2003-04-01 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / mn10300-tdep.c
1 /* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
2
3 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
4 Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "target.h"
27 #include "value.h"
28 #include "bfd.h"
29 #include "gdb_string.h"
30 #include "gdbcore.h"
31 #include "symfile.h"
32 #include "regcache.h"
33 #include "arch-utils.h"
34
35 #define D0_REGNUM 0
36 #define D2_REGNUM 2
37 #define D3_REGNUM 3
38 #define A0_REGNUM 4
39 #define A2_REGNUM 6
40 #define A3_REGNUM 7
41 #define MDR_REGNUM 10
42 #define PSW_REGNUM 11
43 #define LIR_REGNUM 12
44 #define LAR_REGNUM 13
45 #define MDRQ_REGNUM 14
46 #define E0_REGNUM 15
47 #define MCRH_REGNUM 26
48 #define MCRL_REGNUM 27
49 #define MCVF_REGNUM 28
50
51 enum movm_register_bits {
52 movm_exother_bit = 0x01,
53 movm_exreg1_bit = 0x02,
54 movm_exreg0_bit = 0x04,
55 movm_other_bit = 0x08,
56 movm_a3_bit = 0x10,
57 movm_a2_bit = 0x20,
58 movm_d3_bit = 0x40,
59 movm_d2_bit = 0x80
60 };
61
62 extern void _initialize_mn10300_tdep (void);
63 static CORE_ADDR mn10300_analyze_prologue (struct frame_info *fi,
64 CORE_ADDR pc);
65
66 /* mn10300 private data */
67 struct gdbarch_tdep
68 {
69 int am33_mode;
70 #define AM33_MODE (gdbarch_tdep (current_gdbarch)->am33_mode)
71 };
72
73 /* Additional info used by the frame */
74
75 struct frame_extra_info
76 {
77 int status;
78 int stack_size;
79 };
80
81
82 static char *
83 register_name (int reg, char **regs, long sizeof_regs)
84 {
85 if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
86 return NULL;
87 else
88 return regs[reg];
89 }
90
91 static const char *
92 mn10300_generic_register_name (int reg)
93 {
94 static char *regs[] =
95 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
96 "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
97 "", "", "", "", "", "", "", "",
98 "", "", "", "", "", "", "", "fp"
99 };
100 return register_name (reg, regs, sizeof regs);
101 }
102
103
104 static const char *
105 am33_register_name (int reg)
106 {
107 static char *regs[] =
108 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
109 "sp", "pc", "mdr", "psw", "lir", "lar", "",
110 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
111 "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
112 };
113 return register_name (reg, regs, sizeof regs);
114 }
115
116 static CORE_ADDR
117 mn10300_saved_pc_after_call (struct frame_info *fi)
118 {
119 return read_memory_integer (read_register (SP_REGNUM), 4);
120 }
121
122 static void
123 mn10300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
124 {
125 if (TYPE_CODE (type) == TYPE_CODE_PTR)
126 memcpy (valbuf, regbuf + REGISTER_BYTE (4), TYPE_LENGTH (type));
127 else
128 memcpy (valbuf, regbuf + REGISTER_BYTE (0), TYPE_LENGTH (type));
129 }
130
131 static CORE_ADDR
132 mn10300_extract_struct_value_address (char *regbuf)
133 {
134 return extract_address (regbuf + REGISTER_BYTE (4),
135 REGISTER_RAW_SIZE (4));
136 }
137
138 static void
139 mn10300_store_return_value (struct type *type, char *valbuf)
140 {
141 if (TYPE_CODE (type) == TYPE_CODE_PTR)
142 deprecated_write_register_bytes (REGISTER_BYTE (4), valbuf,
143 TYPE_LENGTH (type));
144 else
145 deprecated_write_register_bytes (REGISTER_BYTE (0), valbuf,
146 TYPE_LENGTH (type));
147 }
148
149 static struct frame_info *analyze_dummy_frame (CORE_ADDR, CORE_ADDR);
150 static struct frame_info *
151 analyze_dummy_frame (CORE_ADDR pc, CORE_ADDR frame)
152 {
153 static struct frame_info *dummy = NULL;
154 if (dummy == NULL)
155 {
156 struct frame_extra_info *extra_info;
157 CORE_ADDR *saved_regs;
158 dummy = deprecated_frame_xmalloc ();
159 saved_regs = xmalloc (SIZEOF_FRAME_SAVED_REGS);
160 deprecated_set_frame_saved_regs_hack (dummy, saved_regs);
161 extra_info = XMALLOC (struct frame_extra_info);
162 deprecated_set_frame_extra_info_hack (dummy, extra_info);
163 }
164 deprecated_set_frame_next_hack (dummy, NULL);
165 deprecated_set_frame_prev_hack (dummy, NULL);
166 deprecated_update_frame_pc_hack (dummy, pc);
167 deprecated_update_frame_base_hack (dummy, frame);
168 get_frame_extra_info (dummy)->status = 0;
169 get_frame_extra_info (dummy)->stack_size = 0;
170 memset (get_frame_saved_regs (dummy), '\000', SIZEOF_FRAME_SAVED_REGS);
171 mn10300_analyze_prologue (dummy, 0);
172 return dummy;
173 }
174
175 /* Values for frame_info.status */
176
177 #define MY_FRAME_IN_SP 0x1
178 #define MY_FRAME_IN_FP 0x2
179 #define NO_MORE_FRAMES 0x4
180
181
182 /* Should call_function allocate stack space for a struct return? */
183 static int
184 mn10300_use_struct_convention (int gcc_p, struct type *type)
185 {
186 return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 8);
187 }
188
189 /* The breakpoint instruction must be the same size as the smallest
190 instruction in the instruction set.
