Add missing files to previous commit (Allow Python notification of new object-file...
[deliverable/binutils-gdb.git] / gdb / monitor.c
1 /* Remote debugging interface for boot monitors, for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support. Written by Rob Savoye for Cygnus.
8 Resurrected from the ashes by Stu Grossman.
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24
25 /* This file was derived from various remote-* modules. It is a collection
26 of generic support functions so GDB can talk directly to a ROM based
27 monitor. This saves use from having to hack an exception based handler
28 into existence, and makes for quick porting.
29
30 This module talks to a debug monitor called 'MONITOR', which
31 We communicate with MONITOR via either a direct serial line, or a TCP
32 (or possibly TELNET) stream to a terminal multiplexor,
33 which in turn talks to the target board. */
34
35 /* FIXME 32x64: This code assumes that registers and addresses are at
36 most 32 bits long. If they can be larger, you will need to declare
37 values as LONGEST and use %llx or some such to print values when
38 building commands to send to the monitor. Since we don't know of
39 any actual 64-bit targets with ROM monitors that use this code,
40 it's not an issue right now. -sts 4/18/96 */
41
42 #include "defs.h"
43 #include "gdbcore.h"
44 #include "target.h"
45 #include "exceptions.h"
46 #include <signal.h>
47 #include <ctype.h>
48 #include "gdb_string.h"
49 #include <sys/types.h>
50 #include "command.h"
51 #include "serial.h"
52 #include "monitor.h"
53 #include "gdbcmd.h"
54 #include "inferior.h"
55 #include "gdb_regex.h"
56 #include "srec.h"
57 #include "regcache.h"
58 #include "gdbthread.h"
59
60 static char *dev_name;
61 static struct target_ops *targ_ops;
62
63 static void monitor_interrupt_query (void);
64 static void monitor_interrupt_twice (int);
65 static void monitor_stop (ptid_t);
66 static void monitor_dump_regs (struct regcache *regcache);
67
68 #if 0
69 static int from_hex (int a);
70 #endif
71
72 static struct monitor_ops *current_monitor;
73
74 static int hashmark; /* flag set by "set hash". */
75
76 static int timeout = 30;
77
78 static int in_monitor_wait = 0; /* Non-zero means we are in monitor_wait(). */
79
80 static void (*ofunc) (); /* Old SIGINT signal handler. */
81
82 static CORE_ADDR *breakaddr;
83
84 /* Descriptor for I/O to remote machine. Initialize it to NULL so
85 that monitor_open knows that we don't have a file open when the
86 program starts. */
87
88 static struct serial *monitor_desc = NULL;
89
90 /* Pointer to regexp pattern matching data. */
91
92 static struct re_pattern_buffer register_pattern;
93 static char register_fastmap[256];
94
95 static struct re_pattern_buffer getmem_resp_delim_pattern;
96 static char getmem_resp_delim_fastmap[256];
97
98 static struct re_pattern_buffer setmem_resp_delim_pattern;
99 static char setmem_resp_delim_fastmap[256];
100
101 static struct re_pattern_buffer setreg_resp_delim_pattern;
102 static char setreg_resp_delim_fastmap[256];
103
104 static int dump_reg_flag; /* Non-zero means do a dump_registers cmd when
105 monitor_wait wakes up. */
106
107 static int first_time = 0; /* Is this the first time we're
108 executing after gaving created the
109 child proccess? */
110
111
112 /* This is the ptid we use while we're connected to a monitor. Its
113 value is arbitrary, as monitor targets don't have a notion of
114 processes or threads, but we need something non-null to place in
115 inferior_ptid. */
116 static ptid_t monitor_ptid;
117
118 #define TARGET_BUF_SIZE 2048
119
120 /* Monitor specific debugging information. Typically only useful to
121 the developer of a new monitor interface. */
122
123 static void monitor_debug (const char *fmt, ...) ATTRIBUTE_PRINTF (1, 2);
124
125 static int monitor_debug_p = 0;
126
127 /* NOTE: This file alternates between monitor_debug_p and remote_debug
128 when determining if debug information is printed. Perhaps this
129 could be simplified. */
130
131 static void
132 monitor_debug (const char *fmt, ...)
133 {
134 if (monitor_debug_p)
135 {
136 va_list args;
137
138 va_start (args, fmt);
139 vfprintf_filtered (gdb_stdlog, fmt, args);
140 va_end (args);
141 }
142 }
143
144
145 /* Convert a string into a printable representation, Return # byte in
146 the new string. When LEN is >0 it specifies the size of the
147 string. Otherwize strlen(oldstr) is used. */
148
149 static void
150 monitor_printable_string (char *newstr, char *oldstr, int len)
151 {
152 int ch;
153 int i;
154
155 if (len <= 0)
156 len = strlen (oldstr);
157
158 for (i = 0; i < len; i++)
159 {
160 ch = oldstr[i];
161 switch (ch)
162 {
163 default:
164 if (isprint (ch))
165 *newstr++ = ch;
166
167 else
168 {
169 sprintf (newstr, "\\x%02x", ch & 0xff);
170 newstr += 4;
171 }
172 break;
173
174 case '\\':
175 *newstr++ = '\\';
176 *newstr++ = '\\';
177 break;
178 case '\b':
179 *newstr++ = '\\';
180 *newstr++ = 'b';
181 break;
182 case '\f':
183 *newstr++ = '\\';
184 *newstr++ = 't';
185 break;
186 case '\n':
187 *newstr++ = '\\';
188 *newstr++ = 'n';
189 break;
190 case '\r':
191 *newstr++ = '\\';
192 *newstr++ = 'r';
193 break;
194 case '\t':
195 *newstr++ = '\\';
196 *newstr++ = 't';
197 break;
198 case '\v':
199 *newstr++ = '\\';
200 *newstr++ = 'v';
201 break;
202 }
203 }
204
205 *newstr++ = '\0';
206 }
207
208 /* Print monitor errors with a string, converting the string to printable
209 representation. */
210
211 static void
212 monitor_error (char *function, char *message,
213 CORE_ADDR memaddr, int len, char *string, int final_char)
214 {
215 int real_len = (len == 0 && string != (char *) 0) ? strlen (string) : len;
216 char *safe_string = alloca ((real_len * 4) + 1);
217
218 monitor_printable_string (safe_string, string, real_len);
219
220 if (final_char)
221 error (_("%s (%s): %s: %s%c"),
222 function, paddress (target_gdbarch, memaddr),
223 message, safe_string, final_char);
224 else
225 error (_("%s (%s): %s: %s"),
226 function, paddress (target_gdbarch, memaddr),
227 message, safe_string);
228 }
229
230 /* Convert hex digit A to a number. */
231
232 static int
233 fromhex (int a)
234 {
235 if (a >= '0' && a <= '9')
236 return a - '0';
237 else if (a >= 'a' && a <= 'f')
238 return a - 'a' + 10;
239 else if (a >= 'A' && a <= 'F')
240 return a - 'A' + 10;
241 else
242 error (_("Invalid hex digit %d"), a);
243 }
244
245 /* monitor_vsprintf - similar to vsprintf but handles 64-bit addresses
246
247 This function exists to get around the problem that many host platforms
248 don't have a printf that can print 64-bit addresses. The %A format
249 specification is recognized as a special case, and causes the argument
250 to be printed as a 64-bit hexadecimal address.
251
252 Only format specifiers of the form "[0-9]*[a-z]" are recognized.
253 If it is a '%s' format, the argument is a string; otherwise the
254 argument is assumed to be a long integer.
255
256 %% is also turned into a single %. */
257
258 static void
259 monitor_vsprintf (char *sndbuf, char *pattern, va_list args)
260 {
261 int addr_bit = gdbarch_addr_bit (target_gdbarch);
262 char format[10];
263 char fmt;
264 char *p;
265 int i;
266 long arg_int;
267 CORE_ADDR arg_addr;
268 char *arg_string;
269
270 for (p = pattern; *p; p++)
271 {
272 if (*p == '%')
273 {
274 /* Copy the format specifier to a separate buffer. */
275 format[0] = *p++;
276 for (i = 1; *p >= '0' && *p <= '9' && i < (int) sizeof (format) - 2;
277 i++, p++)
278 format[i] = *p;
279 format[i] = fmt = *p;
280 format[i + 1] = '\0';
281
282 /* Fetch the next argument and print it. */
283 switch (fmt)
284 {
285 case '%':
286 strcpy (sndbuf, "%");
287 break;
288 case 'A':
289 arg_addr = va_arg (args, CORE_ADDR);
290 strcpy (sndbuf, phex_nz (arg_addr, addr_bit / 8));
291 break;
292 case 's':
293 arg_string = va_arg (args, char *);
294 sprintf (sndbuf, format, arg_string);
295 break;
296 default:
297 arg_int = va_arg (args, long);
298 sprintf (sndbuf, format, arg_int);
299 break;
300 }
301 sndbuf += strlen (sndbuf);
302 }
303 else
304 *sndbuf++ = *p;
305 }
306 *sndbuf = '\0';
307 }
308
309
310 /* monitor_printf_noecho -- Send data to monitor, but don't expect an echo.
311 Works just like printf. */
312
313 void
314 monitor_printf_noecho (char *pattern,...)
