* defs.h (strlen_paddr, paddr, paddr_nz): Remove.
[deliverable/binutils-gdb.git] / gdb / monitor.c
1 /* Remote debugging interface for boot monitors, for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support. Written by Rob Savoye for Cygnus.
7 Resurrected from the ashes by Stu Grossman.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 /* This file was derived from various remote-* modules. It is a collection
25 of generic support functions so GDB can talk directly to a ROM based
26 monitor. This saves use from having to hack an exception based handler
27 into existence, and makes for quick porting.
28
29 This module talks to a debug monitor called 'MONITOR', which
30 We communicate with MONITOR via either a direct serial line, or a TCP
31 (or possibly TELNET) stream to a terminal multiplexor,
32 which in turn talks to the target board. */
33
34 /* FIXME 32x64: This code assumes that registers and addresses are at
35 most 32 bits long. If they can be larger, you will need to declare
36 values as LONGEST and use %llx or some such to print values when
37 building commands to send to the monitor. Since we don't know of
38 any actual 64-bit targets with ROM monitors that use this code,
39 it's not an issue right now. -sts 4/18/96 */
40
41 #include "defs.h"
42 #include "gdbcore.h"
43 #include "target.h"
44 #include "exceptions.h"
45 #include <signal.h>
46 #include <ctype.h>
47 #include "gdb_string.h"
48 #include <sys/types.h>
49 #include "command.h"
50 #include "serial.h"
51 #include "monitor.h"
52 #include "gdbcmd.h"
53 #include "inferior.h"
54 #include "gdb_regex.h"
55 #include "srec.h"
56 #include "regcache.h"
57 #include "gdbthread.h"
58
59 static char *dev_name;
60 static struct target_ops *targ_ops;
61
62 static void monitor_interrupt_query (void);
63 static void monitor_interrupt_twice (int);
64 static void monitor_stop (ptid_t);
65 static void monitor_dump_regs (struct regcache *regcache);
66
67 #if 0
68 static int from_hex (int a);
69 #endif
70
71 static struct monitor_ops *current_monitor;
72
73 static int hashmark; /* flag set by "set hash" */
74
75 static int timeout = 30;
76
77 static int in_monitor_wait = 0; /* Non-zero means we are in monitor_wait() */
78
79 static void (*ofunc) (); /* Old SIGINT signal handler */
80
81 static CORE_ADDR *breakaddr;
82
83 /* Descriptor for I/O to remote machine. Initialize it to NULL so
84 that monitor_open knows that we don't have a file open when the
85 program starts. */
86
87 static struct serial *monitor_desc = NULL;
88
89 /* Pointer to regexp pattern matching data */
90
91 static struct re_pattern_buffer register_pattern;
92 static char register_fastmap[256];
93
94 static struct re_pattern_buffer getmem_resp_delim_pattern;
95 static char getmem_resp_delim_fastmap[256];
96
97 static struct re_pattern_buffer setmem_resp_delim_pattern;
98 static char setmem_resp_delim_fastmap[256];
99
100 static struct re_pattern_buffer setreg_resp_delim_pattern;
101 static char setreg_resp_delim_fastmap[256];
102
103 static int dump_reg_flag; /* Non-zero means do a dump_registers cmd when
104 monitor_wait wakes up. */
105
106 static int first_time = 0; /* is this the first time we're executing after
107 gaving created the child proccess? */
108
109
110 /* This is the ptid we use while we're connected to a monitor. Its
111 value is arbitrary, as monitor targets don't have a notion of
112 processes or threads, but we need something non-null to place in
113 inferior_ptid. */
114 static ptid_t monitor_ptid;
115
116 #define TARGET_BUF_SIZE 2048
117
118 /* Monitor specific debugging information. Typically only useful to
119 the developer of a new monitor interface. */
120
121 static void monitor_debug (const char *fmt, ...) ATTR_FORMAT(printf, 1, 2);
122
123 static int monitor_debug_p = 0;
124
125 /* NOTE: This file alternates between monitor_debug_p and remote_debug
126 when determining if debug information is printed. Perhaps this
127 could be simplified. */
128
129 static void
130 monitor_debug (const char *fmt, ...)
131 {
132 if (monitor_debug_p)
133 {
134 va_list args;
135 va_start (args, fmt);
136 vfprintf_filtered (gdb_stdlog, fmt, args);
137 va_end (args);
138 }
139 }
140
141
142 /* Convert a string into a printable representation, Return # byte in
143 the new string. When LEN is >0 it specifies the size of the
144 string. Otherwize strlen(oldstr) is used. */
145
146 static void
147 monitor_printable_string (char *newstr, char *oldstr, int len)
148 {
149 int ch;
150 int i;
151
152 if (len <= 0)
153 len = strlen (oldstr);
154
155 for (i = 0; i < len; i++)
156 {
157 ch = oldstr[i];
158 switch (ch)
159 {
160 default:
161 if (isprint (ch))
162 *newstr++ = ch;
163
164 else
165 {
166 sprintf (newstr, "\\x%02x", ch & 0xff);
167 newstr += 4;
168 }
169 break;
170
171 case '\\':
172 *newstr++ = '\\';
173 *newstr++ = '\\';
174 break;
175 case '\b':
176 *newstr++ = '\\';
177 *newstr++ = 'b';
178 break;
179 case '\f':
180 *newstr++ = '\\';
181 *newstr++ = 't';
182 break;
183 case '\n':
184 *newstr++ = '\\';
185 *newstr++ = 'n';
186 break;
187 case '\r':
188 *newstr++ = '\\';
189 *newstr++ = 'r';
190 break;
191 case '\t':
192 *newstr++ = '\\';
193 *newstr++ = 't';
194 break;
195 case '\v':
196 *newstr++ = '\\';
197 *newstr++ = 'v';
198 break;
199 }
200 }
201
202 *newstr++ = '\0';
203 }
204
205 /* Print monitor errors with a string, converting the string to printable
206 representation. */
207
208 static void
209 monitor_error (char *function, char *message,
210 CORE_ADDR memaddr, int len, char *string, int final_char)
211 {
212 int real_len = (len == 0 && string != (char *) 0) ? strlen (string) : len;
213 char *safe_string = alloca ((real_len * 4) + 1);
214 monitor_printable_string (safe_string, string, real_len);
215
216 if (final_char)
217 error (_("%s (%s): %s: %s%c"),
218 function, paddress (target_gdbarch, memaddr),
219 message, safe_string, final_char);
220 else
221 error (_("%s (%s): %s: %s"),
222 function, paddress (target_gdbarch, memaddr),
223 message, safe_string);
224 }
225
226 /* Convert hex digit A to a number. */
227
228 static int
229 fromhex (int a)
230 {
231 if (a >= '0' && a <= '9')
232 return a - '0';
233 else if (a >= 'a' && a <= 'f')
234 return a - 'a' + 10;
235 else if (a >= 'A' && a <= 'F')
236 return a - 'A' + 10;
237 else
238 error (_("Invalid hex digit %d"), a);
239 }
240
241 /* monitor_vsprintf - similar to vsprintf but handles 64-bit addresses
242
243 This function exists to get around the problem that many host platforms
244 don't have a printf that can print 64-bit addresses. The %A format
245 specification is recognized as a special case, and causes the argument
246 to be printed as a 64-bit hexadecimal address.
247
248 Only format specifiers of the form "[0-9]*[a-z]" are recognized.
249 If it is a '%s' format, the argument is a string; otherwise the
250 argument is assumed to be a long integer.
251
252 %% is also turned into a single %.
253 */
254
255 static void
256 monitor_vsprintf (char *sndbuf, char *pattern, va_list args)
257 {
258 int addr_bit = gdbarch_addr_bit (target_gdbarch);
259 char format[10];
260 char fmt;
261 char *p;
262 int i;
263 long arg_int;
264 CORE_ADDR arg_addr;
265 char *arg_string;
266
267 for (p = pattern; *p; p++)
268 {
269 if (*p == '%')
270 {
271 /* Copy the format specifier to a separate buffer. */
272 format[0] = *p++;
273 for (i = 1; *p >= '0' && *p <= '9' && i < (int) sizeof (format) - 2;
274 i++, p++)
275 format[i] = *p;
276 format[i] = fmt = *p;
277 format[i + 1] = '\0';
278
279 /* Fetch the next argument and print it. */
280 switch (fmt)
281 {
282 case '%':
283 strcpy (sndbuf, "%");
284 break;
285 case 'A':
286 arg_addr = va_arg (args, CORE_ADDR);
287 strcpy (sndbuf, phex_nz (arg_addr, addr_bit / 8));
288 break;
289 case 's':
290 arg_string = va_arg (args, char *);
291 sprintf (sndbuf, format, arg_string);
292 break;
293 default:
294 arg_int = va_arg (args, long);
295 sprintf (sndbuf, format, arg_int);
296 break;
297 }
298 sndbuf += strlen (sndbuf);
299 }
300 else
301 *sndbuf++ = *p;
302 }
303 *sndbuf = '\0';
304 }
305
306
307 /* monitor_printf_noecho -- Send data to monitor, but don't expect an echo.
308 Works just like printf. */
309
310 void
311 monitor_printf_noecho (char *pattern,...)
