* gdb.cp/gdb2495.exp: Skip if gdb,nosignals.
[deliverable/binutils-gdb.git] / gdb / monitor.c
1 /* Remote debugging interface for boot monitors, for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support. Written by Rob Savoye for Cygnus.
8 Resurrected from the ashes by Stu Grossman.
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24
25 /* This file was derived from various remote-* modules. It is a collection
26 of generic support functions so GDB can talk directly to a ROM based
27 monitor. This saves use from having to hack an exception based handler
28 into existence, and makes for quick porting.
29
30 This module talks to a debug monitor called 'MONITOR', which
31 We communicate with MONITOR via either a direct serial line, or a TCP
32 (or possibly TELNET) stream to a terminal multiplexor,
33 which in turn talks to the target board. */
34
35 /* FIXME 32x64: This code assumes that registers and addresses are at
36 most 32 bits long. If they can be larger, you will need to declare
37 values as LONGEST and use %llx or some such to print values when
38 building commands to send to the monitor. Since we don't know of
39 any actual 64-bit targets with ROM monitors that use this code,
40 it's not an issue right now. -sts 4/18/96 */
41
42 #include "defs.h"
43 #include "gdbcore.h"
44 #include "target.h"
45 #include "exceptions.h"
46 #include <signal.h>
47 #include <ctype.h>
48 #include "gdb_string.h"
49 #include <sys/types.h>
50 #include "command.h"
51 #include "serial.h"
52 #include "monitor.h"
53 #include "gdbcmd.h"
54 #include "inferior.h"
55 #include "gdb_regex.h"
56 #include "srec.h"
57 #include "regcache.h"
58 #include "gdbthread.h"
59
60 static char *dev_name;
61 static struct target_ops *targ_ops;
62
63 static void monitor_interrupt_query (void);
64 static void monitor_interrupt_twice (int);
65 static void monitor_stop (ptid_t);
66 static void monitor_dump_regs (struct regcache *regcache);
67
68 #if 0
69 static int from_hex (int a);
70 #endif
71
72 static struct monitor_ops *current_monitor;
73
74 static int hashmark; /* flag set by "set hash" */
75
76 static int timeout = 30;
77
78 static int in_monitor_wait = 0; /* Non-zero means we are in monitor_wait() */
79
80 static void (*ofunc) (); /* Old SIGINT signal handler */
81
82 static CORE_ADDR *breakaddr;
83
84 /* Descriptor for I/O to remote machine. Initialize it to NULL so
85 that monitor_open knows that we don't have a file open when the
86 program starts. */
87
88 static struct serial *monitor_desc = NULL;
89
90 /* Pointer to regexp pattern matching data */
91
92 static struct re_pattern_buffer register_pattern;
93 static char register_fastmap[256];
94
95 static struct re_pattern_buffer getmem_resp_delim_pattern;
96 static char getmem_resp_delim_fastmap[256];
97
98 static struct re_pattern_buffer setmem_resp_delim_pattern;
99 static char setmem_resp_delim_fastmap[256];
100
101 static struct re_pattern_buffer setreg_resp_delim_pattern;
102 static char setreg_resp_delim_fastmap[256];
103
104 static int dump_reg_flag; /* Non-zero means do a dump_registers cmd when
105 monitor_wait wakes up. */
106
107 static int first_time = 0; /* is this the first time we're executing after
108 gaving created the child proccess? */
109
110
111 /* This is the ptid we use while we're connected to a monitor. Its
112 value is arbitrary, as monitor targets don't have a notion of
113 processes or threads, but we need something non-null to place in
114 inferior_ptid. */
115 static ptid_t monitor_ptid;
116
117 #define TARGET_BUF_SIZE 2048
118
119 /* Monitor specific debugging information. Typically only useful to
120 the developer of a new monitor interface. */
121
122 static void monitor_debug (const char *fmt, ...) ATTR_FORMAT(printf, 1, 2);
123
124 static int monitor_debug_p = 0;
125
126 /* NOTE: This file alternates between monitor_debug_p and remote_debug
127 when determining if debug information is printed. Perhaps this
128 could be simplified. */
129
130 static void
131 monitor_debug (const char *fmt, ...)
