[gdbserver] Disable conditional breakpoints on no-hardware-single-step targets
[deliverable/binutils-gdb.git] / gdb / monitor.c
1 /* Remote debugging interface for boot monitors, for GDB.
2
3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by Rob Savoye for Cygnus.
6 Resurrected from the ashes by Stu Grossman.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* This file was derived from various remote-* modules. It is a collection
24 of generic support functions so GDB can talk directly to a ROM based
25 monitor. This saves use from having to hack an exception based handler
26 into existence, and makes for quick porting.
27
28 This module talks to a debug monitor called 'MONITOR', which
29 We communicate with MONITOR via either a direct serial line, or a TCP
30 (or possibly TELNET) stream to a terminal multiplexor,
31 which in turn talks to the target board. */
32
33 /* FIXME 32x64: This code assumes that registers and addresses are at
34 most 32 bits long. If they can be larger, you will need to declare
35 values as LONGEST and use %llx or some such to print values when
36 building commands to send to the monitor. Since we don't know of
37 any actual 64-bit targets with ROM monitors that use this code,
38 it's not an issue right now. -sts 4/18/96 */
39
40 #include "defs.h"
41 #include "gdbcore.h"
42 #include "target.h"
43 #include <signal.h>
44 #include <ctype.h>
45 #include <sys/types.h>
46 #include "command.h"
47 #include "serial.h"
48 #include "monitor.h"
49 #include "gdbcmd.h"
50 #include "inferior.h"
51 #include "infrun.h"
52 #include "gdb_regex.h"
53 #include "srec.h"
54 #include "regcache.h"
55 #include "gdbthread.h"
56 #include "readline/readline.h"
57
58 static char *dev_name;
59 static struct target_ops *targ_ops;
60
61 static void monitor_interrupt_query (void);
62 static void monitor_interrupt_twice (int);
63 static void monitor_stop (struct target_ops *self, ptid_t);
64 static void monitor_dump_regs (struct regcache *regcache);
65
66 #if 0
67 static int from_hex (int a);
68 #endif
69
70 static struct monitor_ops *current_monitor;
71
72 static int hashmark; /* flag set by "set hash". */
73
74 static int timeout = 30;
75
76 static int in_monitor_wait = 0; /* Non-zero means we are in monitor_wait(). */
77
78 static void (*ofunc) (); /* Old SIGINT signal handler. */
79
80 static CORE_ADDR *breakaddr;
81
82 /* Descriptor for I/O to remote machine. Initialize it to NULL so
83 that monitor_open knows that we don't have a file open when the
84 program starts. */
85
86 static struct serial *monitor_desc = NULL;
87
88 /* Pointer to regexp pattern matching data. */
89
90 static struct re_pattern_buffer register_pattern;
91 static char register_fastmap[256];
92
93 static struct re_pattern_buffer getmem_resp_delim_pattern;
94 static char getmem_resp_delim_fastmap[256];
95
96 static struct re_pattern_buffer setmem_resp_delim_pattern;
97 static char setmem_resp_delim_fastmap[256];
98
99 static struct re_pattern_buffer setreg_resp_delim_pattern;
100 static char setreg_resp_delim_fastmap[256];
101
102 static int dump_reg_flag; /* Non-zero means do a dump_registers cmd when
103 monitor_wait wakes up. */
104
105 static int first_time = 0; /* Is this the first time we're
106 executing after gaving created the
107 child proccess? */
108
109
110 /* This is the ptid we use while we're connected to a monitor. Its
111 value is arbitrary, as monitor targets don't have a notion of
112 processes or threads, but we need something non-null to place in
113 inferior_ptid. */
114 static ptid_t monitor_ptid;
115
116 #define TARGET_BUF_SIZE 2048
117
118 /* Monitor specific debugging information. Typically only useful to
119 the developer of a new monitor interface. */
120
121 static void monitor_debug (const char *fmt, ...) ATTRIBUTE_PRINTF (1, 2);
122
123 static unsigned int monitor_debug_p = 0;
124
125 /* NOTE: This file alternates between monitor_debug_p and remote_debug
126 when determining if debug information is printed. Perhaps this
127 could be simplified. */
128
129 static void
130 monitor_debug (const char *fmt, ...)
131 {
132 if (monitor_debug_p)
133 {
134 va_list args;
135
136 va_start (args, fmt);
137 vfprintf_filtered (gdb_stdlog, fmt, args);
138 va_end (args);
139 }
140 }
141
142
143 /* Convert a string into a printable representation, Return # byte in
144 the new string. When LEN is >0 it specifies the size of the
145 string. Otherwize strlen(oldstr) is used. */
146
147 static void
148 monitor_printable_string (char *newstr, char *oldstr, int len)
149 {
150 int ch;
151 int i;
152
153 if (len <= 0)
154 len = strlen (oldstr);
155
156 for (i = 0; i < len; i++)
157 {
158 ch = oldstr[i];
159 switch (ch)
160 {
161 default:
162 if (isprint (ch))
163 *newstr++ = ch;
164
165 else
166 {
167 sprintf (newstr, "\\x%02x", ch & 0xff);
168 newstr += 4;
169 }
170 break;
171
172 case '\\':
173 *newstr++ = '\\';
174 *newstr++ = '\\';
175 break;
176 case '\b':
177 *newstr++ = '\\';
178 *newstr++ = 'b';
179 break;
180 case '\f':
181 *newstr++ = '\\';
182 *newstr++ = 't';
183 break;
184 case '\n':
185 *newstr++ = '\\';
186 *newstr++ = 'n';
187 break;
188 case '\r':
189 *newstr++ = '\\';
190 *newstr++ = 'r';
191 break;
192 case '\t':
193 *newstr++ = '\\';
194 *newstr++ = 't';
195 break;
196 case '\v':
197 *newstr++ = '\\';
198 *newstr++ = 'v';
199 break;
200 }
201 }
202
203 *newstr++ = '\0';
204 }
205
206 /* Print monitor errors with a string, converting the string to printable
207 representation. */
208
209 static void
210 monitor_error (char *function, char *message,
211 CORE_ADDR memaddr, int len, char *string, int final_char)
212 {
213 int real_len = (len == 0 && string != (char *) 0) ? strlen (string) : len;
214 char *safe_string = alloca ((real_len * 4) + 1);
215
216 monitor_printable_string (safe_string, string, real_len);
217
218 if (final_char)
219 error (_("%s (%s): %s: %s%c"),
220 function, paddress (target_gdbarch (), memaddr),
221 message, safe_string, final_char);
222 else
223 error (_("%s (%s): %s: %s"),
224 function, paddress (target_gdbarch (), memaddr),
225 message, safe_string);
226 }
227
228 /* Convert hex digit A to a number. */
229
230 static int
231 fromhex (int a)
232 {
233 if (a >= '0' && a <= '9')
234 return a - '0';
235 else if (a >= 'a' && a <= 'f')
236 return a - 'a' + 10;
237 else if (a >= 'A' && a <= 'F')
238 return a - 'A' + 10;
239 else
240 error (_("Invalid hex digit %d"), a);
241 }
242
243 /* monitor_vsprintf - similar to vsprintf but handles 64-bit addresses
244
245 This function exists to get around the problem that many host platforms
246 don't have a printf that can print 64-bit addresses. The %A format
247 specification is recognized as a special case, and causes the argument
248 to be printed as a 64-bit hexadecimal address.
249
250 Only format specifiers of the form "[0-9]*[a-z]" are recognized.
251 If it is a '%s' format, the argument is a string; otherwise the
252 argument is assumed to be a long integer.
253
254 %% is also turned into a single %. */
255
256 static void
257 monitor_vsprintf (char *sndbuf, char *pattern, va_list args)
258 {
259 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
260 char format[10];
261 char fmt;
262 char *p;
263 int i;
264 long arg_int;
265 CORE_ADDR arg_addr;
266 char *arg_string;
267
268 for (p = pattern; *p; p++)
269 {
270 if (*p == '%')
271 {
272 /* Copy the format specifier to a separate buffer. */
273 format[0] = *p++;
274 for (i = 1; *p >= '0' && *p <= '9' && i < (int) sizeof (format) - 2;
275 i++, p++)
276 format[i] = *p;
277 format[i] = fmt = *p;
278 format[i + 1] = '\0';
279
280 /* Fetch the next argument and print it. */
281 switch (fmt)
282 {
283 case '%':
284 strcpy (sndbuf, "%");
285 break;
286 case 'A':
287 arg_addr = va_arg (args, CORE_ADDR);
288 strcpy (sndbuf, phex_nz (arg_addr, addr_bit / 8));
289 break;
290 case 's':
291 arg_string = va_arg (args, char *);
292 sprintf (sndbuf, format, arg_string);
293 break;
294 default:
295 arg_int = va_arg (args, long);
296 sprintf (sndbuf, format, arg_int);
297 break;
298 }
299 sndbuf += strlen (sndbuf);
300 }
301 else
302 *sndbuf++ = *p;
303 }
304 *sndbuf = '\0';
305 }
306
307
308 /* monitor_printf_noecho -- Send data to monitor, but don't expect an echo.
309 Works just like printf. */
310
311 void
312 monitor_printf_noecho (char *pattern,...)
313 {
314 va_list args;
315 char sndbuf[2000];
316 int len;
317
318 va_start (args, pattern);
319
320 monitor_vsprintf (sndbuf, pattern, args);
321
322 len = strlen (sndbuf);
323 if (len + 1 > sizeof sndbuf)
324 internal_error (__FILE__, __LINE__,
325 _("failed internal consistency check"));
326
327 if (monitor_debug_p)
328 {
329 char *safe_string = (char *) alloca ((strlen (sndbuf) * 4) + 1);
330
331 monitor_printable_string (safe_string, sndbuf, 0);
332 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
333 }
334
335 monitor_write (sndbuf, len);
336 }
337
338 /* monitor_printf -- Send data to monitor and check the echo. Works just like
339 printf. */
340
341 void
342 monitor_printf (char *pattern,...)