191
192 The Matsushita mn10x00 processors have single byte instructions
193 so we need a single byte breakpoint. Matsushita hasn't defined
194 one, so we defined it ourselves. */
195
196 const static unsigned char *
197 mn10300_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
198 {
199 static char breakpoint[] =
200 {0xff};
201 *bp_size = 1;
202 return breakpoint;
203 }
204
205
206 /* Fix fi->frame if it's bogus at this point. This is a helper
207 function for mn10300_analyze_prologue. */
208
209 static void
210 fix_frame_pointer (struct frame_info *fi, int stack_size)
211 {
212 if (fi && get_next_frame (fi) == NULL)
213 {
214 if (get_frame_extra_info (fi)->status & MY_FRAME_IN_SP)
215 deprecated_update_frame_base_hack (fi, read_sp () - stack_size);
216 else if (get_frame_extra_info (fi)->status & MY_FRAME_IN_FP)
217 deprecated_update_frame_base_hack (fi, read_register (A3_REGNUM));
218 }
219 }
220
221
222 /* Set offsets of registers saved by movm instruction.
223 This is a helper function for mn10300_analyze_prologue. */
224
225 static void
226 set_movm_offsets (struct frame_info *fi, int movm_args)
227 {
228 int offset = 0;
229
230 if (fi == NULL || movm_args == 0)
231 return;
232
233 if (movm_args & movm_other_bit)
234 {
235 /* The `other' bit leaves a blank area of four bytes at the
236 beginning of its block of saved registers, making it 32 bytes
237 long in total. */
238 get_frame_saved_regs (fi)[LAR_REGNUM] = get_frame_base (fi) + offset + 4;
239 get_frame_saved_regs (fi)[LIR_REGNUM] = get_frame_base (fi) + offset + 8;
240 get_frame_saved_regs (fi)[MDR_REGNUM] = get_frame_base (fi) + offset + 12;
241 get_frame_saved_regs (fi)[A0_REGNUM + 1] = get_frame_base (fi) + offset + 16;
242 get_frame_saved_regs (fi)[A0_REGNUM] = get_frame_base (fi) + offset + 20;
243 get_frame_saved_regs (fi)[D0_REGNUM + 1] = get_frame_base (fi) + offset + 24;
244 get_frame_saved_regs (fi)[D0_REGNUM] = get_frame_base (fi) + offset + 28;
245 offset += 32;
246 }
247 if (movm_args & movm_a3_bit)
248 {
249 get_frame_saved_regs (fi)[A3_REGNUM] = get_frame_base (fi) + offset;
250 offset += 4;
251 }
252 if (movm_args & movm_a2_bit)
253 {
254 get_frame_saved_regs (fi)[A2_REGNUM] = get_frame_base (fi) + offset;
255 offset += 4;
256 }
257 if (movm_args & movm_d3_bit)
258 {
259 get_frame_saved_regs (fi)[D3_REGNUM] = get_frame_base (fi) + offset;
260 offset += 4;
261 }
262 if (movm_args & movm_d2_bit)
263 {
264 get_frame_saved_regs (fi)[D2_REGNUM] = get_frame_base (fi) + offset;
265 offset += 4;
266 }
267 if (AM33_MODE)
268 {
269 if (movm_args & movm_exother_bit)
270 {
271 get_frame_saved_regs (fi)[MCVF_REGNUM] = get_frame_base (fi) + offset;
272 get_frame_saved_regs (fi)[MCRL_REGNUM] = get_frame_base (fi) + offset + 4;
273 get_frame_saved_regs (fi)[MCRH_REGNUM] = get_frame_base (fi) + offset + 8;
274 get_frame_saved_regs (fi)[MDRQ_REGNUM] = get_frame_base (fi) + offset + 12;
275 get_frame_saved_regs (fi)[E0_REGNUM + 1] = get_frame_base (fi) + offset + 16;
276 get_frame_saved_regs (fi)[E0_REGNUM + 0] = get_frame_base (fi) + offset + 20;
277 offset += 24;
278 }
279 if (movm_args & movm_exreg1_bit)
280 {
281 get_frame_saved_regs (fi)[E0_REGNUM + 7] = get_frame_base (fi) + offset;
282 get_frame_saved_regs (fi)[E0_REGNUM + 6] = get_frame_base (fi) + offset + 4;
283 get_frame_saved_regs (fi)[E0_REGNUM + 5] = get_frame_base (fi) + offset + 8;
284 get_frame_saved_regs (fi)[E0_REGNUM + 4] = get_frame_base (fi) + offset + 12;
285 offset += 16;
286 }
287 if (movm_args & movm_exreg0_bit)
288 {
289 get_frame_saved_regs (fi)[E0_REGNUM + 3] = get_frame_base (fi) + offset;
290 get_frame_saved_regs (fi)[E0_REGNUM + 2] = get_frame_base (fi) + offset + 4;
291 offset += 8;
292 }
293 }
294 }
295
296
297 /* The main purpose of this file is dealing with prologues to extract
298 information about stack frames and saved registers.