132 {
133 if (monitor_debug_p)
134 {
135 va_list args;
136 va_start (args, fmt);
137 vfprintf_filtered (gdb_stdlog, fmt, args);
138 va_end (args);
139 }
140 }
141
142
143 /* Convert a string into a printable representation, Return # byte in
144 the new string. When LEN is >0 it specifies the size of the
145 string. Otherwize strlen(oldstr) is used. */
146
147 static void
148 monitor_printable_string (char *newstr, char *oldstr, int len)
149 {
150 int ch;
151 int i;
152
153 if (len <= 0)
154 len = strlen (oldstr);
155
156 for (i = 0; i < len; i++)
157 {
158 ch = oldstr[i];
159 switch (ch)
160 {
161 default:
162 if (isprint (ch))
163 *newstr++ = ch;
164
165 else
166 {
167 sprintf (newstr, "\\x%02x", ch & 0xff);
168 newstr += 4;
169 }
170 break;
171
172 case '\\':
173 *newstr++ = '\\';
174 *newstr++ = '\\';
175 break;
176 case '\b':
177 *newstr++ = '\\';
178 *newstr++ = 'b';
179 break;
180 case '\f':
181 *newstr++ = '\\';
182 *newstr++ = 't';
183 break;
184 case '\n':
185 *newstr++ = '\\';
186 *newstr++ = 'n';
187 break;
188 case '\r':
189 *newstr++ = '\\';
190 *newstr++ = 'r';
191 break;
192 case '\t':
193 *newstr++ = '\\';
194 *newstr++ = 't';
195 break;
196 case '\v':
197 *newstr++ = '\\';
198 *newstr++ = 'v';
199 break;
200 }
201 }
202
203 *newstr++ = '\0';
204 }
205
206 /* Print monitor errors with a string, converting the string to printable
207 representation. */
208
209 static void
210 monitor_error (char *function, char *message,
211 CORE_ADDR memaddr, int len, char *string, int final_char)
212 {
213 int real_len = (len == 0 && string != (char *) 0) ? strlen (string) : len;
214 char *safe_string = alloca ((real_len * 4) + 1);
215 monitor_printable_string (safe_string, string, real_len);
216
217 if (final_char)
218 error (_("%s (%s): %s: %s%c"),
219 function, paddress (target_gdbarch, memaddr),
220 message, safe_string, final_char);
221 else
222 error (_("%s (%s): %s: %s"),
223 function, paddress (target_gdbarch, memaddr),
224 message, safe_string);
225 }
226
227 /* Convert hex digit A to a number. */
228
229 static int
230 fromhex (int a)
231 {
232 if (a >= '0' && a <= '9')
233 return a - '0';
234 else if (a >= 'a' && a <= 'f')
235 return a - 'a' + 10;
236 else if (a >= 'A' && a <= 'F')
237 return a - 'A' + 10;
238 else
239 error (_("Invalid hex digit %d"), a);
240 }
241
242 /* monitor_vsprintf - similar to vsprintf but handles 64-bit addresses
243
244 This function exists to get around the problem that many host platforms
245 don't have a printf that can print 64-bit addresses. The %A format
246 specification is recognized as a special case, and causes the argument
247 to be printed as a 64-bit hexadecimal address.
248
249 Only format specifiers of the form "[0-9]*[a-z]" are recognized.
250 If it is a '%s' format, the argument is a string; otherwise the
251 argument is assumed to be a long integer.
252
253 %% is also turned into a single %.