312 {
313 va_list args;
314 char sndbuf[2000];
315 int len;
316
317 va_start (args, pattern);
318
319 monitor_vsprintf (sndbuf, pattern, args);
320
321 len = strlen (sndbuf);
322 if (len + 1 > sizeof sndbuf)
323 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
324
325 if (monitor_debug_p)
326 {
327 char *safe_string = (char *) alloca ((strlen (sndbuf) * 4) + 1);
328 monitor_printable_string (safe_string, sndbuf, 0);
329 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
330 }
331
332 monitor_write (sndbuf, len);
333 }
334
335 /* monitor_printf -- Send data to monitor and check the echo. Works just like
336 printf. */
337
338 void
339 monitor_printf (char *pattern,...)
340 {
341 va_list args;
342 char sndbuf[2000];
343 int len;
344
345 va_start (args, pattern);
346
347 monitor_vsprintf (sndbuf, pattern, args);
348
349 len = strlen (sndbuf);
350 if (len + 1 > sizeof sndbuf)
351 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
352
353 if (monitor_debug_p)
354 {
355 char *safe_string = (char *) alloca ((len * 4) + 1);
356 monitor_printable_string (safe_string, sndbuf, 0);
357 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
358 }
359
360 monitor_write (sndbuf, len);
361
362 /* We used to expect that the next immediate output was the characters we
363 just output, but sometimes some extra junk appeared before the characters
364 we expected, like an extra prompt, or a portmaster sending telnet negotiations.
365 So, just start searching for what we sent, and skip anything unknown. */
366 monitor_debug ("ExpectEcho\n");
367 monitor_expect (sndbuf, (char *) 0, 0);
368 }
369
370
371 /* Write characters to the remote system. */
372
373 void
374 monitor_write (char *buf, int buflen)
375 {
376 if (serial_write (monitor_desc, buf, buflen))
377 fprintf_unfiltered (gdb_stderr, "serial_write failed: %s\n",
378 safe_strerror (errno));
379 }
380
381
382 /* Read a binary character from the remote system, doing all the fancy
383 timeout stuff, but without interpreting the character in any way,
384 and without printing remote debug information. */
385
386 int
387 monitor_readchar (void)
388 {
389 int c;
390 int looping;
391
392 do
393 {
394 looping = 0;
395 c = serial_readchar (monitor_desc, timeout);
396
397 if (c >= 0)
398 c &= 0xff; /* don't lose bit 7 */
399 }
400 while (looping);
401
402 if (c >= 0)
403 return c;
404
405 if (c == SERIAL_TIMEOUT)
406 error (_("Timeout reading from remote system."));
407
408 perror_with_name (_("remote-monitor"));
409 }
410
411
412 /* Read a character from the remote system, doing all the fancy
413 timeout stuff. */
414
415 static int
416 readchar (int timeout)
417 {
418 int c;
419 static enum
420 {
421 last_random, last_nl, last_cr, last_crnl
422 }
423 state = last_random;
424 int looping;
425
426 do
427 {
428 looping = 0;
429 c = serial_readchar (monitor_desc, timeout);
430
431 if (c >= 0)
432 {
433 c &= 0x7f;
434 /* This seems to interfere with proper function of the
435 input stream */
436 if (monitor_debug_p || remote_debug)
437 {
438 char buf[2];
439 buf[0] = c;
440 buf[1] = '\0';
441 puts_debug ("read -->", buf, "<--");
442 }
443
444 }
445
446 /* Canonicialize \n\r combinations into one \r */
447 if ((current_monitor->flags & MO_HANDLE_NL) != 0)
448 {
449 if ((c == '\r' && state == last_nl)
450 || (c == '\n' && state == last_cr))
451 {
452 state = last_crnl;
453 looping = 1;
454 }
455 else if (c == '\r')
456 state = last_cr;
457 else if (c != '\n')
458 state = last_random;
459 else
460 {
461 state = last_nl;
462 c = '\r';
463 }
464 }
465 }
466 while (looping);
467
468 if (c >= 0)
469 return c;
470
471 if (c == SERIAL_TIMEOUT)
472 #if 0
473 /* I fail to see how detaching here can be useful */
474 if (in_monitor_wait) /* Watchdog went off */
475 {
476 target_mourn_inferior ();
477 error (_("GDB serial timeout has expired. Target detached."));
478 }
479 else
480 #endif
481 error (_("Timeout reading from remote system."));
482
483 perror_with_name (_("remote-monitor"));
484 }
485
486 /* Scan input from the remote system, until STRING is found. If BUF is non-
487 zero, then collect input until we have collected either STRING or BUFLEN-1
488 chars. In either case we terminate BUF with a 0. If input overflows BUF
489 because STRING can't be found, return -1, else return number of chars in BUF
490 (minus the terminating NUL). Note that in the non-overflow case, STRING
491 will be at the end of BUF. */
492
493 int
494 monitor_expect (char *string, char *buf, int buflen)
495 {
496 char *p = string;
497 int obuflen = buflen;
498 int c;
499
500 if (monitor_debug_p)
501 {
502 char *safe_string = (char *) alloca ((strlen (string) * 4) + 1);
503 monitor_printable_string (safe_string, string, 0);
504 fprintf_unfiltered (gdb_stdlog, "MON Expecting '%s'\n", safe_string);
505 }
506
507 immediate_quit++;
508 while (1)
509 {
510 if (buf)
511 {
512 if (buflen < 2)
513 {
514 *buf = '\000';
515 immediate_quit--;
516 return -1;
517 }
518
519 c = readchar (timeout);
520 if (c == '\000')
521 continue;
522 *buf++ = c;
523 buflen--;
524 }
525 else
526 c = readchar (timeout);
527
528 /* Don't expect any ^C sent to be echoed */
529
530 if (*p == '\003' || c == *p)
531 {
532 p++;
533 if (*p == '\0')
534 {
535 immediate_quit--;
536
537 if (buf)
538 {
539 *buf++ = '\000';
540 return obuflen - buflen;
541 }
542 else
543 return 0;
544 }
545 }
546 else
547 {
548 /* We got a character that doesn't match the string. We need to
549 back up p, but how far? If we're looking for "..howdy" and the
550 monitor sends "...howdy"? There's certainly a match in there,
551 but when we receive the third ".", we won't find it if we just
552 restart the matching at the beginning of the string.
553
554 This is a Boyer-Moore kind of situation. We want to reset P to
555 the end of the longest prefix of STRING that is a suffix of
556 what we've read so far. In the example above, that would be
557 ".." --- the longest prefix of "..howdy" that is a suffix of
558 "...". This longest prefix could be the empty string, if C
559 is nowhere to be found in STRING.
560
561 If this longest prefix is not the empty string, it must contain
562 C, so let's search from the end of STRING for instances of C,
563 and see if the portion of STRING before that is a suffix of
564 what we read before C. Actually, we can search backwards from
565 p, since we know no prefix can be longer than that.
566
567 Note that we can use STRING itself, along with C, as a record
568 of what we've received so far. :) */
569 int i;
570
571 for (i = (p - string) - 1; i >= 0; i--)
572 if (string[i] == c)
573 {
574 /* Is this prefix a suffix of what we've read so far?
575 In other words, does
576 string[0 .. i-1] == string[p - i, p - 1]? */
577 if (! memcmp (string, p - i, i))
578 {
579 p = string + i + 1;
580 break;
581 }
582 }
583 if (i < 0)
584 p = string;
585 }
586 }
587 }
588
589 /* Search for a regexp. */
590
591 static int
592 monitor_expect_regexp (struct re_pattern_buffer *pat, char *buf, int buflen)
593 {
594 char *mybuf;
595 char *p;
596 monitor_debug ("MON Expecting regexp\n");
597 if (buf)
598 mybuf = buf;
599 else
600 {
601 mybuf = alloca (TARGET_BUF_SIZE);
602 buflen = TARGET_BUF_SIZE;
603 }
604
605 p = mybuf;
606 while (1)
607 {
608 int retval;
609
610 if (p - mybuf >= buflen)
611 { /* Buffer about to overflow */
612
613 /* On overflow, we copy the upper half of the buffer to the lower half. Not
614 great, but it usually works... */
615
616 memcpy (mybuf, mybuf + buflen / 2, buflen / 2);
617 p = mybuf + buflen / 2;
618 }
619
620 *p++ = readchar (timeout);
621
622 retval = re_search (pat, mybuf, p - mybuf, 0, p - mybuf, NULL);
623 if (retval >= 0)
624 return 1;
625 }
626 }
627
628 /* Keep discarding input until we see the MONITOR prompt.
629
630 The convention for dealing with the prompt is that you
631 o give your command
632 o *then* wait for the prompt.
