Fix gdb.trace/entry-values.exp for thumb mode
[deliverable/binutils-gdb.git] / gdb / monitor.c
1 /* Remote debugging interface for boot monitors, for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by Rob Savoye for Cygnus.
6 Resurrected from the ashes by Stu Grossman.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* This file was derived from various remote-* modules. It is a collection
24 of generic support functions so GDB can talk directly to a ROM based
25 monitor. This saves use from having to hack an exception based handler
26 into existence, and makes for quick porting.
27
28 This module talks to a debug monitor called 'MONITOR', which
29 We communicate with MONITOR via either a direct serial line, or a TCP
30 (or possibly TELNET) stream to a terminal multiplexor,
31 which in turn talks to the target board. */
32
33 /* FIXME 32x64: This code assumes that registers and addresses are at
34 most 32 bits long. If they can be larger, you will need to declare
35 values as LONGEST and use %llx or some such to print values when
36 building commands to send to the monitor. Since we don't know of
37 any actual 64-bit targets with ROM monitors that use this code,
38 it's not an issue right now. -sts 4/18/96 */
39
40 #include "defs.h"
41 #include "gdbcore.h"
42 #include "target.h"
43 #include "exceptions.h"
44 #include <signal.h>
45 #include <ctype.h>
46 #include <string.h>
47 #include <sys/types.h>
48 #include "command.h"
49 #include "serial.h"
50 #include "monitor.h"
51 #include "gdbcmd.h"
52 #include "inferior.h"
53 #include "infrun.h"
54 #include "gdb_regex.h"
55 #include "srec.h"
56 #include "regcache.h"
57 #include "gdbthread.h"
58 #include "readline/readline.h"
59
60 static char *dev_name;
61 static struct target_ops *targ_ops;
62
63 static void monitor_interrupt_query (void);
64 static void monitor_interrupt_twice (int);
65 static void monitor_stop (struct target_ops *self, ptid_t);
66 static void monitor_dump_regs (struct regcache *regcache);
67
68 #if 0
69 static int from_hex (int a);
70 #endif
71
72 static struct monitor_ops *current_monitor;
73
74 static int hashmark; /* flag set by "set hash". */
75
76 static int timeout = 30;
77
78 static int in_monitor_wait = 0; /* Non-zero means we are in monitor_wait(). */
79
80 static void (*ofunc) (); /* Old SIGINT signal handler. */
81
82 static CORE_ADDR *breakaddr;
83
84 /* Descriptor for I/O to remote machine. Initialize it to NULL so
85 that monitor_open knows that we don't have a file open when the
86 program starts. */
87
88 static struct serial *monitor_desc = NULL;
89
90 /* Pointer to regexp pattern matching data. */
91
92 static struct re_pattern_buffer register_pattern;
93 static char register_fastmap[256];
94
95 static struct re_pattern_buffer getmem_resp_delim_pattern;
96 static char getmem_resp_delim_fastmap[256];
97
98 static struct re_pattern_buffer setmem_resp_delim_pattern;
99 static char setmem_resp_delim_fastmap[256];
100
101 static struct re_pattern_buffer setreg_resp_delim_pattern;
102 static char setreg_resp_delim_fastmap[256];
103
104 static int dump_reg_flag; /* Non-zero means do a dump_registers cmd when
105 monitor_wait wakes up. */
106
107 static int first_time = 0; /* Is this the first time we're
108 executing after gaving created the
109 child proccess? */
110
111
112 /* This is the ptid we use while we're connected to a monitor. Its
113 value is arbitrary, as monitor targets don't have a notion of
114 processes or threads, but we need something non-null to place in
115 inferior_ptid. */
116 static ptid_t monitor_ptid;
117
118 #define TARGET_BUF_SIZE 2048
119
120 /* Monitor specific debugging information. Typically only useful to
121 the developer of a new monitor interface. */
122
123 static void monitor_debug (const char *fmt, ...) ATTRIBUTE_PRINTF (1, 2);
124
125 static unsigned int monitor_debug_p = 0;
126
127 /* NOTE: This file alternates between monitor_debug_p and remote_debug
128 when determining if debug information is printed. Perhaps this
129 could be simplified. */
130
131 static void
132 monitor_debug (const char *fmt, ...)
133 {
134 if (monitor_debug_p)
135 {
136 va_list args;
137
138 va_start (args, fmt);
139 vfprintf_filtered (gdb_stdlog, fmt, args);
140 va_end (args);
141 }
142 }
143
144
145 /* Convert a string into a printable representation, Return # byte in
146 the new string. When LEN is >0 it specifies the size of the
147 string. Otherwize strlen(oldstr) is used. */
148
149 static void
150 monitor_printable_string (char *newstr, char *oldstr, int len)
151 {
152 int ch;
153 int i;
154
155 if (len <= 0)
156 len = strlen (oldstr);
157
158 for (i = 0; i < len; i++)
159 {
160 ch = oldstr[i];
161 switch (ch)
162 {
163 default:
164 if (isprint (ch))
165 *newstr++ = ch;
166
167 else
168 {
169 sprintf (newstr, "\\x%02x", ch & 0xff);
170 newstr += 4;
171 }
172 break;
173
174 case '\\':
175 *newstr++ = '\\';
176 *newstr++ = '\\';
177 break;
178 case '\b':
179 *newstr++ = '\\';
180 *newstr++ = 'b';
181 break;
182 case '\f':
183 *newstr++ = '\\';
184 *newstr++ = 't';
185 break;
186 case '\n':
187 *newstr++ = '\\';
188 *newstr++ = 'n';
189 break;
190 case '\r':
191 *newstr++ = '\\';
192 *newstr++ = 'r';
193 break;
194 case '\t':
195 *newstr++ = '\\';
196 *newstr++ = 't';
197 break;
198 case '\v':
199 *newstr++ = '\\';
200 *newstr++ = 'v';
201 break;
202 }
203 }
204
205 *newstr++ = '\0';
206 }
207
208 /* Print monitor errors with a string, converting the string to printable
209 representation. */
210
211 static void
212 monitor_error (char *function, char *message,
213 CORE_ADDR memaddr, int len, char *string, int final_char)
214 {
215 int real_len = (len == 0 && string != (char *) 0) ? strlen (string) : len;
216 char *safe_string = alloca ((real_len * 4) + 1);
217
218 monitor_printable_string (safe_string, string, real_len);
219
220 if (final_char)
221 error (_("%s (%s): %s: %s%c"),
222 function, paddress (target_gdbarch (), memaddr),
223 message, safe_string, final_char);
224 else
225 error (_("%s (%s): %s: %s"),
226 function, paddress (target_gdbarch (), memaddr),
227 message, safe_string);
228 }
229
230 /* Convert hex digit A to a number. */
231
232 static int
233 fromhex (int a)
234 {
235 if (a >= '0' && a <= '9')
236 return a - '0';
237 else if (a >= 'a' && a <= 'f')
238 return a - 'a' + 10;
239 else if (a >= 'A' && a <= 'F')
240 return a - 'A' + 10;
241 else
242 error (_("Invalid hex digit %d"), a);
243 }
244
245 /* monitor_vsprintf - similar to vsprintf but handles 64-bit addresses
246
247 This function exists to get around the problem that many host platforms
248 don't have a printf that can print 64-bit addresses. The %A format
249 specification is recognized as a special case, and causes the argument
250 to be printed as a 64-bit hexadecimal address.
251
252 Only format specifiers of the form "[0-9]*[a-z]" are recognized.
253 If it is a '%s' format, the argument is a string; otherwise the
254 argument is assumed to be a long integer.
255
256 %% is also turned into a single %. */
257
258 static void
259 monitor_vsprintf (char *sndbuf, char *pattern, va_list args)
260 {
261 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
262 char format[10];
263 char fmt;
264 char *p;
265 int i;
266 long arg_int;
267 CORE_ADDR arg_addr;
268 char *arg_string;
269
270 for (p = pattern; *p; p++)
271 {
272 if (*p == '%')
273 {
274 /* Copy the format specifier to a separate buffer. */
275 format[0] = *p++;
276 for (i = 1; *p >= '0' && *p <= '9' && i < (int) sizeof (format) - 2;
277 i++, p++)
278 format[i] = *p;
279 format[i] = fmt = *p;
280 format[i + 1] = '\0';
281
282 /* Fetch the next argument and print it. */
283 switch (fmt)
284 {
285 case '%':
286 strcpy (sndbuf, "%");
287 break;
288 case 'A':
289 arg_addr = va_arg (args, CORE_ADDR);
290 strcpy (sndbuf, phex_nz (arg_addr, addr_bit / 8));
291 break;
292 case 's':
293 arg_string = va_arg (args, char *);
294 sprintf (sndbuf, format, arg_string);
295 break;
296 default:
297 arg_int = va_arg (args, long);
298 sprintf (sndbuf, format, arg_int);
299 break;
300 }
301 sndbuf += strlen (sndbuf);
302 }
303 else
304 *sndbuf++ = *p;
305 }
306 *sndbuf = '\0';
307 }
308
309
310 /* monitor_printf_noecho -- Send data to monitor, but don't expect an echo.
311 Works just like printf. */
312
313 void
314 monitor_printf_noecho (char *pattern,...)
315 {
316 va_list args;
317 char sndbuf[2000];
318 int len;
319
320 va_start (args, pattern);
321
322 monitor_vsprintf (sndbuf, pattern, args);
323
324 len = strlen (sndbuf);
325 if (len + 1 > sizeof sndbuf)
326 internal_error (__FILE__, __LINE__,
327 _("failed internal consistency check"));
328
329 if (monitor_debug_p)
330 {
331 char *safe_string = (char *) alloca ((strlen (sndbuf) * 4) + 1);
332
333 monitor_printable_string (safe_string, sndbuf, 0);
334 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
335 }
336
337 monitor_write (sndbuf, len);
338 }
339
340 /* monitor_printf -- Send data to monitor and check the echo. Works just like
341 printf. */
342
343 void
344 monitor_printf (char *pattern,...)