299
300 In gcc/config/mn13000/mn10300.c, the expand_prologue prologue
301 function is pretty readable, and has a nice explanation of how the
302 prologue is generated. The prologues generated by that code will
303 have the following form (NOTE: the current code doesn't handle all
304 this!):
305
306 + If this is an old-style varargs function, then its arguments
307 need to be flushed back to the stack:
308
309 mov d0,(4,sp)
310 mov d1,(4,sp)
311
312 + If we use any of the callee-saved registers, save them now.
313
314 movm [some callee-saved registers],(sp)
315
316 + If we have any floating-point registers to save:
317
318 - Decrement the stack pointer to reserve space for the registers.
319 If the function doesn't need a frame pointer, we may combine
320 this with the adjustment that reserves space for the frame.
321
322 add -SIZE, sp
323
324 - Save the floating-point registers. We have two possible
325 strategies:
326
327 . Save them at fixed offset from the SP:
328
329 fmov fsN,(OFFSETN,sp)
330 fmov fsM,(OFFSETM,sp)
331 ...
332
333 Note that, if OFFSETN happens to be zero, you'll get the
334 different opcode: fmov fsN,(sp)
335
336 . Or, set a0 to the start of the save area, and then use
337 post-increment addressing to save the FP registers.
338
339 mov sp, a0
340 add SIZE, a0
341 fmov fsN,(a0+)
342 fmov fsM,(a0+)
343 ...
344
345 + If the function needs a frame pointer, we set it here.
346
347 mov sp, a3
348
349 + Now we reserve space for the stack frame proper. This could be
350 merged into the `add -SIZE, sp' instruction for FP saves up
351 above, unless we needed to set the frame pointer in the previous
352 step, or the frame is so large that allocating the whole thing at
353 once would put the FP register save slots out of reach of the
354 addressing mode (128 bytes).
355
356 add -SIZE, sp
357
358 One day we might keep the stack pointer constant, that won't
359 change the code for prologues, but it will make the frame
360 pointerless case much more common. */
361
362 /* Analyze the prologue to determine where registers are saved,
363 the end of the prologue, etc etc. Return the end of the prologue
364 scanned.
365
366 We store into FI (if non-null) several tidbits of information:
367
368 * stack_size -- size of this stack frame. Note that if we stop in
369 certain parts of the prologue/epilogue we may claim the size of the
370 current frame is zero. This happens when the current frame has
371 not been allocated yet or has already been deallocated.
372
373 * fsr -- Addresses of registers saved in the stack by this frame.
374
375 * status -- A (relatively) generic status indicator. It's a bitmask
376 with the following bits:
377
378 MY_FRAME_IN_SP: The base of the current frame is actually in
379 the stack pointer. This can happen for frame pointerless
380 functions, or cases where we're stopped in the prologue/epilogue
381 itself. For these cases mn10300_analyze_prologue will need up
382 update fi->frame before returning or analyzing the register
383 save instructions.
384
385 MY_FRAME_IN_FP: The base of the current frame is in the
386 frame pointer register ($a3).
387
388 NO_MORE_FRAMES: Set this if the current frame is "start" or
389 if the first instruction looks like mov <imm>,sp. This tells
390 frame chain to not bother trying to unwind past this frame. */
391
392 static CORE_ADDR
393 mn10300_analyze_prologue (struct frame_info *fi, CORE_ADDR pc)
394 {
395 CORE_ADDR func_addr, func_end, addr, stop;
396 CORE_ADDR stack_size;
397 int imm_size;
398 unsigned char buf[4];
399 int status, movm_args = 0;
400 char *name;
401
402 /* Use the PC in the frame if it's provided to look up the
403 start of this function. */
404 pc = (fi ? get_frame_pc (fi) : pc);
405
406 /* Find the start of this function. */
407 status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
408
409 /* Do nothing if we couldn't find the start of this function or if we're
410 stopped at the first instruction in the prologue. */
411 if (status == 0)
412 {
413 return pc;
414 }
415
416 /* If we're in start, then give up. */
417 if (strcmp (name, "start") == 0)
418 {
419 if (fi != NULL)
420 get_frame_extra_info (fi)->status = NO_MORE_FRAMES;
421 return pc;
422 }
423
424 /* At the start of a function our frame is in the stack pointer. */
425 if (fi)
426 get_frame_extra_info (fi)->status = MY_FRAME_IN_SP;
427
428 /* Get the next two bytes into buf, we need two because rets is a two
429 byte insn and the first isn't enough to uniquely identify it. */
430 status = read_memory_nobpt (pc, buf, 2);
431 if (status != 0)
432 return pc;
433
434 /* If we're physically on an "rets" instruction, then our frame has
435 already been deallocated. Note this can also be true for retf
436 and ret if they specify a size of zero.