254 */
255
256 static void
257 monitor_vsprintf (char *sndbuf, char *pattern, va_list args)
258 {
259 int addr_bit = gdbarch_addr_bit (target_gdbarch);
260 char format[10];
261 char fmt;
262 char *p;
263 int i;
264 long arg_int;
265 CORE_ADDR arg_addr;
266 char *arg_string;
267
268 for (p = pattern; *p; p++)
269 {
270 if (*p == '%')
271 {
272 /* Copy the format specifier to a separate buffer. */
273 format[0] = *p++;
274 for (i = 1; *p >= '0' && *p <= '9' && i < (int) sizeof (format) - 2;
275 i++, p++)
276 format[i] = *p;
277 format[i] = fmt = *p;
278 format[i + 1] = '\0';
279
280 /* Fetch the next argument and print it. */
281 switch (fmt)
282 {
283 case '%':
284 strcpy (sndbuf, "%");
285 break;
286 case 'A':
287 arg_addr = va_arg (args, CORE_ADDR);
288 strcpy (sndbuf, phex_nz (arg_addr, addr_bit / 8));
289 break;
290 case 's':
291 arg_string = va_arg (args, char *);
292 sprintf (sndbuf, format, arg_string);
293 break;
294 default:
295 arg_int = va_arg (args, long);
296 sprintf (sndbuf, format, arg_int);
297 break;
298 }
299 sndbuf += strlen (sndbuf);
300 }
301 else
302 *sndbuf++ = *p;
303 }
304 *sndbuf = '\0';
305 }
306
307
308 /* monitor_printf_noecho -- Send data to monitor, but don't expect an echo.
309 Works just like printf. */
310
311 void
312 monitor_printf_noecho (char *pattern,...)
313 {
314 va_list args;
315 char sndbuf[2000];
316 int len;
317
318 va_start (args, pattern);
319
320 monitor_vsprintf (sndbuf, pattern, args);
321
322 len = strlen (sndbuf);
323 if (len + 1 > sizeof sndbuf)
324 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
325
326 if (monitor_debug_p)
327 {
328 char *safe_string = (char *) alloca ((strlen (sndbuf) * 4) + 1);
329 monitor_printable_string (safe_string, sndbuf, 0);
330 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
331 }
332
333 monitor_write (sndbuf, len);
334 }
335
336 /* monitor_printf -- Send data to monitor and check the echo. Works just like
337 printf. */
338
339 void
340 monitor_printf (char *pattern,...)
341 {
342 va_list args;
343 char sndbuf[2000];
344 int len;
345
346 va_start (args, pattern);
347
348 monitor_vsprintf (sndbuf, pattern, args);
349
350 len = strlen (sndbuf);
351 if (len + 1 > sizeof sndbuf)
352 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
353
354 if (monitor_debug_p)
355 {
356 char *safe_string = (char *) alloca ((len * 4) + 1);
357 monitor_printable_string (safe_string, sndbuf, 0);
358 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
359 }
360
361 monitor_write (sndbuf, len);
362
363 /* We used to expect that the next immediate output was the characters we
364 just output, but sometimes some extra junk appeared before the characters
365 we expected, like an extra prompt, or a portmaster sending telnet negotiations.
366 So, just start searching for what we sent, and skip anything unknown. */
367 monitor_debug ("ExpectEcho\n");
368 monitor_expect (sndbuf, (char *) 0, 0);
369 }
370
371
372 /* Write characters to the remote system. */
373
374 void
375 monitor_write (char *buf, int buflen)
376 {
377 if (serial_write (monitor_desc, buf, buflen))
378 fprintf_unfiltered (gdb_stderr, "serial_write failed: %s\n",
379 safe_strerror (errno));
380 }
381
382
383 /* Read a binary character from the remote system, doing all the fancy
384 timeout stuff, but without interpreting the character in any way,
385 and without printing remote debug information. */
386
387 int
388 monitor_readchar (void)
389 {
390 int c;
391 int looping;
392
393 do
394 {
395 looping = 0;
396 c = serial_readchar (monitor_desc, timeout);
397
398 if (c >= 0)
399 c &= 0xff; /* don't lose bit 7 */
400 }
401 while (looping);
402
403 if (c >= 0)
404 return c;
405
406 if (c == SERIAL_TIMEOUT)
407 error (_("Timeout reading from remote system."));
408
409 perror_with_name (_("remote-monitor"));
410 }
411
412
413 /* Read a character from the remote system, doing all the fancy
414 timeout stuff. */
415
416 static int
417 readchar (int timeout)
418 {
419 int c;
