO_MORE_FRAMES. */
805 if (get_frame_extra_info (fi)->status & NO_MORE_FRAMES)
806 return 0;
807
808 /* Now that we've analyzed our prologue, determine the frame
809 pointer for our caller.
810
811 If our caller has a frame pointer, then we need to
812 find the entry value of $a3 to our function.
813
814 If fsr.regs[A3_REGNUM] is nonzero, then it's at the memory
815 location pointed to by fsr.regs[A3_REGNUM].
816
817 Else it's still in $a3.
818
819 If our caller does not have a frame pointer, then his
820 frame base is fi->frame + -caller's stack size. */
821
822 /* The easiest way to get that info is to analyze our caller's frame.
823 So we set up a dummy frame and call mn10300_analyze_prologue to
824 find stuff for us. */
825 dummy = analyze_dummy_frame (DEPRECATED_FRAME_SAVED_PC (fi), get_frame_base (fi));
826
827 if (get_frame_extra_info (dummy)->status & MY_FRAME_IN_FP)
828 {
829 /* Our caller has a frame pointer. So find the frame in $a3 or
830 in the stack. */
831 if (deprecated_get_frame_saved_regs (fi)[A3_REGNUM])
832 return (read_memory_integer (deprecated_get_frame_saved_regs (fi)[A3_REGNUM],
833 DEPRECATED_REGISTER_SIZE));
834 else
835 return read_register (A3_REGNUM);
836 }
837 else
838 {
839 int adjust = saved_regs_size (fi);
840
841 /* Our caller does not have a frame pointer. So his frame starts
842 at the base of our frame (fi->frame) + register save space
843 + <his size>. */
844 return get_frame_base (fi) + adjust + -get_frame_extra_info (dummy)->stack_size;
845 }
846 }
847
848 /* Function: skip_prologue
849 Return the address of the first inst past the prologue of the function. */
850
851 static CORE_ADDR
852 mn10300_skip_prologue (CORE_ADDR pc)
853 {
854 /* We used to check the debug symbols, but that can lose if
855 we have a null prologue. */
856 return mn10300_analyze_prologue (NULL, pc);
857 }
858
859 /* generic_pop_current_frame calls this function if the current
860 frame isn't a dummy frame. */
861 static void
862 mn10300_pop_frame_regular (struct frame_info *frame)
863 {
864 int regnum;
865
866 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
867
868 /* Restore any saved registers. */
869 for (regnum = 0; regnum < NUM_REGS; regnum++)
870 if (deprecated_get_frame_saved_regs (frame)[regnum] != 0)
871 {
872 ULONGEST value;
873
874 value = read_memory_unsigned_integer (deprecated_get_frame_saved_regs (frame)[regnum],
875 register_size (current_gdbarch, regnum));
876 write_register (regnum, value);
877 }
878
879 /* Actually cut back the stack, adjusted by the saved registers like
880 ret would. */
881 write_register (SP_REGNUM, get_frame_base (frame) + saved_regs_size (frame));
882 }
883
884 /* Function: pop_frame
885 This routine gets called when either the user uses the `return'
886 command, or the call dummy breakpoint gets hit. */
887 static void
888 mn10300_pop_frame (void)
889 {
890 struct frame_info *frame = get_current_frame ();
891 if (get_frame_type (frame) == DUMMY_FRAME)
892 /* NOTE: cagney/2002-22-23: Does this ever occure? Surely a dummy
893 frame will have already been poped by the "infrun.c" code. */
894 deprecated_pop_dummy_frame ();
895 else
896 mn10300_pop_frame_regular (frame);
897 /* Throw away any cached frame information. */
898 flush_cached_frames ();
899 }
900
901 /* Function: push_arguments
902 Setup arguments for a call to the target. Arguments go in
903 order on the stack. */
904
905 static CORE_ADDR
906 mn10300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
907 int struct_return, CORE_ADDR struct_addr)
908 {
909 int argnum = 0;
910 int len = 0;
911 int stack_offset = 0;
912 int regsused = struct_return ? 1 : 0;
913
914 /* This should be a nop, but align the stack just in case something
915 went wrong. Stacks are four byte aligned on the mn10300. */
916 sp &= ~3;
917
918 /* Now make space on the stack for the args.