633
634 Thus the last thing that a procedure does with the serial line will
635 be an monitor_expect_prompt(). Exception: monitor_resume does not
636 wait for the prompt, because the terminal is being handed over to
637 the inferior. However, the next thing which happens after that is
638 a monitor_wait which does wait for the prompt. Note that this
639 includes abnormal exit, e.g. error(). This is necessary to prevent
640 getting into states from which we can't recover. */
641
642 int
643 monitor_expect_prompt (char *buf, int buflen)
644 {
645 monitor_debug ("MON Expecting prompt\n");
646 return monitor_expect (current_monitor->prompt, buf, buflen);
647 }
648
649 /* Get N 32-bit words from remote, each preceded by a space, and put
650 them in registers starting at REGNO. */
651
652 #if 0
653 static unsigned long
654 get_hex_word (void)
655 {
656 unsigned long val;
657 int i;
658 int ch;
659
660 do
661 ch = readchar (timeout);
662 while (isspace (ch));
663
664 val = from_hex (ch);
665
666 for (i = 7; i >= 1; i--)
667 {
668 ch = readchar (timeout);
669 if (!isxdigit (ch))
670 break;
671 val = (val << 4) | from_hex (ch);
672 }
673
674 return val;
675 }
676 #endif
677
678 static void
679 compile_pattern (char *pattern, struct re_pattern_buffer *compiled_pattern,
680 char *fastmap)
681 {
682 int tmp;
683 const char *val;
684
685 compiled_pattern->fastmap = fastmap;
686
687 tmp = re_set_syntax (RE_SYNTAX_EMACS);
688 val = re_compile_pattern (pattern,
689 strlen (pattern),
690 compiled_pattern);
691 re_set_syntax (tmp);
692
693 if (val)
694 error (_("compile_pattern: Can't compile pattern string `%s': %s!"), pattern, val);
695
696 if (fastmap)
697 re_compile_fastmap (compiled_pattern);
698 }
699
700 /* Open a connection to a remote debugger. NAME is the filename used
701 for communication. */
702
703 void
704 monitor_open (char *args, struct monitor_ops *mon_ops, int from_tty)
705 {
706 char *name;
707 char **p;
708
709 if (mon_ops->magic != MONITOR_OPS_MAGIC)
710 error (_("Magic number of monitor_ops struct wrong."));
711
712 targ_ops = mon_ops->target;
713 name = targ_ops->to_shortname;
714
715 if (!args)
716 error (_("Use `target %s DEVICE-NAME' to use a serial port, or \n\
717 `target %s HOST-NAME:PORT-NUMBER' to use a network connection."), name, name);
718
719 target_preopen (from_tty);
720
721 /* Setup pattern for register dump */
722
723 if (mon_ops->register_pattern)
724 compile_pattern (mon_ops->register_pattern, &register_pattern,
725 register_fastmap);
726
727 if (mon_ops->getmem.resp_delim)
728 compile_pattern (mon_ops->getmem.resp_delim, &getmem_resp_delim_pattern,
729 getmem_resp_delim_fastmap);
730
731 if (mon_ops->setmem.resp_delim)
732 compile_pattern (mon_ops->setmem.resp_delim, &setmem_resp_delim_pattern,
733 setmem_resp_delim_fastmap);
734
735 if (mon_ops->setreg.resp_delim)
736 compile_pattern (mon_ops->setreg.resp_delim, &setreg_resp_delim_pattern,
737 setreg_resp_delim_fastmap);
738
739 unpush_target (targ_ops);
740
741 if (dev_name)
742 xfree (dev_name);
743 dev_name = xstrdup (args);
744
745 monitor_desc = serial_open (dev_name);
746
747 if (!monitor_desc)
748 perror_with_name (dev_name);
749
750 if (baud_rate != -1)
751 {
752 if (serial_setbaudrate (monitor_desc, baud_rate))
753 {
754 serial_close (monitor_desc);
755 perror_with_name (dev_name);
756 }
757 }
758
759 serial_raw (monitor_desc);
760
761 serial_flush_input (monitor_desc);
762
763 /* some systems only work with 2 stop bits */
764
765 serial_setstopbits (monitor_desc, mon_ops->stopbits);
766
767 current_monitor = mon_ops;
768
769 /* See if we can wake up the monitor. First, try sending a stop sequence,
770 then send the init strings. Last, remove all breakpoints. */
771
772 if (current_monitor->stop)
773 {
774 monitor_stop (inferior_ptid);
775 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
776 {
777 monitor_debug ("EXP Open echo\n");
778 monitor_expect_prompt (NULL, 0);
779 }
780 }
781
782 /* wake up the monitor and see if it's alive */
783 for (p = mon_ops->init; *p != NULL; p++)
784 {
785 /* Some of the characters we send may not be echoed,
786 but we hope to get a prompt at the end of it all. */
787
788 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
789 monitor_printf (*p);
790 else
791 monitor_printf_noecho (*p);
792 monitor_expect_prompt (NULL, 0);
793 }
794
795 serial_flush_input (monitor_desc);
796
797 /* Alloc breakpoints */
798 if (mon_ops->set_break != NULL)
799 {
800 if (mon_ops->num_breakpoints == 0)
801 mon_ops->num_breakpoints = 8;
802
803 breakaddr = (CORE_ADDR *) xmalloc (mon_ops->num_breakpoints * sizeof (CORE_ADDR));
804 memset (breakaddr, 0, mon_ops->num_breakpoints * sizeof (CORE_ADDR));
805 }
806
807 /* Remove all breakpoints */
808
809 if (mon_ops->clr_all_break)
810 {
811 monitor_printf (mon_ops->clr_all_break);
812 monitor_expect_prompt (NULL, 0);
813 }
814
815 if (from_tty)
816 printf_unfiltered (_("Remote target %s connected to %s\n"), name, dev_name);
817
818 push_target (targ_ops);
819
820 /* Start afresh. */
821 init_thread_list ();
822
823 /* Make run command think we are busy... */
824 inferior_ptid = monitor_ptid;
825 add_inferior_silent (ptid_get_pid (inferior_ptid));
826 add_thread_silent (inferior_ptid);
827
828 /* Give monitor_wait something to read */
829
830 monitor_printf (current_monitor->line_term);
831
832 start_remote (from_tty);
833 }
834
835 /* Close out all files and local state before this target loses
836 control. */
837
838 void
839 monitor_close (int quitting)
840 {
841 if (monitor_desc)
842 serial_close (monitor_desc);
843
844 /* Free breakpoint memory */
845 if (breakaddr != NULL)
846 {
847 xfree (breakaddr);
848 breakaddr = NULL;
849 }
850
851 monitor_desc = NULL;
852
853 delete_thread_silent (monitor_ptid);
854 delete_inferior_silent (ptid_get_pid (monitor_ptid));
855 }
856
857 /* Terminate the open connection to the remote debugger. Use this
858 when you want to detach and do something else with your gdb. */
859
860 static void
861 monitor_detach (struct target_ops *ops, char *args, int from_tty)
862 {
863 pop_target (); /* calls monitor_close to do the real work */
864 if (from_tty)
865 printf_unfiltered (_("Ending remote %s debugging\n"), target_shortname);
866 }
867
868 /* Convert VALSTR into the target byte-ordered value of REGNO and store it. */
869
870 char *
871 monitor_supply_register (struct regcache *regcache, int regno, char *valstr)
872 {
873 ULONGEST val;
874 unsigned char regbuf[MAX_REGISTER_SIZE];
875 char *p;
876
877 val = 0;
878 p = valstr;
879 while (p && *p != '\0')
880 {
881 if (*p == '\r' || *p == '\n')
882 {
883 while (*p != '\0')
884 p++;
885 break;
886 }
887 if (isspace (*p))
888 {
889 p++;
890 continue;
891 }
892 if (!isxdigit (*p) && *p != 'x')
893 {
894 break;
895 }
896
897 val <<= 4;
898 val += fromhex (*p++);
899 }
900 monitor_debug ("Supplying Register %d %s\n", regno, valstr);
901
902 if (val == 0 && valstr == p)
903 error (_("monitor_supply_register (%d): bad value from monitor: %s."),
904 regno, valstr);
905
906 /* supply register stores in target byte order, so swap here */
907
908 store_unsigned_integer (regbuf,
909 register_size (get_regcache_arch (regcache), regno),
910 val);
911
912 regcache_raw_supply (regcache, regno, regbuf);
913
914 return p;
915 }
916
917 /* Tell the remote machine to resume. */
918
919 static void
920 monitor_resume (struct target_ops *ops,
921 ptid_t ptid, int step, enum target_signal sig)
922 {
923 /* Some monitors require a different command when starting a program */
924 monitor_debug ("MON resume\n");
925 if (current_monitor->flags & MO_RUN_FIRST_TIME && first_time == 1)
926 {
927 first_time = 0;
928 monitor_printf ("run\r");
929 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
930 dump_reg_flag = 1;
931 return;
932 }
933 if (step)
934 monitor_printf (current_monitor->step);
935 else
936 {
937 if (current_monitor->continue_hook)
938 (*current_monitor->continue_hook) ();
939 else
940 monitor_printf (current_monitor->cont);
941 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
942 dump_reg_flag = 1;
943 }
944 }
945
946 /* Parse the output of a register dump command. A monitor specific
947 regexp is used to extract individual register descriptions of the
948 form REG=VAL. Each description is split up into a name and a value
949 string which are passed down to monitor specific code. */
950
951 static void
952 parse_register_dump (struct regcache *regcache, char *buf, int len)
953 {
954 monitor_debug ("MON Parsing register dump\n");
955 while (1)
956 {
957 int regnamelen, vallen;
958 char *regname, *val;
959 /* Element 0 points to start of register name, and element 1
960 points to the start of the register value. */