437
438 In this case fi->frame is bogus, we need to fix it. */
439 if (fi && buf[0] == 0xf0 && buf[1] == 0xfc)
440 {
441 if (get_next_frame (fi) == NULL)
442 deprecated_update_frame_base_hack (fi, read_sp ());
443 return get_frame_pc (fi);
444 }
445
446 /* Similarly if we're stopped on the first insn of a prologue as our
447 frame hasn't been allocated yet. */
448 if (fi && get_frame_pc (fi) == func_addr)
449 {
450 if (get_next_frame (fi) == NULL)
451 deprecated_update_frame_base_hack (fi, read_sp ());
452 return get_frame_pc (fi);
453 }
454
455 /* Figure out where to stop scanning. */
456 stop = fi ? get_frame_pc (fi) : func_end;
457
458 /* Don't walk off the end of the function. */
459 stop = stop > func_end ? func_end : stop;
460
461 /* Start scanning on the first instruction of this function. */
462 addr = func_addr;
463
464 /* Suck in two bytes. */
465 status = read_memory_nobpt (addr, buf, 2);
466 if (status != 0)
467 {
468 fix_frame_pointer (fi, 0);
469 return addr;
470 }
471
472 /* First see if this insn sets the stack pointer from a register; if
473 so, it's probably the initialization of the stack pointer in _start,
474 so mark this as the bottom-most frame. */
475 if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
476 {
477 if (fi)
478 get_frame_extra_info (fi)->status = NO_MORE_FRAMES;
479 return addr;
480 }
481
482 /* Now look for movm [regs],sp, which saves the callee saved registers.
483
484 At this time we don't know if fi->frame is valid, so we only note
485 that we encountered a movm instruction. Later, we'll set the entries
486 in fsr.regs as needed. */
487 if (buf[0] == 0xcf)
488 {
489 /* Extract the register list for the movm instruction. */
490 status = read_memory_nobpt (addr + 1, buf, 1);
491 movm_args = *buf;
492
493 addr += 2;
494
495 /* Quit now if we're beyond the stop point. */
496 if (addr >= stop)
497 {
498 /* Fix fi->frame since it's bogus at this point. */
499 if (fi && get_next_frame (fi) == NULL)
500 deprecated_update_frame_base_hack (fi, read_sp ());
501
502 /* Note if/where callee saved registers were saved. */
503 set_movm_offsets (fi, movm_args);
504 return addr;
505 }
506
507 /* Get the next two bytes so the prologue scan can continue. */
508 status = read_memory_nobpt (addr, buf, 2);
509 if (status != 0)
510 {
511 /* Fix fi->frame since it's bogus at this point. */
512 if (fi && get_next_frame (fi) == NULL)
513 deprecated_update_frame_base_hack (fi, read_sp ());
514
515 /* Note if/where callee saved registers were saved. */
516 set_movm_offsets (fi, movm_args);
517 return addr;
518 }
519 }
520
521 /* Now see if we set up a frame pointer via "mov sp,a3" */
522 if (buf[0] == 0x3f)
523 {
524 addr += 1;
525
526 /* The frame pointer is now valid. */
527 if (fi)
528 {
529 get_frame_extra_info (fi)->status |= MY_FRAME_IN_FP;
530 get_frame_extra_info (fi)->status &= ~MY_FRAME_IN_SP;
531 }
532
533 /* Quit now if we're beyond the stop point. */
534 if (addr >= stop)
535 {
536 /* Fix fi->frame if it's bogus at this point. */
537 fix_frame_pointer (fi, 0);
538
539 /* Note if/where callee saved registers were saved. */
540 set_movm_offsets (fi, movm_args);
541 return addr;
542 }
543
544 /* Get two more bytes so scanning can continue. */
545 status = read_memory_nobpt (addr, buf, 2);
546 if (status != 0)
547 {
548 /* Fix fi->frame if it's bogus at this point. */
549 fix_frame_pointer (fi, 0);
550
551 /* Note if/where callee saved registers were saved. */
552 set_movm_offsets (fi, movm_args);
553 return addr;
554 }
555 }
556
557 /* Next we should allocate the local frame. No more prologue insns
558 are found after allocating the local frame.
559
560 Search for add imm8,sp (0xf8feXX)
561 or add imm16,sp (0xfafeXXXX)
562 or add imm32,sp (0xfcfeXXXXXXXX).