343 {
344 va_list args;
345 char sndbuf[2000];
346 int len;
347
348 va_start (args, pattern);
349
350 monitor_vsprintf (sndbuf, pattern, args);
351
352 len = strlen (sndbuf);
353 if (len + 1 > sizeof sndbuf)
354 internal_error (__FILE__, __LINE__,
355 _("failed internal consistency check"));
356
357 if (monitor_debug_p)
358 {
359 char *safe_string = (char *) alloca ((len * 4) + 1);
360
361 monitor_printable_string (safe_string, sndbuf, 0);
362 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
363 }
364
365 monitor_write (sndbuf, len);
366
367 /* We used to expect that the next immediate output was the
368 characters we just output, but sometimes some extra junk appeared
369 before the characters we expected, like an extra prompt, or a
370 portmaster sending telnet negotiations. So, just start searching
371 for what we sent, and skip anything unknown. */
372 monitor_debug ("ExpectEcho\n");
373 monitor_expect (sndbuf, (char *) 0, 0);
374 }
375
376
377 /* Write characters to the remote system. */
378
379 void
380 monitor_write (char *buf, int buflen)
381 {
382 if (serial_write (monitor_desc, buf, buflen))
383 fprintf_unfiltered (gdb_stderr, "serial_write failed: %s\n",
384 safe_strerror (errno));
385 }
386
387
388 /* Read a binary character from the remote system, doing all the fancy
389 timeout stuff, but without interpreting the character in any way,
390 and without printing remote debug information. */
391
392 int
393 monitor_readchar (void)
394 {
395 int c;
396 int looping;
397
398 do
399 {
400 looping = 0;
401 c = serial_readchar (monitor_desc, timeout);
402
403 if (c >= 0)
404 c &= 0xff; /* don't lose bit 7 */
405 }
406 while (looping);
407
408 if (c >= 0)
409 return c;
410
411 if (c == SERIAL_TIMEOUT)
412 error (_("Timeout reading from remote system."));
413
414 perror_with_name (_("remote-monitor"));
415 }
416
417
418 /* Read a character from the remote system, doing all the fancy
419 timeout stuff. */
420
421 static int
422 readchar (int timeout)
423 {
424 int c;
425 static enum
426 {
427 last_random, last_nl, last_cr, last_crnl
428 }
429 state = last_random;
430 int looping;
431
432 do
433 {
434 looping = 0;
435 c = serial_readchar (monitor_desc, timeout);
436
437 if (c >= 0)
438 {
439 c &= 0x7f;
440 /* This seems to interfere with proper function of the
441 input stream. */
442 if (monitor_debug_p || remote_debug)
443 {
444 char buf[2];
445
446 buf[0] = c;
447 buf[1] = '\0';
448 puts_debug ("read -->", buf, "<--");
449 }
450
451 }
452
453 /* Canonicialize \n\r combinations into one \r. */
454 if ((current_monitor->flags & MO_HANDLE_NL) != 0)
455 {
456 if ((c == '\r' && state == last_nl)
457 || (c == '\n' && state == last_cr))
458 {
459 state = last_crnl;
460 looping = 1;
461 }
462 else if (c == '\r')
463 state = last_cr;
464 else if (c != '\n')
465 state = last_random;
466 else
467 {
468 state = last_nl;
469 c = '\r';
470 }
471 }
472 }
473 while (looping);
474
475 if (c >= 0)
476 return c;
477
478 if (c == SERIAL_TIMEOUT)
479 #if 0
480 /* I fail to see how detaching here can be useful. */
481 if (in_monitor_wait) /* Watchdog went off. */
482 {
483 target_mourn_inferior ();
484 error (_("GDB serial timeout has expired. Target detached."));
485 }
486 else
487 #endif
488 error (_("Timeout reading from remote system."));
489
490 perror_with_name (_("remote-monitor"));
491 }
492
493 /* Scan input from the remote system, until STRING is found. If BUF is non-
494 zero, then collect input until we have collected either STRING or BUFLEN-1
495 chars. In either case we terminate BUF with a 0. If input overflows BUF
496 because STRING can't be found, return -1, else return number of chars in BUF
497 (minus the terminating NUL). Note that in the non-overflow case, STRING
498 will be at the end of BUF. */
499
500 int
501 monitor_expect (char *string, char *buf, int buflen)
502 {
503 char *p = string;
504 int obuflen = buflen;
505 int c;
506
507 if (monitor_debug_p)
508 {
509 char *safe_string = (char *) alloca ((strlen (string) * 4) + 1);
510 monitor_printable_string (safe_string, string, 0);
511 fprintf_unfiltered (gdb_stdlog, "MON Expecting '%s'\n", safe_string);
512 }
513
514 immediate_quit++;
515 QUIT;
516 while (1)
517 {
518 if (buf)
519 {
520 if (buflen < 2)
521 {
522 *buf = '\000';
523 immediate_quit--;
524 return -1;
525 }
526
527 c = readchar (timeout);
528 if (c == '\000')
529 continue;
530 *buf++ = c;
531 buflen--;
532 }
533 else
534 c = readchar (timeout);
535
536 /* Don't expect any ^C sent to be echoed. */
537
538 if (*p == '\003' || c == *p)
539 {
540 p++;
541 if (*p == '\0')
542 {
543 immediate_quit--;
544
545 if (buf)
546 {
547 *buf++ = '\000';
548 return obuflen - buflen;
549 }
550 else
551 return 0;
552 }
553 }
554 else
555 {
556 /* We got a character that doesn't match the string. We need to
557 back up p, but how far? If we're looking for "..howdy" and the
558 monitor sends "...howdy"? There's certainly a match in there,
559 but when we receive the third ".", we won't find it if we just
560 restart the matching at the beginning of the string.
561
562 This is a Boyer-Moore kind of situation. We want to reset P to
563 the end of the longest prefix of STRING that is a suffix of
564 what we've read so far. In the example above, that would be
565 ".." --- the longest prefix of "..howdy" that is a suffix of
566 "...". This longest prefix could be the empty string, if C
567 is nowhere to be found in STRING.
568
569 If this longest prefix is not the empty string, it must contain
570 C, so let's search from the end of STRING for instances of C,
571 and see if the portion of STRING before that is a suffix of
572 what we read before C. Actually, we can search backwards from
573 p, since we know no prefix can be longer than that.
574
575 Note that we can use STRING itself, along with C, as a record
576 of what we've received so far. :) */
577 int i;
578
579 for (i = (p - string) - 1; i >= 0; i--)
580 if (string[i] == c)
581 {
582 /* Is this prefix a suffix of what we've read so far?
583 In other words, does
584 string[0 .. i-1] == string[p - i, p - 1]? */
585 if (! memcmp (string, p - i, i))
586 {
587 p = string + i + 1;
588 break;
589 }
590 }
591 if (i < 0)
592 p = string;
593 }
594 }
595 }
596
597 /* Search for a regexp. */
598
599 static int
600 monitor_expect_regexp (struct re_pattern_buffer *pat, char *buf, int buflen)
601 {
602 char *mybuf;
603 char *p;
604
605 monitor_debug ("MON Expecting regexp\n");
606 if (buf)
607 mybuf = buf;
608 else
609 {
610 mybuf = alloca (TARGET_BUF_SIZE);
611 buflen = TARGET_BUF_SIZE;
612 }
613
614 p = mybuf;
615 while (1)
616 {
617 int retval;
618
619 if (p - mybuf >= buflen)
620 { /* Buffer about to overflow. */
621
622 /* On overflow, we copy the upper half of the buffer to the lower half. Not
623 great, but it usually works... */
624
625 memcpy (mybuf, mybuf + buflen / 2, buflen / 2);
626 p = mybuf + buflen / 2;
627 }
628
629 *p++ = readchar (timeout);
630
631 retval = re_search (pat, mybuf, p - mybuf, 0, p - mybuf, NULL);
632 if (retval >= 0)
633 return 1;
634 }
635 }
636
637 /* Keep discarding input until we see the MONITOR prompt.
638
639 The convention for dealing with the prompt is that you
640 o give your command
641 o *then* wait for the prompt.