345 {
346 va_list args;
347 char sndbuf[2000];
348 int len;
349
350 va_start (args, pattern);
351
352 monitor_vsprintf (sndbuf, pattern, args);
353
354 len = strlen (sndbuf);
355 if (len + 1 > sizeof sndbuf)
356 internal_error (__FILE__, __LINE__,
357 _("failed internal consistency check"));
358
359 if (monitor_debug_p)
360 {
361 char *safe_string = (char *) alloca ((len * 4) + 1);
362
363 monitor_printable_string (safe_string, sndbuf, 0);
364 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
365 }
366
367 monitor_write (sndbuf, len);
368
369 /* We used to expect that the next immediate output was the
370 characters we just output, but sometimes some extra junk appeared
371 before the characters we expected, like an extra prompt, or a
372 portmaster sending telnet negotiations. So, just start searching
373 for what we sent, and skip anything unknown. */
374 monitor_debug ("ExpectEcho\n");
375 monitor_expect (sndbuf, (char *) 0, 0);
376 }
377
378
379 /* Write characters to the remote system. */
380
381 void
382 monitor_write (char *buf, int buflen)
383 {
384 if (serial_write (monitor_desc, buf, buflen))
385 fprintf_unfiltered (gdb_stderr, "serial_write failed: %s\n",
386 safe_strerror (errno));
387 }
388
389
390 /* Read a binary character from the remote system, doing all the fancy
391 timeout stuff, but without interpreting the character in any way,
392 and without printing remote debug information. */
393
394 int
395 monitor_readchar (void)
396 {
397 int c;
398 int looping;
399
400 do
401 {
402 looping = 0;
403 c = serial_readchar (monitor_desc, timeout);
404
405 if (c >= 0)
406 c &= 0xff; /* don't lose bit 7 */
407 }
408 while (looping);
409
410 if (c >= 0)
411 return c;
412
413 if (c == SERIAL_TIMEOUT)
414 error (_("Timeout reading from remote system."));
415
416 perror_with_name (_("remote-monitor"));
417 }
418
419
420 /* Read a character from the remote system, doing all the fancy
421 timeout stuff. */
422
423 static int
424 readchar (int timeout)
425 {
426 int c;
427 static enum
428 {
429 last_random, last_nl, last_cr, last_crnl
430 }
431 state = last_random;
432 int looping;
433
434 do
435 {
436 looping = 0;
437 c = serial_readchar (monitor_desc, timeout);
438
439 if (c >= 0)
440 {
441 c &= 0x7f;
442 /* This seems to interfere with proper function of the
443 input stream. */
444 if (monitor_debug_p || remote_debug)
445 {
446 char buf[2];
447
448 buf[0] = c;
449 buf[1] = '\0';
450 puts_debug ("read -->", buf, "<--");
451 }
452
453 }
454
455 /* Canonicialize \n\r combinations into one \r. */
456 if ((current_monitor->flags & MO_HANDLE_NL) != 0)
457 {
458 if ((c == '\r' && state == last_nl)
459 || (c == '\n' && state == last_cr))
460 {
461 state = last_crnl;
462 looping = 1;
463 }
464 else if (c == '\r')
465 state = last_cr;
466 else if (c != '\n')
467 state = last_random;
468 else
469 {
470 state = last_nl;
471 c = '\r';
472 }
473 }
474 }
475 while (looping);
476
477 if (c >= 0)
478 return c;
479
480 if (c == SERIAL_TIMEOUT)
481 #if 0
482 /* I fail to see how detaching here can be useful. */
483 if (in_monitor_wait) /* Watchdog went off. */
484 {
485 target_mourn_inferior ();
486 error (_("GDB serial timeout has expired. Target detached."));
487 }
488 else
489 #endif
490 error (_("Timeout reading from remote system."));
491
492 perror_with_name (_("remote-monitor"));
493 }
494
495 /* Scan input from the remote system, until STRING is found. If BUF is non-
496 zero, then collect input until we have collected either STRING or BUFLEN-1
497 chars. In either case we terminate BUF with a 0. If input overflows BUF
498 because STRING can't be found, return -1, else return number of chars in BUF
499 (minus the terminating NUL). Note that in the non-overflow case, STRING
500 will be at the end of BUF. */
501
502 int
503 monitor_expect (char *string, char *buf, int buflen)
504 {
505 char *p = string;
506 int obuflen = buflen;
507 int c;
508
509 if (monitor_debug_p)
510 {
511 char *safe_string = (char *) alloca ((strlen (string) * 4) + 1);
512 monitor_printable_string (safe_string, string, 0);
513 fprintf_unfiltered (gdb_stdlog, "MON Expecting '%s'\n", safe_string);
514 }
515
516 immediate_quit++;
517 QUIT;
518 while (1)
519 {
520 if (buf)
521 {
522 if (buflen < 2)
523 {
524 *buf = '\000';
525 immediate_quit--;
526 return -1;
527 }
528
529 c = readchar (timeout);
530 if (c == '\000')
531 continue;
532 *buf++ = c;
533 buflen--;
534 }
535 else
536 c = readchar (timeout);
537
538 /* Don't expect any ^C sent to be echoed. */
539
540 if (*p == '\003' || c == *p)
541 {
542 p++;
543 if (*p == '\0')
544 {
545 immediate_quit--;
546
547 if (buf)
548 {
549 *buf++ = '\000';
550 return obuflen - buflen;
551 }
552 else
553 return 0;
554 }
555 }
556 else
557 {
558 /* We got a character that doesn't match the string. We need to
559 back up p, but how far? If we're looking for "..howdy" and the
560 monitor sends "...howdy"? There's certainly a match in there,
561 but when we receive the third ".", we won't find it if we just
562 restart the matching at the beginning of the string.
563
564 This is a Boyer-Moore kind of situation. We want to reset P to
565 the end of the longest prefix of STRING that is a suffix of
566 what we've read so far. In the example above, that would be
567 ".." --- the longest prefix of "..howdy" that is a suffix of
568 "...". This longest prefix could be the empty string, if C
569 is nowhere to be found in STRING.
570
571 If this longest prefix is not the empty string, it must contain
572 C, so let's search from the end of STRING for instances of C,
573 and see if the portion of STRING before that is a suffix of
574 what we read before C. Actually, we can search backwards from
575 p, since we know no prefix can be longer than that.
576
577 Note that we can use STRING itself, along with C, as a record
578 of what we've received so far. :) */
579 int i;
580
581 for (i = (p - string) - 1; i >= 0; i--)
582 if (string[i] == c)
583 {
584 /* Is this prefix a suffix of what we've read so far?
585 In other words, does
586 string[0 .. i-1] == string[p - i, p - 1]? */
587 if (! memcmp (string, p - i, i))
588 {
589 p = string + i + 1;
590 break;
591 }
592 }
593 if (i < 0)
594 p = string;
595 }
596 }
597 }
598
599 /* Search for a regexp. */
600
601 static int
602 monitor_expect_regexp (struct re_pattern_buffer *pat, char *buf, int buflen)
603 {
604 char *mybuf;
605 char *p;
606
607 monitor_debug ("MON Expecting regexp\n");
608 if (buf)
609 mybuf = buf;
610 else
611 {
612 mybuf = alloca (TARGET_BUF_SIZE);
613 buflen = TARGET_BUF_SIZE;
614 }
615
616 p = mybuf;
617 while (1)
618 {
619 int retval;
620
621 if (p - mybuf >= buflen)
622 { /* Buffer about to overflow. */
623
624 /* On overflow, we copy the upper half of the buffer to the lower half. Not
625 great, but it usually works... */
626
627 memcpy (mybuf, mybuf + buflen / 2, buflen / 2);
628 p = mybuf + buflen / 2;
629 }
630
631 *p++ = readchar (timeout);
632
633 retval = re_search (pat, mybuf, p - mybuf, 0, p - mybuf, NULL);
634 if (retval >= 0)
635 return 1;
636 }
637 }
638
639 /* Keep discarding input until we see the MONITOR prompt.
640
641 The convention for dealing with the prompt is that you
642 o give your command
643 o *then* wait for the prompt.