315 {
316 va_list args;
317 char sndbuf[2000];
318 int len;
319
320 va_start (args, pattern);
321
322 monitor_vsprintf (sndbuf, pattern, args);
323
324 len = strlen (sndbuf);
325 if (len + 1 > sizeof sndbuf)
326 internal_error (__FILE__, __LINE__,
327 _("failed internal consistency check"));
328
329 if (monitor_debug_p)
330 {
331 char *safe_string = (char *) alloca ((strlen (sndbuf) * 4) + 1);
332
333 monitor_printable_string (safe_string, sndbuf, 0);
334 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
335 }
336
337 monitor_write (sndbuf, len);
338 }
339
340 /* monitor_printf -- Send data to monitor and check the echo. Works just like
341 printf. */
342
343 void
344 monitor_printf (char *pattern,...)
345 {
346 va_list args;
347 char sndbuf[2000];
348 int len;
349
350 va_start (args, pattern);
351
352 monitor_vsprintf (sndbuf, pattern, args);
353
354 len = strlen (sndbuf);
355 if (len + 1 > sizeof sndbuf)
356 internal_error (__FILE__, __LINE__,
357 _("failed internal consistency check"));
358
359 if (monitor_debug_p)
360 {
361 char *safe_string = (char *) alloca ((len * 4) + 1);
362
363 monitor_printable_string (safe_string, sndbuf, 0);
364 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
365 }
366
367 monitor_write (sndbuf, len);
368
369 /* We used to expect that the next immediate output was the
370 characters we just output, but sometimes some extra junk appeared
371 before the characters we expected, like an extra prompt, or a
372 portmaster sending telnet negotiations. So, just start searching
373 for what we sent, and skip anything unknown. */
374 monitor_debug ("ExpectEcho\n");
375 monitor_expect (sndbuf, (char *) 0, 0);
376 }
377
378
379 /* Write characters to the remote system. */
380
381 void
382 monitor_write (char *buf, int buflen)
383 {
384 if (serial_write (monitor_desc, buf, buflen))
385 fprintf_unfiltered (gdb_stderr, "serial_write failed: %s\n",
386 safe_strerror (errno));
387 }
388
389
390 /* Read a binary character from the remote system, doing all the fancy
391 timeout stuff, but without interpreting the character in any way,
392 and without printing remote debug information. */
393
394 int
395 monitor_readchar (void)
396 {
397 int c;
398 int looping;
399
400 do
401 {
402 looping = 0;
403 c = serial_readchar (monitor_desc, timeout);
404
405 if (c >= 0)
406 c &= 0xff; /* don't lose bit 7 */
407 }
408 while (looping);
409
410 if (c >= 0)
411 return c;
412
413 if (c == SERIAL_TIMEOUT)
414 error (_("Timeout reading from remote system."));
415
416 perror_with_name (_("remote-monitor"));
417 }
418
419
420 /* Read a character from the remote system, doing all the fancy
421 timeout stuff. */
422
423 static int
424 readchar (int timeout)
425 {
426 int c;
427 static enum
428 {
429 last_random, last_nl, last_cr, last_crnl
430 }
431 state = last_random;
432 int looping;
433
434 do
435 {
436 looping = 0;
437 c = serial_readchar (monitor_desc, timeout);
438
439 if (c >= 0)
440 {
441 c &= 0x7f;
442 /* This seems to interfere with proper function of the
443 input stream. */
444 if (monitor_debug_p || remote_debug)
445 {
446 char buf[2];
447
448 buf[0] = c;
449 buf[1] = '\0';
450 puts_debug ("read -->", buf, "<--");
451 }
452
453 }
454
455 /* Canonicialize \n\r combinations into one \r. */
456 if ((current_monitor->flags & MO_HANDLE_NL) != 0)
457 {
458 if ((c == '\r' && state == last_nl)
459 || (c == '\n' && state == last_cr))
460 {
461 state = last_crnl;
462 looping = 1;
463 }
464 else if (c == '\r')
465 state = last_cr;
466 else if (c != '\n')
467 state = last_random;
468 else
469 {
470 state = last_nl;
471 c = '\r';
472 }
473 }
474 }
475 while (looping);
476
477 if (c >= 0)
478 return c;
479
480 if (c == SERIAL_TIMEOUT)
481 #if 0
482 /* I fail to see how detaching here can be useful. */
483 if (in_monitor_wait) /* Watchdog went off. */
484 {
485 target_mourn_inferior ();
486 error (_("GDB serial timeout has expired. Target detached."));
487 }
488 else
489 #endif
490 error (_("Timeout reading from remote system."));
491
492 perror_with_name (_("remote-monitor"));
493 }
494
495 /* Scan input from the remote system, until STRING is found. If BUF is non-
496 zero, then collect input until we have collected either STRING or BUFLEN-1
497 chars. In either case we terminate BUF with a 0. If input overflows BUF
498 because STRING can't be found, return -1, else return number of chars in BUF
499 (minus the terminating NUL). Note that in the non-overflow case, STRING
500 will be at the end of BUF. */
501
502 int
503 monitor_expect (char *string, char *buf, int buflen)
504 {
505 char *p = string;
506 int obuflen = buflen;
507 int c;
508
509 if (monitor_debug_p)
510 {
511 char *safe_string = (char *) alloca ((strlen (string) * 4) + 1);
512 monitor_printable_string (safe_string, string, 0);
513 fprintf_unfiltered (gdb_stdlog, "MON Expecting '%s'\n", safe_string);
514 }
515
516 immediate_quit++;
517 while (1)
518 {
519 if (buf)
520 {
521 if (buflen < 2)
522 {
523 *buf = '\000';
524 immediate_quit--;
525 return -1;
526 }
527
528 c = readchar (timeout);
529 if (c == '\000')
530 continue;
531 *buf++ = c;
532 buflen--;
533 }
534 else
535 c = readchar (timeout);
536
537 /* Don't expect any ^C sent to be echoed. */
538
539 if (*p == '\003' || c == *p)
540 {
541 p++;
542 if (*p == '\0')
543 {
544 immediate_quit--;
545
546 if (buf)
547 {
548 *buf++ = '\000';
549 return obuflen - buflen;
550 }
551 else
552 return 0;
553 }
554 }
555 else
556 {
557 /* We got a character that doesn't match the string. We need to
558 back up p, but how far? If we're looking for "..howdy" and the
559 monitor sends "...howdy"? There's certainly a match in there,
560 but when we receive the third ".", we won't find it if we just
561 restart the matching at the beginning of the string.
562
563 This is a Boyer-Moore kind of situation. We want to reset P to
564 the end of the longest prefix of STRING that is a suffix of
565 what we've read so far. In the example above, that would be
566 ".." --- the longest prefix of "..howdy" that is a suffix of
567 "...". This longest prefix could be the empty string, if C
568 is nowhere to be found in STRING.
569
570 If this longest prefix is not the empty string, it must contain
571 C, so let's search from the end of STRING for instances of C,
572 and see if the portion of STRING before that is a suffix of
573 what we read before C. Actually, we can search backwards from
574 p, since we know no prefix can be longer than that.
575
576 Note that we can use STRING itself, along with C, as a record
577 of what we've received so far. :) */
578 int i;
579
580 for (i = (p - string) - 1; i >= 0; i--)
581 if (string[i] == c)
582 {
583 /* Is this prefix a suffix of what we've read so far?
584 In other words, does
585 string[0 .. i-1] == string[p - i, p - 1]? */
586 if (! memcmp (string, p - i, i))
587 {
588 p = string + i + 1;
589 break;
590 }
591 }
592 if (i < 0)
593 p = string;
594 }
595 }
596 }
597
598 /* Search for a regexp. */
599
600 static int
601 monitor_expect_regexp (struct re_pattern_buffer *pat, char *buf, int buflen)
602 {
603 char *mybuf;
604 char *p;
605
606 monitor_debug ("MON Expecting regexp\n");
607 if (buf)
608 mybuf = buf;
609 else
610 {
611 mybuf = alloca (TARGET_BUF_SIZE);
612 buflen = TARGET_BUF_SIZE;
613 }
614
615 p = mybuf;
616 while (1)
617 {
618 int retval;
619
620 if (p - mybuf >= buflen)
621 { /* Buffer about to overflow. */
622
623 /* On overflow, we copy the upper half of the buffer to the lower half. Not
624 great, but it usually works... */
625
626 memcpy (mybuf, mybuf + buflen / 2, buflen / 2);
627 p = mybuf + buflen / 2;
628 }
629
630 *p++ = readchar (timeout);
631
632 retval = re_search (pat, mybuf, p - mybuf, 0, p - mybuf, NULL);
633 if (retval >= 0)
634 return 1;
635 }
636 }
637
638 /* Keep discarding input until we see the MONITOR prompt.
639
640 The convention for dealing with the prompt is that you
641 o give your command
642 o *then* wait for the prompt.