961 struct re_registers register_strings;
962
963 memset (&register_strings, 0, sizeof (struct re_registers));
964
965 if (re_search (&register_pattern, buf, len, 0, len,
966 &register_strings) == -1)
967 break;
968
969 regnamelen = register_strings.end[1] - register_strings.start[1];
970 regname = buf + register_strings.start[1];
971 vallen = register_strings.end[2] - register_strings.start[2];
972 val = buf + register_strings.start[2];
973
974 current_monitor->supply_register (regcache, regname, regnamelen,
975 val, vallen);
976
977 buf += register_strings.end[0];
978 len -= register_strings.end[0];
979 }
980 }
981
982 /* Send ^C to target to halt it. Target will respond, and send us a
983 packet. */
984
985 static void
986 monitor_interrupt (int signo)
987 {
988 /* If this doesn't work, try more severe steps. */
989 signal (signo, monitor_interrupt_twice);
990
991 if (monitor_debug_p || remote_debug)
992 fprintf_unfiltered (gdb_stdlog, "monitor_interrupt called\n");
993
994 target_stop (inferior_ptid);
995 }
996
997 /* The user typed ^C twice. */
998
999 static void
1000 monitor_interrupt_twice (int signo)
1001 {
1002 signal (signo, ofunc);
1003
1004 monitor_interrupt_query ();
1005
1006 signal (signo, monitor_interrupt);
1007 }
1008
1009 /* Ask the user what to do when an interrupt is received. */
1010
1011 static void
1012 monitor_interrupt_query (void)
1013 {
1014 target_terminal_ours ();
1015
1016 if (query (_("Interrupted while waiting for the program.\n\
1017 Give up (and stop debugging it)? ")))
1018 {
1019 target_mourn_inferior ();
1020 deprecated_throw_reason (RETURN_QUIT);
1021 }
1022
1023 target_terminal_inferior ();
1024 }
1025
1026 static void
1027 monitor_wait_cleanup (void *old_timeout)
1028 {
1029 timeout = *(int *) old_timeout;
1030 signal (SIGINT, ofunc);
1031 in_monitor_wait = 0;
1032 }
1033
1034
1035
1036 static void
1037 monitor_wait_filter (char *buf,
1038 int bufmax,
1039 int *ext_resp_len,
1040 struct target_waitstatus *status)
1041 {
1042 int resp_len;
1043 do
1044 {
1045 resp_len = monitor_expect_prompt (buf, bufmax);
1046 *ext_resp_len = resp_len;
1047
1048 if (resp_len <= 0)
1049 fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive response from monitor: %s.", buf);
1050 }
1051 while (resp_len < 0);
1052
1053 /* Print any output characters that were preceded by ^O. */
1054 /* FIXME - This would be great as a user settabgle flag */
1055 if (monitor_debug_p || remote_debug
1056 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1057 {
1058 int i;
1059
1060 for (i = 0; i < resp_len - 1; i++)
1061 if (buf[i] == 0x0f)
1062 putchar_unfiltered (buf[++i]);
1063 }
1064 }
1065
1066
1067
1068 /* Wait until the remote machine stops, then return, storing status in
1069 status just as `wait' would. */
1070
1071 static ptid_t
1072 monitor_wait (struct target_ops *ops,
1073 ptid_t ptid, struct target_waitstatus *status, int options)
1074 {
1075 int old_timeout = timeout;
1076 char buf[TARGET_BUF_SIZE];
1077 int resp_len;
1078 struct cleanup *old_chain;
1079
1080 status->kind = TARGET_WAITKIND_EXITED;
1081 status->value.integer = 0;
1082
1083 old_chain = make_cleanup (monitor_wait_cleanup, &old_timeout);
1084 monitor_debug ("MON wait\n");
1085
1086 #if 0
1087 /* This is somthing other than a maintenance command */
1088 in_monitor_wait = 1;
1089 timeout = watchdog > 0 ? watchdog : -1;
1090 #else
1091 timeout = -1; /* Don't time out -- user program is running. */
1092 #endif
1093
1094 ofunc = (void (*)()) signal (SIGINT, monitor_interrupt);
1095
1096 if (current_monitor->wait_filter)
1097 (*current_monitor->wait_filter) (buf, sizeof (buf), &resp_len, status);
1098 else
1099 monitor_wait_filter (buf, sizeof (buf), &resp_len, status);
1100
1101 #if 0 /* Transferred to monitor wait filter */
1102 do
1103 {
1104 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1105
1106 if (resp_len <= 0)
1107 fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive response from monitor: %s.", buf);
1108 }
1109 while (resp_len < 0);
1110
1111 /* Print any output characters that were preceded by ^O. */
1112 /* FIXME - This would be great as a user settabgle flag */
1113 if (monitor_debug_p || remote_debug
1114 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1115 {
1116 int i;
1117
1118 for (i = 0; i < resp_len - 1; i++)
1119 if (buf[i] == 0x0f)
1120 putchar_unfiltered (buf[++i]);
1121 }
1122 #endif
1123
1124 signal (SIGINT, ofunc);
1125
1126 timeout = old_timeout;
1127 #if 0
1128 if (dump_reg_flag && current_monitor->dump_registers)
1129 {
1130 dump_reg_flag = 0;
1131 monitor_printf (current_monitor->dump_registers);
1132 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1133 }
1134
1135 if (current_monitor->register_pattern)
1136 parse_register_dump (get_current_regcache (), buf, resp_len);
1137 #else
1138 monitor_debug ("Wait fetching registers after stop\n");
1139 monitor_dump_regs (get_current_regcache ());
1140 #endif
1141
1142 status->kind = TARGET_WAITKIND_STOPPED;
1143 status->value.sig = TARGET_SIGNAL_TRAP;
1144
1145 discard_cleanups (old_chain);
1146
1147 in_monitor_wait = 0;
1148
1149 return inferior_ptid;
1150 }
1151
1152 /* Fetch register REGNO, or all registers if REGNO is -1. Returns
1153 errno value. */
1154
1155 static void
1156 monitor_fetch_register (struct regcache *regcache, int regno)
1157 {
1158 const char *name;
1159 char *zerobuf;
1160 char *regbuf;
1161 int i;
1162
1163 regbuf = alloca (MAX_REGISTER_SIZE * 2 + 1);
1164 zerobuf = alloca (MAX_REGISTER_SIZE);
1165 memset (zerobuf, 0, MAX_REGISTER_SIZE);
1166
1167 if (current_monitor->regname != NULL)
1168 name = current_monitor->regname (regno);
1169 else
1170 name = current_monitor->regnames[regno];
1171 monitor_debug ("MON fetchreg %d '%s'\n", regno, name ? name : "(null name)");
1172
1173 if (!name || (*name == '\0'))
1174 {
1175 monitor_debug ("No register known for %d\n", regno);
1176 regcache_raw_supply (regcache, regno, zerobuf);
1177 return;
1178 }
1179
1180 /* send the register examine command */
1181
1182 monitor_printf (current_monitor->getreg.cmd, name);
1183
1184 /* If RESP_DELIM is specified, we search for that as a leading
1185 delimiter for the register value. Otherwise, we just start
1186 searching from the start of the buf. */
1187
1188 if (current_monitor->getreg.resp_delim)
1189 {
1190 monitor_debug ("EXP getreg.resp_delim\n");
1191 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1192 /* Handle case of first 32 registers listed in pairs. */
1193 if (current_monitor->flags & MO_32_REGS_PAIRED
1194 && (regno & 1) != 0 && regno < 32)
1195 {
1196 monitor_debug ("EXP getreg.resp_delim\n");
1197 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1198 }
1199 }
1200
1201 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set */
1202 if (current_monitor->flags & MO_HEX_PREFIX)
1203 {
1204 int c;
1205 c = readchar (timeout);
1206 while (c == ' ')
1207 c = readchar (timeout);
1208 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1209 ;
1210 else
1211 error (_("Bad value returned from monitor while fetching register %x."),
1212 regno);
1213 }
1214
1215 /* Read upto the maximum number of hex digits for this register, skipping
1216 spaces, but stop reading if something else is seen. Some monitors
1217 like to drop leading zeros. */
1218
1219 for (i = 0; i < register_size (get_regcache_arch (regcache), regno) * 2; i++)
1220 {
1221 int c;
1222 c = readchar (timeout);
1223 while (c == ' ')
1224 c = readchar (timeout);
1225
1226 if (!isxdigit (c))
1227 break;
1228
1229 regbuf[i] = c;
1230 }
1231
1232 regbuf[i] = '\000'; /* terminate the number */
1233 monitor_debug ("REGVAL '%s'\n", regbuf);
1234
1235 /* If TERM is present, we wait for that to show up. Also, (if TERM
1236 is present), we will send TERM_CMD if that is present. In any
1237 case, we collect all of the output into buf, and then wait for
1238 the normal prompt. */
1239
1240 if (current_monitor->getreg.term)
1241 {
1242 monitor_debug ("EXP getreg.term\n");
1243 monitor_expect (current_monitor->getreg.term, NULL, 0); /* get response */
1244 }
1245
1246 if (current_monitor->getreg.term_cmd)
1247 {
1248 monitor_debug ("EMIT getreg.term.cmd\n");
1249 monitor_printf (current_monitor->getreg.term_cmd);
1250 }
1251 if (!current_monitor->getreg.term || /* Already expected or */
1252 current_monitor->getreg.term_cmd) /* ack expected */
1253 monitor_expect_prompt (NULL, 0); /* get response */
1254
1255 monitor_supply_register (regcache, regno, regbuf);
1256 }
1257
1258 /* Sometimes, it takes several commands to dump the registers */
1259 /* This is a primitive for use by variations of monitor interfaces in
1260 case they need to compose the operation.