644
645 Thus the last thing that a procedure does with the serial line will
646 be an monitor_expect_prompt(). Exception: monitor_resume does not
647 wait for the prompt, because the terminal is being handed over to
648 the inferior. However, the next thing which happens after that is
649 a monitor_wait which does wait for the prompt. Note that this
650 includes abnormal exit, e.g. error(). This is necessary to prevent
651 getting into states from which we can't recover. */
652
653 int
654 monitor_expect_prompt (char *buf, int buflen)
655 {
656 monitor_debug ("MON Expecting prompt\n");
657 return monitor_expect (current_monitor->prompt, buf, buflen);
658 }
659
660 /* Get N 32-bit words from remote, each preceded by a space, and put
661 them in registers starting at REGNO. */
662
663 #if 0
664 static unsigned long
665 get_hex_word (void)
666 {
667 unsigned long val;
668 int i;
669 int ch;
670
671 do
672 ch = readchar (timeout);
673 while (isspace (ch));
674
675 val = from_hex (ch);
676
677 for (i = 7; i >= 1; i--)
678 {
679 ch = readchar (timeout);
680 if (!isxdigit (ch))
681 break;
682 val = (val << 4) | from_hex (ch);
683 }
684
685 return val;
686 }
687 #endif
688
689 static void
690 compile_pattern (char *pattern, struct re_pattern_buffer *compiled_pattern,
691 char *fastmap)
692 {
693 int tmp;
694 const char *val;
695
696 compiled_pattern->fastmap = fastmap;
697
698 tmp = re_set_syntax (RE_SYNTAX_EMACS);
699 val = re_compile_pattern (pattern,
700 strlen (pattern),
701 compiled_pattern);
702 re_set_syntax (tmp);
703
704 if (val)
705 error (_("compile_pattern: Can't compile pattern string `%s': %s!"),
706 pattern, val);
707
708 if (fastmap)
709 re_compile_fastmap (compiled_pattern);
710 }
711
712 /* Open a connection to a remote debugger. NAME is the filename used
713 for communication. */
714
715 void
716 monitor_open (char *args, struct monitor_ops *mon_ops, int from_tty)
717 {
718 char *name;
719 char **p;
720 struct inferior *inf;
721
722 if (mon_ops->magic != MONITOR_OPS_MAGIC)
723 error (_("Magic number of monitor_ops struct wrong."));
724
725 targ_ops = mon_ops->target;
726 name = targ_ops->to_shortname;
727
728 if (!args)
729 error (_("Use `target %s DEVICE-NAME' to use a serial port, or\n\
730 `target %s HOST-NAME:PORT-NUMBER' to use a network connection."), name, name);
731
732 target_preopen (from_tty);
733
734 /* Setup pattern for register dump. */
735
736 if (mon_ops->register_pattern)
737 compile_pattern (mon_ops->register_pattern, &register_pattern,
738 register_fastmap);
739
740 if (mon_ops->getmem.resp_delim)
741 compile_pattern (mon_ops->getmem.resp_delim, &getmem_resp_delim_pattern,
742 getmem_resp_delim_fastmap);
743
744 if (mon_ops->setmem.resp_delim)
745 compile_pattern (mon_ops->setmem.resp_delim, &setmem_resp_delim_pattern,
746 setmem_resp_delim_fastmap);
747
748 if (mon_ops->setreg.resp_delim)
749 compile_pattern (mon_ops->setreg.resp_delim, &setreg_resp_delim_pattern,
750 setreg_resp_delim_fastmap);
751
752 unpush_target (targ_ops);
753
754 if (dev_name)
755 xfree (dev_name);
756 dev_name = xstrdup (args);
757
758 monitor_desc = serial_open (dev_name);
759
760 if (!monitor_desc)
761 perror_with_name (dev_name);
762
763 if (baud_rate != -1)
764 {
765 if (serial_setbaudrate (monitor_desc, baud_rate))
766 {
767 serial_close (monitor_desc);
768 perror_with_name (dev_name);
769 }
770 }
771
772 serial_raw (monitor_desc);
773
774 serial_flush_input (monitor_desc);
775
776 /* some systems only work with 2 stop bits. */
777
778 serial_setstopbits (monitor_desc, mon_ops->stopbits);
779
780 current_monitor = mon_ops;
781
782 /* See if we can wake up the monitor. First, try sending a stop sequence,
783 then send the init strings. Last, remove all breakpoints. */
784
785 if (current_monitor->stop)
786 {
787 monitor_stop (targ_ops, inferior_ptid);
788 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
789 {
790 monitor_debug ("EXP Open echo\n");
791 monitor_expect_prompt (NULL, 0);
792 }
793 }
794
795 /* wake up the monitor and see if it's alive. */
796 for (p = mon_ops->init; *p != NULL; p++)
797 {
798 /* Some of the characters we send may not be echoed,
799 but we hope to get a prompt at the end of it all. */
800
801 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
802 monitor_printf (*p);
803 else
804 monitor_printf_noecho (*p);
805 monitor_expect_prompt (NULL, 0);
806 }
807
808 serial_flush_input (monitor_desc);
809
810 /* Alloc breakpoints */
811 if (mon_ops->set_break != NULL)
812 {
813 if (mon_ops->num_breakpoints == 0)
814 mon_ops->num_breakpoints = 8;
815
816 breakaddr = (CORE_ADDR *)
817 xmalloc (mon_ops->num_breakpoints * sizeof (CORE_ADDR));
818 memset (breakaddr, 0, mon_ops->num_breakpoints * sizeof (CORE_ADDR));
819 }
820
821 /* Remove all breakpoints. */
822
823 if (mon_ops->clr_all_break)
824 {
825 monitor_printf (mon_ops->clr_all_break);
826 monitor_expect_prompt (NULL, 0);
827 }
828
829 if (from_tty)
830 printf_unfiltered (_("Remote target %s connected to %s\n"),
831 name, dev_name);
832
833 push_target (targ_ops);
834
835 /* Start afresh. */
836 init_thread_list ();
837
838 /* Make run command think we are busy... */
839 inferior_ptid = monitor_ptid;
840 inf = current_inferior ();
841 inferior_appeared (inf, ptid_get_pid (inferior_ptid));
842 add_thread_silent (inferior_ptid);
843
844 /* Give monitor_wait something to read. */
845
846 monitor_printf (current_monitor->line_term);
847
848 init_wait_for_inferior ();
849
850 start_remote (from_tty);
851 }
852
853 /* Close out all files and local state before this target loses
854 control. */
855
856 void
857 monitor_close (struct target_ops *self)
858 {
859 if (monitor_desc)
860 serial_close (monitor_desc);
861
862 /* Free breakpoint memory. */
863 if (breakaddr != NULL)
864 {
865 xfree (breakaddr);
866 breakaddr = NULL;
867 }
868
869 monitor_desc = NULL;
870
871 delete_thread_silent (monitor_ptid);
872 delete_inferior_silent (ptid_get_pid (monitor_ptid));
873 }
874
875 /* Terminate the open connection to the remote debugger. Use this
876 when you want to detach and do something else with your gdb. */
877
878 static void
879 monitor_detach (struct target_ops *ops, const char *args, int from_tty)
880 {
881 unpush_target (ops); /* calls monitor_close to do the real work. */
882 if (from_tty)
883 printf_unfiltered (_("Ending remote %s debugging\n"), target_shortname);
884 }
885
886 /* Convert VALSTR into the target byte-ordered value of REGNO and store it. */
887
888 char *
889 monitor_supply_register (struct regcache *regcache, int regno, char *valstr)
890 {
891 struct gdbarch *gdbarch = get_regcache_arch (regcache);
892 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
893 ULONGEST val;
894 unsigned char regbuf[MAX_REGISTER_SIZE];
895 char *p;
896
897 val = 0;
898 p = valstr;
899 while (p && *p != '\0')
900 {
901 if (*p == '\r' || *p == '\n')
902 {
903 while (*p != '\0')
904 p++;
905 break;
906 }
907 if (isspace (*p))
908 {
909 p++;
910 continue;
911 }
912 if (!isxdigit (*p) && *p != 'x')
913 {
914 break;
915 }
916
917 val <<= 4;
918 val += fromhex (*p++);
919 }
920 monitor_debug ("Supplying Register %d %s\n", regno, valstr);
921
922 if (val == 0 && valstr == p)
923 error (_("monitor_supply_register (%d): bad value from monitor: %s."),
924 regno, valstr);
925
926 /* supply register stores in target byte order, so swap here. */
927
928 store_unsigned_integer (regbuf, register_size (gdbarch, regno), byte_order,
929 val);
930
931 regcache_raw_supply (regcache, regno, regbuf);
932
933 return p;
934 }
935
936 /* Tell the remote machine to resume. */
937
938 static void
939 monitor_resume (struct target_ops *ops,
940 ptid_t ptid, int step, enum gdb_signal sig)
941 {
942 /* Some monitors require a different command when starting a program. */
943 monitor_debug ("MON resume\n");
944 if (current_monitor->flags & MO_RUN_FIRST_TIME && first_time == 1)
945 {
946 first_time = 0;
947 monitor_printf ("run\r");
948 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
949 dump_reg_flag = 1;
950 return;
951 }
952 if (step)
953 monitor_printf (current_monitor->step);
954 else
955 {
956 if (current_monitor->continue_hook)
957 (*current_monitor->continue_hook) ();
958 else
959 monitor_printf (current_monitor->cont);
960 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
961 dump_reg_flag = 1;
962 }
963 }
964
965 /* Parse the output of a register dump command. A monitor specific
966 regexp is used to extract individual register descriptions of the
967 form REG=VAL. Each description is split up into a name and a value
968 string which are passed down to monitor specific code. */
969
970 static void
971 parse_register_dump (struct regcache *regcache, char *buf, int len)
972 {
973 monitor_debug ("MON Parsing register dump\n");
974 while (1)
975 {
976 int regnamelen, vallen;
977 char *regname, *val;
978
979 /* Element 0 points to start of register name, and element 1
980 points to the start of the register value. */
981 struct re_registers register_strings;
982
983 memset (&register_strings, 0, sizeof (struct re_registers));
984
985 if (re_search (&register_pattern, buf, len, 0, len,