643
644 Thus the last thing that a procedure does with the serial line will
645 be an monitor_expect_prompt(). Exception: monitor_resume does not
646 wait for the prompt, because the terminal is being handed over to
647 the inferior. However, the next thing which happens after that is
648 a monitor_wait which does wait for the prompt. Note that this
649 includes abnormal exit, e.g. error(). This is necessary to prevent
650 getting into states from which we can't recover. */
651
652 int
653 monitor_expect_prompt (char *buf, int buflen)
654 {
655 monitor_debug ("MON Expecting prompt\n");
656 return monitor_expect (current_monitor->prompt, buf, buflen);
657 }
658
659 /* Get N 32-bit words from remote, each preceded by a space, and put
660 them in registers starting at REGNO. */
661
662 #if 0
663 static unsigned long
664 get_hex_word (void)
665 {
666 unsigned long val;
667 int i;
668 int ch;
669
670 do
671 ch = readchar (timeout);
672 while (isspace (ch));
673
674 val = from_hex (ch);
675
676 for (i = 7; i >= 1; i--)
677 {
678 ch = readchar (timeout);
679 if (!isxdigit (ch))
680 break;
681 val = (val << 4) | from_hex (ch);
682 }
683
684 return val;
685 }
686 #endif
687
688 static void
689 compile_pattern (char *pattern, struct re_pattern_buffer *compiled_pattern,
690 char *fastmap)
691 {
692 int tmp;
693 const char *val;
694
695 compiled_pattern->fastmap = fastmap;
696
697 tmp = re_set_syntax (RE_SYNTAX_EMACS);
698 val = re_compile_pattern (pattern,
699 strlen (pattern),
700 compiled_pattern);
701 re_set_syntax (tmp);
702
703 if (val)
704 error (_("compile_pattern: Can't compile pattern string `%s': %s!"),
705 pattern, val);
706
707 if (fastmap)
708 re_compile_fastmap (compiled_pattern);
709 }
710
711 /* Open a connection to a remote debugger. NAME is the filename used
712 for communication. */
713
714 void
715 monitor_open (char *args, struct monitor_ops *mon_ops, int from_tty)
716 {
717 char *name;
718 char **p;
719 struct inferior *inf;
720
721 if (mon_ops->magic != MONITOR_OPS_MAGIC)
722 error (_("Magic number of monitor_ops struct wrong."));
723
724 targ_ops = mon_ops->target;
725 name = targ_ops->to_shortname;
726
727 if (!args)
728 error (_("Use `target %s DEVICE-NAME' to use a serial port, or\n\
729 `target %s HOST-NAME:PORT-NUMBER' to use a network connection."), name, name);
730
731 target_preopen (from_tty);
732
733 /* Setup pattern for register dump. */
734
735 if (mon_ops->register_pattern)
736 compile_pattern (mon_ops->register_pattern, &register_pattern,
737 register_fastmap);
738
739 if (mon_ops->getmem.resp_delim)
740 compile_pattern (mon_ops->getmem.resp_delim, &getmem_resp_delim_pattern,
741 getmem_resp_delim_fastmap);
742
743 if (mon_ops->setmem.resp_delim)
744 compile_pattern (mon_ops->setmem.resp_delim, &setmem_resp_delim_pattern,
745 setmem_resp_delim_fastmap);
746
747 if (mon_ops->setreg.resp_delim)
748 compile_pattern (mon_ops->setreg.resp_delim, &setreg_resp_delim_pattern,
749 setreg_resp_delim_fastmap);
750
751 unpush_target (targ_ops);
752
753 if (dev_name)
754 xfree (dev_name);
755 dev_name = xstrdup (args);
756
757 monitor_desc = serial_open (dev_name);
758
759 if (!monitor_desc)
760 perror_with_name (dev_name);
761
762 if (baud_rate != -1)
763 {
764 if (serial_setbaudrate (monitor_desc, baud_rate))
765 {
766 serial_close (monitor_desc);
767 perror_with_name (dev_name);
768 }
769 }
770
771 serial_raw (monitor_desc);
772
773 serial_flush_input (monitor_desc);
774
775 /* some systems only work with 2 stop bits. */
776
777 serial_setstopbits (monitor_desc, mon_ops->stopbits);
778
779 current_monitor = mon_ops;
780
781 /* See if we can wake up the monitor. First, try sending a stop sequence,
782 then send the init strings. Last, remove all breakpoints. */
783
784 if (current_monitor->stop)
785 {
786 monitor_stop (inferior_ptid);
787 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
788 {
789 monitor_debug ("EXP Open echo\n");
790 monitor_expect_prompt (NULL, 0);
791 }
792 }
793
794 /* wake up the monitor and see if it's alive. */
795 for (p = mon_ops->init; *p != NULL; p++)
796 {
797 /* Some of the characters we send may not be echoed,
798 but we hope to get a prompt at the end of it all. */
799
800 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
801 monitor_printf (*p);
802 else
803 monitor_printf_noecho (*p);
804 monitor_expect_prompt (NULL, 0);
805 }
806
807 serial_flush_input (monitor_desc);
808
809 /* Alloc breakpoints */
810 if (mon_ops->set_break != NULL)
811 {
812 if (mon_ops->num_breakpoints == 0)
813 mon_ops->num_breakpoints = 8;
814
815 breakaddr = (CORE_ADDR *)
816 xmalloc (mon_ops->num_breakpoints * sizeof (CORE_ADDR));
817 memset (breakaddr, 0, mon_ops->num_breakpoints * sizeof (CORE_ADDR));
818 }
819
820 /* Remove all breakpoints. */
821
822 if (mon_ops->clr_all_break)
823 {
824 monitor_printf (mon_ops->clr_all_break);
825 monitor_expect_prompt (NULL, 0);
826 }
827
828 if (from_tty)
829 printf_unfiltered (_("Remote target %s connected to %s\n"),
830 name, dev_name);
831
832 push_target (targ_ops);
833
834 /* Start afresh. */
835 init_thread_list ();
836
837 /* Make run command think we are busy... */
838 inferior_ptid = monitor_ptid;
839 inf = current_inferior ();
840 inferior_appeared (inf, ptid_get_pid (inferior_ptid));
841 add_thread_silent (inferior_ptid);
842
843 /* Give monitor_wait something to read. */
844
845 monitor_printf (current_monitor->line_term);
846
847 init_wait_for_inferior ();
848
849 start_remote (from_tty);
850 }
851
852 /* Close out all files and local state before this target loses
853 control. */
854
855 void
856 monitor_close (int quitting)
857 {
858 if (monitor_desc)
859 serial_close (monitor_desc);
860
861 /* Free breakpoint memory. */
862 if (breakaddr != NULL)
863 {
864 xfree (breakaddr);
865 breakaddr = NULL;
866 }
867
868 monitor_desc = NULL;
869
870 delete_thread_silent (monitor_ptid);
871 delete_inferior_silent (ptid_get_pid (monitor_ptid));
872 }
873
874 /* Terminate the open connection to the remote debugger. Use this
875 when you want to detach and do something else with your gdb. */
876
877 static void
878 monitor_detach (struct target_ops *ops, char *args, int from_tty)
879 {
880 pop_target (); /* calls monitor_close to do the real work. */
881 if (from_tty)
882 printf_unfiltered (_("Ending remote %s debugging\n"), target_shortname);
883 }
884
885 /* Convert VALSTR into the target byte-ordered value of REGNO and store it. */
886
887 char *
888 monitor_supply_register (struct regcache *regcache, int regno, char *valstr)
889 {
890 struct gdbarch *gdbarch = get_regcache_arch (regcache);
891 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
892 ULONGEST val;
893 unsigned char regbuf[MAX_REGISTER_SIZE];
894 char *p;
895
896 val = 0;
897 p = valstr;
898 while (p && *p != '\0')
899 {
900 if (*p == '\r' || *p == '\n')
901 {
902 while (*p != '\0')
903 p++;
904 break;
905 }
906 if (isspace (*p))
907 {
908 p++;
909 continue;
910 }
911 if (!isxdigit (*p) && *p != 'x')
912 {
913 break;
914 }
915
916 val <<= 4;
917 val += fromhex (*p++);
918 }
919 monitor_debug ("Supplying Register %d %s\n", regno, valstr);
920
921 if (val == 0 && valstr == p)
922 error (_("monitor_supply_register (%d): bad value from monitor: %s."),
923 regno, valstr);
924
925 /* supply register stores in target byte order, so swap here. */
926
927 store_unsigned_integer (regbuf, register_size (gdbarch, regno), byte_order,
928 val);
929
930 regcache_raw_supply (regcache, regno, regbuf);
931
932 return p;
933 }
934
935 /* Tell the remote machine to resume. */
936
937 static void
938 monitor_resume (struct target_ops *ops,
939 ptid_t ptid, int step, enum target_signal sig)
940 {
941 /* Some monitors require a different command when starting a program. */
942 monitor_debug ("MON resume\n");
943 if (current_monitor->flags & MO_RUN_FIRST_TIME && first_time == 1)
944 {
945 first_time = 0;
946 monitor_printf ("run\r");
947 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
948 dump_reg_flag = 1;
949 return;
950 }
951 if (step)
952 monitor_printf (current_monitor->step);
953 else
954 {
955 if (current_monitor->continue_hook)
956 (*current_monitor->continue_hook) ();
957 else
958 monitor_printf (current_monitor->cont);
959 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
960 dump_reg_flag = 1;
961 }
962 }
963
964 /* Parse the output of a register dump command. A monitor specific
965 regexp is used to extract individual register descriptions of the
966 form REG=VAL. Each description is split up into a name and a value
967 string which are passed down to monitor specific code. */
968
969 static void
970 parse_register_dump (struct regcache *regcache, char *buf, int len)
971 {
972 monitor_debug ("MON Parsing register dump\n");
973 while (1)
974 {
975 int regnamelen, vallen;
976 char *regname, *val;
977
978 /* Element 0 points to start of register name, and element 1
979 points to the start of the register value. */
980 struct re_registers register_strings;
981
982 memset (&register_strings, 0, sizeof (struct re_registers));
983
984 if (re_search (&register_pattern, buf, len, 0, len,