1261 */
1262 int
1263 monitor_dump_reg_block (struct regcache *regcache, char *block_cmd)
1264 {
1265 char buf[TARGET_BUF_SIZE];
1266 int resp_len;
1267 monitor_printf (block_cmd);
1268 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1269 parse_register_dump (regcache, buf, resp_len);
1270 return 1;
1271 }
1272
1273
1274 /* Read the remote registers into the block regs. */
1275 /* Call the specific function if it has been provided */
1276
1277 static void
1278 monitor_dump_regs (struct regcache *regcache)
1279 {
1280 char buf[TARGET_BUF_SIZE];
1281 int resp_len;
1282 if (current_monitor->dumpregs)
1283 (*(current_monitor->dumpregs)) (regcache); /* call supplied function */
1284 else if (current_monitor->dump_registers) /* default version */
1285 {
1286 monitor_printf (current_monitor->dump_registers);
1287 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1288 parse_register_dump (regcache, buf, resp_len);
1289 }
1290 else
1291 internal_error (__FILE__, __LINE__, _("failed internal consistency check")); /* Need some way to read registers */
1292 }
1293
1294 static void
1295 monitor_fetch_registers (struct target_ops *ops,
1296 struct regcache *regcache, int regno)
1297 {
1298 monitor_debug ("MON fetchregs\n");
1299 if (current_monitor->getreg.cmd)
1300 {
1301 if (regno >= 0)
1302 {
1303 monitor_fetch_register (regcache, regno);
1304 return;
1305 }
1306
1307 for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache));
1308 regno++)
1309 monitor_fetch_register (regcache, regno);
1310 }
1311 else
1312 {
1313 monitor_dump_regs (regcache);
1314 }
1315 }
1316
1317 /* Store register REGNO, or all if REGNO == 0. Return errno value. */
1318
1319 static void
1320 monitor_store_register (struct regcache *regcache, int regno)
1321 {
1322 int reg_size = register_size (get_regcache_arch (regcache), regno);
1323 const char *name;
1324 ULONGEST val;
1325
1326 if (current_monitor->regname != NULL)
1327 name = current_monitor->regname (regno);
1328 else
1329 name = current_monitor->regnames[regno];
1330
1331 if (!name || (*name == '\0'))
1332 {
1333 monitor_debug ("MON Cannot store unknown register\n");
1334 return;
1335 }
1336
1337 regcache_cooked_read_unsigned (regcache, regno, &val);
1338 monitor_debug ("MON storeg %d %s\n", regno, phex (val, reg_size));
1339
1340 /* send the register deposit command */
1341
1342 if (current_monitor->flags & MO_REGISTER_VALUE_FIRST)
1343 monitor_printf (current_monitor->setreg.cmd, val, name);
1344 else if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1345 monitor_printf (current_monitor->setreg.cmd, name);
1346 else
1347 monitor_printf (current_monitor->setreg.cmd, name, val);
1348
1349 if (current_monitor->setreg.resp_delim)
1350 {
1351 monitor_debug ("EXP setreg.resp_delim\n");
1352 monitor_expect_regexp (&setreg_resp_delim_pattern, NULL, 0);
1353 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1354 monitor_printf ("%s\r", phex_nz (val, reg_size));
1355 }
1356 if (current_monitor->setreg.term)
1357 {
1358 monitor_debug ("EXP setreg.term\n");
1359 monitor_expect (current_monitor->setreg.term, NULL, 0);
1360 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1361 monitor_printf ("%s\r", phex_nz (val, reg_size));
1362 monitor_expect_prompt (NULL, 0);
1363 }
1364 else
1365 monitor_expect_prompt (NULL, 0);
1366 if (current_monitor->setreg.term_cmd) /* Mode exit required */
1367 {
1368 monitor_debug ("EXP setreg_termcmd\n");
1369 monitor_printf ("%s", current_monitor->setreg.term_cmd);
1370 monitor_expect_prompt (NULL, 0);
1371 }
1372 } /* monitor_store_register */
1373
1374 /* Store the remote registers. */
1375
1376 static void
1377 monitor_store_registers (struct target_ops *ops,
1378 struct regcache *regcache, int regno)
1379 {
1380 if (regno >= 0)
1381 {
1382 monitor_store_register (regcache, regno);
1383 return;
1384 }
1385
1386 for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache));
1387 regno++)
1388 monitor_store_register (regcache, regno);
1389 }
1390
1391 /* Get ready to modify the registers array. On machines which store
1392 individual registers, this doesn't need to do anything. On machines
1393 which store all the registers in one fell swoop, this makes sure
1394 that registers contains all the registers from the program being
1395 debugged. */
1396
1397 static void
1398 monitor_prepare_to_store (struct regcache *regcache)
1399 {
1400 /* Do nothing, since we can store individual regs */
1401 }
1402
1403 static void
1404 monitor_files_info (struct target_ops *ops)
1405 {
1406 printf_unfiltered (_("\tAttached to %s at %d baud.\n"), dev_name, baud_rate);
1407 }
1408
1409 static int
1410 monitor_write_memory (CORE_ADDR memaddr, char *myaddr, int len)
1411 {
1412 unsigned int val, hostval;
1413 char *cmd;
1414 int i;
1415
1416 monitor_debug ("MON write %d %s\n", len, paddress (target_gdbarch, memaddr));
1417
1418 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1419 memaddr = gdbarch_addr_bits_remove (target_gdbarch, memaddr);
1420
1421 /* Use memory fill command for leading 0 bytes. */
1422
1423 if (current_monitor->fill)
1424 {
1425 for (i = 0; i < len; i++)
1426 if (myaddr[i] != 0)
1427 break;
1428
1429 if (i > 4) /* More than 4 zeros is worth doing */
1430 {
1431 monitor_debug ("MON FILL %d\n", i);
1432 if (current_monitor->flags & MO_FILL_USES_ADDR)
1433 monitor_printf (current_monitor->fill, memaddr, (memaddr + i) - 1, 0);
1434 else
1435 monitor_printf (current_monitor->fill, memaddr, i, 0);
1436
1437 monitor_expect_prompt (NULL, 0);
1438
1439 return i;
1440 }
1441 }
1442
1443 #if 0
1444 /* Can't actually use long longs if VAL is an int (nice idea, though). */
1445 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->setmem.cmdll)
1446 {
1447 len = 8;
1448 cmd = current_monitor->setmem.cmdll;
1449 }
1450 else
1451 #endif
1452 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->setmem.cmdl)
1453 {
1454 len = 4;
1455 cmd = current_monitor->setmem.cmdl;
1456 }
1457 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->setmem.cmdw)
1458 {
1459 len = 2;
1460 cmd = current_monitor->setmem.cmdw;
1461 }
1462 else
1463 {
1464 len = 1;
1465 cmd = current_monitor->setmem.cmdb;
1466 }
1467
1468 val = extract_unsigned_integer (myaddr, len);
1469
1470 if (len == 4)
1471 {
1472 hostval = *(unsigned int *) myaddr;
1473 monitor_debug ("Hostval(%08x) val(%08x)\n", hostval, val);
1474 }
1475
1476
1477 if (current_monitor->flags & MO_NO_ECHO_ON_SETMEM)
1478 monitor_printf_noecho (cmd, memaddr, val);
1479 else if (current_monitor->flags & MO_SETMEM_INTERACTIVE)
1480 {
1481
1482 monitor_printf_noecho (cmd, memaddr);
1483
1484 if (current_monitor->setmem.resp_delim)
1485 {
1486 monitor_debug ("EXP setmem.resp_delim");
1487 monitor_expect_regexp (&setmem_resp_delim_pattern, NULL, 0);
1488 monitor_printf ("%x\r", val);
1489 }
1490 if (current_monitor->setmem.term)
1491 {
1492 monitor_debug ("EXP setmem.term");
1493 monitor_expect (current_monitor->setmem.term, NULL, 0);
1494 monitor_printf ("%x\r", val);
1495 }
1496 if (current_monitor->setmem.term_cmd)
1497 { /* Emit this to get out of the memory editing state */
1498 monitor_printf ("%s", current_monitor->setmem.term_cmd);
1499 /* Drop through to expecting a prompt */
1500 }
1501 }
1502 else
1503 monitor_printf (cmd, memaddr, val);
1504
1505 monitor_expect_prompt (NULL, 0);
1506
1507 return len;
1508 }
1509
1510
1511 static int
1512 monitor_write_memory_bytes (CORE_ADDR memaddr, char *myaddr, int len)
1513 {
1514 unsigned char val;
1515 int written = 0;
1516 if (len == 0)
1517 return 0;
1518 /* Enter the sub mode */
1519 monitor_printf (current_monitor->setmem.cmdb, memaddr);
1520 monitor_expect_prompt (NULL, 0);
1521 while (len)
1522 {
1523 val = *myaddr;
1524 monitor_printf ("%x\r", val);
1525 myaddr++;
1526 memaddr++;
1527 written++;
1528 /* If we wanted to, here we could validate the address */
1529 monitor_expect_prompt (NULL, 0);
1530 len--;
1531 }
1532 /* Now exit the sub mode */
1533 monitor_printf (current_monitor->getreg.term_cmd);
1534 monitor_expect_prompt (NULL, 0);
1535 return written;
1536 }
1537
1538
1539 static void
1540 longlongendswap (unsigned char *a)
1541 {
1542 int i, j;
1543 unsigned char x;
1544 i = 0;
1545 j = 7;
1546 while (i < 4)
1547 {
1548 x = *(a + i);
1549 *(a + i) = *(a + j);
1550 *(a + j) = x;
1551 i++, j--;
1552 }
1553 }
1554 /* Format 32 chars of long long value, advance the pointer */
1555 static char *hexlate = "0123456789abcdef";
1556 static char *
1557 longlong_hexchars (unsigned long long value,
1558 char *outbuff)
1559 {
1560 if (value == 0)
1561 {
1562 *outbuff++ = '0';
1563 return outbuff;
1564 }
1565 else
1566 {
1567 static unsigned char disbuf[8]; /* disassembly buffer */
1568 unsigned char *scan, *limit; /* loop controls */
1569 unsigned char c, nib;
1570 int leadzero = 1;
1571 scan = disbuf;
1572 limit = scan + 8;
1573 {
1574 unsigned long long *dp;
1575 dp = (unsigned long long *) scan;
1576 *dp = value;
1577 }
1578 longlongendswap (disbuf); /* FIXME: ONly on big endian hosts */
1579 while (scan < limit)
1580 {
1581 c = *scan++; /* a byte of our long long value */
1582 if (leadzero)
1583 {
1584 if (c == 0)
1585 continue;
1586 else
1587 leadzero = 0; /* henceforth we print even zeroes */
1588 }
1589 nib = c >> 4; /* high nibble bits */
1590 *outbuff++ = hexlate[nib];
1591 nib = c & 0x0f; /* low nibble bits */
1592 *outbuff++ = hexlate[nib];
1593 }
1594 return outbuff;
1595 }
1596 } /* longlong_hexchars */
1597
1598
1599
1600 /* I am only going to call this when writing virtual byte streams.