563
564 If none of the above was found, then this prologue has no
565 additional stack. */
566
567 status = read_memory_nobpt (addr, buf, 2);
568 if (status != 0)
569 {
570 /* Fix fi->frame if it's bogus at this point. */
571 fix_frame_pointer (fi, 0);
572
573 /* Note if/where callee saved registers were saved. */
574 set_movm_offsets (fi, movm_args);
575 return addr;
576 }
577
578 imm_size = 0;
579 if (buf[0] == 0xf8 && buf[1] == 0xfe)
580 imm_size = 1;
581 else if (buf[0] == 0xfa && buf[1] == 0xfe)
582 imm_size = 2;
583 else if (buf[0] == 0xfc && buf[1] == 0xfe)
584 imm_size = 4;
585
586 if (imm_size != 0)
587 {
588 /* Suck in imm_size more bytes, they'll hold the size of the
589 current frame. */
590 status = read_memory_nobpt (addr + 2, buf, imm_size);
591 if (status != 0)
592 {
593 /* Fix fi->frame if it's bogus at this point. */
594 fix_frame_pointer (fi, 0);
595
596 /* Note if/where callee saved registers were saved. */
597 set_movm_offsets (fi, movm_args);
598 return addr;
599 }
600
601 /* Note the size of the stack in the frame info structure. */
602 stack_size = extract_signed_integer (buf, imm_size);
603 if (fi)
604 get_frame_extra_info (fi)->stack_size = stack_size;
605
606 /* We just consumed 2 + imm_size bytes. */
607 addr += 2 + imm_size;
608
609 /* No more prologue insns follow, so begin preparation to return. */
610 /* Fix fi->frame if it's bogus at this point. */
611 fix_frame_pointer (fi, stack_size);
612
613 /* Note if/where callee saved registers were saved. */
614 set_movm_offsets (fi, movm_args);
615 return addr;
616 }
617
618 /* We never found an insn which allocates local stack space, regardless
619 this is the end of the prologue. */
620 /* Fix fi->frame if it's bogus at this point. */
621 fix_frame_pointer (fi, 0);
622
623 /* Note if/where callee saved registers were saved. */
624 set_movm_offsets (fi, movm_args);
625 return addr;
626 }
627
628
629 /* Function: saved_regs_size
630 Return the size in bytes of the register save area, based on the
631 saved_regs array in FI. */
632 static int
633 saved_regs_size (struct frame_info *fi)
634 {
635 int adjust = 0;
636 int i;
637
638 /* Reserve four bytes for every register saved. */
639 for (i = 0; i < NUM_REGS; i++)
640 if (get_frame_saved_regs (fi)[i])
641 adjust += 4;
642
643 /* If we saved LIR, then it's most likely we used a `movm'
644 instruction with the `other' bit set, in which case the SP is
645 decremented by an extra four bytes, "to simplify calculation
646 of the transfer area", according to the processor manual. */
647 if (get_frame_saved_regs (fi)[LIR_REGNUM])
648 adjust += 4;
649
650 return adjust;
651 }
652
653
654 /* Function: frame_chain
655 Figure out and return the caller's frame pointer given current
656 frame_info struct.
657
658 We don't handle dummy frames yet but we would probably just return the
659 stack pointer that was in use at the time the function call was made? */
660
661 static CORE_ADDR
662 mn10300_frame_chain (struct frame_info *fi)
663 {
664 struct frame_info *dummy;
665 /* Walk through the prologue to determine the stack size,
666 location of saved registers, end of the prologue, etc. */
667 if (get_frame_extra_info (fi)->status == 0)
668 mn10300_analyze_prologue (fi, (CORE_ADDR) 0);
669
670 /* Quit now if mn10300_analyze_prologue set NO_MORE_FRAMES. */
671 if (get_frame_extra_info (fi)->status & NO_MORE_FRAMES)
672 return 0;
673
674 /* Now that we've analyzed our prologue, determine the frame
675 pointer for our caller.
676
677 If our caller has a frame pointer, then we need to
678 find the entry value of $a3 to our function.
679
680 If fsr.regs[A3_REGNUM] is nonzero, then it's at the memory
681 location pointed to by fsr.regs[A3_REGNUM].
682
683 Else it's still in $a3.
684
685 If our caller does not have a frame pointer, then his
686 frame base is fi->frame + -caller's stack size. */
687
688 /* The easiest way to get that info is to analyze our caller's frame.
689 So we set up a dummy frame and call mn10300_analyze_prologue to
690 find stuff for us. */
691 dummy = analyze_dummy_frame (DEPRECATED_FRAME_SAVED_PC (fi), get_frame_base (fi));
692
693 if (get_frame_extra_info (dummy)->status & MY_FRAME_IN_FP)
694 {
695 /* Our caller has a frame pointer. So find the frame in $a3 or
696 in the stack. */
697 if (get_frame_saved_regs (fi)[A3_REGNUM])
698 return (read_memory_integer (get_frame_saved_regs (fi)[A3_REGNUM], REGISTER_SIZE));
699 else
700 return read_register (A3_REGNUM);
701 }
702 else
703 {
704 int adjust = saved_regs_size (fi);
705
706 /* Our caller does not have a frame pointer. So his frame starts
707 at the base of our frame (fi->frame) + register save space
708 + <his size>. */
709 return get_frame_base (fi) + adjust + -get_frame_extra_info (dummy)->stack_size;
710 }
711 }
712
713 /* Function: skip_prologue
714 Return the address of the first inst past the prologue of the function. */
715
716 static CORE_ADDR
717 mn10300_skip_prologue (CORE_ADDR pc)
718 {
719 /* We used to check the debug symbols, but that can lose if
720 we have a null prologue. */
721 return mn10300_analyze_prologue (NULL, pc);
722 }
723
724 /* generic_pop_current_frame calls this function if the current
725 frame isn't a dummy frame. */
726 static void
727 mn10300_pop_frame_regular (struct frame_info *frame)
728 {
729 int regnum;
730
731 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
732
733 /* Restore any saved registers. */
734 for (regnum = 0; regnum < NUM_REGS; regnum++)
735 if (get_frame_saved_regs (frame)[regnum] != 0)
736 {
737 ULONGEST value;
738
739 value = read_memory_unsigned_integer (get_frame_saved_regs (frame)[regnum],
740 REGISTER_RAW_SIZE (regnum));
741 write_register (regnum, value);
742 }
743
744 /* Actually cut back the stack. */
745 write_register (SP_REGNUM, get_frame_base (frame));
746
747 /* Don't we need to set the PC?!? XXX FIXME. */
748 }
749
750 /* Function: pop_frame
751 This routine gets called when either the user uses the `return'
752 command, or the call dummy breakpoint gets hit. */
753 static void
754 mn10300_pop_frame (void)
755 {
756 /* This function checks for and handles generic dummy frames, and
757 calls back to our function for ordinary frames. */
758 generic_pop_current_frame (mn10300_pop_frame_regular);
759
760 /* Throw away any cached frame information. */
761 flush_cached_frames ();
762 }
763
764 /* Function: push_arguments
765 Setup arguments for a call to the target. Arguments go in
766 order on the stack. */
767
768 static CORE_ADDR
769 mn10300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
770 int struct_return, CORE_ADDR struct_addr)
771 {
772 int argnum = 0;
773 int len = 0;
774 int stack_offset = 0;
775 int regsused = struct_return ? 1 : 0;
776
777 /* This should be a nop, but align the stack just in case something
778 went wrong. Stacks are four byte aligned on the mn10300. */
779 sp &= ~3;
780
781 /* Now make space on the stack for the args.