985 &register_strings) == -1)
986 break;
987
988 regnamelen = register_strings.end[1] - register_strings.start[1];
989 regname = buf + register_strings.start[1];
990 vallen = register_strings.end[2] - register_strings.start[2];
991 val = buf + register_strings.start[2];
992
993 current_monitor->supply_register (regcache, regname, regnamelen,
994 val, vallen);
995
996 buf += register_strings.end[0];
997 len -= register_strings.end[0];
998 }
999 }
1000
1001 /* Send ^C to target to halt it. Target will respond, and send us a
1002 packet. */
1003
1004 static void
1005 monitor_interrupt (int signo)
1006 {
1007 /* If this doesn't work, try more severe steps. */
1008 signal (signo, monitor_interrupt_twice);
1009
1010 if (monitor_debug_p || remote_debug)
1011 fprintf_unfiltered (gdb_stdlog, "monitor_interrupt called\n");
1012
1013 target_stop (inferior_ptid);
1014 }
1015
1016 /* The user typed ^C twice. */
1017
1018 static void
1019 monitor_interrupt_twice (int signo)
1020 {
1021 signal (signo, ofunc);
1022
1023 monitor_interrupt_query ();
1024
1025 signal (signo, monitor_interrupt);
1026 }
1027
1028 /* Ask the user what to do when an interrupt is received. */
1029
1030 static void
1031 monitor_interrupt_query (void)
1032 {
1033 target_terminal_ours ();
1034
1035 if (query (_("Interrupted while waiting for the program.\n\
1036 Give up (and stop debugging it)? ")))
1037 {
1038 target_mourn_inferior ();
1039 deprecated_throw_reason (RETURN_QUIT);
1040 }
1041
1042 target_terminal_inferior ();
1043 }
1044
1045 static void
1046 monitor_wait_cleanup (void *old_timeout)
1047 {
1048 timeout = *(int *) old_timeout;
1049 signal (SIGINT, ofunc);
1050 in_monitor_wait = 0;
1051 }
1052
1053
1054
1055 static void
1056 monitor_wait_filter (char *buf,
1057 int bufmax,
1058 int *ext_resp_len,
1059 struct target_waitstatus *status)
1060 {
1061 int resp_len;
1062
1063 do
1064 {
1065 resp_len = monitor_expect_prompt (buf, bufmax);
1066 *ext_resp_len = resp_len;
1067
1068 if (resp_len <= 0)
1069 fprintf_unfiltered (gdb_stderr,
1070 "monitor_wait: excessive "
1071 "response from monitor: %s.", buf);
1072 }
1073 while (resp_len < 0);
1074
1075 /* Print any output characters that were preceded by ^O. */
1076 /* FIXME - This would be great as a user settabgle flag. */
1077 if (monitor_debug_p || remote_debug
1078 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1079 {
1080 int i;
1081
1082 for (i = 0; i < resp_len - 1; i++)
1083 if (buf[i] == 0x0f)
1084 putchar_unfiltered (buf[++i]);
1085 }
1086 }
1087
1088
1089
1090 /* Wait until the remote machine stops, then return, storing status in
1091 status just as `wait' would. */
1092
1093 static ptid_t
1094 monitor_wait (struct target_ops *ops,
1095 ptid_t ptid, struct target_waitstatus *status, int options)
1096 {
1097 int old_timeout = timeout;
1098 char buf[TARGET_BUF_SIZE];
1099 int resp_len;
1100 struct cleanup *old_chain;
1101
1102 status->kind = TARGET_WAITKIND_EXITED;
1103 status->value.integer = 0;
1104
1105 old_chain = make_cleanup (monitor_wait_cleanup, &old_timeout);
1106 monitor_debug ("MON wait\n");
1107
1108 #if 0
1109 /* This is somthing other than a maintenance command. */
1110 in_monitor_wait = 1;
1111 timeout = watchdog > 0 ? watchdog : -1;
1112 #else
1113 timeout = -1; /* Don't time out -- user program is running. */
1114 #endif
1115
1116 ofunc = (void (*)()) signal (SIGINT, monitor_interrupt);
1117
1118 if (current_monitor->wait_filter)
1119 (*current_monitor->wait_filter) (buf, sizeof (buf), &resp_len, status);
1120 else
1121 monitor_wait_filter (buf, sizeof (buf), &resp_len, status);
1122
1123 #if 0 /* Transferred to monitor wait filter. */
1124 do
1125 {
1126 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1127
1128 if (resp_len <= 0)
1129 fprintf_unfiltered (gdb_stderr,
1130 "monitor_wait: excessive "
1131 "response from monitor: %s.", buf);
1132 }
1133 while (resp_len < 0);
1134
1135 /* Print any output characters that were preceded by ^O. */
1136 /* FIXME - This would be great as a user settabgle flag. */
1137 if (monitor_debug_p || remote_debug
1138 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1139 {
1140 int i;
1141
1142 for (i = 0; i < resp_len - 1; i++)
1143 if (buf[i] == 0x0f)
1144 putchar_unfiltered (buf[++i]);
1145 }
1146 #endif
1147
1148 signal (SIGINT, ofunc);
1149
1150 timeout = old_timeout;
1151 #if 0
1152 if (dump_reg_flag && current_monitor->dump_registers)
1153 {
1154 dump_reg_flag = 0;
1155 monitor_printf (current_monitor->dump_registers);
1156 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1157 }
1158
1159 if (current_monitor->register_pattern)
1160 parse_register_dump (get_current_regcache (), buf, resp_len);
1161 #else
1162 monitor_debug ("Wait fetching registers after stop\n");
1163 monitor_dump_regs (get_current_regcache ());
1164 #endif
1165
1166 status->kind = TARGET_WAITKIND_STOPPED;
1167 status->value.sig = TARGET_SIGNAL_TRAP;
1168
1169 discard_cleanups (old_chain);
1170
1171 in_monitor_wait = 0;
1172
1173 return inferior_ptid;
1174 }
1175
1176 /* Fetch register REGNO, or all registers if REGNO is -1. Returns
1177 errno value. */
1178
1179 static void
1180 monitor_fetch_register (struct regcache *regcache, int regno)
1181 {
1182 const char *name;
1183 char *zerobuf;
1184 char *regbuf;
1185 int i;
1186
1187 regbuf = alloca (MAX_REGISTER_SIZE * 2 + 1);
1188 zerobuf = alloca (MAX_REGISTER_SIZE);
1189 memset (zerobuf, 0, MAX_REGISTER_SIZE);
1190
1191 if (current_monitor->regname != NULL)
1192 name = current_monitor->regname (regno);
1193 else
1194 name = current_monitor->regnames[regno];
1195 monitor_debug ("MON fetchreg %d '%s'\n", regno, name ? name : "(null name)");
1196
1197 if (!name || (*name == '\0'))
1198 {
1199 monitor_debug ("No register known for %d\n", regno);
1200 regcache_raw_supply (regcache, regno, zerobuf);
1201 return;
1202 }
1203
1204 /* Send the register examine command. */
1205
1206 monitor_printf (current_monitor->getreg.cmd, name);
1207
1208 /* If RESP_DELIM is specified, we search for that as a leading
1209 delimiter for the register value. Otherwise, we just start
1210 searching from the start of the buf. */
1211
1212 if (current_monitor->getreg.resp_delim)
1213 {
1214 monitor_debug ("EXP getreg.resp_delim\n");
1215 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1216 /* Handle case of first 32 registers listed in pairs. */
1217 if (current_monitor->flags & MO_32_REGS_PAIRED
1218 && (regno & 1) != 0 && regno < 32)
1219 {
1220 monitor_debug ("EXP getreg.resp_delim\n");
1221 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1222 }
1223 }
1224
1225 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */
1226 if (current_monitor->flags & MO_HEX_PREFIX)
1227 {
1228 int c;
1229
1230 c = readchar (timeout);
1231 while (c == ' ')
1232 c = readchar (timeout);
1233 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1234 ;
1235 else
1236 error (_("Bad value returned from monitor "
1237 "while fetching register %x."),
1238 regno);
1239 }
1240
1241 /* Read upto the maximum number of hex digits for this register, skipping
1242 spaces, but stop reading if something else is seen. Some monitors
1243 like to drop leading zeros. */
1244
1245 for (i = 0; i < register_size (get_regcache_arch (regcache), regno) * 2; i++)
1246 {
1247 int c;
1248
1249 c = readchar (timeout);
1250 while (c == ' ')
1251 c = readchar (timeout);
1252
1253 if (!isxdigit (c))
1254 break;
1255
1256 regbuf[i] = c;
1257 }
1258
1259 regbuf[i] = '\000'; /* Terminate the number. */
1260 monitor_debug ("REGVAL '%s'\n", regbuf);
1261
1262 /* If TERM is present, we wait for that to show up. Also, (if TERM
1263 is present), we will send TERM_CMD if that is present. In any
1264 case, we collect all of the output into buf, and then wait for
1265 the normal prompt. */
1266
1267 if (current_monitor->getreg.term)
1268 {
1269 monitor_debug ("EXP getreg.term\n");
1270 monitor_expect (current_monitor->getreg.term, NULL, 0); /* Get
1271 response. */
1272 }
1273
1274 if (current_monitor->getreg.term_cmd)
1275 {
1276 monitor_debug ("EMIT getreg.term.cmd\n");
1277 monitor_printf (current_monitor->getreg.term_cmd);
1278 }
1279 if (!current_monitor->getreg.term || /* Already expected or */
1280 current_monitor->getreg.term_cmd) /* ack expected. */
1281 monitor_expect_prompt (NULL, 0); /* Get response. */
1282
1283 monitor_supply_register (regcache, regno, regbuf);
1284 }
1285
1286 /* Sometimes, it takes several commands to dump the registers. */
1287 /* This is a primitive for use by variations of monitor interfaces in
1288 case they need to compose the operation. */
1289
1290 int
1291 monitor_dump_reg_block (struct regcache *regcache, char *block_cmd)
1292 {
1293 char buf[TARGET_BUF_SIZE];
1294 int resp_len;
1295
1296 monitor_printf (block_cmd);
1297 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1298 parse_register_dump (regcache, buf, resp_len);
1299 return 1;
1300 }
1301
1302
1303 /* Read the remote registers into the block regs. */
1304 /* Call the specific function if it has been provided. */
1305
1306 static void
1307 monitor_dump_regs (struct regcache *regcache)
1308 {