1601 Which possably entails endian conversions
1602 */
1603 static int
1604 monitor_write_memory_longlongs (CORE_ADDR memaddr, char *myaddr, int len)
1605 {
1606 static char hexstage[20]; /* At least 16 digits required, plus null */
1607 char *endstring;
1608 long long *llptr;
1609 long long value;
1610 int written = 0;
1611 llptr = (unsigned long long *) myaddr;
1612 if (len == 0)
1613 return 0;
1614 monitor_printf (current_monitor->setmem.cmdll, memaddr);
1615 monitor_expect_prompt (NULL, 0);
1616 while (len >= 8)
1617 {
1618 value = *llptr;
1619 endstring = longlong_hexchars (*llptr, hexstage);
1620 *endstring = '\0'; /* NUll terminate for printf */
1621 monitor_printf ("%s\r", hexstage);
1622 llptr++;
1623 memaddr += 8;
1624 written += 8;
1625 /* If we wanted to, here we could validate the address */
1626 monitor_expect_prompt (NULL, 0);
1627 len -= 8;
1628 }
1629 /* Now exit the sub mode */
1630 monitor_printf (current_monitor->getreg.term_cmd);
1631 monitor_expect_prompt (NULL, 0);
1632 return written;
1633 } /* */
1634
1635
1636
1637 /* ----- MONITOR_WRITE_MEMORY_BLOCK ---------------------------- */
1638 /* This is for the large blocks of memory which may occur in downloading.
1639 And for monitors which use interactive entry,
1640 And for monitors which do not have other downloading methods.
1641 Without this, we will end up calling monitor_write_memory many times
1642 and do the entry and exit of the sub mode many times
1643 This currently assumes...
1644 MO_SETMEM_INTERACTIVE
1645 ! MO_NO_ECHO_ON_SETMEM
1646 To use this, the you have to patch the monitor_cmds block with
1647 this function. Otherwise, its not tuned up for use by all
1648 monitor variations.
1649 */
1650
1651 static int
1652 monitor_write_memory_block (CORE_ADDR memaddr, char *myaddr, int len)
1653 {
1654 int written;
1655 written = 0;
1656 /* FIXME: This would be a good place to put the zero test */
1657 #if 1
1658 if ((len > 8) && (((len & 0x07)) == 0) && current_monitor->setmem.cmdll)
1659 {
1660 return monitor_write_memory_longlongs (memaddr, myaddr, len);
1661 }
1662 #endif
1663 written = monitor_write_memory_bytes (memaddr, myaddr, len);
1664 return written;
1665 }
1666
1667 /* This is an alternate form of monitor_read_memory which is used for monitors
1668 which can only read a single byte/word/etc. at a time. */
1669
1670 static int
1671 monitor_read_memory_single (CORE_ADDR memaddr, char *myaddr, int len)
1672 {
1673 unsigned int val;
1674 char membuf[sizeof (int) * 2 + 1];
1675 char *p;
1676 char *cmd;
1677
1678 monitor_debug ("MON read single\n");
1679 #if 0
1680 /* Can't actually use long longs (nice idea, though). In fact, the
1681 call to strtoul below will fail if it tries to convert a value
1682 that's too big to fit in a long. */
1683 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->getmem.cmdll)
1684 {
1685 len = 8;
1686 cmd = current_monitor->getmem.cmdll;
1687 }
1688 else
1689 #endif
1690 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->getmem.cmdl)
1691 {
1692 len = 4;
1693 cmd = current_monitor->getmem.cmdl;
1694 }
1695 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->getmem.cmdw)
1696 {
1697 len = 2;
1698 cmd = current_monitor->getmem.cmdw;
1699 }
1700 else
1701 {
1702 len = 1;
1703 cmd = current_monitor->getmem.cmdb;
1704 }
1705
1706 /* Send the examine command. */
1707
1708 monitor_printf (cmd, memaddr);
1709
1710 /* If RESP_DELIM is specified, we search for that as a leading
1711 delimiter for the memory value. Otherwise, we just start
1712 searching from the start of the buf. */
1713
1714 if (current_monitor->getmem.resp_delim)
1715 {
1716 monitor_debug ("EXP getmem.resp_delim\n");
1717 monitor_expect_regexp (&getmem_resp_delim_pattern, NULL, 0);
1718 }
1719
1720 /* Now, read the appropriate number of hex digits for this loc,
1721 skipping spaces. */
1722
1723 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */
1724 if (current_monitor->flags & MO_HEX_PREFIX)
1725 {
1726 int c;
1727
1728 c = readchar (timeout);
1729 while (c == ' ')
1730 c = readchar (timeout);
1731 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1732 ;
1733 else
1734 monitor_error ("monitor_read_memory_single",
1735 "bad response from monitor",
1736 memaddr, 0, NULL, 0);
1737 }
1738
1739 {
1740 int i;
1741 for (i = 0; i < len * 2; i++)
1742 {
1743 int c;
1744
1745 while (1)
1746 {
1747 c = readchar (timeout);
1748 if (isxdigit (c))
1749 break;
1750 if (c == ' ')
1751 continue;
1752
1753 monitor_error ("monitor_read_memory_single",
1754 "bad response from monitor",
1755 memaddr, i, membuf, 0);
1756 }
1757 membuf[i] = c;
1758 }
1759 membuf[i] = '\000'; /* terminate the number */
1760 }
1761
1762 /* If TERM is present, we wait for that to show up. Also, (if TERM is
1763 present), we will send TERM_CMD if that is present. In any case, we collect
1764 all of the output into buf, and then wait for the normal prompt. */
1765
1766 if (current_monitor->getmem.term)
1767 {
1768 monitor_expect (current_monitor->getmem.term, NULL, 0); /* get response */
1769
1770 if (current_monitor->getmem.term_cmd)
1771 {
1772 monitor_printf (current_monitor->getmem.term_cmd);
1773 monitor_expect_prompt (NULL, 0);
1774 }
1775 }
1776 else
1777 monitor_expect_prompt (NULL, 0); /* get response */
1778
1779 p = membuf;
1780 val = strtoul (membuf, &p, 16);
1781
1782 if (val == 0 && membuf == p)
1783 monitor_error ("monitor_read_memory_single",
1784 "bad value from monitor",
1785 memaddr, 0, membuf, 0);
1786
1787 /* supply register stores in target byte order, so swap here */
1788
1789 store_unsigned_integer (myaddr, len, val);
1790
1791 return len;
1792 }
1793
1794 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
1795 memory at MEMADDR. Returns length moved. Currently, we do no more
1796 than 16 bytes at a time. */
1797
1798 static int
1799 monitor_read_memory (CORE_ADDR memaddr, char *myaddr, int len)
1800 {
1801 unsigned int val;
1802 char buf[512];
1803 char *p, *p1;
1804 int resp_len;
1805 int i;
1806 CORE_ADDR dumpaddr;
1807
1808 if (len <= 0)
1809 {
1810 monitor_debug ("Zero length call to monitor_read_memory\n");
1811 return 0;
1812 }
1813
1814 monitor_debug ("MON read block ta(%s) ha(%lx) %d\n",
1815 paddress (target_gdbarch, memaddr), (long) myaddr, len);
1816
1817 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1818 memaddr = gdbarch_addr_bits_remove (target_gdbarch, memaddr);
1819
1820 if (current_monitor->flags & MO_GETMEM_READ_SINGLE)
1821 return monitor_read_memory_single (memaddr, myaddr, len);
1822
1823 len = min (len, 16);
1824
1825 /* Some dumpers align the first data with the preceeding 16
1826 byte boundary. Some print blanks and start at the
1827 requested boundary. EXACT_DUMPADDR
1828 */
1829
1830 dumpaddr = (current_monitor->flags & MO_EXACT_DUMPADDR)
1831 ? memaddr : memaddr & ~0x0f;
1832
1833 /* See if xfer would cross a 16 byte boundary. If so, clip it. */
1834 if (((memaddr ^ (memaddr + len - 1)) & ~0xf) != 0)
1835 len = ((memaddr + len) & ~0xf) - memaddr;
1836
1837 /* send the memory examine command */
1838
1839 if (current_monitor->flags & MO_GETMEM_NEEDS_RANGE)
1840 monitor_printf (current_monitor->getmem.cmdb, memaddr, memaddr + len);
1841 else if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1842 monitor_printf (current_monitor->getmem.cmdb, dumpaddr);
1843 else
1844 monitor_printf (current_monitor->getmem.cmdb, memaddr, len);
1845
1846 /* If TERM is present, we wait for that to show up. Also, (if TERM
1847 is present), we will send TERM_CMD if that is present. In any
1848 case, we collect all of the output into buf, and then wait for
1849 the normal prompt. */
1850
1851 if (current_monitor->getmem.term)
1852 {
1853 resp_len = monitor_expect (current_monitor->getmem.term, buf, sizeof buf); /* get response */
1854
1855 if (resp_len <= 0)
1856 monitor_error ("monitor_read_memory",
1857 "excessive response from monitor",
1858 memaddr, resp_len, buf, 0);
1859
1860 if (current_monitor->getmem.term_cmd)
1861 {
1862 serial_write (monitor_desc, current_monitor->getmem.term_cmd,
1863 strlen (current_monitor->getmem.term_cmd));
1864 monitor_expect_prompt (NULL, 0);
1865 }
1866 }
1867 else