782
783 XXX This doesn't appear to handle pass-by-invisible reference
784 arguments. */
785 for (argnum = 0; argnum < nargs; argnum++)
786 {
787 int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3;
788
789 while (regsused < 2 && arg_length > 0)
790 {
791 regsused++;
792 arg_length -= 4;
793 }
794 len += arg_length;
795 }
796
797 /* Allocate stack space. */
798 sp -= len;
799
800 regsused = struct_return ? 1 : 0;
801 /* Push all arguments onto the stack. */
802 for (argnum = 0; argnum < nargs; argnum++)
803 {
804 int len;
805 char *val;
806
807 /* XXX Check this. What about UNIONS? */
808 if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
809 && TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
810 {
811 /* XXX Wrong, we want a pointer to this argument. */
812 len = TYPE_LENGTH (VALUE_TYPE (*args));
813 val = (char *) VALUE_CONTENTS (*args);
814 }
815 else
816 {
817 len = TYPE_LENGTH (VALUE_TYPE (*args));
818 val = (char *) VALUE_CONTENTS (*args);
819 }
820
821 while (regsused < 2 && len > 0)
822 {
823 write_register (regsused, extract_unsigned_integer (val, 4));
824 val += 4;
825 len -= 4;
826 regsused++;
827 }
828
829 while (len > 0)
830 {
831 write_memory (sp + stack_offset, val, 4);
832 len -= 4;
833 val += 4;
834 stack_offset += 4;
835 }
836
837 args++;
838 }
839
840 /* Make space for the flushback area. */
841 sp -= 8;
842 return sp;
843 }
844
845 /* Function: push_return_address (pc)
846 Set up the return address for the inferior function call.
847 Needed for targets where we don't actually execute a JSR/BSR instruction */
848
849 static CORE_ADDR
850 mn10300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
851 {
852 unsigned char buf[4];
853
854 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
855 write_memory (sp - 4, buf, 4);
856 return sp - 4;
857 }
858
859 /* Function: store_struct_return (addr,sp)
860 Store the structure value return address for an inferior function
861 call. */
862
863 static void
864 mn10300_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
865 {
866 /* The structure return address is passed as the first argument. */
867 write_register (0, addr);
868 }
869
870 /* Function: frame_saved_pc
871 Find the caller of this frame. We do this by seeing if RP_REGNUM
872 is saved in the stack anywhere, otherwise we get it from the
873 registers. If the inner frame is a dummy frame, return its PC
874 instead of RP, because that's where "caller" of the dummy-frame
875 will be found. */
876
877 static CORE_ADDR
878 mn10300_frame_saved_pc (struct frame_info *fi)
879 {
880 int adjust = saved_regs_size (fi);
881
882 return (read_memory_integer (get_frame_base (fi) + adjust, REGISTER_SIZE));
883 }
884
885 /* Function: mn10300_init_extra_frame_info
886 Setup the frame's frame pointer, pc, and frame addresses for saved
887 registers. Most of the work is done in mn10300_analyze_prologue().
888
889 Note that when we are called for the last frame (currently active frame),
890 that get_frame_pc (fi) and fi->frame will already be setup. However, fi->frame will
891 be valid only if this routine uses FP. For previous frames, fi-frame will
892 always be correct. mn10300_analyze_prologue will fix fi->frame if
893 it's not valid.