1309 char buf[TARGET_BUF_SIZE];
1310 int resp_len;
1311
1312 if (current_monitor->dumpregs)
1313 (*(current_monitor->dumpregs)) (regcache); /* Call supplied function. */
1314 else if (current_monitor->dump_registers) /* Default version. */
1315 {
1316 monitor_printf (current_monitor->dump_registers);
1317 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1318 parse_register_dump (regcache, buf, resp_len);
1319 }
1320 else
1321 /* Need some way to read registers. */
1322 internal_error (__FILE__, __LINE__,
1323 _("failed internal consistency check"));
1324 }
1325
1326 static void
1327 monitor_fetch_registers (struct target_ops *ops,
1328 struct regcache *regcache, int regno)
1329 {
1330 monitor_debug ("MON fetchregs\n");
1331 if (current_monitor->getreg.cmd)
1332 {
1333 if (regno >= 0)
1334 {
1335 monitor_fetch_register (regcache, regno);
1336 return;
1337 }
1338
1339 for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache));
1340 regno++)
1341 monitor_fetch_register (regcache, regno);
1342 }
1343 else
1344 {
1345 monitor_dump_regs (regcache);
1346 }
1347 }
1348
1349 /* Store register REGNO, or all if REGNO == 0. Return errno value. */
1350
1351 static void
1352 monitor_store_register (struct regcache *regcache, int regno)
1353 {
1354 int reg_size = register_size (get_regcache_arch (regcache), regno);
1355 const char *name;
1356 ULONGEST val;
1357
1358 if (current_monitor->regname != NULL)
1359 name = current_monitor->regname (regno);
1360 else
1361 name = current_monitor->regnames[regno];
1362
1363 if (!name || (*name == '\0'))
1364 {
1365 monitor_debug ("MON Cannot store unknown register\n");
1366 return;
1367 }
1368
1369 regcache_cooked_read_unsigned (regcache, regno, &val);
1370 monitor_debug ("MON storeg %d %s\n", regno, phex (val, reg_size));
1371
1372 /* Send the register deposit command. */
1373
1374 if (current_monitor->flags & MO_REGISTER_VALUE_FIRST)
1375 monitor_printf (current_monitor->setreg.cmd, val, name);
1376 else if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1377 monitor_printf (current_monitor->setreg.cmd, name);
1378 else
1379 monitor_printf (current_monitor->setreg.cmd, name, val);
1380
1381 if (current_monitor->setreg.resp_delim)
1382 {
1383 monitor_debug ("EXP setreg.resp_delim\n");
1384 monitor_expect_regexp (&setreg_resp_delim_pattern, NULL, 0);
1385 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1386 monitor_printf ("%s\r", phex_nz (val, reg_size));
1387 }
1388 if (current_monitor->setreg.term)
1389 {
1390 monitor_debug ("EXP setreg.term\n");
1391 monitor_expect (current_monitor->setreg.term, NULL, 0);
1392 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1393 monitor_printf ("%s\r", phex_nz (val, reg_size));
1394 monitor_expect_prompt (NULL, 0);
1395 }
1396 else
1397 monitor_expect_prompt (NULL, 0);
1398 if (current_monitor->setreg.term_cmd) /* Mode exit required. */
1399 {
1400 monitor_debug ("EXP setreg_termcmd\n");
1401 monitor_printf ("%s", current_monitor->setreg.term_cmd);
1402 monitor_expect_prompt (NULL, 0);
1403 }
1404 } /* monitor_store_register */
1405
1406 /* Store the remote registers. */
1407
1408 static void
1409 monitor_store_registers (struct target_ops *ops,
1410 struct regcache *regcache, int regno)
1411 {
1412 if (regno >= 0)
1413 {
1414 monitor_store_register (regcache, regno);
1415 return;
1416 }
1417
1418 for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache));
1419 regno++)
1420 monitor_store_register (regcache, regno);
1421 }
1422
1423 /* Get ready to modify the registers array. On machines which store
1424 individual registers, this doesn't need to do anything. On machines
1425 which store all the registers in one fell swoop, this makes sure
1426 that registers contains all the registers from the program being
1427 debugged. */
1428
1429 static void
1430 monitor_prepare_to_store (struct regcache *regcache)
1431 {
1432 /* Do nothing, since we can store individual regs. */
1433 }
1434
1435 static void
1436 monitor_files_info (struct target_ops *ops)
1437 {
1438 printf_unfiltered (_("\tAttached to %s at %d baud.\n"), dev_name, baud_rate);
1439 }
1440
1441 static int
1442 monitor_write_memory (CORE_ADDR memaddr, char *myaddr, int len)
1443 {
1444 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1445 unsigned int val, hostval;
1446 char *cmd;
1447 int i;
1448
1449 monitor_debug ("MON write %d %s\n", len, paddress (target_gdbarch, memaddr));
1450
1451 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1452 memaddr = gdbarch_addr_bits_remove (target_gdbarch, memaddr);
1453
1454 /* Use memory fill command for leading 0 bytes. */
1455
1456 if (current_monitor->fill)
1457 {
1458 for (i = 0; i < len; i++)
1459 if (myaddr[i] != 0)
1460 break;
1461
1462 if (i > 4) /* More than 4 zeros is worth doing. */
1463 {
1464 monitor_debug ("MON FILL %d\n", i);
1465 if (current_monitor->flags & MO_FILL_USES_ADDR)
1466 monitor_printf (current_monitor->fill, memaddr,
1467 (memaddr + i) - 1, 0);
1468 else
1469 monitor_printf (current_monitor->fill, memaddr, i, 0);
1470
1471 monitor_expect_prompt (NULL, 0);
1472
1473 return i;
1474 }
1475 }
1476
1477 #if 0
1478 /* Can't actually use long longs if VAL is an int (nice idea, though). */
1479 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->setmem.cmdll)
1480 {
1481 len = 8;
1482 cmd = current_monitor->setmem.cmdll;
1483 }
1484 else
1485 #endif
1486 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->setmem.cmdl)
1487 {
1488 len = 4;
1489 cmd = current_monitor->setmem.cmdl;
1490 }
1491 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->setmem.cmdw)
1492 {
1493 len = 2;
1494 cmd = current_monitor->setmem.cmdw;
1495 }
1496 else
1497 {
1498 len = 1;
1499 cmd = current_monitor->setmem.cmdb;
1500 }
1501
1502 val = extract_unsigned_integer (myaddr, len, byte_order);
1503
1504 if (len == 4)
1505 {
1506 hostval = *(unsigned int *) myaddr;
1507 monitor_debug ("Hostval(%08x) val(%08x)\n", hostval, val);
1508 }
1509
1510
1511 if (current_monitor->flags & MO_NO_ECHO_ON_SETMEM)
1512 monitor_printf_noecho (cmd, memaddr, val);
1513 else if (current_monitor->flags & MO_SETMEM_INTERACTIVE)
1514 {
1515 monitor_printf_noecho (cmd, memaddr);
1516
1517 if (current_monitor->setmem.resp_delim)
1518 {
1519 monitor_debug ("EXP setmem.resp_delim");
1520 monitor_expect_regexp (&setmem_resp_delim_pattern, NULL, 0);
1521 monitor_printf ("%x\r", val);
1522 }
1523 if (current_monitor->setmem.term)
1524 {
1525 monitor_debug ("EXP setmem.term");
1526 monitor_expect (current_monitor->setmem.term, NULL, 0);
1527 monitor_printf ("%x\r", val);
1528 }
1529 if (current_monitor->setmem.term_cmd)
1530 { /* Emit this to get out of the memory editing state. */
1531 monitor_printf ("%s", current_monitor->setmem.term_cmd);
1532 /* Drop through to expecting a prompt. */
1533 }
1534 }
1535 else
1536 monitor_printf (cmd, memaddr, val);
1537
1538 monitor_expect_prompt (NULL, 0);
1539
1540 return len;
1541 }
1542
1543
1544 static int
1545 monitor_write_memory_bytes (CORE_ADDR memaddr, char *myaddr, int len)
1546 {
1547 unsigned char val;
1548 int written = 0;
1549
1550 if (len == 0)
1551 return 0;
1552 /* Enter the sub mode. */
1553 monitor_printf (current_monitor->setmem.cmdb, memaddr);
1554 monitor_expect_prompt (NULL, 0);
1555 while (len)
1556 {
1557 val = *myaddr;
1558 monitor_printf ("%x\r", val);
1559 myaddr++;
1560 memaddr++;
1561 written++;
1562 /* If we wanted to, here we could validate the address. */
1563 monitor_expect_prompt (NULL, 0);
1564 len--;
1565 }
1566 /* Now exit the sub mode. */
1567 monitor_printf (current_monitor->getreg.term_cmd);
1568 monitor_expect_prompt (NULL, 0);
1569 return written;
1570 }
1571
1572
1573 static void
1574 longlongendswap (unsigned char *a)
1575 {
1576 int i, j;
1577 unsigned char x;
1578
1579 i = 0;
1580 j = 7;
1581 while (i < 4)
1582 {
1583 x = *(a + i);
1584 *(a + i) = *(a + j);
1585 *(a + j) = x;
1586 i++, j--;
1587 }
1588 }
1589 /* Format 32 chars of long long value, advance the pointer. */
1590 static char *hexlate = "0123456789abcdef";
1591 static char *
1592 longlong_hexchars (unsigned long long value,
1593 char *outbuff)
1594 {
1595 if (value == 0)
1596 {
1597 *outbuff++ = '0';
1598 return outbuff;
1599 }
1600 else
1601 {
1602 static unsigned char disbuf[8]; /* disassembly buffer */
1603 unsigned char *scan, *limit; /* loop controls */
1604 unsigned char c, nib;
1605 int leadzero = 1;
1606
1607 scan = disbuf;
1608 limit = scan + 8;
1609 {
1610 unsigned long long *dp;
1611
1612 dp = (unsigned long long *) scan;
1613 *dp = value;
1614 }
1615 longlongendswap (disbuf); /* FIXME: ONly on big endian hosts. */
1616 while (scan < limit)
1617 {
1618 c = *scan++; /* A byte of our long long value. */
1619 if (leadzero)
1620 {
1621 if (c == 0)
1622 continue;
1623 else
1624 leadzero = 0; /* Henceforth we print even zeroes. */
1625 }
1626 nib = c >> 4; /* high nibble bits */
1627 *outbuff++ = hexlate[nib];
1628 nib = c & 0x0f; /* low nibble bits */
1629 *outbuff++ = hexlate[nib];
1630 }
1631 return outbuff;
1632 }
1633 } /* longlong_hexchars */
1634
1635
1636
1637 /* I am only going to call this when writing virtual byte streams.