986 &register_strings) == -1)
987 break;
988
989 regnamelen = register_strings.end[1] - register_strings.start[1];
990 regname = buf + register_strings.start[1];
991 vallen = register_strings.end[2] - register_strings.start[2];
992 val = buf + register_strings.start[2];
993
994 current_monitor->supply_register (regcache, regname, regnamelen,
995 val, vallen);
996
997 buf += register_strings.end[0];
998 len -= register_strings.end[0];
999 }
1000 }
1001
1002 /* Send ^C to target to halt it. Target will respond, and send us a
1003 packet. */
1004
1005 static void
1006 monitor_interrupt (int signo)
1007 {
1008 /* If this doesn't work, try more severe steps. */
1009 signal (signo, monitor_interrupt_twice);
1010
1011 if (monitor_debug_p || remote_debug)
1012 fprintf_unfiltered (gdb_stdlog, "monitor_interrupt called\n");
1013
1014 target_stop (inferior_ptid);
1015 }
1016
1017 /* The user typed ^C twice. */
1018
1019 static void
1020 monitor_interrupt_twice (int signo)
1021 {
1022 signal (signo, ofunc);
1023
1024 monitor_interrupt_query ();
1025
1026 signal (signo, monitor_interrupt);
1027 }
1028
1029 /* Ask the user what to do when an interrupt is received. */
1030
1031 static void
1032 monitor_interrupt_query (void)
1033 {
1034 target_terminal_ours ();
1035
1036 if (query (_("Interrupted while waiting for the program.\n\
1037 Give up (and stop debugging it)? ")))
1038 {
1039 target_mourn_inferior ();
1040 quit ();
1041 }
1042
1043 target_terminal_inferior ();
1044 }
1045
1046 static void
1047 monitor_wait_cleanup (void *old_timeout)
1048 {
1049 timeout = *(int *) old_timeout;
1050 signal (SIGINT, ofunc);
1051 in_monitor_wait = 0;
1052 }
1053
1054
1055
1056 static void
1057 monitor_wait_filter (char *buf,
1058 int bufmax,
1059 int *ext_resp_len,
1060 struct target_waitstatus *status)
1061 {
1062 int resp_len;
1063
1064 do
1065 {
1066 resp_len = monitor_expect_prompt (buf, bufmax);
1067 *ext_resp_len = resp_len;
1068
1069 if (resp_len <= 0)
1070 fprintf_unfiltered (gdb_stderr,
1071 "monitor_wait: excessive "
1072 "response from monitor: %s.", buf);
1073 }
1074 while (resp_len < 0);
1075
1076 /* Print any output characters that were preceded by ^O. */
1077 /* FIXME - This would be great as a user settabgle flag. */
1078 if (monitor_debug_p || remote_debug
1079 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1080 {
1081 int i;
1082
1083 for (i = 0; i < resp_len - 1; i++)
1084 if (buf[i] == 0x0f)
1085 putchar_unfiltered (buf[++i]);
1086 }
1087 }
1088
1089
1090
1091 /* Wait until the remote machine stops, then return, storing status in
1092 status just as `wait' would. */
1093
1094 static ptid_t
1095 monitor_wait (struct target_ops *ops,
1096 ptid_t ptid, struct target_waitstatus *status, int options)
1097 {
1098 int old_timeout = timeout;
1099 char buf[TARGET_BUF_SIZE];
1100 int resp_len;
1101 struct cleanup *old_chain;
1102
1103 status->kind = TARGET_WAITKIND_EXITED;
1104 status->value.integer = 0;
1105
1106 old_chain = make_cleanup (monitor_wait_cleanup, &old_timeout);
1107 monitor_debug ("MON wait\n");
1108
1109 #if 0
1110 /* This is somthing other than a maintenance command. */
1111 in_monitor_wait = 1;
1112 timeout = watchdog > 0 ? watchdog : -1;
1113 #else
1114 timeout = -1; /* Don't time out -- user program is running. */
1115 #endif
1116
1117 ofunc = (void (*)()) signal (SIGINT, monitor_interrupt);
1118
1119 if (current_monitor->wait_filter)
1120 (*current_monitor->wait_filter) (buf, sizeof (buf), &resp_len, status);
1121 else
1122 monitor_wait_filter (buf, sizeof (buf), &resp_len, status);
1123
1124 #if 0 /* Transferred to monitor wait filter. */
1125 do
1126 {
1127 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1128
1129 if (resp_len <= 0)
1130 fprintf_unfiltered (gdb_stderr,
1131 "monitor_wait: excessive "
1132 "response from monitor: %s.", buf);
1133 }
1134 while (resp_len < 0);
1135
1136 /* Print any output characters that were preceded by ^O. */
1137 /* FIXME - This would be great as a user settabgle flag. */
1138 if (monitor_debug_p || remote_debug
1139 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1140 {
1141 int i;
1142
1143 for (i = 0; i < resp_len - 1; i++)
1144 if (buf[i] == 0x0f)
1145 putchar_unfiltered (buf[++i]);
1146 }
1147 #endif
1148
1149 signal (SIGINT, ofunc);
1150
1151 timeout = old_timeout;
1152 #if 0
1153 if (dump_reg_flag && current_monitor->dump_registers)
1154 {
1155 dump_reg_flag = 0;
1156 monitor_printf (current_monitor->dump_registers);
1157 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1158 }
1159
1160 if (current_monitor->register_pattern)
1161 parse_register_dump (get_current_regcache (), buf, resp_len);
1162 #else
1163 monitor_debug ("Wait fetching registers after stop\n");
1164 monitor_dump_regs (get_current_regcache ());
1165 #endif
1166
1167 status->kind = TARGET_WAITKIND_STOPPED;
1168 status->value.sig = GDB_SIGNAL_TRAP;
1169
1170 discard_cleanups (old_chain);
1171
1172 in_monitor_wait = 0;
1173
1174 return inferior_ptid;
1175 }
1176
1177 /* Fetch register REGNO, or all registers if REGNO is -1. Returns
1178 errno value. */
1179
1180 static void
1181 monitor_fetch_register (struct regcache *regcache, int regno)
1182 {
1183 const char *name;
1184 char *zerobuf;
1185 char *regbuf;
1186 int i;
1187
1188 regbuf = alloca (MAX_REGISTER_SIZE * 2 + 1);
1189 zerobuf = alloca (MAX_REGISTER_SIZE);
1190 memset (zerobuf, 0, MAX_REGISTER_SIZE);
1191
1192 if (current_monitor->regname != NULL)
1193 name = current_monitor->regname (regno);
1194 else
1195 name = current_monitor->regnames[regno];
1196 monitor_debug ("MON fetchreg %d '%s'\n", regno, name ? name : "(null name)");
1197
1198 if (!name || (*name == '\0'))
1199 {
1200 monitor_debug ("No register known for %d\n", regno);
1201 regcache_raw_supply (regcache, regno, zerobuf);
1202 return;
1203 }
1204
1205 /* Send the register examine command. */
1206
1207 monitor_printf (current_monitor->getreg.cmd, name);
1208
1209 /* If RESP_DELIM is specified, we search for that as a leading
1210 delimiter for the register value. Otherwise, we just start
1211 searching from the start of the buf. */
1212
1213 if (current_monitor->getreg.resp_delim)
1214 {
1215 monitor_debug ("EXP getreg.resp_delim\n");
1216 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1217 /* Handle case of first 32 registers listed in pairs. */
1218 if (current_monitor->flags & MO_32_REGS_PAIRED
1219 && (regno & 1) != 0 && regno < 32)
1220 {
1221 monitor_debug ("EXP getreg.resp_delim\n");
1222 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1223 }
1224 }
1225
1226 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */
1227 if (current_monitor->flags & MO_HEX_PREFIX)
1228 {
1229 int c;
1230
1231 c = readchar (timeout);
1232 while (c == ' ')
1233 c = readchar (timeout);
1234 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1235 ;
1236 else
1237 error (_("Bad value returned from monitor "
1238 "while fetching register %x."),
1239 regno);
1240 }
1241
1242 /* Read upto the maximum number of hex digits for this register, skipping
1243 spaces, but stop reading if something else is seen. Some monitors
1244 like to drop leading zeros. */
1245
1246 for (i = 0; i < register_size (get_regcache_arch (regcache), regno) * 2; i++)
1247 {
1248 int c;
1249
1250 c = readchar (timeout);
1251 while (c == ' ')
1252 c = readchar (timeout);
1253
1254 if (!isxdigit (c))
1255 break;
1256
1257 regbuf[i] = c;
1258 }
1259
1260 regbuf[i] = '\000'; /* Terminate the number. */
1261 monitor_debug ("REGVAL '%s'\n", regbuf);
1262
1263 /* If TERM is present, we wait for that to show up. Also, (if TERM
1264 is present), we will send TERM_CMD if that is present. In any
1265 case, we collect all of the output into buf, and then wait for
1266 the normal prompt. */
1267
1268 if (current_monitor->getreg.term)
1269 {
1270 monitor_debug ("EXP getreg.term\n");
1271 monitor_expect (current_monitor->getreg.term, NULL, 0); /* Get
1272 response. */
1273 }
1274
1275 if (current_monitor->getreg.term_cmd)
1276 {
1277 monitor_debug ("EMIT getreg.term.cmd\n");
1278 monitor_printf (current_monitor->getreg.term_cmd);
1279 }
1280 if (!current_monitor->getreg.term || /* Already expected or */
1281 current_monitor->getreg.term_cmd) /* ack expected. */
1282 monitor_expect_prompt (NULL, 0); /* Get response. */
1283
1284 monitor_supply_register (regcache, regno, regbuf);
1285 }
1286
1287 /* Sometimes, it takes several commands to dump the registers. */
1288 /* This is a primitive for use by variations of monitor interfaces in
1289 case they need to compose the operation. */
1290
1291 int
1292 monitor_dump_reg_block (struct regcache *regcache, char *block_cmd)
1293 {
1294 char buf[TARGET_BUF_SIZE];
1295 int resp_len;
1296
1297 monitor_printf (block_cmd);
1298 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1299 parse_register_dump (regcache, buf, resp_len);
1300 return 1;
1301 }
1302
1303
1304 /* Read the remote registers into the block regs. */
1305 /* Call the specific function if it has been provided. */
1306
1307 static void
1308 monitor_dump_regs (struct regcache *regcache)
1309 {
1310 char buf[TARGET_BUF_SIZE];