642
643 Thus the last thing that a procedure does with the serial line will
644 be an monitor_expect_prompt(). Exception: monitor_resume does not
645 wait for the prompt, because the terminal is being handed over to
646 the inferior. However, the next thing which happens after that is
647 a monitor_wait which does wait for the prompt. Note that this
648 includes abnormal exit, e.g. error(). This is necessary to prevent
649 getting into states from which we can't recover. */
650
651 int
652 monitor_expect_prompt (char *buf, int buflen)
653 {
654 monitor_debug ("MON Expecting prompt\n");
655 return monitor_expect (current_monitor->prompt, buf, buflen);
656 }
657
658 /* Get N 32-bit words from remote, each preceded by a space, and put
659 them in registers starting at REGNO. */
660
661 #if 0
662 static unsigned long
663 get_hex_word (void)
664 {
665 unsigned long val;
666 int i;
667 int ch;
668
669 do
670 ch = readchar (timeout);
671 while (isspace (ch));
672
673 val = from_hex (ch);
674
675 for (i = 7; i >= 1; i--)
676 {
677 ch = readchar (timeout);
678 if (!isxdigit (ch))
679 break;
680 val = (val << 4) | from_hex (ch);
681 }
682
683 return val;
684 }
685 #endif
686
687 static void
688 compile_pattern (char *pattern, struct re_pattern_buffer *compiled_pattern,
689 char *fastmap)
690 {
691 int tmp;
692 const char *val;
693
694 compiled_pattern->fastmap = fastmap;
695
696 tmp = re_set_syntax (RE_SYNTAX_EMACS);
697 val = re_compile_pattern (pattern,
698 strlen (pattern),
699 compiled_pattern);
700 re_set_syntax (tmp);
701
702 if (val)
703 error (_("compile_pattern: Can't compile pattern string `%s': %s!"),
704 pattern, val);
705
706 if (fastmap)
707 re_compile_fastmap (compiled_pattern);
708 }
709
710 /* Open a connection to a remote debugger. NAME is the filename used
711 for communication. */
712
713 void
714 monitor_open (const char *args, struct monitor_ops *mon_ops, int from_tty)
715 {
716 const char *name;
717 char **p;
718 struct inferior *inf;
719
720 if (mon_ops->magic != MONITOR_OPS_MAGIC)
721 error (_("Magic number of monitor_ops struct wrong."));
722
723 targ_ops = mon_ops->target;
724 name = targ_ops->to_shortname;
725
726 if (!args)
727 error (_("Use `target %s DEVICE-NAME' to use a serial port, or\n\
728 `target %s HOST-NAME:PORT-NUMBER' to use a network connection."), name, name);
729
730 target_preopen (from_tty);
731
732 /* Setup pattern for register dump. */
733
734 if (mon_ops->register_pattern)
735 compile_pattern (mon_ops->register_pattern, &register_pattern,
736 register_fastmap);
737
738 if (mon_ops->getmem.resp_delim)
739 compile_pattern (mon_ops->getmem.resp_delim, &getmem_resp_delim_pattern,
740 getmem_resp_delim_fastmap);
741
742 if (mon_ops->setmem.resp_delim)
743 compile_pattern (mon_ops->setmem.resp_delim, &setmem_resp_delim_pattern,
744 setmem_resp_delim_fastmap);
745
746 if (mon_ops->setreg.resp_delim)
747 compile_pattern (mon_ops->setreg.resp_delim, &setreg_resp_delim_pattern,
748 setreg_resp_delim_fastmap);
749
750 unpush_target (targ_ops);
751
752 if (dev_name)
753 xfree (dev_name);
754 dev_name = xstrdup (args);
755
756 monitor_desc = serial_open (dev_name);
757
758 if (!monitor_desc)
759 perror_with_name (dev_name);
760
761 if (baud_rate != -1)
762 {
763 if (serial_setbaudrate (monitor_desc, baud_rate))
764 {
765 serial_close (monitor_desc);
766 perror_with_name (dev_name);
767 }
768 }
769
770 serial_setparity (monitor_desc, serial_parity);
771 serial_raw (monitor_desc);
772
773 serial_flush_input (monitor_desc);
774
775 /* some systems only work with 2 stop bits. */
776
777 serial_setstopbits (monitor_desc, mon_ops->stopbits);
778
779 current_monitor = mon_ops;
780
781 /* See if we can wake up the monitor. First, try sending a stop sequence,
782 then send the init strings. Last, remove all breakpoints. */
783
784 if (current_monitor->stop)
785 {
786 monitor_stop (targ_ops, inferior_ptid);
787 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
788 {
789 monitor_debug ("EXP Open echo\n");
790 monitor_expect_prompt (NULL, 0);
791 }
792 }
793
794 /* wake up the monitor and see if it's alive. */
795 for (p = mon_ops->init; *p != NULL; p++)
796 {
797 /* Some of the characters we send may not be echoed,
798 but we hope to get a prompt at the end of it all. */
799
800 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
801 monitor_printf (*p);
802 else
803 monitor_printf_noecho (*p);
804 monitor_expect_prompt (NULL, 0);
805 }
806
807 serial_flush_input (monitor_desc);
808
809 /* Alloc breakpoints */
810 if (mon_ops->set_break != NULL)
811 {
812 if (mon_ops->num_breakpoints == 0)
813 mon_ops->num_breakpoints = 8;
814
815 breakaddr = (CORE_ADDR *)
816 xmalloc (mon_ops->num_breakpoints * sizeof (CORE_ADDR));
817 memset (breakaddr, 0, mon_ops->num_breakpoints * sizeof (CORE_ADDR));
818 }
819
820 /* Remove all breakpoints. */
821
822 if (mon_ops->clr_all_break)
823 {
824 monitor_printf (mon_ops->clr_all_break);
825 monitor_expect_prompt (NULL, 0);
826 }
827
828 if (from_tty)
829 printf_unfiltered (_("Remote target %s connected to %s\n"),
830 name, dev_name);
831
832 push_target (targ_ops);
833
834 /* Start afresh. */
835 init_thread_list ();
836
837 /* Make run command think we are busy... */
838 inferior_ptid = monitor_ptid;
839 inf = current_inferior ();
840 inferior_appeared (inf, ptid_get_pid (inferior_ptid));
841 add_thread_silent (inferior_ptid);
842
843 /* Give monitor_wait something to read. */
844
845 monitor_printf (current_monitor->line_term);
846
847 init_wait_for_inferior ();
848
849 start_remote (from_tty);
850 }
851
852 /* Close out all files and local state before this target loses
853 control. */
854
855 void
856 monitor_close (struct target_ops *self)
857 {
858 if (monitor_desc)
859 serial_close (monitor_desc);
860
861 /* Free breakpoint memory. */
862 if (breakaddr != NULL)
863 {
864 xfree (breakaddr);
865 breakaddr = NULL;
866 }
867
868 monitor_desc = NULL;
869
870 delete_thread_silent (monitor_ptid);
871 delete_inferior_silent (ptid_get_pid (monitor_ptid));
872 }
873
874 /* Terminate the open connection to the remote debugger. Use this
875 when you want to detach and do something else with your gdb. */
876
877 static void
878 monitor_detach (struct target_ops *ops, const char *args, int from_tty)
879 {
880 unpush_target (ops); /* calls monitor_close to do the real work. */
881 if (from_tty)
882 printf_unfiltered (_("Ending remote %s debugging\n"), target_shortname);
883 }
884
885 /* Convert VALSTR into the target byte-ordered value of REGNO and store it. */
886
887 char *
888 monitor_supply_register (struct regcache *regcache, int regno, char *valstr)
889 {
890 struct gdbarch *gdbarch = get_regcache_arch (regcache);
891 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
892 ULONGEST val;
893 unsigned char regbuf[MAX_REGISTER_SIZE];
894 char *p;
895
896 val = 0;
897 p = valstr;
898 while (p && *p != '\0')
899 {
900 if (*p == '\r' || *p == '\n')
901 {
902 while (*p != '\0')
903 p++;
904 break;
905 }
906 if (isspace (*p))
907 {
908 p++;
909 continue;
910 }
911 if (!isxdigit (*p) && *p != 'x')
912 {
913 break;
914 }
915
916 val <<= 4;
917 val += fromhex (*p++);
918 }
919 monitor_debug ("Supplying Register %d %s\n", regno, valstr);
920
921 if (val == 0 && valstr == p)
922 error (_("monitor_supply_register (%d): bad value from monitor: %s."),
923 regno, valstr);
924
925 /* supply register stores in target byte order, so swap here. */
926
927 store_unsigned_integer (regbuf, register_size (gdbarch, regno), byte_order,
928 val);
929
930 regcache_raw_supply (regcache, regno, regbuf);
931
932 return p;
933 }
934
935 /* Tell the remote machine to resume. */
936
937 static void
938 monitor_resume (struct target_ops *ops,
939 ptid_t ptid, int step, enum gdb_signal sig)
940 {
941 /* Some monitors require a different command when starting a program. */
942 monitor_debug ("MON resume\n");
943 if (current_monitor->flags & MO_RUN_FIRST_TIME && first_time == 1)
944 {
945 first_time = 0;
946 monitor_printf ("run\r");
947 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
948 dump_reg_flag = 1;
949 return;
950 }
951 if (step)
952 monitor_printf (current_monitor->step);
953 else
954 {
955 if (current_monitor->continue_hook)
956 (*current_monitor->continue_hook) ();
957 else
958 monitor_printf (current_monitor->cont);
959 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
960 dump_reg_flag = 1;
961 }
962 }
963
964 /* Parse the output of a register dump command. A monitor specific
965 regexp is used to extract individual register descriptions of the
966 form REG=VAL. Each description is split up into a name and a value
967 string which are passed down to monitor specific code. */
968
969 static void
970 parse_register_dump (struct regcache *regcache, char *buf, int len)
971 {
972 monitor_debug ("MON Parsing register dump\n");
973 while (1)
974 {
975 int regnamelen, vallen;
976 char *regname, *val;
977
978 /* Element 0 points to start of register name, and element 1
979 points to the start of the register value. */
980 struct re_registers register_strings;
981
982 memset (&register_strings, 0, sizeof (struct re_registers));
983