1638 Which possably entails endian conversions. */
1639
1640 static int
1641 monitor_write_memory_longlongs (CORE_ADDR memaddr, char *myaddr, int len)
1642 {
1643 static char hexstage[20]; /* At least 16 digits required, plus null. */
1644 char *endstring;
1645 long long *llptr;
1646 long long value;
1647 int written = 0;
1648
1649 llptr = (unsigned long long *) myaddr;
1650 if (len == 0)
1651 return 0;
1652 monitor_printf (current_monitor->setmem.cmdll, memaddr);
1653 monitor_expect_prompt (NULL, 0);
1654 while (len >= 8)
1655 {
1656 value = *llptr;
1657 endstring = longlong_hexchars (*llptr, hexstage);
1658 *endstring = '\0'; /* NUll terminate for printf. */
1659 monitor_printf ("%s\r", hexstage);
1660 llptr++;
1661 memaddr += 8;
1662 written += 8;
1663 /* If we wanted to, here we could validate the address. */
1664 monitor_expect_prompt (NULL, 0);
1665 len -= 8;
1666 }
1667 /* Now exit the sub mode. */
1668 monitor_printf (current_monitor->getreg.term_cmd);
1669 monitor_expect_prompt (NULL, 0);
1670 return written;
1671 } /* */
1672
1673
1674
1675 /* ----- MONITOR_WRITE_MEMORY_BLOCK ---------------------------- */
1676 /* This is for the large blocks of memory which may occur in downloading.
1677 And for monitors which use interactive entry,
1678 And for monitors which do not have other downloading methods.
1679 Without this, we will end up calling monitor_write_memory many times
1680 and do the entry and exit of the sub mode many times
1681 This currently assumes...
1682 MO_SETMEM_INTERACTIVE
1683 ! MO_NO_ECHO_ON_SETMEM
1684 To use this, the you have to patch the monitor_cmds block with
1685 this function. Otherwise, its not tuned up for use by all
1686 monitor variations. */
1687
1688 static int
1689 monitor_write_memory_block (CORE_ADDR memaddr, char *myaddr, int len)
1690 {
1691 int written;
1692
1693 written = 0;
1694 /* FIXME: This would be a good place to put the zero test. */
1695 #if 1
1696 if ((len > 8) && (((len & 0x07)) == 0) && current_monitor->setmem.cmdll)
1697 {
1698 return monitor_write_memory_longlongs (memaddr, myaddr, len);
1699 }
1700 #endif
1701 written = monitor_write_memory_bytes (memaddr, myaddr, len);
1702 return written;
1703 }
1704
1705 /* This is an alternate form of monitor_read_memory which is used for monitors
1706 which can only read a single byte/word/etc. at a time. */
1707
1708 static int
1709 monitor_read_memory_single (CORE_ADDR memaddr, char *myaddr, int len)
1710 {
1711 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1712 unsigned int val;
1713 char membuf[sizeof (int) * 2 + 1];
1714 char *p;
1715 char *cmd;
1716
1717 monitor_debug ("MON read single\n");
1718 #if 0
1719 /* Can't actually use long longs (nice idea, though). In fact, the
1720 call to strtoul below will fail if it tries to convert a value
1721 that's too big to fit in a long. */
1722 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->getmem.cmdll)
1723 {
1724 len = 8;
1725 cmd = current_monitor->getmem.cmdll;
1726 }
1727 else
1728 #endif
1729 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->getmem.cmdl)
1730 {
1731 len = 4;
1732 cmd = current_monitor->getmem.cmdl;
1733 }
1734 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->getmem.cmdw)
1735 {
1736 len = 2;
1737 cmd = current_monitor->getmem.cmdw;
1738 }
1739 else
1740 {
1741 len = 1;
1742 cmd = current_monitor->getmem.cmdb;
1743 }
1744
1745 /* Send the examine command. */
1746
1747 monitor_printf (cmd, memaddr);
1748
1749 /* If RESP_DELIM is specified, we search for that as a leading
1750 delimiter for the memory value. Otherwise, we just start
1751 searching from the start of the buf. */
1752
1753 if (current_monitor->getmem.resp_delim)
1754 {
1755 monitor_debug ("EXP getmem.resp_delim\n");
1756 monitor_expect_regexp (&getmem_resp_delim_pattern, NULL, 0);
1757 }
1758
1759 /* Now, read the appropriate number of hex digits for this loc,
1760 skipping spaces. */
1761
1762 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */
1763 if (current_monitor->flags & MO_HEX_PREFIX)
1764 {
1765 int c;
1766
1767 c = readchar (timeout);
1768 while (c == ' ')
1769 c = readchar (timeout);
1770 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1771 ;
1772 else
1773 monitor_error ("monitor_read_memory_single",
1774 "bad response from monitor",
1775 memaddr, 0, NULL, 0);
1776 }
1777
1778 {
1779 int i;
1780
1781 for (i = 0; i < len * 2; i++)
1782 {
1783 int c;
1784
1785 while (1)
1786 {
1787 c = readchar (timeout);
1788 if (isxdigit (c))
1789 break;
1790 if (c == ' ')
1791 continue;
1792
1793 monitor_error ("monitor_read_memory_single",
1794 "bad response from monitor",
1795 memaddr, i, membuf, 0);
1796 }
1797 membuf[i] = c;
1798 }
1799 membuf[i] = '\000'; /* Terminate the number. */
1800 }
1801
1802 /* If TERM is present, we wait for that to show up. Also, (if TERM is
1803 present), we will send TERM_CMD if that is present. In any case, we collect
1804 all of the output into buf, and then wait for the normal prompt. */
1805
1806 if (current_monitor->getmem.term)
1807 {
1808 monitor_expect (current_monitor->getmem.term, NULL, 0); /* Get
1809 response. */
1810
1811 if (current_monitor->getmem.term_cmd)
1812 {
1813 monitor_printf (current_monitor->getmem.term_cmd);
1814 monitor_expect_prompt (NULL, 0);
1815 }
1816 }
1817 else
1818 monitor_expect_prompt (NULL, 0); /* Get response. */
1819
1820 p = membuf;
1821 val = strtoul (membuf, &p, 16);
1822
1823 if (val == 0 && membuf == p)
1824 monitor_error ("monitor_read_memory_single",
1825 "bad value from monitor",
1826 memaddr, 0, membuf, 0);
1827
1828 /* supply register stores in target byte order, so swap here. */
1829
1830 store_unsigned_integer (myaddr, len, byte_order, val);
1831
1832 return len;
1833 }
1834
1835 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
1836 memory at MEMADDR. Returns length moved. Currently, we do no more
1837 than 16 bytes at a time. */
1838
1839 static int
1840 monitor_read_memory (CORE_ADDR memaddr, char *myaddr, int len)
1841 {
1842 unsigned int val;
1843 char buf[512];
1844 char *p, *p1;
1845 int resp_len;
1846 int i;
1847 CORE_ADDR dumpaddr;
1848
1849 if (len <= 0)
1850 {
1851 monitor_debug ("Zero length call to monitor_read_memory\n");
1852 return 0;
1853 }
1854
1855 monitor_debug ("MON read block ta(%s) ha(%s) %d\n",
1856 paddress (target_gdbarch, memaddr),
1857 host_address_to_string (myaddr), len);
1858
1859 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1860 memaddr = gdbarch_addr_bits_remove (target_gdbarch, memaddr);
1861
1862 if (current_monitor->flags & MO_GETMEM_READ_SINGLE)
1863 return monitor_read_memory_single (memaddr, myaddr, len);
1864
1865 len = min (len, 16);
1866
1867 /* Some dumpers align the first data with the preceding 16
1868 byte boundary. Some print blanks and start at the
1869 requested boundary. EXACT_DUMPADDR */
1870
1871 dumpaddr = (current_monitor->flags & MO_EXACT_DUMPADDR)
1872 ? memaddr : memaddr & ~0x0f;
1873
1874 /* See if xfer would cross a 16 byte boundary. If so, clip it. */
1875 if (((memaddr ^ (memaddr + len - 1)) & ~0xf) != 0)
1876 len = ((memaddr + len) & ~0xf) - memaddr;
1877
1878 /* Send the memory examine command. */
1879
1880 if (current_monitor->flags & MO_GETMEM_NEEDS_RANGE)
1881 monitor_printf (current_monitor->getmem.cmdb, memaddr, memaddr + len);
1882 else if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1883 monitor_printf (current_monitor->getmem.cmdb, dumpaddr);
1884 else
1885 monitor_printf (current_monitor->getmem.cmdb, memaddr, len);
1886
1887 /* If TERM is present, we wait for that to show up. Also, (if TERM
1888 is present), we will send TERM_CMD if that is present. In any
1889 case, we collect all of the output into buf, and then wait for
1890 the normal prompt. */
1891
1892 if (current_monitor->getmem.term)
1893 {
1894 resp_len = monitor_expect (current_monitor->getmem.term,
1895 buf, sizeof buf); /* Get response. */
1896
1897 if (resp_len <= 0)
1898 monitor_error ("monitor_read_memory",
1899 "excessive response from monitor",
1900 memaddr, resp_len, buf, 0);
1901
1902 if (current_monitor->getmem.term_cmd)
1903 {
1904 serial_write (monitor_desc, current_monitor->getmem.term_cmd,
1905 strlen (current_monitor->getmem.term_cmd));
1906 monitor_expect_prompt (NULL, 0);
1907 }
1908 }
1909 else