1311 int resp_len;
1312
1313 if (current_monitor->dumpregs)
1314 (*(current_monitor->dumpregs)) (regcache); /* Call supplied function. */
1315 else if (current_monitor->dump_registers) /* Default version. */
1316 {
1317 monitor_printf (current_monitor->dump_registers);
1318 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1319 parse_register_dump (regcache, buf, resp_len);
1320 }
1321 else
1322 /* Need some way to read registers. */
1323 internal_error (__FILE__, __LINE__,
1324 _("failed internal consistency check"));
1325 }
1326
1327 static void
1328 monitor_fetch_registers (struct target_ops *ops,
1329 struct regcache *regcache, int regno)
1330 {
1331 monitor_debug ("MON fetchregs\n");
1332 if (current_monitor->getreg.cmd)
1333 {
1334 if (regno >= 0)
1335 {
1336 monitor_fetch_register (regcache, regno);
1337 return;
1338 }
1339
1340 for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache));
1341 regno++)
1342 monitor_fetch_register (regcache, regno);
1343 }
1344 else
1345 {
1346 monitor_dump_regs (regcache);
1347 }
1348 }
1349
1350 /* Store register REGNO, or all if REGNO == 0. Return errno value. */
1351
1352 static void
1353 monitor_store_register (struct regcache *regcache, int regno)
1354 {
1355 int reg_size = register_size (get_regcache_arch (regcache), regno);
1356 const char *name;
1357 ULONGEST val;
1358
1359 if (current_monitor->regname != NULL)
1360 name = current_monitor->regname (regno);
1361 else
1362 name = current_monitor->regnames[regno];
1363
1364 if (!name || (*name == '\0'))
1365 {
1366 monitor_debug ("MON Cannot store unknown register\n");
1367 return;
1368 }
1369
1370 regcache_cooked_read_unsigned (regcache, regno, &val);
1371 monitor_debug ("MON storeg %d %s\n", regno, phex (val, reg_size));
1372
1373 /* Send the register deposit command. */
1374
1375 if (current_monitor->flags & MO_REGISTER_VALUE_FIRST)
1376 monitor_printf (current_monitor->setreg.cmd, val, name);
1377 else if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1378 monitor_printf (current_monitor->setreg.cmd, name);
1379 else
1380 monitor_printf (current_monitor->setreg.cmd, name, val);
1381
1382 if (current_monitor->setreg.resp_delim)
1383 {
1384 monitor_debug ("EXP setreg.resp_delim\n");
1385 monitor_expect_regexp (&setreg_resp_delim_pattern, NULL, 0);
1386 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1387 monitor_printf ("%s\r", phex_nz (val, reg_size));
1388 }
1389 if (current_monitor->setreg.term)
1390 {
1391 monitor_debug ("EXP setreg.term\n");
1392 monitor_expect (current_monitor->setreg.term, NULL, 0);
1393 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1394 monitor_printf ("%s\r", phex_nz (val, reg_size));
1395 monitor_expect_prompt (NULL, 0);
1396 }
1397 else
1398 monitor_expect_prompt (NULL, 0);
1399 if (current_monitor->setreg.term_cmd) /* Mode exit required. */
1400 {
1401 monitor_debug ("EXP setreg_termcmd\n");
1402 monitor_printf ("%s", current_monitor->setreg.term_cmd);
1403 monitor_expect_prompt (NULL, 0);
1404 }
1405 } /* monitor_store_register */
1406
1407 /* Store the remote registers. */
1408
1409 static void
1410 monitor_store_registers (struct target_ops *ops,
1411 struct regcache *regcache, int regno)
1412 {
1413 if (regno >= 0)
1414 {
1415 monitor_store_register (regcache, regno);
1416 return;
1417 }
1418
1419 for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache));
1420 regno++)
1421 monitor_store_register (regcache, regno);
1422 }
1423
1424 /* Get ready to modify the registers array. On machines which store
1425 individual registers, this doesn't need to do anything. On machines
1426 which store all the registers in one fell swoop, this makes sure
1427 that registers contains all the registers from the program being
1428 debugged. */
1429
1430 static void
1431 monitor_prepare_to_store (struct target_ops *self, struct regcache *regcache)
1432 {
1433 /* Do nothing, since we can store individual regs. */
1434 }
1435
1436 static void
1437 monitor_files_info (struct target_ops *ops)
1438 {
1439 printf_unfiltered (_("\tAttached to %s at %d baud.\n"), dev_name, baud_rate);
1440 }
1441
1442 static int
1443 monitor_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1444 {
1445 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1446 unsigned int val, hostval;
1447 char *cmd;
1448 int i;
1449
1450 monitor_debug ("MON write %d %s\n", len, paddress (target_gdbarch (), memaddr));
1451
1452 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1453 memaddr = gdbarch_addr_bits_remove (target_gdbarch (), memaddr);
1454
1455 /* Use memory fill command for leading 0 bytes. */
1456
1457 if (current_monitor->fill)
1458 {
1459 for (i = 0; i < len; i++)
1460 if (myaddr[i] != 0)
1461 break;
1462
1463 if (i > 4) /* More than 4 zeros is worth doing. */
1464 {
1465 monitor_debug ("MON FILL %d\n", i);
1466 if (current_monitor->flags & MO_FILL_USES_ADDR)
1467 monitor_printf (current_monitor->fill, memaddr,
1468 (memaddr + i) - 1, 0);
1469 else
1470 monitor_printf (current_monitor->fill, memaddr, i, 0);
1471
1472 monitor_expect_prompt (NULL, 0);
1473
1474 return i;
1475 }
1476 }
1477
1478 #if 0
1479 /* Can't actually use long longs if VAL is an int (nice idea, though). */
1480 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->setmem.cmdll)
1481 {
1482 len = 8;
1483 cmd = current_monitor->setmem.cmdll;
1484 }
1485 else
1486 #endif
1487 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->setmem.cmdl)
1488 {
1489 len = 4;
1490 cmd = current_monitor->setmem.cmdl;
1491 }
1492 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->setmem.cmdw)
1493 {
1494 len = 2;
1495 cmd = current_monitor->setmem.cmdw;
1496 }
1497 else
1498 {
1499 len = 1;
1500 cmd = current_monitor->setmem.cmdb;
1501 }
1502
1503 val = extract_unsigned_integer (myaddr, len, byte_order);
1504
1505 if (len == 4)
1506 {
1507 hostval = *(unsigned int *) myaddr;
1508 monitor_debug ("Hostval(%08x) val(%08x)\n", hostval, val);
1509 }
1510
1511
1512 if (current_monitor->flags & MO_NO_ECHO_ON_SETMEM)
1513 monitor_printf_noecho (cmd, memaddr, val);
1514 else if (current_monitor->flags & MO_SETMEM_INTERACTIVE)
1515 {
1516 monitor_printf_noecho (cmd, memaddr);
1517
1518 if (current_monitor->setmem.resp_delim)
1519 {
1520 monitor_debug ("EXP setmem.resp_delim");
1521 monitor_expect_regexp (&setmem_resp_delim_pattern, NULL, 0);
1522 monitor_printf ("%x\r", val);
1523 }
1524 if (current_monitor->setmem.term)
1525 {
1526 monitor_debug ("EXP setmem.term");
1527 monitor_expect (current_monitor->setmem.term, NULL, 0);
1528 monitor_printf ("%x\r", val);
1529 }
1530 if (current_monitor->setmem.term_cmd)
1531 { /* Emit this to get out of the memory editing state. */
1532 monitor_printf ("%s", current_monitor->setmem.term_cmd);
1533 /* Drop through to expecting a prompt. */
1534 }
1535 }
1536 else
1537 monitor_printf (cmd, memaddr, val);
1538
1539 monitor_expect_prompt (NULL, 0);
1540
1541 return len;
1542 }
1543
1544
1545 static int
1546 monitor_write_memory_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1547 {
1548 unsigned char val;
1549 int written = 0;
1550
1551 if (len == 0)
1552 return 0;
1553 /* Enter the sub mode. */
1554 monitor_printf (current_monitor->setmem.cmdb, memaddr);
1555 monitor_expect_prompt (NULL, 0);
1556 while (len)
1557 {
1558 val = *myaddr;
1559 monitor_printf ("%x\r", val);
1560 myaddr++;
1561 memaddr++;
1562 written++;
1563 /* If we wanted to, here we could validate the address. */
1564 monitor_expect_prompt (NULL, 0);
1565 len--;
1566 }
1567 /* Now exit the sub mode. */
1568 monitor_printf (current_monitor->getreg.term_cmd);
1569 monitor_expect_prompt (NULL, 0);
1570 return written;
1571 }
1572
1573
1574 static void
1575 longlongendswap (unsigned char *a)
1576 {
1577 int i, j;
1578 unsigned char x;
1579
1580 i = 0;
1581 j = 7;
1582 while (i < 4)
1583 {
1584 x = *(a + i);
1585 *(a + i) = *(a + j);
1586 *(a + j) = x;
1587 i++, j--;
1588 }
1589 }
1590 /* Format 32 chars of long long value, advance the pointer. */
1591 static char *hexlate = "0123456789abcdef";
1592 static char *
1593 longlong_hexchars (unsigned long long value,
1594 char *outbuff)
1595 {
1596 if (value == 0)
1597 {
1598 *outbuff++ = '0';
1599 return outbuff;
1600 }
1601 else
1602 {
1603 static unsigned char disbuf[8]; /* disassembly buffer */
1604 unsigned char *scan, *limit; /* loop controls */
1605 unsigned char c, nib;
1606 int leadzero = 1;
1607
1608 scan = disbuf;
1609 limit = scan + 8;
1610 {
1611 unsigned long long *dp;
1612
1613 dp = (unsigned long long *) scan;
1614 *dp = value;
1615 }
1616 longlongendswap (disbuf); /* FIXME: ONly on big endian hosts. */
1617 while (scan < limit)
1618 {
1619 c = *scan++; /* A byte of our long long value. */
1620 if (leadzero)
1621 {
1622 if (c == 0)
1623 continue;
1624 else
1625 leadzero = 0; /* Henceforth we print even zeroes. */
1626 }
1627 nib = c >> 4; /* high nibble bits */
1628 *outbuff++ = hexlate[nib];
1629 nib = c & 0x0f; /* low nibble bits */
1630 *outbuff++ = hexlate[nib];
1631 }
1632 return outbuff;
1633 }
1634 } /* longlong_hexchars */
1635
1636
1637
1638 /* I am only going to call this when writing virtual byte streams.