984 if (re_search (&register_pattern, buf, len, 0, len,
985 &register_strings) == -1)
986 break;
987
988 regnamelen = register_strings.end[1] - register_strings.start[1];
989 regname = buf + register_strings.start[1];
990 vallen = register_strings.end[2] - register_strings.start[2];
991 val = buf + register_strings.start[2];
992
993 current_monitor->supply_register (regcache, regname, regnamelen,
994 val, vallen);
995
996 buf += register_strings.end[0];
997 len -= register_strings.end[0];
998 }
999 }
1000
1001 /* Send ^C to target to halt it. Target will respond, and send us a
1002 packet. */
1003
1004 static void
1005 monitor_interrupt (int signo)
1006 {
1007 /* If this doesn't work, try more severe steps. */
1008 signal (signo, monitor_interrupt_twice);
1009
1010 if (monitor_debug_p || remote_debug)
1011 fprintf_unfiltered (gdb_stdlog, "monitor_interrupt called\n");
1012
1013 target_stop (inferior_ptid);
1014 }
1015
1016 /* The user typed ^C twice. */
1017
1018 static void
1019 monitor_interrupt_twice (int signo)
1020 {
1021 signal (signo, ofunc);
1022
1023 monitor_interrupt_query ();
1024
1025 signal (signo, monitor_interrupt);
1026 }
1027
1028 /* Ask the user what to do when an interrupt is received. */
1029
1030 static void
1031 monitor_interrupt_query (void)
1032 {
1033 target_terminal_ours ();
1034
1035 if (query (_("Interrupted while waiting for the program.\n\
1036 Give up (and stop debugging it)? ")))
1037 {
1038 target_mourn_inferior ();
1039 quit ();
1040 }
1041
1042 target_terminal_inferior ();
1043 }
1044
1045 static void
1046 monitor_wait_cleanup (void *old_timeout)
1047 {
1048 timeout = *(int *) old_timeout;
1049 signal (SIGINT, ofunc);
1050 in_monitor_wait = 0;
1051 }
1052
1053
1054
1055 static void
1056 monitor_wait_filter (char *buf,
1057 int bufmax,
1058 int *ext_resp_len,
1059 struct target_waitstatus *status)
1060 {
1061 int resp_len;
1062
1063 do
1064 {
1065 resp_len = monitor_expect_prompt (buf, bufmax);
1066 *ext_resp_len = resp_len;
1067
1068 if (resp_len <= 0)
1069 fprintf_unfiltered (gdb_stderr,
1070 "monitor_wait: excessive "
1071 "response from monitor: %s.", buf);
1072 }
1073 while (resp_len < 0);
1074
1075 /* Print any output characters that were preceded by ^O. */
1076 /* FIXME - This would be great as a user settabgle flag. */
1077 if (monitor_debug_p || remote_debug
1078 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1079 {
1080 int i;
1081
1082 for (i = 0; i < resp_len - 1; i++)
1083 if (buf[i] == 0x0f)
1084 putchar_unfiltered (buf[++i]);
1085 }
1086 }
1087
1088
1089
1090 /* Wait until the remote machine stops, then return, storing status in
1091 status just as `wait' would. */
1092
1093 static ptid_t
1094 monitor_wait (struct target_ops *ops,
1095 ptid_t ptid, struct target_waitstatus *status, int options)
1096 {
1097 int old_timeout = timeout;
1098 char buf[TARGET_BUF_SIZE];
1099 int resp_len;
1100 struct cleanup *old_chain;
1101
1102 status->kind = TARGET_WAITKIND_EXITED;
1103 status->value.integer = 0;
1104
1105 old_chain = make_cleanup (monitor_wait_cleanup, &old_timeout);
1106 monitor_debug ("MON wait\n");
1107
1108 #if 0
1109 /* This is somthing other than a maintenance command. */
1110 in_monitor_wait = 1;
1111 timeout = watchdog > 0 ? watchdog : -1;
1112 #else
1113 timeout = -1; /* Don't time out -- user program is running. */
1114 #endif
1115
1116 ofunc = (void (*)()) signal (SIGINT, monitor_interrupt);
1117
1118 if (current_monitor->wait_filter)
1119 (*current_monitor->wait_filter) (buf, sizeof (buf), &resp_len, status);
1120 else
1121 monitor_wait_filter (buf, sizeof (buf), &resp_len, status);
1122
1123 #if 0 /* Transferred to monitor wait filter. */
1124 do
1125 {
1126 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1127
1128 if (resp_len <= 0)
1129 fprintf_unfiltered (gdb_stderr,
1130 "monitor_wait: excessive "
1131 "response from monitor: %s.", buf);
1132 }
1133 while (resp_len < 0);
1134
1135 /* Print any output characters that were preceded by ^O. */
1136 /* FIXME - This would be great as a user settabgle flag. */
1137 if (monitor_debug_p || remote_debug
1138 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1139 {
1140 int i;
1141
1142 for (i = 0; i < resp_len - 1; i++)
1143 if (buf[i] == 0x0f)
1144 putchar_unfiltered (buf[++i]);
1145 }
1146 #endif
1147
1148 signal (SIGINT, ofunc);
1149
1150 timeout = old_timeout;
1151 #if 0
1152 if (dump_reg_flag && current_monitor->dump_registers)
1153 {
1154 dump_reg_flag = 0;
1155 monitor_printf (current_monitor->dump_registers);
1156 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1157 }
1158
1159 if (current_monitor->register_pattern)
1160 parse_register_dump (get_current_regcache (), buf, resp_len);
1161 #else
1162 monitor_debug ("Wait fetching registers after stop\n");
1163 monitor_dump_regs (get_current_regcache ());
1164 #endif
1165
1166 status->kind = TARGET_WAITKIND_STOPPED;
1167 status->value.sig = GDB_SIGNAL_TRAP;
1168
1169 discard_cleanups (old_chain);
1170
1171 in_monitor_wait = 0;
1172
1173 return inferior_ptid;
1174 }
1175
1176 /* Fetch register REGNO, or all registers if REGNO is -1. Returns
1177 errno value. */
1178
1179 static void
1180 monitor_fetch_register (struct regcache *regcache, int regno)
1181 {
1182 const char *name;
1183 char *zerobuf;
1184 char *regbuf;
1185 int i;
1186
1187 regbuf = alloca (MAX_REGISTER_SIZE * 2 + 1);
1188 zerobuf = alloca (MAX_REGISTER_SIZE);
1189 memset (zerobuf, 0, MAX_REGISTER_SIZE);
1190
1191 if (current_monitor->regname != NULL)
1192 name = current_monitor->regname (regno);
1193 else
1194 name = current_monitor->regnames[regno];
1195 monitor_debug ("MON fetchreg %d '%s'\n", regno, name ? name : "(null name)");
1196
1197 if (!name || (*name == '\0'))
1198 {
1199 monitor_debug ("No register known for %d\n", regno);
1200 regcache_raw_supply (regcache, regno, zerobuf);
1201 return;
1202 }
1203
1204 /* Send the register examine command. */
1205
1206 monitor_printf (current_monitor->getreg.cmd, name);
1207
1208 /* If RESP_DELIM is specified, we search for that as a leading
1209 delimiter for the register value. Otherwise, we just start
1210 searching from the start of the buf. */
1211
1212 if (current_monitor->getreg.resp_delim)
1213 {
1214 monitor_debug ("EXP getreg.resp_delim\n");
1215 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1216 /* Handle case of first 32 registers listed in pairs. */
1217 if (current_monitor->flags & MO_32_REGS_PAIRED
1218 && (regno & 1) != 0 && regno < 32)
1219 {
1220 monitor_debug ("EXP getreg.resp_delim\n");
1221 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1222 }
1223 }
1224
1225 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */
1226 if (current_monitor->flags & MO_HEX_PREFIX)
1227 {
1228 int c;
1229
1230 c = readchar (timeout);
1231 while (c == ' ')
1232 c = readchar (timeout);
1233 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1234 ;
1235 else
1236 error (_("Bad value returned from monitor "
1237 "while fetching register %x."),
1238 regno);
1239 }
1240
1241 /* Read upto the maximum number of hex digits for this register, skipping
1242 spaces, but stop reading if something else is seen. Some monitors
1243 like to drop leading zeros. */
1244
1245 for (i = 0; i < register_size (get_regcache_arch (regcache), regno) * 2; i++)
1246 {
1247 int c;
1248
1249 c = readchar (timeout);
1250 while (c == ' ')
1251 c = readchar (timeout);
1252
1253 if (!isxdigit (c))
1254 break;
1255
1256 regbuf[i] = c;
1257 }
1258
1259 regbuf[i] = '\000'; /* Terminate the number. */
1260 monitor_debug ("REGVAL '%s'\n", regbuf);
1261
1262 /* If TERM is present, we wait for that to show up. Also, (if TERM
1263 is present), we will send TERM_CMD if that is present. In any
1264 case, we collect all of the output into buf, and then wait for
1265 the normal prompt. */
1266
1267 if (current_monitor->getreg.term)
1268 {
1269 monitor_debug ("EXP getreg.term\n");
1270 monitor_expect (current_monitor->getreg.term, NULL, 0); /* Get
1271 response. */
1272 }
1273
1274 if (current_monitor->getreg.term_cmd)
1275 {
1276 monitor_debug ("EMIT getreg.term.cmd\n");
1277 monitor_printf (current_monitor->getreg.term_cmd);
1278 }
1279 if (!current_monitor->getreg.term || /* Already expected or */
1280 current_monitor->getreg.term_cmd) /* ack expected. */
1281 monitor_expect_prompt (NULL, 0); /* Get response. */
1282
1283 monitor_supply_register (regcache, regno, regbuf);
1284 }
1285
1286 /* Sometimes, it takes several commands to dump the registers. */
1287 /* This is a primitive for use by variations of monitor interfaces in
1288 case they need to compose the operation. */
1289
1290 int
1291 monitor_dump_reg_block (struct regcache *regcache, char *block_cmd)
1292 {
1293 char buf[TARGET_BUF_SIZE];
1294 int resp_len;
1295
1296 monitor_printf (block_cmd);
1297 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1298 parse_register_dump (regcache, buf, resp_len);
1299 return 1;
1300 }
1301
1302
1303 /* Read the remote registers into the block regs. */
1304 /* Call the specific function if it has been provided. */
1305
1306 static void
1307 monitor_dump_regs (struct regcache *regcache)
1308 {