1910 resp_len = monitor_expect_prompt (buf, sizeof buf); /* Get response. */
1911
1912 p = buf;
1913
1914 /* If RESP_DELIM is specified, we search for that as a leading
1915 delimiter for the values. Otherwise, we just start searching
1916 from the start of the buf. */
1917
1918 if (current_monitor->getmem.resp_delim)
1919 {
1920 int retval, tmp;
1921 struct re_registers resp_strings;
1922
1923 monitor_debug ("MON getmem.resp_delim %s\n",
1924 current_monitor->getmem.resp_delim);
1925
1926 memset (&resp_strings, 0, sizeof (struct re_registers));
1927 tmp = strlen (p);
1928 retval = re_search (&getmem_resp_delim_pattern, p, tmp, 0, tmp,
1929 &resp_strings);
1930
1931 if (retval < 0)
1932 monitor_error ("monitor_read_memory",
1933 "bad response from monitor",
1934 memaddr, resp_len, buf, 0);
1935
1936 p += resp_strings.end[0];
1937 #if 0
1938 p = strstr (p, current_monitor->getmem.resp_delim);
1939 if (!p)
1940 monitor_error ("monitor_read_memory",
1941 "bad response from monitor",
1942 memaddr, resp_len, buf, 0);
1943 p += strlen (current_monitor->getmem.resp_delim);
1944 #endif
1945 }
1946 monitor_debug ("MON scanning %d ,%s '%s'\n", len,
1947 host_address_to_string (p), p);
1948 if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1949 {
1950 char c;
1951 int fetched = 0;
1952 i = len;
1953 c = *p;
1954
1955
1956 while (!(c == '\000' || c == '\n' || c == '\r') && i > 0)
1957 {
1958 if (isxdigit (c))
1959 {
1960 if ((dumpaddr >= memaddr) && (i > 0))
1961 {
1962 val = fromhex (c) * 16 + fromhex (*(p + 1));
1963 *myaddr++ = val;
1964 if (monitor_debug_p || remote_debug)
1965 fprintf_unfiltered (gdb_stdlog, "[%02x]", val);
1966 --i;
1967 fetched++;
1968 }
1969 ++dumpaddr;
1970 ++p;
1971 }
1972 ++p; /* Skip a blank or other non hex char. */
1973 c = *p;
1974 }
1975 if (fetched == 0)
1976 error (_("Failed to read via monitor"));
1977 if (monitor_debug_p || remote_debug)
1978 fprintf_unfiltered (gdb_stdlog, "\n");
1979 return fetched; /* Return the number of bytes actually
1980 read. */
1981 }
1982 monitor_debug ("MON scanning bytes\n");
1983
1984 for (i = len; i > 0; i--)
1985 {
1986 /* Skip non-hex chars, but bomb on end of string and newlines. */
1987
1988 while (1)
1989 {
1990 if (isxdigit (*p))
1991 break;
1992
1993 if (*p == '\000' || *p == '\n' || *p == '\r')
1994 monitor_error ("monitor_read_memory",
1995 "badly terminated response from monitor",
1996 memaddr, resp_len, buf, 0);
1997 p++;
1998 }
1999
2000 val = strtoul (p, &p1, 16);
2001
2002 if (val == 0 && p == p1)
2003 monitor_error ("monitor_read_memory",
2004 "bad value from monitor",
2005 memaddr, resp_len, buf, 0);
2006
2007 *myaddr++ = val;
2008
2009 if (i == 1)
2010 break;
2011
2012 p = p1;
2013 }
2014
2015 return len;
2016 }
2017
2018 /* Transfer LEN bytes between target address MEMADDR and GDB address
2019 MYADDR. Returns 0 for success, errno code for failure. TARGET is
2020 unused. */
2021
2022 static int
2023 monitor_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int write,
2024 struct mem_attrib *attrib, struct target_ops *target)
2025 {
2026 int res;
2027
2028 if (write)
2029 {
2030 if (current_monitor->flags & MO_HAS_BLOCKWRITES)
2031 res = monitor_write_memory_block(memaddr, myaddr, len);
2032 else
2033 res = monitor_write_memory(memaddr, myaddr, len);
2034 }
2035 else
2036 {
2037 res = monitor_read_memory(memaddr, myaddr, len);
2038 }
2039
2040 return res;
2041 }
2042
2043 static void
2044 monitor_kill (struct target_ops *ops)
2045 {
2046 return; /* Ignore attempts to kill target system. */
2047 }
2048
2049 /* All we actually do is set the PC to the start address of exec_bfd. */
2050
2051 static void
2052 monitor_create_inferior (struct target_ops *ops, char *exec_file,
2053 char *args, char **env, int from_tty)
2054 {
2055 if (args && (*args != '\000'))
2056 error (_("Args are not supported by the monitor."));
2057
2058 first_time = 1;
2059 clear_proceed_status ();
2060 regcache_write_pc (get_current_regcache (),
2061 bfd_get_start_address (exec_bfd));
2062 }
2063
2064 /* Clean up when a program exits.
2065 The program actually lives on in the remote processor's RAM, and may be
2066 run again without a download. Don't leave it full of breakpoint
2067 instructions. */
2068
2069 static void
2070 monitor_mourn_inferior (struct target_ops *ops)
2071 {
2072 unpush_target (targ_ops);
2073 generic_mourn_inferior (); /* Do all the proper things now. */
2074 delete_thread_silent (monitor_ptid);
2075 }
2076
2077 /* Tell the monitor to add a breakpoint. */
2078
2079 static int
2080 monitor_insert_breakpoint (struct gdbarch *gdbarch,
2081 struct bp_target_info *bp_tgt)
2082 {
2083 CORE_ADDR addr = bp_tgt->placed_address;
2084 int i;
2085 int bplen;
2086
2087 monitor_debug ("MON inst bkpt %s\n", paddress (gdbarch, addr));
2088 if (current_monitor->set_break == NULL)
2089 error (_("No set_break defined for this monitor"));
2090
2091 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
2092 addr = gdbarch_addr_bits_remove (gdbarch, addr);
2093
2094 /* Determine appropriate breakpoint size for this address. */
2095 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
2096 bp_tgt->placed_address = addr;
2097 bp_tgt->placed_size = bplen;
2098
2099 for (i = 0; i < current_monitor->num_breakpoints; i++)
2100 {
2101 if (breakaddr[i] == 0)
2102 {
2103 breakaddr[i] = addr;
2104 monitor_printf (current_monitor->set_break, addr);
2105 monitor_expect_prompt (NULL, 0);
2106 return 0;
2107 }
2108 }
2109
2110 error (_("Too many breakpoints (> %d) for monitor."),
2111 current_monitor->num_breakpoints);
2112 }
2113
2114 /* Tell the monitor to remove a breakpoint. */
2115
2116 static int
2117 monitor_remove_breakpoint (struct gdbarch *gdbarch,
2118 struct bp_target_info *bp_tgt)
2119 {
2120 CORE_ADDR addr = bp_tgt->placed_address;
2121 int i;
2122
2123 monitor_debug ("MON rmbkpt %s\n", paddress (gdbarch, addr));
2124 if (current_monitor->clr_break == NULL)
2125 error (_("No clr_break defined for this monitor"));
2126
2127 for (i = 0; i < current_monitor->num_breakpoints; i++)
2128 {
2129 if (breakaddr[i] == addr)
2130 {
2131 breakaddr[i] = 0;
2132 /* Some monitors remove breakpoints based on the address. */
2133 if (current_monitor->flags & MO_CLR_BREAK_USES_ADDR)
2134 monitor_printf (current_monitor->clr_break, addr);
2135 else if (current_monitor->flags & MO_CLR_BREAK_1_BASED)
2136 monitor_printf (current_monitor->clr_break, i + 1);
2137 else
2138 monitor_printf (current_monitor->clr_break, i);
2139 monitor_expect_prompt (NULL, 0);
2140 return 0;
2141 }
2142 }
2143 fprintf_unfiltered (gdb_stderr,
2144 "Can't find breakpoint associated with %s\n",
2145 paddress (gdbarch, addr));
2146 return 1;
2147 }
2148
2149 /* monitor_wait_srec_ack -- wait for the target to send an acknowledgement for
2150 an S-record. Return non-zero if the ACK is received properly. */
2151
2152 static int
2153 monitor_wait_srec_ack (void)
2154 {
2155 int ch;
2156
2157 if (current_monitor->flags & MO_SREC_ACK_PLUS)
2158 {
2159 return (readchar (timeout) == '+');
2160 }
2161 else if (current_monitor->flags & MO_SREC_ACK_ROTATE)
2162 {
2163 /* Eat two backspaces, a "rotating" char (|/-\), and a space. */
2164 if ((ch = readchar (1)) < 0)
2165 return 0;
2166 if ((ch = readchar (1)) < 0)
2167 return 0;
2168 if ((ch = readchar (1)) < 0)
2169 return 0;
2170 if ((ch = readchar (1)) < 0)
2171 return 0;
2172 }
2173 return 1;
2174 }
2175
2176 /* monitor_load -- download a file. */
2177
2178 static void
2179 monitor_load (char *file, int from_tty)
2180 {
2181 monitor_debug ("MON load\n");
2182
2183 if (current_monitor->load_routine)
2184 current_monitor->load_routine (monitor_desc, file, hashmark);
2185 else
2186 { /* The default is ascii S-records. */
2187 int n;
2188 unsigned long load_offset;
2189 char buf[128];
2190
2191 /* Enable user to specify address for downloading as 2nd arg to load. */
2192 n = sscanf (file, "%s 0x%lx", buf, &load_offset);
2193 if (n > 1)
2194 file = buf;
2195 else
2196 load_offset = 0;
2197
2198 monitor_printf (current_monitor->load);
2199 if (current_monitor->loadresp)
2200 monitor_expect (current_monitor->loadresp, NULL, 0);
2201
2202 load_srec (monitor_desc, file, (bfd_vma) load_offset,
2203 32, SREC_ALL, hashmark,
2204 current_monitor->flags & MO_SREC_ACK ?