919
920 XXX This doesn't appear to handle pass-by-invisible reference
921 arguments. */
922 for (argnum = 0; argnum < nargs; argnum++)
923 {
924 int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3;
925
926 while (regsused < 2 && arg_length > 0)
927 {
928 regsused++;
929 arg_length -= 4;
930 }
931 len += arg_length;
932 }
933
934 /* Allocate stack space. */
935 sp -= len;
936
937 regsused = struct_return ? 1 : 0;
938 /* Push all arguments onto the stack. */
939 for (argnum = 0; argnum < nargs; argnum++)
940 {
941 int len;
942 char *val;
943
944 /* XXX Check this. What about UNIONS? */
945 if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
946 && TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
947 {
948 /* XXX Wrong, we want a pointer to this argument. */
949 len = TYPE_LENGTH (VALUE_TYPE (*args));
950 val = (char *) VALUE_CONTENTS (*args);
951 }
952 else
953 {
954 len = TYPE_LENGTH (VALUE_TYPE (*args));
955 val = (char *) VALUE_CONTENTS (*args);
956 }
957
958 while (regsused < 2 && len > 0)
959 {
960 write_register (regsused, extract_unsigned_integer (val, 4));
961 val += 4;
962 len -= 4;
963 regsused++;
964 }
965
966 while (len > 0)
967 {
968 write_memory (sp + stack_offset, val, 4);
969 len -= 4;
970 val += 4;
971 stack_offset += 4;
972 }
973
974 args++;
975 }
976
977 /* Make space for the flushback area. */
978 sp -= 8;
979 return sp;
980 }
981
982 /* Function: push_return_address (pc)
983 Set up the return address for the inferior function call.
984 Needed for targets where we don't actually execute a JSR/BSR instruction */
985
986 static CORE_ADDR
987 mn10300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
988 {
989 unsigned char buf[4];
990
991 store_unsigned_integer (buf, 4, entry_point_address ());
992 write_memory (sp - 4, buf, 4);
993 return sp - 4;
994 }
995
996 /* Function: store_struct_return (addr,sp)
997 Store the structure value return address for an inferior function
998 call. */
999
1000 static void
1001 mn10300_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1002 {
1003 /* The structure return address is passed as the first argument. */
1004 write_register (0, addr);
1005 }
1006
1007 /* Function: frame_saved_pc
1008 Find the caller of this frame. We do this by seeing if RP_REGNUM
1009 is saved in the stack anywhere, otherwise we get it from the
1010 registers. If the inner frame is a dummy frame, return its PC
1011 instead of RP, because that's where "caller" of the dummy-frame
1012 will be found. */
1013
1014 static CORE_ADDR
1015 mn10300_frame_saved_pc (struct frame_info *fi)
1016 {
1017 int adjust = saved_regs_size (fi);
1018
1019 return (read_memory_integer (get_frame_base (fi) + adjust,
1020 DEPRECATED_REGISTER_SIZE));
1021 }
1022
1023 /* Function: mn10300_init_extra_frame_info
1024 Setup the frame's frame pointer, pc, and frame addresses for saved
1025 registers. Most of the work is done in mn10300_analyze_prologue().
1026
1027 Note that when we are called for the last frame (currently active frame),
1028 that get_frame_pc (fi) and fi->frame will already be setup. However, fi->frame will
1029 be valid only if this routine uses FP. For previous frames, fi-frame will
1030 always be correct. mn10300_analyze_prologue will fix fi->frame if
1031 it's not valid.
1032
1033 We can be called with the PC in the call dummy under two
1034 circumstances. First, during normal backtracing, second, while
1035 figuring out the frame pointer just prior to calling the target
1036 function (see call_function_by_hand). */
1037
1038 static void
1039 mn10300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
1040 {
1041 if (get_next_frame (fi))
1042 deprecated_update_frame_pc_hack (fi, DEPRECATED_FRAME_SAVED_PC (get_next_frame (fi)));
1043
1044 frame_saved_regs_zalloc (fi);
1045 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
1046
1047 get_frame_extra_info (fi)->status = 0;
1048 get_frame_extra_info (fi)->stack_size = 0;
1049
1050 mn10300_analyze_prologue (fi, 0);
1051 }
1052
1053
1054 /* This function's job is handled by init_extra_frame_info. */
1055 static void
1056 mn10300_frame_init_saved_regs (struct frame_info *frame)
1057 {
1058 }
1059
1060
1061 /* Function: mn10300_virtual_frame_pointer
1062 Return the register that the function uses for a frame pointer,
1063 plus any necessary offset to be applied to the register before
1064 any frame pointer offsets. */
1065
1066 static void
1067 mn10300_virtual_frame_pointer (CORE_ADDR pc,
1068 int *reg,
1069 LONGEST *offset)
1070 {
1071 struct frame_info *dummy = analyze_dummy_frame (pc, 0);
1072 /* Set up a dummy frame_info, Analyze the prolog and fill in the
1073 extra info. */
1074 /* Results will tell us which type of frame it uses. */
1075 if (get_frame_extra_info (dummy)->status & MY_FRAME_IN_SP)
1076 {
1077 *reg = SP_REGNUM;
1078 *offset = -(get_frame_extra_info (dummy)->stack_size);
1079 }
1080 else
1081 {
1082 *reg = A3_REGNUM;
1083 *offset = 0;
1084 }
1085 }
1086
1087 static int
1088 mn10300_reg_struct_has_addr (int gcc_p, struct type *type)
1089 {
1090 return (TYPE_LENGTH (type) > 8);
1091 }
1092
1093 static struct type *
1094 mn10300_register_virtual_type (int reg)
1095 {
1096 return builtin_type_int;
1097 }
1098
1099 static int
1100 mn10300_register_byte (int reg)
1101 {
1102 return (reg * 4);
1103 }
1104
1105 static int
1106 mn10300_register_virtual_size (int reg)
1107 {
1108 return 4;
1109 }
1110
1111 static int
1112 mn10300_register_raw_size (int reg)
1113 {
1114 return 4;
1115 }
1116
1117 /* If DWARF2 is a register number appearing in Dwarf2 debug info, then
1118 mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB
1119 register number. Why don't Dwarf2 and GDB use the same numbering?