1639 Which possably entails endian conversions. */
1640
1641 static int
1642 monitor_write_memory_longlongs (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1643 {
1644 static char hexstage[20]; /* At least 16 digits required, plus null. */
1645 char *endstring;
1646 long long *llptr;
1647 long long value;
1648 int written = 0;
1649
1650 llptr = (long long *) myaddr;
1651 if (len == 0)
1652 return 0;
1653 monitor_printf (current_monitor->setmem.cmdll, memaddr);
1654 monitor_expect_prompt (NULL, 0);
1655 while (len >= 8)
1656 {
1657 value = *llptr;
1658 endstring = longlong_hexchars (*llptr, hexstage);
1659 *endstring = '\0'; /* NUll terminate for printf. */
1660 monitor_printf ("%s\r", hexstage);
1661 llptr++;
1662 memaddr += 8;
1663 written += 8;
1664 /* If we wanted to, here we could validate the address. */
1665 monitor_expect_prompt (NULL, 0);
1666 len -= 8;
1667 }
1668 /* Now exit the sub mode. */
1669 monitor_printf (current_monitor->getreg.term_cmd);
1670 monitor_expect_prompt (NULL, 0);
1671 return written;
1672 } /* */
1673
1674
1675
1676 /* ----- MONITOR_WRITE_MEMORY_BLOCK ---------------------------- */
1677 /* This is for the large blocks of memory which may occur in downloading.
1678 And for monitors which use interactive entry,
1679 And for monitors which do not have other downloading methods.
1680 Without this, we will end up calling monitor_write_memory many times
1681 and do the entry and exit of the sub mode many times
1682 This currently assumes...
1683 MO_SETMEM_INTERACTIVE
1684 ! MO_NO_ECHO_ON_SETMEM
1685 To use this, the you have to patch the monitor_cmds block with
1686 this function. Otherwise, its not tuned up for use by all
1687 monitor variations. */
1688
1689 static int
1690 monitor_write_memory_block (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1691 {
1692 int written;
1693
1694 written = 0;
1695 /* FIXME: This would be a good place to put the zero test. */
1696 #if 1
1697 if ((len > 8) && (((len & 0x07)) == 0) && current_monitor->setmem.cmdll)
1698 {
1699 return monitor_write_memory_longlongs (memaddr, myaddr, len);
1700 }
1701 #endif
1702 written = monitor_write_memory_bytes (memaddr, myaddr, len);
1703 return written;
1704 }
1705
1706 /* This is an alternate form of monitor_read_memory which is used for monitors
1707 which can only read a single byte/word/etc. at a time. */
1708
1709 static int
1710 monitor_read_memory_single (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1711 {
1712 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1713 unsigned int val;
1714 char membuf[sizeof (int) * 2 + 1];
1715 char *p;
1716 char *cmd;
1717
1718 monitor_debug ("MON read single\n");
1719 #if 0
1720 /* Can't actually use long longs (nice idea, though). In fact, the
1721 call to strtoul below will fail if it tries to convert a value
1722 that's too big to fit in a long. */
1723 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->getmem.cmdll)
1724 {
1725 len = 8;
1726 cmd = current_monitor->getmem.cmdll;
1727 }
1728 else
1729 #endif
1730 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->getmem.cmdl)
1731 {
1732 len = 4;
1733 cmd = current_monitor->getmem.cmdl;
1734 }
1735 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->getmem.cmdw)
1736 {
1737 len = 2;
1738 cmd = current_monitor->getmem.cmdw;
1739 }
1740 else
1741 {
1742 len = 1;
1743 cmd = current_monitor->getmem.cmdb;
1744 }
1745
1746 /* Send the examine command. */
1747
1748 monitor_printf (cmd, memaddr);
1749
1750 /* If RESP_DELIM is specified, we search for that as a leading
1751 delimiter for the memory value. Otherwise, we just start
1752 searching from the start of the buf. */
1753
1754 if (current_monitor->getmem.resp_delim)
1755 {
1756 monitor_debug ("EXP getmem.resp_delim\n");
1757 monitor_expect_regexp (&getmem_resp_delim_pattern, NULL, 0);
1758 }
1759
1760 /* Now, read the appropriate number of hex digits for this loc,
1761 skipping spaces. */
1762
1763 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */
1764 if (current_monitor->flags & MO_HEX_PREFIX)
1765 {
1766 int c;
1767
1768 c = readchar (timeout);
1769 while (c == ' ')
1770 c = readchar (timeout);
1771 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1772 ;
1773 else
1774 monitor_error ("monitor_read_memory_single",
1775 "bad response from monitor",
1776 memaddr, 0, NULL, 0);
1777 }
1778
1779 {
1780 int i;
1781
1782 for (i = 0; i < len * 2; i++)
1783 {
1784 int c;
1785
1786 while (1)
1787 {
1788 c = readchar (timeout);
1789 if (isxdigit (c))
1790 break;
1791 if (c == ' ')
1792 continue;
1793
1794 monitor_error ("monitor_read_memory_single",
1795 "bad response from monitor",
1796 memaddr, i, membuf, 0);
1797 }
1798 membuf[i] = c;
1799 }
1800 membuf[i] = '\000'; /* Terminate the number. */
1801 }
1802
1803 /* If TERM is present, we wait for that to show up. Also, (if TERM is
1804 present), we will send TERM_CMD if that is present. In any case, we collect
1805 all of the output into buf, and then wait for the normal prompt. */
1806
1807 if (current_monitor->getmem.term)
1808 {
1809 monitor_expect (current_monitor->getmem.term, NULL, 0); /* Get
1810 response. */
1811
1812 if (current_monitor->getmem.term_cmd)
1813 {
1814 monitor_printf (current_monitor->getmem.term_cmd);
1815 monitor_expect_prompt (NULL, 0);
1816 }
1817 }
1818 else
1819 monitor_expect_prompt (NULL, 0); /* Get response. */
1820
1821 p = membuf;
1822 val = strtoul (membuf, &p, 16);
1823
1824 if (val == 0 && membuf == p)
1825 monitor_error ("monitor_read_memory_single",
1826 "bad value from monitor",
1827 memaddr, 0, membuf, 0);
1828
1829 /* supply register stores in target byte order, so swap here. */
1830
1831 store_unsigned_integer (myaddr, len, byte_order, val);
1832
1833 return len;
1834 }
1835
1836 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
1837 memory at MEMADDR. Returns length moved. Currently, we do no more
1838 than 16 bytes at a time. */
1839
1840 static int
1841 monitor_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1842 {
1843 unsigned int val;
1844 char buf[512];
1845 char *p, *p1;
1846 int resp_len;
1847 int i;
1848 CORE_ADDR dumpaddr;
1849
1850 if (len <= 0)
1851 {
1852 monitor_debug ("Zero length call to monitor_read_memory\n");
1853 return 0;
1854 }
1855
1856 monitor_debug ("MON read block ta(%s) ha(%s) %d\n",
1857 paddress (target_gdbarch (), memaddr),
1858 host_address_to_string (myaddr), len);
1859
1860 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1861 memaddr = gdbarch_addr_bits_remove (target_gdbarch (), memaddr);
1862
1863 if (current_monitor->flags & MO_GETMEM_READ_SINGLE)
1864 return monitor_read_memory_single (memaddr, myaddr, len);
1865
1866 len = min (len, 16);
1867
1868 /* Some dumpers align the first data with the preceding 16
1869 byte boundary. Some print blanks and start at the
1870 requested boundary. EXACT_DUMPADDR */
1871
1872 dumpaddr = (current_monitor->flags & MO_EXACT_DUMPADDR)
1873 ? memaddr : memaddr & ~0x0f;
1874
1875 /* See if xfer would cross a 16 byte boundary. If so, clip it. */
1876 if (((memaddr ^ (memaddr + len - 1)) & ~0xf) != 0)
1877 len = ((memaddr + len) & ~0xf) - memaddr;
1878
1879 /* Send the memory examine command. */
1880
1881 if (current_monitor->flags & MO_GETMEM_NEEDS_RANGE)
1882 monitor_printf (current_monitor->getmem.cmdb, memaddr, memaddr + len);
1883 else if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1884 monitor_printf (current_monitor->getmem.cmdb, dumpaddr);
1885 else
1886 monitor_printf (current_monitor->getmem.cmdb, memaddr, len);
1887
1888 /* If TERM is present, we wait for that to show up. Also, (if TERM
1889 is present), we will send TERM_CMD if that is present. In any
1890 case, we collect all of the output into buf, and then wait for
1891 the normal prompt. */
1892
1893 if (current_monitor->getmem.term)
1894 {
1895 resp_len = monitor_expect (current_monitor->getmem.term,
1896 buf, sizeof buf); /* Get response. */
1897
1898 if (resp_len <= 0)
1899 monitor_error ("monitor_read_memory",
1900 "excessive response from monitor",
1901 memaddr, resp_len, buf, 0);
1902
1903 if (current_monitor->getmem.term_cmd)
1904 {
1905 serial_write (monitor_desc, current_monitor->getmem.term_cmd,
1906 strlen (current_monitor->getmem.term_cmd));
1907 monitor_expect_prompt (NULL, 0);
1908 }
1909 }
1910 else
1911 resp_len = monitor_expect_prompt (buf, sizeof buf); /* Get response. */
1912
1913 p = buf;
1914
1915 /* If RESP_DELIM is specified, we search for that as a leading
1916 delimiter for the values. Otherwise, we just start searching
1917 from the start of the buf. */
1918
1919 if (current_monitor->getmem.resp_delim)
1920 {
1921 int retval, tmp;
1922 struct re_registers resp_strings;
1923
1924 monitor_debug ("MON getmem.resp_delim %s\n",
1925 current_monitor->getmem.resp_delim);
1926