2205 monitor_wait_srec_ack : NULL);
2206
2207 monitor_expect_prompt (NULL, 0);
2208 }
2209
2210 /* Finally, make the PC point at the start address. */
2211 if (exec_bfd)
2212 regcache_write_pc (get_current_regcache (),
2213 bfd_get_start_address (exec_bfd));
2214
2215 /* There used to be code here which would clear inferior_ptid and
2216 call clear_symtab_users. None of that should be necessary:
2217 monitor targets should behave like remote protocol targets, and
2218 since generic_load does none of those things, this function
2219 shouldn't either.
2220
2221 Furthermore, clearing inferior_ptid is *incorrect*. After doing
2222 a load, we still have a valid connection to the monitor, with a
2223 live processor state to fiddle with. The user can type
2224 `continue' or `jump *start' and make the program run. If they do
2225 these things, however, GDB will be talking to a running program
2226 while inferior_ptid is null_ptid; this makes things like
2227 reinit_frame_cache very confused. */
2228 }
2229
2230 static void
2231 monitor_stop (ptid_t ptid)
2232 {
2233 monitor_debug ("MON stop\n");
2234 if ((current_monitor->flags & MO_SEND_BREAK_ON_STOP) != 0)
2235 serial_send_break (monitor_desc);
2236 if (current_monitor->stop)
2237 monitor_printf_noecho (current_monitor->stop);
2238 }
2239
2240 /* Put a COMMAND string out to MONITOR. Output from MONITOR is placed
2241 in OUTPUT until the prompt is seen. FIXME: We read the characters
2242 ourseleves here cause of a nasty echo. */
2243
2244 static void
2245 monitor_rcmd (char *command,
2246 struct ui_file *outbuf)
2247 {
2248 char *p;
2249 int resp_len;
2250 char buf[1000];
2251
2252 if (monitor_desc == NULL)
2253 error (_("monitor target not open."));
2254
2255 p = current_monitor->prompt;
2256
2257 /* Send the command. Note that if no args were supplied, then we're
2258 just sending the monitor a newline, which is sometimes useful. */
2259
2260 monitor_printf ("%s\r", (command ? command : ""));
2261
2262 resp_len = monitor_expect_prompt (buf, sizeof buf);
2263
2264 fputs_unfiltered (buf, outbuf); /* Output the response. */
2265 }
2266
2267 /* Convert hex digit A to a number. */
2268
2269 #if 0
2270 static int
2271 from_hex (int a)
2272 {
2273 if (a >= '0' && a <= '9')
2274 return a - '0';
2275 if (a >= 'a' && a <= 'f')
2276 return a - 'a' + 10;
2277 if (a >= 'A' && a <= 'F')
2278 return a - 'A' + 10;
2279
2280 error (_("Reply contains invalid hex digit 0x%x"), a);
2281 }
2282 #endif
2283
2284 char *
2285 monitor_get_dev_name (void)
2286 {
2287 return dev_name;
2288 }
2289
2290 /* Check to see if a thread is still alive. */
2291
2292 static int
2293 monitor_thread_alive (struct target_ops *ops, ptid_t ptid)
2294 {
2295 if (ptid_equal (ptid, monitor_ptid))
2296 /* The monitor's task is always alive. */
2297 return 1;
2298
2299 return 0;
2300 }
2301
2302 /* Convert a thread ID to a string. Returns the string in a static
2303 buffer. */
2304
2305 static char *
2306 monitor_pid_to_str (struct target_ops *ops, ptid_t ptid)
2307 {
2308 static char buf[64];
2309
2310 if (ptid_equal (monitor_ptid, ptid))
2311 {
2312 xsnprintf (buf, sizeof buf, "Thread <main>");
2313 return buf;
2314 }
2315
2316 return normal_pid_to_str (ptid);
2317 }
2318
2319 static struct target_ops monitor_ops;
2320
2321 static void
2322 init_base_monitor_ops (void)
2323 {
2324 monitor_ops.to_close = monitor_close;
2325 monitor_ops.to_detach = monitor_detach;
2326 monitor_ops.to_resume = monitor_resume;
2327 monitor_ops.to_wait = monitor_wait;
2328 monitor_ops.to_fetch_registers = monitor_fetch_registers;
2329 monitor_ops.to_store_registers = monitor_store_registers;
2330 monitor_ops.to_prepare_to_store = monitor_prepare_to_store;
2331 monitor_ops.deprecated_xfer_memory = monitor_xfer_memory;
2332 monitor_ops.to_files_info = monitor_files_info;
2333 monitor_ops.to_insert_breakpoint = monitor_insert_breakpoint;
2334 monitor_ops.to_remove_breakpoint = monitor_remove_breakpoint;
2335 monitor_ops.to_kill = monitor_kill;
2336 monitor_ops.to_load = monitor_load;
2337 monitor_ops.to_create_inferior = monitor_create_inferior;
2338 monitor_ops.to_mourn_inferior = monitor_mourn_inferior;
2339 monitor_ops.to_stop = monitor_stop;
2340 monitor_ops.to_rcmd = monitor_rcmd;
2341 monitor_ops.to_log_command = serial_log_command;
2342 monitor_ops.to_thread_alive = monitor_thread_alive;
2343 monitor_ops.to_pid_to_str = monitor_pid_to_str;
2344 monitor_ops.to_stratum = process_stratum;
2345 monitor_ops.to_has_all_memory = default_child_has_all_memory;
2346 monitor_ops.to_has_memory = default_child_has_memory;
2347 monitor_ops.to_has_stack = default_child_has_stack;
2348 monitor_ops.to_has_registers = default_child_has_registers;
2349 monitor_ops.to_has_execution = default_child_has_execution;
2350 monitor_ops.to_magic = OPS_MAGIC;
2351 } /* init_base_monitor_ops */
2352
2353 /* Init the target_ops structure pointed at by OPS. */
2354
2355 void
2356 init_monitor_ops (struct target_ops *ops)
2357 {
2358 if (monitor_ops.to_magic != OPS_MAGIC)
2359 init_base_monitor_ops ();
2360
2361 memcpy (ops, &monitor_ops, sizeof monitor_ops);
2362 }
2363
2364 /* Define additional commands that are usually only used by monitors. */
2365
2366 /* -Wmissing-prototypes */
2367 extern initialize_file_ftype _initialize_remote_monitors;
2368
2369 void
2370 _initialize_remote_monitors (void)
2371 {
2372 init_base_monitor_ops ();
2373 add_setshow_boolean_cmd ("hash", no_class, &hashmark, _("\
2374 Set display of activity while downloading a file."), _("\
2375 Show display of activity while downloading a file."), _("\
2376 When enabled, a hashmark \'#\' is displayed."),
2377 NULL,
2378 NULL, /* FIXME: i18n: */
2379 &setlist, &showlist);
2380
2381 add_setshow_zinteger_cmd ("monitor", no_class, &monitor_debug_p, _("\
2382 Set debugging of remote monitor communication."), _("\
2383 Show debugging of remote monitor communication."), _("\
2384 When enabled, communication between GDB and the remote monitor\n\
2385 is displayed."),
2386 NULL,
2387 NULL, /* FIXME: i18n: */
2388 &setdebuglist, &showdebuglist);
2389
2390 /* Yes, 42000 is arbitrary. The only sense out of it, is that it
2391 isn't 0. */
2392 monitor_ptid = ptid_build (42000, 0, 42000);
2393 }
This page took 0.114298 seconds and 4 git commands to generate.