1120 Who knows? But since people have object files lying around with
1121 the existing Dwarf2 numbering, and other people have written stubs
1122 to work with the existing GDB, neither of them can change. So we
1123 just have to cope. */
1124 static int
1125 mn10300_dwarf2_reg_to_regnum (int dwarf2)
1126 {
1127 /* This table is supposed to be shaped like the REGISTER_NAMES
1128 initializer in gcc/config/mn10300/mn10300.h. Registers which
1129 appear in GCC's numbering, but have no counterpart in GDB's
1130 world, are marked with a -1. */
1131 static int dwarf2_to_gdb[] = {
1132 0, 1, 2, 3, 4, 5, 6, 7, -1, 8,
1133 15, 16, 17, 18, 19, 20, 21, 22
1134 };
1135 int gdb;
1136
1137 if (dwarf2 < 0
1138 || dwarf2 >= (sizeof (dwarf2_to_gdb) / sizeof (dwarf2_to_gdb[0]))
1139 || dwarf2_to_gdb[dwarf2] == -1)
1140 internal_error (__FILE__, __LINE__,
1141 "bogus register number in debug info: %d", dwarf2);
1142
1143 return dwarf2_to_gdb[dwarf2];
1144 }
1145
1146 static void
1147 mn10300_print_register (const char *name, int regnum, int reg_width)
1148 {
1149 char raw_buffer[MAX_REGISTER_SIZE];
1150
1151 if (reg_width)
1152 printf_filtered ("%*s: ", reg_width, name);
1153 else
1154 printf_filtered ("%s: ", name);
1155
1156 /* Get the data */
1157 if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
1158 {
1159 printf_filtered ("[invalid]");
1160 return;
1161 }
1162 else
1163 {
1164 int byte;
1165 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1166 {
1167 for (byte = register_size (current_gdbarch, regnum) - DEPRECATED_REGISTER_VIRTUAL_SIZE (regnum);
1168 byte < register_size (current_gdbarch, regnum);
1169 byte++)
1170 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
1171 }
1172 else
1173 {
1174 for (byte = DEPRECATED_REGISTER_VIRTUAL_SIZE (regnum) - 1;
1175 byte >= 0;
1176 byte--)
1177 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
1178 }
1179 }
1180 }
1181
1182 static void
1183 mn10300_do_registers_info (int regnum, int fpregs)
1184 {
1185 if (regnum >= 0)
1186 {
1187 const char *name = REGISTER_NAME (regnum);
1188 if (name == NULL || name[0] == '\0')
1189 error ("Not a valid register for the current processor type");
1190 mn10300_print_register (name, regnum, 0);
1191 printf_filtered ("\n");
1192 }
1193 else
1194 {
1195 /* print registers in an array 4x8 */
1196 int r;
1197 int reg;
1198 const int nr_in_row = 4;
1199 const int reg_width = 4;
1200 for (r = 0; r < NUM_REGS; r += nr_in_row)
1201 {
1202 int c;
1203 int printing = 0;
1204 int padding = 0;
1205 for (c = r; c < r + nr_in_row; c++)
1206 {
1207 const char *name = REGISTER_NAME (c);
1208 if (name != NULL && *name != '\0')
1209 {
1210 printing = 1;
1211 while (padding > 0)
1212 {
1213 printf_filtered (" ");
1214 padding--;
1215 }
1216 mn10300_print_register (name, c, reg_width);
1217 printf_filtered (" ");
1218 }
1219 else
1220 {
1221 padding += (reg_width + 2 + 8 + 1);
1222 }
1223 }
1224 if (printing)
1225 printf_filtered ("\n");
1226 }
1227 }
1228 }
1229
1230 static CORE_ADDR
1231 mn10300_read_fp (void)
1232 {
1233 /* That's right, we're using the stack pointer as our frame pointer. */
1234 gdb_assert (SP_REGNUM >= 0);
1235 return read_register (SP_REGNUM);
1236 }
1237
1238 /* Dump out the mn10300 speciic architecture information. */
1239
1240 static void
1241 mn10300_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1242 {
1243 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1244 fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
1245 tdep->am33_mode);
1246 }
1247
1248 static struct gdbarch *
1249 mn10300_gdbarch_init (struct gdbarch_info info,
1250 struct gdbarch_list *arches)
1251 {
1252 struct gdbarch *gdbarch;
1253 struct gdbarch_tdep *tdep = NULL;