894
895 We can be called with the PC in the call dummy under two circumstances.
896 First, during normal backtracing, second, while figuring out the frame
897 pointer just prior to calling the target function (see run_stack_dummy). */
898
899 static void
900 mn10300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
901 {
902 if (get_next_frame (fi))
903 deprecated_update_frame_pc_hack (fi, DEPRECATED_FRAME_SAVED_PC (get_next_frame (fi)));
904
905 frame_saved_regs_zalloc (fi);
906 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
907
908 get_frame_extra_info (fi)->status = 0;
909 get_frame_extra_info (fi)->stack_size = 0;
910
911 mn10300_analyze_prologue (fi, 0);
912 }
913
914
915 /* This function's job is handled by init_extra_frame_info. */
916 static void
917 mn10300_frame_init_saved_regs (struct frame_info *frame)
918 {
919 }
920
921
922 /* Function: mn10300_virtual_frame_pointer
923 Return the register that the function uses for a frame pointer,
924 plus any necessary offset to be applied to the register before
925 any frame pointer offsets. */
926
927 static void
928 mn10300_virtual_frame_pointer (CORE_ADDR pc,
929 int *reg,
930 LONGEST *offset)
931 {
932 struct frame_info *dummy = analyze_dummy_frame (pc, 0);
933 /* Set up a dummy frame_info, Analyze the prolog and fill in the
934 extra info. */
935 /* Results will tell us which type of frame it uses. */
936 if (get_frame_extra_info (dummy)->status & MY_FRAME_IN_SP)
937 {
938 *reg = SP_REGNUM;
939 *offset = -(get_frame_extra_info (dummy)->stack_size);
940 }
941 else
942 {
943 *reg = A3_REGNUM;
944 *offset = 0;
945 }
946 }
947
948 static int
949 mn10300_reg_struct_has_addr (int gcc_p, struct type *type)
950 {
951 return (TYPE_LENGTH (type) > 8);
952 }
953
954 static struct type *
955 mn10300_register_virtual_type (int reg)
956 {
957 return builtin_type_int;
958 }
959
960 static int
961 mn10300_register_byte (int reg)
962 {
963 return (reg * 4);
964 }
965
966 static int
967 mn10300_register_virtual_size (int reg)
968 {
969 return 4;
970 }
971
972 static int
973 mn10300_register_raw_size (int reg)
974 {
975 return 4;
976 }
977
978 /* If DWARF2 is a register number appearing in Dwarf2 debug info, then
979 mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB
980 register number. Why don't Dwarf2 and GDB use the same numbering?
981 Who knows? But since people have object files lying around with
982 the existing Dwarf2 numbering, and other people have written stubs
983 to work with the existing GDB, neither of them can change. So we
984 just have to cope. */
985 static int
986 mn10300_dwarf2_reg_to_regnum (int dwarf2)
987 {
988 /* This table is supposed to be shaped like the REGISTER_NAMES
989 initializer in gcc/config/mn10300/mn10300.h. Registers which
990 appear in GCC's numbering, but have no counterpart in GDB's
991 world, are marked with a -1. */
992 static int dwarf2_to_gdb[] = {
993 0, 1, 2, 3, 4, 5, 6, 7, -1, 8,
994 15, 16, 17, 18, 19, 20, 21, 22
995 };
996 int gdb;
997
998 if (dwarf2 < 0
999 || dwarf2 >= (sizeof (dwarf2_to_gdb) / sizeof (dwarf2_to_gdb[0]))
1000 || dwarf2_to_gdb[dwarf2] == -1)
1001 internal_error (__FILE__, __LINE__,
1002 "bogus register number in debug info: %d", dwarf2);
1003
1004 return dwarf2_to_gdb[dwarf2];
1005 }
1006
1007 static void
1008 mn10300_print_register (const char *name, int regnum, int reg_width)
1009 {
1010 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
1011
1012 if (reg_width)
1013 printf_filtered ("%*s: ", reg_width, name);
1014 else
1015 printf_filtered ("%s: ", name);
1016
1017 /* Get the data */
1018 if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
1019 {
1020 printf_filtered ("[invalid]");
1021 return;
1022 }
1023 else
1024 {
1025 int byte;
1026 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1027 {
1028 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
1029 byte < REGISTER_RAW_SIZE (regnum);
1030 byte++)
1031 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
1032 }
1033 else
1034 {
1035 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
1036 byte >= 0;
1037 byte--)
1038 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
1039 }
1040 }
1041 }
1042
1043 static void
1044 mn10300_do_registers_info (int regnum, int fpregs)
1045 {
1046 if (regnum >= 0)
1047 {
1048 const char *name = REGISTER_NAME (regnum);
1049 if (name == NULL || name[0] == '\0')
1050 error ("Not a valid register for the current processor type");
1051 mn10300_print_register (name, regnum, 0);
1052 printf_filtered ("\n");
1053 }
1054 else
1055 {
1056 /* print registers in an array 4x8 */
1057 int r;
1058 int reg;
1059 const int nr_in_row = 4;
1060 const int reg_width = 4;
1061 for (r = 0; r < NUM_REGS; r += nr_in_row)
1062 {
1063 int c;
1064 int printing = 0;
1065 int padding = 0;
1066 for (c = r; c < r + nr_in_row; c++)
1067 {
1068 const char *name = REGISTER_NAME (c);
1069 if (name != NULL && *name != '\0')
1070 {
1071 printing = 1;
1072 while (padding > 0)
1073 {
1074 printf_filtered (" ");
1075 padding--;
1076 }
1077 mn10300_print_register (name, c, reg_width);
1078 printf_filtered (" ");
1079 }
1080 else
1081 {
1082 padding += (reg_width + 2 + 8 + 1);
1083 }
1084 }
1085 if (printing)
1086 printf_filtered ("\n");
1087 }
1088 }
1089 }