1927 memset (&resp_strings, 0, sizeof (struct re_registers));
1928 tmp = strlen (p);
1929 retval = re_search (&getmem_resp_delim_pattern, p, tmp, 0, tmp,
1930 &resp_strings);
1931
1932 if (retval < 0)
1933 monitor_error ("monitor_read_memory",
1934 "bad response from monitor",
1935 memaddr, resp_len, buf, 0);
1936
1937 p += resp_strings.end[0];
1938 #if 0
1939 p = strstr (p, current_monitor->getmem.resp_delim);
1940 if (!p)
1941 monitor_error ("monitor_read_memory",
1942 "bad response from monitor",
1943 memaddr, resp_len, buf, 0);
1944 p += strlen (current_monitor->getmem.resp_delim);
1945 #endif
1946 }
1947 monitor_debug ("MON scanning %d ,%s '%s'\n", len,
1948 host_address_to_string (p), p);
1949 if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1950 {
1951 char c;
1952 int fetched = 0;
1953 i = len;
1954 c = *p;
1955
1956
1957 while (!(c == '\000' || c == '\n' || c == '\r') && i > 0)
1958 {
1959 if (isxdigit (c))
1960 {
1961 if ((dumpaddr >= memaddr) && (i > 0))
1962 {
1963 val = fromhex (c) * 16 + fromhex (*(p + 1));
1964 *myaddr++ = val;
1965 if (monitor_debug_p || remote_debug)
1966 fprintf_unfiltered (gdb_stdlog, "[%02x]", val);
1967 --i;
1968 fetched++;
1969 }
1970 ++dumpaddr;
1971 ++p;
1972 }
1973 ++p; /* Skip a blank or other non hex char. */
1974 c = *p;
1975 }
1976 if (fetched == 0)
1977 error (_("Failed to read via monitor"));
1978 if (monitor_debug_p || remote_debug)
1979 fprintf_unfiltered (gdb_stdlog, "\n");
1980 return fetched; /* Return the number of bytes actually
1981 read. */
1982 }
1983 monitor_debug ("MON scanning bytes\n");
1984
1985 for (i = len; i > 0; i--)
1986 {
1987 /* Skip non-hex chars, but bomb on end of string and newlines. */
1988
1989 while (1)
1990 {
1991 if (isxdigit (*p))
1992 break;
1993
1994 if (*p == '\000' || *p == '\n' || *p == '\r')
1995 monitor_error ("monitor_read_memory",
1996 "badly terminated response from monitor",
1997 memaddr, resp_len, buf, 0);
1998 p++;
1999 }
2000
2001 val = strtoul (p, &p1, 16);
2002
2003 if (val == 0 && p == p1)
2004 monitor_error ("monitor_read_memory",
2005 "bad value from monitor",
2006 memaddr, resp_len, buf, 0);
2007
2008 *myaddr++ = val;
2009
2010 if (i == 1)
2011 break;
2012
2013 p = p1;
2014 }
2015
2016 return len;
2017 }
2018
2019 /* Helper for monitor_xfer_partial that handles memory transfers.
2020 Arguments are like target_xfer_partial. */
2021
2022 static enum target_xfer_status
2023 monitor_xfer_memory (gdb_byte *readbuf, const gdb_byte *writebuf,
2024 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
2025 {
2026 int res;
2027
2028 if (writebuf != NULL)
2029 {
2030 if (current_monitor->flags & MO_HAS_BLOCKWRITES)
2031 res = monitor_write_memory_block (memaddr, writebuf, len);
2032 else
2033 res = monitor_write_memory (memaddr, writebuf, len);
2034 }
2035 else
2036 {
2037 res = monitor_read_memory (memaddr, readbuf, len);
2038 }
2039
2040 if (res <= 0)
2041 return TARGET_XFER_E_IO;
2042 else
2043 {
2044 *xfered_len = (ULONGEST) res;
2045 return TARGET_XFER_OK;
2046 }
2047 }
2048
2049 /* Target to_xfer_partial implementation. */
2050
2051 static enum target_xfer_status
2052 monitor_xfer_partial (struct target_ops *ops, enum target_object object,
2053 const char *annex, gdb_byte *readbuf,
2054 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
2055 ULONGEST *xfered_len)
2056 {
2057 switch (object)
2058 {
2059 case TARGET_OBJECT_MEMORY:
2060 return monitor_xfer_memory (readbuf, writebuf, offset, len, xfered_len);
2061
2062 default:
2063 return TARGET_XFER_E_IO;
2064 }
2065 }
2066
2067 static void
2068 monitor_kill (struct target_ops *ops)
2069 {
2070 return; /* Ignore attempts to kill target system. */
2071 }
2072
2073 /* All we actually do is set the PC to the start address of exec_bfd. */
2074
2075 static void
2076 monitor_create_inferior (struct target_ops *ops, char *exec_file,
2077 char *args, char **env, int from_tty)
2078 {
2079 if (args && (*args != '\000'))
2080 error (_("Args are not supported by the monitor."));
2081
2082 first_time = 1;
2083 clear_proceed_status ();
2084 regcache_write_pc (get_current_regcache (),
2085 bfd_get_start_address (exec_bfd));
2086 }
2087
2088 /* Clean up when a program exits.
2089 The program actually lives on in the remote processor's RAM, and may be
2090 run again without a download. Don't leave it full of breakpoint
2091 instructions. */
2092
2093 static void
2094 monitor_mourn_inferior (struct target_ops *ops)
2095 {
2096 unpush_target (targ_ops);
2097 generic_mourn_inferior (); /* Do all the proper things now. */
2098 delete_thread_silent (monitor_ptid);
2099 }
2100
2101 /* Tell the monitor to add a breakpoint. */
2102
2103 static int
2104 monitor_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
2105 struct bp_target_info *bp_tgt)
2106 {
2107 CORE_ADDR addr = bp_tgt->placed_address;
2108 int i;
2109 int bplen;
2110
2111 monitor_debug ("MON inst bkpt %s\n", paddress (gdbarch, addr));
2112 if (current_monitor->set_break == NULL)
2113 error (_("No set_break defined for this monitor"));
2114
2115 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
2116 addr = gdbarch_addr_bits_remove (gdbarch, addr);
2117
2118 /* Determine appropriate breakpoint size for this address. */
2119 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
2120 bp_tgt->placed_address = addr;
2121 bp_tgt->placed_size = bplen;
2122
2123 for (i = 0; i < current_monitor->num_breakpoints; i++)
2124 {
2125 if (breakaddr[i] == 0)
2126 {
2127 breakaddr[i] = addr;
2128 monitor_printf (current_monitor->set_break, addr);
2129 monitor_expect_prompt (NULL, 0);
2130 return 0;
2131 }
2132 }
2133
2134 error (_("Too many breakpoints (> %d) for monitor."),
2135 current_monitor->num_breakpoints);
2136 }
2137
2138 /* Tell the monitor to remove a breakpoint. */
2139
2140 static int
2141 monitor_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
2142 struct bp_target_info *bp_tgt)
2143 {
2144 CORE_ADDR addr = bp_tgt->placed_address;
2145 int i;
2146
2147 monitor_debug ("MON rmbkpt %s\n", paddress (gdbarch, addr));
2148 if (current_monitor->clr_break == NULL)
2149 error (_("No clr_break defined for this monitor"));
2150
2151 for (i = 0; i < current_monitor->num_breakpoints; i++)
2152 {
2153 if (breakaddr[i] == addr)
2154 {
2155 breakaddr[i] = 0;
2156 /* Some monitors remove breakpoints based on the address. */
2157 if (current_monitor->flags & MO_CLR_BREAK_USES_ADDR)
2158 monitor_printf (current_monitor->clr_break, addr);
2159 else if (current_monitor->flags & MO_CLR_BREAK_1_BASED)
2160 monitor_printf (current_monitor->clr_break, i + 1);
2161 else
2162 monitor_printf (current_monitor->clr_break, i);
2163 monitor_expect_prompt (NULL, 0);
2164 return 0;
2165 }
2166 }
2167 fprintf_unfiltered (gdb_stderr,
2168 "Can't find breakpoint associated with %s\n",
2169 paddress (gdbarch, addr));
2170 return 1;
2171 }
2172
2173 /* monitor_wait_srec_ack -- wait for the target to send an acknowledgement for
2174 an S-record. Return non-zero if the ACK is received properly. */
2175
2176 static int
2177 monitor_wait_srec_ack (void)
2178 {
2179 int ch;
2180
2181 if (current_monitor->flags & MO_SREC_ACK_PLUS)
2182 {
2183 return (readchar (timeout) == '+');
2184 }
2185 else if (current_monitor->flags & MO_SREC_ACK_ROTATE)
2186 {
2187 /* Eat two backspaces, a "rotating" char (|/-\), and a space. */
2188 if ((ch = readchar (1)) < 0)
2189 return 0;
2190 if ((ch = readchar (1)) < 0)
2191 return 0;
2192 if ((ch = readchar (1)) < 0)
2193 return 0;
2194 if ((ch = readchar (1)) < 0)
2195 return 0;
2196 }
2197 return 1;
2198 }
2199
2200 /* monitor_load -- download a file. */
2201
2202 static void
2203 monitor_load (struct target_ops *self, const char *args, int from_tty)
2204 {
2205 CORE_ADDR load_offset = 0;
2206 char **argv;
2207 struct cleanup *old_cleanups;
2208 char *filename;
2209
2210 monitor_debug ("MON load\n");
2211
2212 if (args == NULL)
2213 error_no_arg (_("file to load"));
2214
2215 argv = gdb_buildargv (args);
2216 old_cleanups = make_cleanup_freeargv (argv);
2217
2218 filename = tilde_expand (argv[0]);
2219 make_cleanup (xfree, filename);
2220
2221 /* Enable user to specify address for downloading as 2nd arg to load. */
2222 if (argv[1] != NULL)
2223 {
2224 const char *endptr;
2225
2226 load_offset = strtoulst (argv[1], &endptr, 0);
2227
2228 /* If the last word was not a valid number then
2229 treat it as a file name with spaces in. */
2230 if (argv[1] == endptr)
2231 error (_("Invalid download offset:%s."), argv[1]);
2232
2233 if (argv[2] != NULL)
2234 error (_("Too many parameters."));
2235 }
2236
2237 monitor_printf (current_monitor->load);
2238 if (current_monitor->loadresp)
2239 monitor_expect (current_monitor->loadresp, NULL, 0);
2240
2241 load_srec (monitor_desc, filename, load_offset,
2242 32, SREC_ALL, hashmark,
2243 current_monitor->flags & MO_SREC_ACK ?