420 static enum
421 {
422 last_random, last_nl, last_cr, last_crnl
423 }
424 state = last_random;
425 int looping;
426
427 do
428 {
429 looping = 0;
430 c = serial_readchar (monitor_desc, timeout);
431
432 if (c >= 0)
433 {
434 c &= 0x7f;
435 /* This seems to interfere with proper function of the
436 input stream */
437 if (monitor_debug_p || remote_debug)
438 {
439 char buf[2];
440 buf[0] = c;
441 buf[1] = '\0';
442 puts_debug ("read -->", buf, "<--");
443 }
444
445 }
446
447 /* Canonicialize \n\r combinations into one \r */
448 if ((current_monitor->flags & MO_HANDLE_NL) != 0)
449 {
450 if ((c == '\r' && state == last_nl)
451 || (c == '\n' && state == last_cr))
452 {
453 state = last_crnl;
454 looping = 1;
455 }
456 else if (c == '\r')
457 state = last_cr;
458 else if (c != '\n')
459 state = last_random;
460 else
461 {
462 state = last_nl;
463 c = '\r';
464 }
465 }
466 }
467 while (looping);
468
469 if (c >= 0)
470 return c;
471
472 if (c == SERIAL_TIMEOUT)
473 #if 0
474 /* I fail to see how detaching here can be useful */
475 if (in_monitor_wait) /* Watchdog went off */
476 {
477 target_mourn_inferior ();
478 error (_("GDB serial timeout has expired. Target detached."));
479 }
480 else
481 #endif
482 error (_("Timeout reading from remote system."));
483
484 perror_with_name (_("remote-monitor"));
485 }
486
487 /* Scan input from the remote system, until STRING is found. If BUF is non-
488 zero, then collect input until we have collected either STRING or BUFLEN-1
489 chars. In either case we terminate BUF with a 0. If input overflows BUF
490 because STRING can't be found, return -1, else return number of chars in BUF
491 (minus the terminating NUL). Note that in the non-overflow case, STRING
492 will be at the end of BUF. */
493
494 int
495 monitor_expect (char *string, char *buf, int buflen)
496 {
497 char *p = string;
498 int obuflen = buflen;
499 int c;
500
501 if (monitor_debug_p)
502 {
503 char *safe_string = (char *) alloca ((strlen (string) * 4) + 1);
504 monitor_printable_string (safe_string, string, 0);
505 fprintf_unfiltered (gdb_stdlog, "MON Expecting '%s'\n", safe_string);
506 }
507
508 immediate_quit++;
509 while (1)
510 {
511 if (buf)
512 {
513 if (buflen < 2)
514 {
515 *buf = '\000';
516 immediate_quit--;
517 return -1;
518 }
519
520 c = readchar (timeout);
521 if (c == '\000')
522 continue;
523 *buf++ = c;
524 buflen--;
525 }
526 else
527 c = readchar (timeout);
528
529 /* Don't expect any ^C sent to be echoed */
530
531 if (*p == '\003' || c == *p)
532 {
533 p++;
534 if (*p == '\0')
535 {
536 immediate_quit--;
537
538 if (buf)
539 {
540 *buf++ = '\000';
541 return obuflen - buflen;
542 }
543 else
544 return 0;
545 }
546 }
547 else
548 {
549 /* We got a character that doesn't match the string. We need to
550 back up p, but how far? If we're looking for "..howdy" and the
551 monitor sends "...howdy"? There's certainly a match in there,
552 but when we receive the third ".", we won't find it if we just
553 restart the matching at the beginning of the string.
554
555 This is a Boyer-Moore kind of situation. We want to reset P to
556 the end of the longest prefix of STRING that is a suffix of
557 what we've read so far. In the example above, that would be
558 ".." --- the longest prefix of "..howdy" that is a suffix of
559 "...". This longest prefix could be the empty string, if C
560 is nowhere to be found in STRING.
561
562 If this longest prefix is not the empty string, it must contain
563 C, so let's search from the end of STRING for instances of C,
564 and see if the portion of STRING before that is a suffix of
565 what we read before C. Actually, we can search backwards from
566 p, since we know no prefix can be longer than that.
567
568 Note that we can use STRING itself, along with C, as a record
569 of what we've received so far. :) */
570 int i;
571
572 for (i = (p - string) - 1; i >= 0; i--)
573 if (string[i] == c)
574 {
575 /* Is this prefix a suffix of what we've read so far?