1309 char buf[TARGET_BUF_SIZE];
1310 int resp_len;
1311
1312 if (current_monitor->dumpregs)
1313 (*(current_monitor->dumpregs)) (regcache); /* Call supplied function. */
1314 else if (current_monitor->dump_registers) /* Default version. */
1315 {
1316 monitor_printf (current_monitor->dump_registers);
1317 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1318 parse_register_dump (regcache, buf, resp_len);
1319 }
1320 else
1321 /* Need some way to read registers. */
1322 internal_error (__FILE__, __LINE__,
1323 _("failed internal consistency check"));
1324 }
1325
1326 static void
1327 monitor_fetch_registers (struct target_ops *ops,
1328 struct regcache *regcache, int regno)
1329 {
1330 monitor_debug ("MON fetchregs\n");
1331 if (current_monitor->getreg.cmd)
1332 {
1333 if (regno >= 0)
1334 {
1335 monitor_fetch_register (regcache, regno);
1336 return;
1337 }
1338
1339 for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache));
1340 regno++)
1341 monitor_fetch_register (regcache, regno);
1342 }
1343 else
1344 {
1345 monitor_dump_regs (regcache);
1346 }
1347 }
1348
1349 /* Store register REGNO, or all if REGNO == 0. Return errno value. */
1350
1351 static void
1352 monitor_store_register (struct regcache *regcache, int regno)
1353 {
1354 int reg_size = register_size (get_regcache_arch (regcache), regno);
1355 const char *name;
1356 ULONGEST val;
1357
1358 if (current_monitor->regname != NULL)
1359 name = current_monitor->regname (regno);
1360 else
1361 name = current_monitor->regnames[regno];
1362
1363 if (!name || (*name == '\0'))
1364 {
1365 monitor_debug ("MON Cannot store unknown register\n");
1366 return;
1367 }
1368
1369 regcache_cooked_read_unsigned (regcache, regno, &val);
1370 monitor_debug ("MON storeg %d %s\n", regno, phex (val, reg_size));
1371
1372 /* Send the register deposit command. */
1373
1374 if (current_monitor->flags & MO_REGISTER_VALUE_FIRST)
1375 monitor_printf (current_monitor->setreg.cmd, val, name);
1376 else if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1377 monitor_printf (current_monitor->setreg.cmd, name);
1378 else
1379 monitor_printf (current_monitor->setreg.cmd, name, val);
1380
1381 if (current_monitor->setreg.resp_delim)
1382 {
1383 monitor_debug ("EXP setreg.resp_delim\n");
1384 monitor_expect_regexp (&setreg_resp_delim_pattern, NULL, 0);
1385 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1386 monitor_printf ("%s\r", phex_nz (val, reg_size));
1387 }
1388 if (current_monitor->setreg.term)
1389 {
1390 monitor_debug ("EXP setreg.term\n");
1391 monitor_expect (current_monitor->setreg.term, NULL, 0);
1392 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1393 monitor_printf ("%s\r", phex_nz (val, reg_size));
1394 monitor_expect_prompt (NULL, 0);
1395 }
1396 else
1397 monitor_expect_prompt (NULL, 0);
1398 if (current_monitor->setreg.term_cmd) /* Mode exit required. */
1399 {
1400 monitor_debug ("EXP setreg_termcmd\n");
1401 monitor_printf ("%s", current_monitor->setreg.term_cmd);
1402 monitor_expect_prompt (NULL, 0);
1403 }
1404 } /* monitor_store_register */
1405
1406 /* Store the remote registers. */
1407
1408 static void
1409 monitor_store_registers (struct target_ops *ops,
1410 struct regcache *regcache, int regno)
1411 {
1412 if (regno >= 0)
1413 {
1414 monitor_store_register (regcache, regno);
1415 return;
1416 }
1417
1418 for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache));
1419 regno++)
1420 monitor_store_register (regcache, regno);
1421 }
1422
1423 /* Get ready to modify the registers array. On machines which store
1424 individual registers, this doesn't need to do anything. On machines
1425 which store all the registers in one fell swoop, this makes sure
1426 that registers contains all the registers from the program being
1427 debugged. */
1428
1429 static void
1430 monitor_prepare_to_store (struct target_ops *self, struct regcache *regcache)
1431 {
1432 /* Do nothing, since we can store individual regs. */
1433 }
1434
1435 static void
1436 monitor_files_info (struct target_ops *ops)
1437 {
1438 printf_unfiltered (_("\tAttached to %s at %d baud.\n"), dev_name, baud_rate);
1439 }
1440
1441 static int
1442 monitor_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1443 {
1444 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1445 unsigned int val, hostval;
1446 char *cmd;
1447 int i;
1448
1449 monitor_debug ("MON write %d %s\n", len, paddress (target_gdbarch (), memaddr));
1450
1451 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1452 memaddr = gdbarch_addr_bits_remove (target_gdbarch (), memaddr);
1453
1454 /* Use memory fill command for leading 0 bytes. */
1455
1456 if (current_monitor->fill)
1457 {
1458 for (i = 0; i < len; i++)
1459 if (myaddr[i] != 0)
1460 break;
1461
1462 if (i > 4) /* More than 4 zeros is worth doing. */
1463 {
1464 monitor_debug ("MON FILL %d\n", i);
1465 if (current_monitor->flags & MO_FILL_USES_ADDR)
1466 monitor_printf (current_monitor->fill, memaddr,
1467 (memaddr + i) - 1, 0);
1468 else
1469 monitor_printf (current_monitor->fill, memaddr, i, 0);
1470
1471 monitor_expect_prompt (NULL, 0);
1472
1473 return i;
1474 }
1475 }
1476
1477 #if 0
1478 /* Can't actually use long longs if VAL is an int (nice idea, though). */
1479 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->setmem.cmdll)
1480 {
1481 len = 8;
1482 cmd = current_monitor->setmem.cmdll;
1483 }
1484 else
1485 #endif
1486 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->setmem.cmdl)
1487 {
1488 len = 4;
1489 cmd = current_monitor->setmem.cmdl;
1490 }
1491 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->setmem.cmdw)
1492 {
1493 len = 2;
1494 cmd = current_monitor->setmem.cmdw;
1495 }
1496 else
1497 {
1498 len = 1;
1499 cmd = current_monitor->setmem.cmdb;
1500 }
1501
1502 val = extract_unsigned_integer (myaddr, len, byte_order);
1503
1504 if (len == 4)
1505 {
1506 hostval = *(unsigned int *) myaddr;
1507 monitor_debug ("Hostval(%08x) val(%08x)\n", hostval, val);
1508 }
1509
1510
1511 if (current_monitor->flags & MO_NO_ECHO_ON_SETMEM)
1512 monitor_printf_noecho (cmd, memaddr, val);
1513 else if (current_monitor->flags & MO_SETMEM_INTERACTIVE)
1514 {
1515 monitor_printf_noecho (cmd, memaddr);
1516
1517 if (current_monitor->setmem.resp_delim)
1518 {
1519 monitor_debug ("EXP setmem.resp_delim");
1520 monitor_expect_regexp (&setmem_resp_delim_pattern, NULL, 0);
1521 monitor_printf ("%x\r", val);
1522 }
1523 if (current_monitor->setmem.term)
1524 {
1525 monitor_debug ("EXP setmem.term");
1526 monitor_expect (current_monitor->setmem.term, NULL, 0);
1527 monitor_printf ("%x\r", val);
1528 }
1529 if (current_monitor->setmem.term_cmd)
1530 { /* Emit this to get out of the memory editing state. */
1531 monitor_printf ("%s", current_monitor->setmem.term_cmd);
1532 /* Drop through to expecting a prompt. */
1533 }
1534 }
1535 else
1536 monitor_printf (cmd, memaddr, val);
1537
1538 monitor_expect_prompt (NULL, 0);
1539
1540 return len;
1541 }
1542
1543
1544 static int
1545 monitor_write_memory_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1546 {
1547 unsigned char val;
1548 int written = 0;
1549
1550 if (len == 0)
1551 return 0;
1552 /* Enter the sub mode. */
1553 monitor_printf (current_monitor->setmem.cmdb, memaddr);
1554 monitor_expect_prompt (NULL, 0);
1555 while (len)
1556 {
1557 val = *myaddr;
1558 monitor_printf ("%x\r", val);
1559 myaddr++;
1560 memaddr++;
1561 written++;
1562 /* If we wanted to, here we could validate the address. */
1563 monitor_expect_prompt (NULL, 0);
1564 len--;
1565 }
1566 /* Now exit the sub mode. */
1567 monitor_printf (current_monitor->getreg.term_cmd);
1568 monitor_expect_prompt (NULL, 0);
1569 return written;
1570 }
1571
1572
1573 static void
1574 longlongendswap (unsigned char *a)
1575 {
1576 int i, j;
1577 unsigned char x;
1578
1579 i = 0;
1580 j = 7;
1581 while (i < 4)
1582 {
1583 x = *(a + i);
1584 *(a + i) = *(a + j);
1585 *(a + j) = x;
1586 i++, j--;
1587 }
1588 }
1589 /* Format 32 chars of long long value, advance the pointer. */
1590 static char *hexlate = "0123456789abcdef";
1591 static char *
1592 longlong_hexchars (unsigned long long value,
1593 char *outbuff)
1594 {
1595 if (value == 0)
1596 {
1597 *outbuff++ = '0';
1598 return outbuff;
1599 }
1600 else
1601 {
1602 static unsigned char disbuf[8]; /* disassembly buffer */
1603 unsigned char *scan, *limit; /* loop controls */
1604 unsigned char c, nib;
1605 int leadzero = 1;
1606
1607 scan = disbuf;
1608 limit = scan + 8;
1609 {
1610 unsigned long long *dp;
1611
1612 dp = (unsigned long long *) scan;
1613 *dp = value;
1614 }
1615 longlongendswap (disbuf); /* FIXME: ONly on big endian hosts. */
1616 while (scan < limit)
1617 {
1618 c = *scan++; /* A byte of our long long value. */
1619 if (leadzero)
1620 {
1621 if (c == 0)
1622 continue;
1623 else
1624 leadzero = 0; /* Henceforth we print even zeroes. */
1625 }
1626 nib = c >> 4; /* high nibble bits */
1627 *outbuff++ = hexlate[nib];
1628 nib = c & 0x0f; /* low nibble bits */
1629 *outbuff++ = hexlate[nib];
1630 }
1631 return outbuff;
1632 }
1633 } /* longlong_hexchars */
1634
1635
1636
1637 /* I am only going to call this when writing virtual byte streams.