1868 resp_len = monitor_expect_prompt (buf, sizeof buf); /* get response */
1869
1870 p = buf;
1871
1872 /* If RESP_DELIM is specified, we search for that as a leading
1873 delimiter for the values. Otherwise, we just start searching
1874 from the start of the buf. */
1875
1876 if (current_monitor->getmem.resp_delim)
1877 {
1878 int retval, tmp;
1879 struct re_registers resp_strings;
1880 monitor_debug ("MON getmem.resp_delim %s\n", current_monitor->getmem.resp_delim);
1881
1882 memset (&resp_strings, 0, sizeof (struct re_registers));
1883 tmp = strlen (p);
1884 retval = re_search (&getmem_resp_delim_pattern, p, tmp, 0, tmp,
1885 &resp_strings);
1886
1887 if (retval < 0)
1888 monitor_error ("monitor_read_memory",
1889 "bad response from monitor",
1890 memaddr, resp_len, buf, 0);
1891
1892 p += resp_strings.end[0];
1893 #if 0
1894 p = strstr (p, current_monitor->getmem.resp_delim);
1895 if (!p)
1896 monitor_error ("monitor_read_memory",
1897 "bad response from monitor",
1898 memaddr, resp_len, buf, 0);
1899 p += strlen (current_monitor->getmem.resp_delim);
1900 #endif
1901 }
1902 monitor_debug ("MON scanning %d ,%lx '%s'\n", len, (long) p, p);
1903 if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1904 {
1905 char c;
1906 int fetched = 0;
1907 i = len;
1908 c = *p;
1909
1910
1911 while (!(c == '\000' || c == '\n' || c == '\r') && i > 0)
1912 {
1913 if (isxdigit (c))
1914 {
1915 if ((dumpaddr >= memaddr) && (i > 0))
1916 {
1917 val = fromhex (c) * 16 + fromhex (*(p + 1));
1918 *myaddr++ = val;
1919 if (monitor_debug_p || remote_debug)
1920 fprintf_unfiltered (gdb_stdlog, "[%02x]", val);
1921 --i;
1922 fetched++;
1923 }
1924 ++dumpaddr;
1925 ++p;
1926 }
1927 ++p; /* skip a blank or other non hex char */
1928 c = *p;
1929 }
1930 if (fetched == 0)
1931 error (_("Failed to read via monitor"));
1932 if (monitor_debug_p || remote_debug)
1933 fprintf_unfiltered (gdb_stdlog, "\n");
1934 return fetched; /* Return the number of bytes actually read */
1935 }
1936 monitor_debug ("MON scanning bytes\n");
1937
1938 for (i = len; i > 0; i--)
1939 {
1940 /* Skip non-hex chars, but bomb on end of string and newlines */
1941
1942 while (1)
1943 {
1944 if (isxdigit (*p))
1945 break;
1946
1947 if (*p == '\000' || *p == '\n' || *p == '\r')
1948 monitor_error ("monitor_read_memory",
1949 "badly terminated response from monitor",
1950 memaddr, resp_len, buf, 0);
1951 p++;
1952 }
1953
1954 val = strtoul (p, &p1, 16);
1955
1956 if (val == 0 && p == p1)
1957 monitor_error ("monitor_read_memory",
1958 "bad value from monitor",
1959 memaddr, resp_len, buf, 0);
1960
1961 *myaddr++ = val;
1962
1963 if (i == 1)
1964 break;
1965
1966 p = p1;
1967 }
1968
1969 return len;
1970 }
1971
1972 /* Transfer LEN bytes between target address MEMADDR and GDB address
1973 MYADDR. Returns 0 for success, errno code for failure. TARGET is
1974 unused. */
1975
1976 static int
1977 monitor_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int write,
1978 struct mem_attrib *attrib, struct target_ops *target)
1979 {
1980 int res;
1981
1982 if (write)
1983 {
1984 if (current_monitor->flags & MO_HAS_BLOCKWRITES)
1985 res = monitor_write_memory_block(memaddr, myaddr, len);
1986 else
1987 res = monitor_write_memory(memaddr, myaddr, len);
1988 }
1989 else
1990 {
1991 res = monitor_read_memory(memaddr, myaddr, len);
1992 }
1993
1994 return res;
1995 }
1996
1997 static void
1998 monitor_kill (struct target_ops *ops)
1999 {
2000 return; /* ignore attempts to kill target system */
2001 }
2002
2003 /* All we actually do is set the PC to the start address of exec_bfd. */
2004
2005 static void
2006 monitor_create_inferior (struct target_ops *ops, char *exec_file,
2007 char *args, char **env, int from_tty)
2008 {
2009 if (args && (*args != '\000'))
2010 error (_("Args are not supported by the monitor."));
2011
2012 first_time = 1;
2013 clear_proceed_status ();
2014 regcache_write_pc (get_current_regcache (),
2015 bfd_get_start_address (exec_bfd));
2016 }
2017
2018 /* Clean up when a program exits.
2019 The program actually lives on in the remote processor's RAM, and may be
2020 run again without a download. Don't leave it full of breakpoint
2021 instructions. */
2022
2023 static void
2024 monitor_mourn_inferior (struct target_ops *ops)
2025 {
2026 unpush_target (targ_ops);
2027 generic_mourn_inferior (); /* Do all the proper things now */
2028 delete_thread_silent (monitor_ptid);
2029 }
2030
2031 /* Tell the monitor to add a breakpoint. */
2032
2033 static int
2034 monitor_insert_breakpoint (struct gdbarch *gdbarch,
2035 struct bp_target_info *bp_tgt)
2036 {
2037 CORE_ADDR addr = bp_tgt->placed_address;
2038 int i;
2039 int bplen;
2040
2041 monitor_debug ("MON inst bkpt %s\n", paddress (gdbarch, addr));
2042 if (current_monitor->set_break == NULL)
2043 error (_("No set_break defined for this monitor"));
2044
2045 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
2046 addr = gdbarch_addr_bits_remove (gdbarch, addr);
2047
2048 /* Determine appropriate breakpoint size for this address. */
2049 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
2050 bp_tgt->placed_address = addr;
2051 bp_tgt->placed_size = bplen;
2052
2053 for (i = 0; i < current_monitor->num_breakpoints; i++)
2054 {
2055 if (breakaddr[i] == 0)
2056 {
2057 breakaddr[i] = addr;
2058 monitor_printf (current_monitor->set_break, addr);
2059 monitor_expect_prompt (NULL, 0);
2060 return 0;
2061 }
2062 }
2063
2064 error (_("Too many breakpoints (> %d) for monitor."), current_monitor->num_breakpoints);
2065 }
2066
2067 /* Tell the monitor to remove a breakpoint. */
2068
2069 static int
2070 monitor_remove_breakpoint (struct gdbarch *gdbarch,
2071 struct bp_target_info *bp_tgt)
2072 {
2073 CORE_ADDR addr = bp_tgt->placed_address;
2074 int i;
2075
2076 monitor_debug ("MON rmbkpt %s\n", paddress (gdbarch, addr));
2077 if (current_monitor->clr_break == NULL)
2078 error (_("No clr_break defined for this monitor"));
2079
2080 for (i = 0; i < current_monitor->num_breakpoints; i++)
2081 {
2082 if (breakaddr[i] == addr)
2083 {
2084 breakaddr[i] = 0;
2085 /* some monitors remove breakpoints based on the address */
2086 if (current_monitor->flags & MO_CLR_BREAK_USES_ADDR)
2087 monitor_printf (current_monitor->clr_break, addr);
2088 else if (current_monitor->flags & MO_CLR_BREAK_1_BASED)
2089 monitor_printf (current_monitor->clr_break, i + 1);
2090 else
2091 monitor_printf (current_monitor->clr_break, i);
2092 monitor_expect_prompt (NULL, 0);
2093 return 0;
2094 }
2095 }
2096 fprintf_unfiltered (gdb_stderr,
2097 "Can't find breakpoint associated with %s\n",
2098 paddress (gdbarch, addr));
2099 return 1;
2100 }
2101
2102 /* monitor_wait_srec_ack -- wait for the target to send an acknowledgement for
2103 an S-record. Return non-zero if the ACK is received properly. */
2104
2105 static int
2106 monitor_wait_srec_ack (void)
2107 {
2108 int ch;
2109
2110 if (current_monitor->flags & MO_SREC_ACK_PLUS)
2111 {
2112 return (readchar (timeout) == '+');
2113 }
2114 else if (current_monitor->flags & MO_SREC_ACK_ROTATE)
2115 {
2116 /* Eat two backspaces, a "rotating" char (|/-\), and a space. */
2117 if ((ch = readchar (1)) < 0)
2118 return 0;
2119 if ((ch = readchar (1)) < 0)
2120 return 0;
2121 if ((ch = readchar (1)) < 0)
2122 return 0;
2123 if ((ch = readchar (1)) < 0)
2124 return 0;
2125 }
2126 return 1;
2127 }
2128
2129 /* monitor_load -- download a file. */
2130
2131 static void
2132 monitor_load (char *file, int from_tty)
2133 {
2134 monitor_debug ("MON load\n");
2135
2136 if (current_monitor->load_routine)
2137 current_monitor->load_routine (monitor_desc, file, hashmark);
2138 else
2139 { /* The default is ascii S-records */
2140 int n;
2141 unsigned long load_offset;
2142 char buf[128];
2143
2144 /* enable user to specify address for downloading as 2nd arg to load */
2145 n = sscanf (file, "%s 0x%lx", buf, &load_offset);
2146 if (n > 1)
2147 file = buf;
2148 else
2149 load_offset = 0;
2150
2151 monitor_printf (current_monitor->load);
2152 if (current_monitor->loadresp)
2153 monitor_expect (current_monitor->loadresp, NULL, 0);
2154
2155 load_srec (monitor_desc, file, (bfd_vma) load_offset,
2156 32, SREC_ALL, hashmark,
2157 current_monitor->flags & MO_SREC_ACK ?