576 In other words, does
577 string[0 .. i-1] == string[p - i, p - 1]? */
578 if (! memcmp (string, p - i, i))
579 {
580 p = string + i + 1;
581 break;
582 }
583 }
584 if (i < 0)
585 p = string;
586 }
587 }
588 }
589
590 /* Search for a regexp. */
591
592 static int
593 monitor_expect_regexp (struct re_pattern_buffer *pat, char *buf, int buflen)
594 {
595 char *mybuf;
596 char *p;
597 monitor_debug ("MON Expecting regexp\n");
598 if (buf)
599 mybuf = buf;
600 else
601 {
602 mybuf = alloca (TARGET_BUF_SIZE);
603 buflen = TARGET_BUF_SIZE;
604 }
605
606 p = mybuf;
607 while (1)
608 {
609 int retval;
610
611 if (p - mybuf >= buflen)
612 { /* Buffer about to overflow */
613
614 /* On overflow, we copy the upper half of the buffer to the lower half. Not
615 great, but it usually works... */
616
617 memcpy (mybuf, mybuf + buflen / 2, buflen / 2);
618 p = mybuf + buflen / 2;
619 }
620
621 *p++ = readchar (timeout);
622
623 retval = re_search (pat, mybuf, p - mybuf, 0, p - mybuf, NULL);
624 if (retval >= 0)
625 return 1;
626 }
627 }
628
629 /* Keep discarding input until we see the MONITOR prompt.
630
631 The convention for dealing with the prompt is that you
632 o give your command
633 o *then* wait for the prompt.
634
635 Thus the last thing that a procedure does with the serial line will
636 be an monitor_expect_prompt(). Exception: monitor_resume does not
637 wait for the prompt, because the terminal is being handed over to
638 the inferior. However, the next thing which happens after that is
639 a monitor_wait which does wait for the prompt. Note that this
640 includes abnormal exit, e.g. error(). This is necessary to prevent
641 getting into states from which we can't recover. */
642
643 int
644 monitor_expect_prompt (char *buf, int buflen)
645 {
646 monitor_debug ("MON Expecting prompt\n");
647 return monitor_expect (current_monitor->prompt, buf, buflen);
648 }
649
650 /* Get N 32-bit words from remote, each preceded by a space, and put
651 them in registers starting at REGNO. */
652
653 #if 0
654 static unsigned long
655 get_hex_word (void)
656 {
657 unsigned long val;
658 int i;
659 int ch;
660
661 do
662 ch = readchar (timeout);
663 while (isspace (ch));
664
665 val = from_hex (ch);
666
667 for (i = 7; i >= 1; i--)
668 {
669 ch = readchar (timeout);
670 if (!isxdigit (ch))
671 break;
672 val = (val << 4) | from_hex (ch);
673 }
674
675 return val;
676 }
677 #endif
678
679 static void
680 compile_pattern (char *pattern, struct re_pattern_buffer *compiled_pattern,
681 char *fastmap)
682 {
683 int tmp;
684 const char *val;
685
686 compiled_pattern->fastmap = fastmap;
687
688 tmp = re_set_syntax (RE_SYNTAX_EMACS);
689 val = re_compile_pattern (pattern,
690 strlen (pattern),
691 compiled_pattern);
692 re_set_syntax (tmp);
693
694 if (val)
695 error (_("compile_pattern: Can't compile pattern string `%s': %s!"), pattern, val);
696
697 if (fastmap)
698 re_compile_fastmap (compiled_pattern);
699 }
700
701 /* Open a connection to a remote debugger. NAME is the filename used
702 for communication. */
703
704 void
705 monitor_open (char *args, struct monitor_ops *mon_ops, int from_tty)
706 {
707 char *name;
708 char **p;
709 struct inferior *inf;
710
711 if (mon_ops->magic != MONITOR_OPS_MAGIC)
712 error (_("Magic number of monitor_ops struct wrong."));
713
714 targ_ops = mon_ops->target;
715 name = targ_ops->to_shortname;
716
717 if (!args)
718 error (_("Use `target %s DEVICE-NAME' to use a serial port, or \n\
719 `target %s HOST-NAME:PORT-NUMBER' to use a network connection."), name, name);
720
721 target_preopen (from_tty);
722
723 /* Setup pattern for register dump */