1638 Which possably entails endian conversions. */
1639
1640 static int
1641 monitor_write_memory_longlongs (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1642 {
1643 static char hexstage[20]; /* At least 16 digits required, plus null. */
1644 char *endstring;
1645 long long *llptr;
1646 long long value;
1647 int written = 0;
1648
1649 llptr = (long long *) myaddr;
1650 if (len == 0)
1651 return 0;
1652 monitor_printf (current_monitor->setmem.cmdll, memaddr);
1653 monitor_expect_prompt (NULL, 0);
1654 while (len >= 8)
1655 {
1656 value = *llptr;
1657 endstring = longlong_hexchars (*llptr, hexstage);
1658 *endstring = '\0'; /* NUll terminate for printf. */
1659 monitor_printf ("%s\r", hexstage);
1660 llptr++;
1661 memaddr += 8;
1662 written += 8;
1663 /* If we wanted to, here we could validate the address. */
1664 monitor_expect_prompt (NULL, 0);
1665 len -= 8;
1666 }
1667 /* Now exit the sub mode. */
1668 monitor_printf (current_monitor->getreg.term_cmd);
1669 monitor_expect_prompt (NULL, 0);
1670 return written;
1671 } /* */
1672
1673
1674
1675 /* ----- MONITOR_WRITE_MEMORY_BLOCK ---------------------------- */
1676 /* This is for the large blocks of memory which may occur in downloading.
1677 And for monitors which use interactive entry,
1678 And for monitors which do not have other downloading methods.
1679 Without this, we will end up calling monitor_write_memory many times
1680 and do the entry and exit of the sub mode many times
1681 This currently assumes...
1682 MO_SETMEM_INTERACTIVE
1683 ! MO_NO_ECHO_ON_SETMEM
1684 To use this, the you have to patch the monitor_cmds block with
1685 this function. Otherwise, its not tuned up for use by all
1686 monitor variations. */
1687
1688 static int
1689 monitor_write_memory_block (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1690 {
1691 int written;
1692
1693 written = 0;
1694 /* FIXME: This would be a good place to put the zero test. */
1695 #if 1
1696 if ((len > 8) && (((len & 0x07)) == 0) && current_monitor->setmem.cmdll)
1697 {
1698 return monitor_write_memory_longlongs (memaddr, myaddr, len);
1699 }
1700 #endif
1701 written = monitor_write_memory_bytes (memaddr, myaddr, len);
1702 return written;
1703 }
1704
1705 /* This is an alternate form of monitor_read_memory which is used for monitors
1706 which can only read a single byte/word/etc. at a time. */
1707
1708 static int
1709 monitor_read_memory_single (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1710 {
1711 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1712 unsigned int val;
1713 char membuf[sizeof (int) * 2 + 1];
1714 char *p;
1715 char *cmd;
1716
1717 monitor_debug ("MON read single\n");
1718 #if 0
1719 /* Can't actually use long longs (nice idea, though). In fact, the
1720 call to strtoul below will fail if it tries to convert a value
1721 that's too big to fit in a long. */
1722 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->getmem.cmdll)
1723 {
1724 len = 8;
1725 cmd = current_monitor->getmem.cmdll;
1726 }
1727 else
1728 #endif
1729 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->getmem.cmdl)
1730 {
1731 len = 4;
1732 cmd = current_monitor->getmem.cmdl;
1733 }
1734 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->getmem.cmdw)
1735 {
1736 len = 2;
1737 cmd = current_monitor->getmem.cmdw;
1738 }
1739 else
1740 {
1741 len = 1;
1742 cmd = current_monitor->getmem.cmdb;
1743 }
1744
1745 /* Send the examine command. */
1746
1747 monitor_printf (cmd, memaddr);
1748
1749 /* If RESP_DELIM is specified, we search for that as a leading
1750 delimiter for the memory value. Otherwise, we just start
1751 searching from the start of the buf. */
1752
1753 if (current_monitor->getmem.resp_delim)
1754 {
1755 monitor_debug ("EXP getmem.resp_delim\n");
1756 monitor_expect_regexp (&getmem_resp_delim_pattern, NULL, 0);
1757 }
1758
1759 /* Now, read the appropriate number of hex digits for this loc,
1760 skipping spaces. */
1761
1762 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */
1763 if (current_monitor->flags & MO_HEX_PREFIX)
1764 {
1765 int c;
1766
1767 c = readchar (timeout);
1768 while (c == ' ')
1769 c = readchar (timeout);
1770 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1771 ;
1772 else
1773 monitor_error ("monitor_read_memory_single",
1774 "bad response from monitor",
1775 memaddr, 0, NULL, 0);
1776 }
1777
1778 {
1779 int i;
1780
1781 for (i = 0; i < len * 2; i++)
1782 {
1783 int c;
1784
1785 while (1)
1786 {
1787 c = readchar (timeout);
1788 if (isxdigit (c))
1789 break;
1790 if (c == ' ')
1791 continue;
1792
1793 monitor_error ("monitor_read_memory_single",
1794 "bad response from monitor",
1795 memaddr, i, membuf, 0);
1796 }
1797 membuf[i] = c;
1798 }
1799 membuf[i] = '\000'; /* Terminate the number. */
1800 }
1801
1802 /* If TERM is present, we wait for that to show up. Also, (if TERM is
1803 present), we will send TERM_CMD if that is present. In any case, we collect
1804 all of the output into buf, and then wait for the normal prompt. */
1805
1806 if (current_monitor->getmem.term)
1807 {
1808 monitor_expect (current_monitor->getmem.term, NULL, 0); /* Get
1809 response. */
1810
1811 if (current_monitor->getmem.term_cmd)
1812 {
1813 monitor_printf (current_monitor->getmem.term_cmd);
1814 monitor_expect_prompt (NULL, 0);
1815 }
1816 }
1817 else
1818 monitor_expect_prompt (NULL, 0); /* Get response. */
1819
1820 p = membuf;
1821 val = strtoul (membuf, &p, 16);
1822
1823 if (val == 0 && membuf == p)
1824 monitor_error ("monitor_read_memory_single",
1825 "bad value from monitor",
1826 memaddr, 0, membuf, 0);
1827
1828 /* supply register stores in target byte order, so swap here. */
1829
1830 store_unsigned_integer (myaddr, len, byte_order, val);
1831
1832 return len;
1833 }
1834
1835 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
1836 memory at MEMADDR. Returns length moved. Currently, we do no more
1837 than 16 bytes at a time. */
1838
1839 static int
1840 monitor_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1841 {
1842 unsigned int val;
1843 char buf[512];
1844 char *p, *p1;
1845 int resp_len;
1846 int i;
1847 CORE_ADDR dumpaddr;
1848
1849 if (len <= 0)
1850 {
1851 monitor_debug ("Zero length call to monitor_read_memory\n");
1852 return 0;
1853 }
1854
1855 monitor_debug ("MON read block ta(%s) ha(%s) %d\n",
1856 paddress (target_gdbarch (), memaddr),
1857 host_address_to_string (myaddr), len);
1858
1859 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1860 memaddr = gdbarch_addr_bits_remove (target_gdbarch (), memaddr);
1861
1862 if (current_monitor->flags & MO_GETMEM_READ_SINGLE)
1863 return monitor_read_memory_single (memaddr, myaddr, len);
1864
1865 len = min (len, 16);
1866
1867 /* Some dumpers align the first data with the preceding 16
1868 byte boundary. Some print blanks and start at the
1869 requested boundary. EXACT_DUMPADDR */
1870
1871 dumpaddr = (current_monitor->flags & MO_EXACT_DUMPADDR)
1872 ? memaddr : memaddr & ~0x0f;
1873
1874 /* See if xfer would cross a 16 byte boundary. If so, clip it. */
1875 if (((memaddr ^ (memaddr + len - 1)) & ~0xf) != 0)
1876 len = ((memaddr + len) & ~0xf) - memaddr;
1877
1878 /* Send the memory examine command. */
1879
1880 if (current_monitor->flags & MO_GETMEM_NEEDS_RANGE)
1881 monitor_printf (current_monitor->getmem.cmdb, memaddr, memaddr + len);
1882 else if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1883 monitor_printf (current_monitor->getmem.cmdb, dumpaddr);
1884 else
1885 monitor_printf (current_monitor->getmem.cmdb, memaddr, len);
1886
1887 /* If TERM is present, we wait for that to show up. Also, (if TERM
1888 is present), we will send TERM_CMD if that is present. In any
1889 case, we collect all of the output into buf, and then wait for
1890 the normal prompt. */
1891
1892 if (current_monitor->getmem.term)
1893 {
1894 resp_len = monitor_expect (current_monitor->getmem.term,
1895 buf, sizeof buf); /* Get response. */
1896
1897 if (resp_len <= 0)
1898 monitor_error ("monitor_read_memory",
1899 "excessive response from monitor",
1900 memaddr, resp_len, buf, 0);
1901
1902 if (current_monitor->getmem.term_cmd)
1903 {
1904 serial_write (monitor_desc, current_monitor->getmem.term_cmd,
1905 strlen (current_monitor->getmem.term_cmd));
1906 monitor_expect_prompt (NULL, 0);
1907 }
1908 }
1909 else
1910 resp_len = monitor_expect_prompt (buf, sizeof buf); /* Get response. */
1911
1912 p = buf;
1913
1914 /* If RESP_DELIM is specified, we search for that as a leading
1915 delimiter for the values. Otherwise, we just start searching
1916 from the start of the buf. */
1917
1918 if (current_monitor->getmem.resp_delim)
1919 {
1920 int retval, tmp;
1921 struct re_registers resp_strings;
1922
1923 monitor_debug ("MON getmem.resp_delim %s\n",
1924 current_monitor->getmem.resp_delim);
1925