2244 monitor_wait_srec_ack : NULL);
2245
2246 monitor_expect_prompt (NULL, 0);
2247
2248 do_cleanups (old_cleanups);
2249
2250 /* Finally, make the PC point at the start address. */
2251 if (exec_bfd)
2252 regcache_write_pc (get_current_regcache (),
2253 bfd_get_start_address (exec_bfd));
2254
2255 /* There used to be code here which would clear inferior_ptid and
2256 call clear_symtab_users. None of that should be necessary:
2257 monitor targets should behave like remote protocol targets, and
2258 since generic_load does none of those things, this function
2259 shouldn't either.
2260
2261 Furthermore, clearing inferior_ptid is *incorrect*. After doing
2262 a load, we still have a valid connection to the monitor, with a
2263 live processor state to fiddle with. The user can type
2264 `continue' or `jump *start' and make the program run. If they do
2265 these things, however, GDB will be talking to a running program
2266 while inferior_ptid is null_ptid; this makes things like
2267 reinit_frame_cache very confused. */
2268 }
2269
2270 static void
2271 monitor_stop (struct target_ops *self, ptid_t ptid)
2272 {
2273 monitor_debug ("MON stop\n");
2274 if ((current_monitor->flags & MO_SEND_BREAK_ON_STOP) != 0)
2275 serial_send_break (monitor_desc);
2276 if (current_monitor->stop)
2277 monitor_printf_noecho (current_monitor->stop);
2278 }
2279
2280 /* Put a COMMAND string out to MONITOR. Output from MONITOR is placed
2281 in OUTPUT until the prompt is seen. FIXME: We read the characters
2282 ourseleves here cause of a nasty echo. */
2283
2284 static void
2285 monitor_rcmd (struct target_ops *self, const char *command,
2286 struct ui_file *outbuf)
2287 {
2288 char *p;
2289 int resp_len;
2290 char buf[1000];
2291
2292 if (monitor_desc == NULL)
2293 error (_("monitor target not open."));
2294
2295 p = current_monitor->prompt;
2296
2297 /* Send the command. Note that if no args were supplied, then we're
2298 just sending the monitor a newline, which is sometimes useful. */
2299
2300 monitor_printf ("%s\r", (command ? command : ""));
2301
2302 resp_len = monitor_expect_prompt (buf, sizeof buf);
2303
2304 fputs_unfiltered (buf, outbuf); /* Output the response. */
2305 }
2306
2307 /* Convert hex digit A to a number. */
2308
2309 #if 0
2310 static int
2311 from_hex (int a)
2312 {
2313 if (a >= '0' && a <= '9')
2314 return a - '0';
2315 if (a >= 'a' && a <= 'f')
2316 return a - 'a' + 10;
2317 if (a >= 'A' && a <= 'F')
2318 return a - 'A' + 10;
2319
2320 error (_("Reply contains invalid hex digit 0x%x"), a);
2321 }
2322 #endif
2323
2324 char *
2325 monitor_get_dev_name (void)
2326 {
2327 return dev_name;
2328 }
2329
2330 /* Check to see if a thread is still alive. */
2331
2332 static int
2333 monitor_thread_alive (struct target_ops *ops, ptid_t ptid)
2334 {
2335 if (ptid_equal (ptid, monitor_ptid))
2336 /* The monitor's task is always alive. */
2337 return 1;
2338
2339 return 0;
2340 }
2341
2342 /* Convert a thread ID to a string. Returns the string in a static
2343 buffer. */
2344
2345 static char *
2346 monitor_pid_to_str (struct target_ops *ops, ptid_t ptid)
2347 {
2348 static char buf[64];
2349
2350 if (ptid_equal (monitor_ptid, ptid))
2351 {
2352 xsnprintf (buf, sizeof buf, "Thread <main>");
2353 return buf;
2354 }
2355
2356 return normal_pid_to_str (ptid);
2357 }
2358
2359 static struct target_ops monitor_ops;
2360
2361 static void
2362 init_base_monitor_ops (void)
2363 {
2364 monitor_ops.to_close = monitor_close;
2365 monitor_ops.to_detach = monitor_detach;
2366 monitor_ops.to_resume = monitor_resume;
2367 monitor_ops.to_wait = monitor_wait;
2368 monitor_ops.to_fetch_registers = monitor_fetch_registers;
2369 monitor_ops.to_store_registers = monitor_store_registers;
2370 monitor_ops.to_prepare_to_store = monitor_prepare_to_store;
2371 monitor_ops.to_xfer_partial = monitor_xfer_partial;
2372 monitor_ops.to_files_info = monitor_files_info;
2373 monitor_ops.to_insert_breakpoint = monitor_insert_breakpoint;
2374 monitor_ops.to_remove_breakpoint = monitor_remove_breakpoint;
2375 monitor_ops.to_kill = monitor_kill;
2376 monitor_ops.to_load = monitor_load;
2377 monitor_ops.to_create_inferior = monitor_create_inferior;
2378 monitor_ops.to_mourn_inferior = monitor_mourn_inferior;
2379 monitor_ops.to_stop = monitor_stop;
2380 monitor_ops.to_rcmd = monitor_rcmd;
2381 monitor_ops.to_log_command = serial_log_command;
2382 monitor_ops.to_thread_alive = monitor_thread_alive;
2383 monitor_ops.to_pid_to_str = monitor_pid_to_str;
2384 monitor_ops.to_stratum = process_stratum;
2385 monitor_ops.to_has_all_memory = default_child_has_all_memory;
2386 monitor_ops.to_has_memory = default_child_has_memory;
2387 monitor_ops.to_has_stack = default_child_has_stack;
2388 monitor_ops.to_has_registers = default_child_has_registers;
2389 monitor_ops.to_has_execution = default_child_has_execution;
2390 monitor_ops.to_magic = OPS_MAGIC;
2391 } /* init_base_monitor_ops */
2392
2393 /* Init the target_ops structure pointed at by OPS. */
2394
2395 void
2396 init_monitor_ops (struct target_ops *ops)
2397 {
2398 if (monitor_ops.to_magic != OPS_MAGIC)
2399 init_base_monitor_ops ();
2400
2401 memcpy (ops, &monitor_ops, sizeof monitor_ops);
2402 }
2403
2404 /* Define additional commands that are usually only used by monitors. */
2405
2406 /* -Wmissing-prototypes */
2407 extern initialize_file_ftype _initialize_remote_monitors;
2408
2409 void
2410 _initialize_remote_monitors (void)
2411 {
2412 init_base_monitor_ops ();
2413 add_setshow_boolean_cmd ("hash", no_class, &hashmark, _("\
2414 Set display of activity while downloading a file."), _("\
2415 Show display of activity while downloading a file."), _("\
2416 When enabled, a hashmark \'#\' is displayed."),
2417 NULL,
2418 NULL, /* FIXME: i18n: */
2419 &setlist, &showlist);
2420
2421 add_setshow_zuinteger_cmd ("monitor", no_class, &monitor_debug_p, _("\
2422 Set debugging of remote monitor communication."), _("\
2423 Show debugging of remote monitor communication."), _("\
2424 When enabled, communication between GDB and the remote monitor\n\
2425 is displayed."),
2426 NULL,
2427 NULL, /* FIXME: i18n: */
2428 &setdebuglist, &showdebuglist);
2429
2430 /* Yes, 42000 is arbitrary. The only sense out of it, is that it
2431 isn't 0. */
2432 monitor_ptid = ptid_build (42000, 0, 42000);
2433 }
This page took 0.078455 seconds and 4 git commands to generate.