1090
1091 /* Dump out the mn10300 speciic architecture information. */
1092
1093 static void
1094 mn10300_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1095 {
1096 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1097 fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
1098 tdep->am33_mode);
1099 }
1100
1101 static struct gdbarch *
1102 mn10300_gdbarch_init (struct gdbarch_info info,
1103 struct gdbarch_list *arches)
1104 {
1105 static LONGEST mn10300_call_dummy_words[] = { 0 };
1106 struct gdbarch *gdbarch;
1107 struct gdbarch_tdep *tdep = NULL;
1108 int am33_mode;
1109 gdbarch_register_name_ftype *register_name;
1110 int mach;
1111 int num_regs;
1112
1113 arches = gdbarch_list_lookup_by_info (arches, &info);
1114 if (arches != NULL)
1115 return arches->gdbarch;
1116 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1117 gdbarch = gdbarch_alloc (&info, tdep);
1118
1119 if (info.bfd_arch_info != NULL
1120 && info.bfd_arch_info->arch == bfd_arch_mn10300)
1121 mach = info.bfd_arch_info->mach;
1122 else
1123 mach = 0;
1124 switch (mach)
1125 {
1126 case 0:
1127 case bfd_mach_mn10300:
1128 am33_mode = 0;
1129 register_name = mn10300_generic_register_name;
1130 num_regs = 32;
1131 break;
1132 case bfd_mach_am33:
1133 am33_mode = 1;
1134 register_name = am33_register_name;
1135 num_regs = 32;
1136 break;
1137 default:
1138 internal_error (__FILE__, __LINE__,
1139 "mn10300_gdbarch_init: Unknown mn10300 variant");
1140 return NULL; /* keep GCC happy. */
1141 }
1142
1143 /* Registers. */
1144 set_gdbarch_num_regs (gdbarch, num_regs);
1145 set_gdbarch_register_name (gdbarch, register_name);
1146 set_gdbarch_register_size (gdbarch, 4);
1147 set_gdbarch_register_bytes (gdbarch,
1148 num_regs * gdbarch_register_size (gdbarch));
1149 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 4);
1150 set_gdbarch_register_raw_size (gdbarch, mn10300_register_raw_size);
1151 set_gdbarch_register_byte (gdbarch, mn10300_register_byte);
1152 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 4);
1153 set_gdbarch_register_virtual_size (gdbarch, mn10300_register_virtual_size);
1154 set_gdbarch_register_virtual_type (gdbarch, mn10300_register_virtual_type);
1155 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum);
1156 set_gdbarch_deprecated_do_registers_info (gdbarch, mn10300_do_registers_info);
1157 set_gdbarch_sp_regnum (gdbarch, 8);
1158 set_gdbarch_pc_regnum (gdbarch, 9);
1159 set_gdbarch_fp_regnum (gdbarch, 31);
1160 set_gdbarch_virtual_frame_pointer (gdbarch, mn10300_virtual_frame_pointer);
1161
1162 /* Breakpoints. */
1163 set_gdbarch_breakpoint_from_pc (gdbarch, mn10300_breakpoint_from_pc);
1164 set_gdbarch_function_start_offset (gdbarch, 0);
1165 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1166
1167 /* Stack unwinding. */
1168 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1169 set_gdbarch_saved_pc_after_call (gdbarch, mn10300_saved_pc_after_call);
1170 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mn10300_init_extra_frame_info);
1171 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_noop);
1172 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mn10300_frame_init_saved_regs);
1173 set_gdbarch_deprecated_frame_chain (gdbarch, mn10300_frame_chain);
1174 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mn10300_frame_saved_pc);
1175 set_gdbarch_deprecated_extract_return_value (gdbarch, mn10300_extract_return_value);
1176 set_gdbarch_deprecated_extract_struct_value_address
1177 (gdbarch, mn10300_extract_struct_value_address);
1178 set_gdbarch_deprecated_store_return_value (gdbarch, mn10300_store_return_value);
1179 set_gdbarch_deprecated_store_struct_return (gdbarch, mn10300_store_struct_return);
1180 set_gdbarch_deprecated_pop_frame (gdbarch, mn10300_pop_frame);
1181 set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue);
1182 set_gdbarch_frame_args_skip (gdbarch, 0);
1183 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1184 /* That's right, we're using the stack pointer as our frame pointer. */
1185 set_gdbarch_read_fp (gdbarch, generic_target_read_sp);
1186
1187 /* Calling functions in the inferior from GDB. */
1188 set_gdbarch_call_dummy_words (gdbarch, mn10300_call_dummy_words);
1189 set_gdbarch_sizeof_call_dummy_words (gdbarch,
1190 sizeof (mn10300_call_dummy_words));
1191 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
1192 set_gdbarch_deprecated_push_arguments (gdbarch, mn10300_push_arguments);
1193 set_gdbarch_reg_struct_has_addr (gdbarch, mn10300_reg_struct_has_addr);
1194 set_gdbarch_deprecated_push_return_address (gdbarch, mn10300_push_return_address);
1195 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
1196 set_gdbarch_use_struct_convention (gdbarch, mn10300_use_struct_convention);
1197
1198 tdep->am33_mode = am33_mode;
1199
1200 /* Should be using push_dummy_call. */
1201 set_gdbarch_deprecated_dummy_write_sp (gdbarch, generic_target_write_sp);
1202
1203 return gdbarch;
1204 }
1205
1206 void
1207 _initialize_mn10300_tdep (void)
1208 {
1209 /* printf("_initialize_mn10300_tdep\n"); */
1210
1211 tm_print_insn = print_insn_mn10300;
1212
1213 register_gdbarch_init (bfd_arch_mn10300, mn10300_gdbarch_init);
1214 }
This page took 0.082632 seconds and 5 git commands to generate.