1926 memset (&resp_strings, 0, sizeof (struct re_registers));
1927 tmp = strlen (p);
1928 retval = re_search (&getmem_resp_delim_pattern, p, tmp, 0, tmp,
1929 &resp_strings);
1930
1931 if (retval < 0)
1932 monitor_error ("monitor_read_memory",
1933 "bad response from monitor",
1934 memaddr, resp_len, buf, 0);
1935
1936 p += resp_strings.end[0];
1937 #if 0
1938 p = strstr (p, current_monitor->getmem.resp_delim);
1939 if (!p)
1940 monitor_error ("monitor_read_memory",
1941 "bad response from monitor",
1942 memaddr, resp_len, buf, 0);
1943 p += strlen (current_monitor->getmem.resp_delim);
1944 #endif
1945 }
1946 monitor_debug ("MON scanning %d ,%s '%s'\n", len,
1947 host_address_to_string (p), p);
1948 if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1949 {
1950 char c;
1951 int fetched = 0;
1952 i = len;
1953 c = *p;
1954
1955
1956 while (!(c == '\000' || c == '\n' || c == '\r') && i > 0)
1957 {
1958 if (isxdigit (c))
1959 {
1960 if ((dumpaddr >= memaddr) && (i > 0))
1961 {
1962 val = fromhex (c) * 16 + fromhex (*(p + 1));
1963 *myaddr++ = val;
1964 if (monitor_debug_p || remote_debug)
1965 fprintf_unfiltered (gdb_stdlog, "[%02x]", val);
1966 --i;
1967 fetched++;
1968 }
1969 ++dumpaddr;
1970 ++p;
1971 }
1972 ++p; /* Skip a blank or other non hex char. */
1973 c = *p;
1974 }
1975 if (fetched == 0)
1976 error (_("Failed to read via monitor"));
1977 if (monitor_debug_p || remote_debug)
1978 fprintf_unfiltered (gdb_stdlog, "\n");
1979 return fetched; /* Return the number of bytes actually
1980 read. */
1981 }
1982 monitor_debug ("MON scanning bytes\n");
1983
1984 for (i = len; i > 0; i--)
1985 {
1986 /* Skip non-hex chars, but bomb on end of string and newlines. */
1987
1988 while (1)
1989 {
1990 if (isxdigit (*p))
1991 break;
1992
1993 if (*p == '\000' || *p == '\n' || *p == '\r')
1994 monitor_error ("monitor_read_memory",
1995 "badly terminated response from monitor",
1996 memaddr, resp_len, buf, 0);
1997 p++;
1998 }
1999
2000 val = strtoul (p, &p1, 16);
2001
2002 if (val == 0 && p == p1)
2003 monitor_error ("monitor_read_memory",
2004 "bad value from monitor",
2005 memaddr, resp_len, buf, 0);
2006
2007 *myaddr++ = val;
2008
2009 if (i == 1)
2010 break;
2011
2012 p = p1;
2013 }
2014
2015 return len;
2016 }
2017
2018 /* Helper for monitor_xfer_partial that handles memory transfers.
2019 Arguments are like target_xfer_partial. */
2020
2021 static enum target_xfer_status
2022 monitor_xfer_memory (gdb_byte *readbuf, const gdb_byte *writebuf,
2023 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
2024 {
2025 int res;
2026
2027 if (writebuf != NULL)
2028 {
2029 if (current_monitor->flags & MO_HAS_BLOCKWRITES)
2030 res = monitor_write_memory_block (memaddr, writebuf, len);
2031 else
2032 res = monitor_write_memory (memaddr, writebuf, len);
2033 }
2034 else
2035 {
2036 res = monitor_read_memory (memaddr, readbuf, len);
2037 }
2038
2039 if (res <= 0)
2040 return TARGET_XFER_E_IO;
2041 else
2042 {
2043 *xfered_len = (ULONGEST) res;
2044 return TARGET_XFER_OK;
2045 }
2046 }
2047
2048 /* Target to_xfer_partial implementation. */
2049
2050 static enum target_xfer_status
2051 monitor_xfer_partial (struct target_ops *ops, enum target_object object,
2052 const char *annex, gdb_byte *readbuf,
2053 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
2054 ULONGEST *xfered_len)
2055 {
2056 switch (object)
2057 {
2058 case TARGET_OBJECT_MEMORY:
2059 return monitor_xfer_memory (readbuf, writebuf, offset, len, xfered_len);
2060
2061 default:
2062 return TARGET_XFER_E_IO;
2063 }
2064 }
2065
2066 static void
2067 monitor_kill (struct target_ops *ops)
2068 {
2069 return; /* Ignore attempts to kill target system. */
2070 }
2071
2072 /* All we actually do is set the PC to the start address of exec_bfd. */
2073
2074 static void
2075 monitor_create_inferior (struct target_ops *ops, char *exec_file,
2076 char *args, char **env, int from_tty)
2077 {
2078 if (args && (*args != '\000'))
2079 error (_("Args are not supported by the monitor."));
2080
2081 first_time = 1;
2082 clear_proceed_status (0);
2083 regcache_write_pc (get_current_regcache (),
2084 bfd_get_start_address (exec_bfd));
2085 }
2086
2087 /* Clean up when a program exits.
2088 The program actually lives on in the remote processor's RAM, and may be
2089 run again without a download. Don't leave it full of breakpoint
2090 instructions. */
2091
2092 static void
2093 monitor_mourn_inferior (struct target_ops *ops)
2094 {
2095 unpush_target (targ_ops);
2096 generic_mourn_inferior (); /* Do all the proper things now. */
2097 delete_thread_silent (monitor_ptid);
2098 }
2099
2100 /* Tell the monitor to add a breakpoint. */
2101
2102 static int
2103 monitor_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
2104 struct bp_target_info *bp_tgt)
2105 {
2106 CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address;
2107 int i;
2108 int bplen;
2109
2110 monitor_debug ("MON inst bkpt %s\n", paddress (gdbarch, addr));
2111 if (current_monitor->set_break == NULL)
2112 error (_("No set_break defined for this monitor"));
2113
2114 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
2115 addr = gdbarch_addr_bits_remove (gdbarch, addr);
2116
2117 /* Determine appropriate breakpoint size for this address. */
2118 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
2119 bp_tgt->placed_address = addr;
2120 bp_tgt->placed_size = bplen;
2121
2122 for (i = 0; i < current_monitor->num_breakpoints; i++)
2123 {
2124 if (breakaddr[i] == 0)
2125 {
2126 breakaddr[i] = addr;
2127 monitor_printf (current_monitor->set_break, addr);
2128 monitor_expect_prompt (NULL, 0);
2129 return 0;
2130 }
2131 }
2132
2133 error (_("Too many breakpoints (> %d) for monitor."),
2134 current_monitor->num_breakpoints);
2135 }
2136
2137 /* Tell the monitor to remove a breakpoint. */
2138
2139 static int
2140 monitor_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
2141 struct bp_target_info *bp_tgt)
2142 {
2143 CORE_ADDR addr = bp_tgt->placed_address;
2144 int i;
2145
2146 monitor_debug ("MON rmbkpt %s\n", paddress (gdbarch, addr));
2147 if (current_monitor->clr_break == NULL)
2148 error (_("No clr_break defined for this monitor"));
2149
2150 for (i = 0; i < current_monitor->num_breakpoints; i++)
2151 {
2152 if (breakaddr[i] == addr)
2153 {
2154 breakaddr[i] = 0;
2155 /* Some monitors remove breakpoints based on the address. */
2156 if (current_monitor->flags & MO_CLR_BREAK_USES_ADDR)
2157 monitor_printf (current_monitor->clr_break, addr);
2158 else if (current_monitor->flags & MO_CLR_BREAK_1_BASED)
2159 monitor_printf (current_monitor->clr_break, i + 1);
2160 else
2161 monitor_printf (current_monitor->clr_break, i);
2162 monitor_expect_prompt (NULL, 0);
2163 return 0;
2164 }
2165 }
2166 fprintf_unfiltered (gdb_stderr,
2167 "Can't find breakpoint associated with %s\n",
2168 paddress (gdbarch, addr));
2169 return 1;
2170 }
2171
2172 /* monitor_wait_srec_ack -- wait for the target to send an acknowledgement for
2173 an S-record. Return non-zero if the ACK is received properly. */
2174
2175 static int
2176 monitor_wait_srec_ack (void)
2177 {
2178 int ch;
2179
2180 if (current_monitor->flags & MO_SREC_ACK_PLUS)
2181 {
2182 return (readchar (timeout) == '+');
2183 }
2184 else if (current_monitor->flags & MO_SREC_ACK_ROTATE)
2185 {
2186 /* Eat two backspaces, a "rotating" char (|/-\), and a space. */
2187 if ((ch = readchar (1)) < 0)
2188 return 0;
2189 if ((ch = readchar (1)) < 0)
2190 return 0;
2191 if ((ch = readchar (1)) < 0)
2192 return 0;
2193 if ((ch = readchar (1)) < 0)
2194 return 0;
2195 }
2196 return 1;
2197 }
2198
2199 /* monitor_load -- download a file. */
2200
2201 static void
2202 monitor_load (struct target_ops *self, const char *args, int from_tty)
2203 {
2204 CORE_ADDR load_offset = 0;
2205 char **argv;
2206 struct cleanup *old_cleanups;
2207 char *filename;
2208
2209 monitor_debug ("MON load\n");
2210
2211 if (args == NULL)
2212 error_no_arg (_("file to load"));
2213
2214 argv = gdb_buildargv (args);
2215 old_cleanups = make_cleanup_freeargv (argv);
2216
2217 filename = tilde_expand (argv[0]);
2218 make_cleanup (xfree, filename);
2219
2220 /* Enable user to specify address for downloading as 2nd arg to load. */
2221 if (argv[1] != NULL)
2222 {
2223 const char *endptr;
2224
2225 load_offset = strtoulst (argv[1], &endptr, 0);
2226
2227 /* If the last word was not a valid number then
2228 treat it as a file name with spaces in. */
2229 if (argv[1] == endptr)
2230 error (_("Invalid download offset:%s."), argv[1]);
2231
2232 if (argv[2] != NULL)
2233 error (_("Too many parameters."));
2234 }
2235
2236 monitor_printf (current_monitor->load);
2237 if (current_monitor->loadresp)
2238 monitor_expect (current_monitor->loadresp, NULL, 0);
2239
2240 load_srec (monitor_desc, filename, load_offset,
2241 32, SREC_ALL, hashmark,
2242 current_monitor->flags & MO_SREC_ACK ?