2158 monitor_wait_srec_ack : NULL);
2159
2160 monitor_expect_prompt (NULL, 0);
2161 }
2162
2163 /* Finally, make the PC point at the start address */
2164 if (exec_bfd)
2165 regcache_write_pc (get_current_regcache (),
2166 bfd_get_start_address (exec_bfd));
2167
2168 /* There used to be code here which would clear inferior_ptid and
2169 call clear_symtab_users. None of that should be necessary:
2170 monitor targets should behave like remote protocol targets, and
2171 since generic_load does none of those things, this function
2172 shouldn't either.
2173
2174 Furthermore, clearing inferior_ptid is *incorrect*. After doing
2175 a load, we still have a valid connection to the monitor, with a
2176 live processor state to fiddle with. The user can type
2177 `continue' or `jump *start' and make the program run. If they do
2178 these things, however, GDB will be talking to a running program
2179 while inferior_ptid is null_ptid; this makes things like
2180 reinit_frame_cache very confused. */
2181 }
2182
2183 static void
2184 monitor_stop (ptid_t ptid)
2185 {
2186 monitor_debug ("MON stop\n");
2187 if ((current_monitor->flags & MO_SEND_BREAK_ON_STOP) != 0)
2188 serial_send_break (monitor_desc);
2189 if (current_monitor->stop)
2190 monitor_printf_noecho (current_monitor->stop);
2191 }
2192
2193 /* Put a COMMAND string out to MONITOR. Output from MONITOR is placed
2194 in OUTPUT until the prompt is seen. FIXME: We read the characters
2195 ourseleves here cause of a nasty echo. */
2196
2197 static void
2198 monitor_rcmd (char *command,
2199 struct ui_file *outbuf)
2200 {
2201 char *p;
2202 int resp_len;
2203 char buf[1000];
2204
2205 if (monitor_desc == NULL)
2206 error (_("monitor target not open."));
2207
2208 p = current_monitor->prompt;
2209
2210 /* Send the command. Note that if no args were supplied, then we're
2211 just sending the monitor a newline, which is sometimes useful. */
2212
2213 monitor_printf ("%s\r", (command ? command : ""));
2214
2215 resp_len = monitor_expect_prompt (buf, sizeof buf);
2216
2217 fputs_unfiltered (buf, outbuf); /* Output the response */
2218 }
2219
2220 /* Convert hex digit A to a number. */
2221
2222 #if 0
2223 static int
2224 from_hex (int a)
2225 {
2226 if (a >= '0' && a <= '9')
2227 return a - '0';
2228 if (a >= 'a' && a <= 'f')
2229 return a - 'a' + 10;
2230 if (a >= 'A' && a <= 'F')
2231 return a - 'A' + 10;
2232
2233 error (_("Reply contains invalid hex digit 0x%x"), a);
2234 }
2235 #endif
2236
2237 char *
2238 monitor_get_dev_name (void)
2239 {
2240 return dev_name;
2241 }
2242
2243 /* Check to see if a thread is still alive. */
2244
2245 static int
2246 monitor_thread_alive (struct target_ops *ops, ptid_t ptid)
2247 {
2248 if (ptid_equal (ptid, monitor_ptid))
2249 /* The monitor's task is always alive. */
2250 return 1;
2251
2252 return 0;
2253 }
2254
2255 /* Convert a thread ID to a string. Returns the string in a static
2256 buffer. */
2257
2258 static char *
2259 monitor_pid_to_str (struct target_ops *ops, ptid_t ptid)
2260 {
2261 static char buf[64];
2262
2263 if (ptid_equal (monitor_ptid, ptid))
2264 {
2265 xsnprintf (buf, sizeof buf, "Thread <main>");
2266 return buf;
2267 }
2268
2269 return normal_pid_to_str (ptid);
2270 }
2271
2272 static struct target_ops monitor_ops;
2273
2274 static void
2275 init_base_monitor_ops (void)
2276 {
2277 monitor_ops.to_close = monitor_close;
2278 monitor_ops.to_detach = monitor_detach;
2279 monitor_ops.to_resume = monitor_resume;
2280 monitor_ops.to_wait = monitor_wait;
2281 monitor_ops.to_fetch_registers = monitor_fetch_registers;
2282 monitor_ops.to_store_registers = monitor_store_registers;
2283 monitor_ops.to_prepare_to_store = monitor_prepare_to_store;
2284 monitor_ops.deprecated_xfer_memory = monitor_xfer_memory;
2285 monitor_ops.to_files_info = monitor_files_info;
2286 monitor_ops.to_insert_breakpoint = monitor_insert_breakpoint;
2287 monitor_ops.to_remove_breakpoint = monitor_remove_breakpoint;
2288 monitor_ops.to_kill = monitor_kill;
2289 monitor_ops.to_load = monitor_load;
2290 monitor_ops.to_create_inferior = monitor_create_inferior;
2291 monitor_ops.to_mourn_inferior = monitor_mourn_inferior;
2292 monitor_ops.to_stop = monitor_stop;
2293 monitor_ops.to_rcmd = monitor_rcmd;
2294 monitor_ops.to_log_command = serial_log_command;
2295 monitor_ops.to_thread_alive = monitor_thread_alive;
2296 monitor_ops.to_pid_to_str = monitor_pid_to_str;
2297 monitor_ops.to_stratum = process_stratum;
2298 monitor_ops.to_has_all_memory = default_child_has_all_memory;
2299 monitor_ops.to_has_memory = default_child_has_memory;
2300 monitor_ops.to_has_stack = default_child_has_stack;
2301 monitor_ops.to_has_registers = default_child_has_registers;
2302 monitor_ops.to_has_execution = default_child_has_execution;
2303 monitor_ops.to_magic = OPS_MAGIC;
2304 } /* init_base_monitor_ops */
2305
2306 /* Init the target_ops structure pointed at by OPS */
2307
2308 void
2309 init_monitor_ops (struct target_ops *ops)
2310 {
2311 if (monitor_ops.to_magic != OPS_MAGIC)
2312 init_base_monitor_ops ();
2313
2314 memcpy (ops, &monitor_ops, sizeof monitor_ops);
2315 }
2316
2317 /* Define additional commands that are usually only used by monitors. */
2318
2319 extern initialize_file_ftype _initialize_remote_monitors; /* -Wmissing-prototypes */
2320
2321 void
2322 _initialize_remote_monitors (void)
2323 {
2324 init_base_monitor_ops ();
2325 add_setshow_boolean_cmd ("hash", no_class, &hashmark, _("\
2326 Set display of activity while downloading a file."), _("\
2327 Show display of activity while downloading a file."), _("\
2328 When enabled, a hashmark \'#\' is displayed."),
2329 NULL,
2330 NULL, /* FIXME: i18n: */
2331 &setlist, &showlist);
2332
2333 add_setshow_zinteger_cmd ("monitor", no_class, &monitor_debug_p, _("\
2334 Set debugging of remote monitor communication."), _("\
2335 Show debugging of remote monitor communication."), _("\
2336 When enabled, communication between GDB and the remote monitor\n\
2337 is displayed."),
2338 NULL,
2339 NULL, /* FIXME: i18n: */
2340 &setdebuglist, &showdebuglist);
2341
2342 /* Yes, 42000 is arbitrary. The only sense out of it, is that it
2343 isn't 0. */
2344 monitor_ptid = ptid_build (42000, 0, 42000);
2345 }
This page took 0.130868 seconds and 4 git commands to generate.