1254 int am33_mode;
1255 gdbarch_register_name_ftype *register_name;
1256 int mach;
1257 int num_regs;
1258
1259 arches = gdbarch_list_lookup_by_info (arches, &info);
1260 if (arches != NULL)
1261 return arches->gdbarch;
1262 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1263 gdbarch = gdbarch_alloc (&info, tdep);
1264
1265 if (info.bfd_arch_info != NULL
1266 && info.bfd_arch_info->arch == bfd_arch_mn10300)
1267 mach = info.bfd_arch_info->mach;
1268 else
1269 mach = 0;
1270 switch (mach)
1271 {
1272 case 0:
1273 case bfd_mach_mn10300:
1274 am33_mode = 0;
1275 register_name = mn10300_generic_register_name;
1276 num_regs = 32;
1277 break;
1278 case bfd_mach_am33:
1279 am33_mode = 1;
1280 register_name = am33_register_name;
1281 num_regs = 32;
1282 break;
1283 default:
1284 internal_error (__FILE__, __LINE__,
1285 "mn10300_gdbarch_init: Unknown mn10300 variant");
1286 return NULL; /* keep GCC happy. */
1287 }
1288
1289 /* Registers. */
1290 set_gdbarch_num_regs (gdbarch, num_regs);
1291 set_gdbarch_register_name (gdbarch, register_name);
1292 set_gdbarch_deprecated_register_size (gdbarch, 4);
1293 set_gdbarch_deprecated_register_raw_size (gdbarch, mn10300_register_raw_size);
1294 set_gdbarch_deprecated_register_byte (gdbarch, mn10300_register_byte);
1295 set_gdbarch_deprecated_register_virtual_size (gdbarch, mn10300_register_virtual_size);
1296 set_gdbarch_deprecated_register_virtual_type (gdbarch, mn10300_register_virtual_type);
1297 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum);
1298 set_gdbarch_deprecated_do_registers_info (gdbarch, mn10300_do_registers_info);
1299 set_gdbarch_sp_regnum (gdbarch, 8);
1300 set_gdbarch_pc_regnum (gdbarch, 9);
1301 set_gdbarch_deprecated_fp_regnum (gdbarch, 31);
1302 set_gdbarch_virtual_frame_pointer (gdbarch, mn10300_virtual_frame_pointer);
1303
1304 /* Breakpoints. */
1305 set_gdbarch_breakpoint_from_pc (gdbarch, mn10300_breakpoint_from_pc);
1306
1307 /* Stack unwinding. */
1308 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1309 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mn10300_saved_pc_after_call);
1310 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mn10300_init_extra_frame_info);
1311 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mn10300_frame_init_saved_regs);
1312 set_gdbarch_deprecated_frame_chain (gdbarch, mn10300_frame_chain);
1313 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mn10300_frame_saved_pc);
1314 set_gdbarch_return_value (gdbarch, mn10300_return_value);
1315 set_gdbarch_deprecated_store_struct_return (gdbarch, mn10300_store_struct_return);
1316 set_gdbarch_deprecated_pop_frame (gdbarch, mn10300_pop_frame);
1317 set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue);
1318 /* That's right, we're using the stack pointer as our frame pointer. */
1319 set_gdbarch_deprecated_target_read_fp (gdbarch, mn10300_read_fp);
1320
1321 /* Calling functions in the inferior from GDB. */
1322 set_gdbarch_deprecated_push_arguments (gdbarch, mn10300_push_arguments);
1323 set_gdbarch_deprecated_reg_struct_has_addr
1324 (gdbarch, mn10300_reg_struct_has_addr);
1325 set_gdbarch_deprecated_push_return_address (gdbarch, mn10300_push_return_address);
1326
1327 tdep->am33_mode = am33_mode;
1328
1329 /* Should be using push_dummy_call. */
1330 set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp);
1331
1332 set_gdbarch_print_insn (gdbarch, print_insn_mn10300);
1333
1334 return gdbarch;
1335 }
1336
1337 void
1338 _initialize_mn10300_tdep (void)
1339 {
1340 /* printf("_initialize_mn10300_tdep\n"); */
1341 gdbarch_register (bfd_arch_mn10300, mn10300_gdbarch_init, mn10300_dump_tdep);
1342 }
This page took 0.058634 seconds and 4 git commands to generate.