2243 monitor_wait_srec_ack : NULL);
2244
2245 monitor_expect_prompt (NULL, 0);
2246
2247 do_cleanups (old_cleanups);
2248
2249 /* Finally, make the PC point at the start address. */
2250 if (exec_bfd)
2251 regcache_write_pc (get_current_regcache (),
2252 bfd_get_start_address (exec_bfd));
2253
2254 /* There used to be code here which would clear inferior_ptid and
2255 call clear_symtab_users. None of that should be necessary:
2256 monitor targets should behave like remote protocol targets, and
2257 since generic_load does none of those things, this function
2258 shouldn't either.
2259
2260 Furthermore, clearing inferior_ptid is *incorrect*. After doing
2261 a load, we still have a valid connection to the monitor, with a
2262 live processor state to fiddle with. The user can type
2263 `continue' or `jump *start' and make the program run. If they do
2264 these things, however, GDB will be talking to a running program
2265 while inferior_ptid is null_ptid; this makes things like
2266 reinit_frame_cache very confused. */
2267 }
2268
2269 static void
2270 monitor_stop (struct target_ops *self, ptid_t ptid)
2271 {
2272 monitor_debug ("MON stop\n");
2273 if ((current_monitor->flags & MO_SEND_BREAK_ON_STOP) != 0)
2274 serial_send_break (monitor_desc);
2275 if (current_monitor->stop)
2276 monitor_printf_noecho (current_monitor->stop);
2277 }
2278
2279 /* Put a COMMAND string out to MONITOR. Output from MONITOR is placed
2280 in OUTPUT until the prompt is seen. FIXME: We read the characters
2281 ourseleves here cause of a nasty echo. */
2282
2283 static void
2284 monitor_rcmd (struct target_ops *self, const char *command,
2285 struct ui_file *outbuf)
2286 {
2287 char *p;
2288 int resp_len;
2289 char buf[1000];
2290
2291 if (monitor_desc == NULL)
2292 error (_("monitor target not open."));
2293
2294 p = current_monitor->prompt;
2295
2296 /* Send the command. Note that if no args were supplied, then we're
2297 just sending the monitor a newline, which is sometimes useful. */
2298
2299 monitor_printf ("%s\r", (command ? command : ""));
2300
2301 resp_len = monitor_expect_prompt (buf, sizeof buf);
2302
2303 fputs_unfiltered (buf, outbuf); /* Output the response. */
2304 }
2305
2306 /* Convert hex digit A to a number. */
2307
2308 #if 0
2309 static int
2310 from_hex (int a)
2311 {
2312 if (a >= '0' && a <= '9')
2313 return a - '0';
2314 if (a >= 'a' && a <= 'f')
2315 return a - 'a' + 10;
2316 if (a >= 'A' && a <= 'F')
2317 return a - 'A' + 10;
2318
2319 error (_("Reply contains invalid hex digit 0x%x"), a);
2320 }
2321 #endif
2322
2323 char *
2324 monitor_get_dev_name (void)
2325 {
2326 return dev_name;
2327 }
2328
2329 /* Check to see if a thread is still alive. */
2330
2331 static int
2332 monitor_thread_alive (struct target_ops *ops, ptid_t ptid)
2333 {
2334 if (ptid_equal (ptid, monitor_ptid))
2335 /* The monitor's task is always alive. */
2336 return 1;
2337
2338 return 0;
2339 }
2340
2341 /* Convert a thread ID to a string. Returns the string in a static
2342 buffer. */
2343
2344 static char *
2345 monitor_pid_to_str (struct target_ops *ops, ptid_t ptid)
2346 {
2347 static char buf[64];
2348
2349 if (ptid_equal (monitor_ptid, ptid))
2350 {
2351 xsnprintf (buf, sizeof buf, "Thread <main>");
2352 return buf;
2353 }
2354
2355 return normal_pid_to_str (ptid);
2356 }
2357
2358 static struct target_ops monitor_ops;
2359
2360 static void
2361 init_base_monitor_ops (void)
2362 {
2363 monitor_ops.to_close = monitor_close;
2364 monitor_ops.to_detach = monitor_detach;
2365 monitor_ops.to_resume = monitor_resume;
2366 monitor_ops.to_wait = monitor_wait;
2367 monitor_ops.to_fetch_registers = monitor_fetch_registers;
2368 monitor_ops.to_store_registers = monitor_store_registers;
2369 monitor_ops.to_prepare_to_store = monitor_prepare_to_store;
2370 monitor_ops.to_xfer_partial = monitor_xfer_partial;
2371 monitor_ops.to_files_info = monitor_files_info;
2372 monitor_ops.to_insert_breakpoint = monitor_insert_breakpoint;
2373 monitor_ops.to_remove_breakpoint = monitor_remove_breakpoint;
2374 monitor_ops.to_kill = monitor_kill;
2375 monitor_ops.to_load = monitor_load;
2376 monitor_ops.to_create_inferior = monitor_create_inferior;
2377 monitor_ops.to_mourn_inferior = monitor_mourn_inferior;
2378 monitor_ops.to_stop = monitor_stop;
2379 monitor_ops.to_rcmd = monitor_rcmd;
2380 monitor_ops.to_log_command = serial_log_command;
2381 monitor_ops.to_thread_alive = monitor_thread_alive;
2382 monitor_ops.to_pid_to_str = monitor_pid_to_str;
2383 monitor_ops.to_stratum = process_stratum;
2384 monitor_ops.to_has_all_memory = default_child_has_all_memory;
2385 monitor_ops.to_has_memory = default_child_has_memory;
2386 monitor_ops.to_has_stack = default_child_has_stack;
2387 monitor_ops.to_has_registers = default_child_has_registers;
2388 monitor_ops.to_has_execution = default_child_has_execution;
2389 monitor_ops.to_magic = OPS_MAGIC;
2390 } /* init_base_monitor_ops */
2391
2392 /* Init the target_ops structure pointed at by OPS. */
2393
2394 void
2395 init_monitor_ops (struct target_ops *ops)
2396 {
2397 if (monitor_ops.to_magic != OPS_MAGIC)
2398 init_base_monitor_ops ();
2399
2400 memcpy (ops, &monitor_ops, sizeof monitor_ops);
2401 }
2402
2403 /* Define additional commands that are usually only used by monitors. */
2404
2405 /* -Wmissing-prototypes */
2406 extern initialize_file_ftype _initialize_remote_monitors;
2407
2408 void
2409 _initialize_remote_monitors (void)
2410 {
2411 init_base_monitor_ops ();
2412 add_setshow_boolean_cmd ("hash", no_class, &hashmark, _("\
2413 Set display of activity while downloading a file."), _("\
2414 Show display of activity while downloading a file."), _("\
2415 When enabled, a hashmark \'#\' is displayed."),
2416 NULL,
2417 NULL, /* FIXME: i18n: */
2418 &setlist, &showlist);
2419
2420 add_setshow_zuinteger_cmd ("monitor", no_class, &monitor_debug_p, _("\
2421 Set debugging of remote monitor communication."), _("\
2422 Show debugging of remote monitor communication."), _("\
2423 When enabled, communication between GDB and the remote monitor\n\
2424 is displayed."),
2425 NULL,
2426 NULL, /* FIXME: i18n: */
2427 &setdebuglist, &showdebuglist);
2428
2429 /* Yes, 42000 is arbitrary. The only sense out of it, is that it
2430 isn't 0. */
2431 monitor_ptid = ptid_build (42000, 0, 42000);
2432 }
This page took 0.087511 seconds and 4 git commands to generate.