724
725 if (mon_ops->register_pattern)
726 compile_pattern (mon_ops->register_pattern, &register_pattern,
727 register_fastmap);
728
729 if (mon_ops->getmem.resp_delim)
730 compile_pattern (mon_ops->getmem.resp_delim, &getmem_resp_delim_pattern,
731 getmem_resp_delim_fastmap);
732
733 if (mon_ops->setmem.resp_delim)
734 compile_pattern (mon_ops->setmem.resp_delim, &setmem_resp_delim_pattern,
735 setmem_resp_delim_fastmap);
736
737 if (mon_ops->setreg.resp_delim)
738 compile_pattern (mon_ops->setreg.resp_delim, &setreg_resp_delim_pattern,
739 setreg_resp_delim_fastmap);
740
741 unpush_target (targ_ops);
742
743 if (dev_name)
744 xfree (dev_name);
745 dev_name = xstrdup (args);
746
747 monitor_desc = serial_open (dev_name);
748
749 if (!monitor_desc)
750 perror_with_name (dev_name);
751
752 if (baud_rate != -1)
753 {
754 if (serial_setbaudrate (monitor_desc, baud_rate))
755 {
756 serial_close (monitor_desc);
757 perror_with_name (dev_name);
758 }
759 }
760
761 serial_raw (monitor_desc);
762
763 serial_flush_input (monitor_desc);
764
765 /* some systems only work with 2 stop bits */
766
767 serial_setstopbits (monitor_desc, mon_ops->stopbits);
768
769 current_monitor = mon_ops;
770
771 /* See if we can wake up the monitor. First, try sending a stop sequence,
772 then send the init strings. Last, remove all breakpoints. */
773
774 if (current_monitor->stop)
775 {
776 monitor_stop (inferior_ptid);
777 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
778 {
779 monitor_debug ("EXP Open echo\n");
780 monitor_expect_prompt (NULL, 0);
781 }
782 }
783
784 /* wake up the monitor and see if it's alive */
785 for (p = mon_ops->init; *p != NULL; p++)
786 {
787 /* Some of the characters we send may not be echoed,
788 but we hope to get a prompt at the end of it all. */
789
790 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
791 monitor_printf (*p);
792 else
793 monitor_printf_noecho (*p);
794 monitor_expect_prompt (NULL, 0);
795 }
796
797 serial_flush_input (monitor_desc);
798
799 /* Alloc breakpoints */
800 if (mon_ops->set_break != NULL)
801 {
802 if (mon_ops->num_breakpoints == 0)
803 mon_ops->num_breakpoints = 8;
804
805 breakaddr = (CORE_ADDR *) xmalloc (mon_ops->num_breakpoints * sizeof (CORE_ADDR));
806 memset (breakaddr, 0, mon_ops->num_breakpoints * sizeof (CORE_ADDR));
807 }
808
809 /* Remove all breakpoints */
810
811 if (mon_ops->clr_all_break)
812 {
813 monitor_printf (mon_ops->clr_all_break);
814 monitor_expect_prompt (NULL, 0);
815 }
816
817 if (from_tty)
818 printf_unfiltered (_("Remote target %s connected to %s\n"), name, dev_name);
819
820 push_target (targ_ops);
821
822 /* Start afresh. */
823 init_thread_list ();
824
825 /* Make run command think we are busy... */
826 inferior_ptid = monitor_ptid;
827 inf = current_inferior ();
828 inferior_appeared (inf, ptid_get_pid (inferior_ptid));
829 add_thread_silent (inferior_ptid);
830
831 /* Give monitor_wait something to read */
832
833 monitor_printf (current_monitor->line_term);
834
835 start_remote (from_tty);
836 }
837
838 /* Close out all files and local state before this target loses
839 control. */
840
841 void
842 monitor_close (int quitting)
843 {
844 if (monitor_desc)
845 serial_close (monitor_desc);
846
847 /* Free breakpoint memory */
848 if (breakaddr != NULL)
849 {
850 xfree (breakaddr);
851 breakaddr = NULL;
852 }
853
854 monitor_desc = NULL;
855
856 delete_thread_silent (monitor_ptid);
857 delete_inferior_silent (ptid_get_pid (monitor_ptid));
858 }
859
860 /* Terminate the open connection to the remote debugger. Use this
861 when you want to detach and do something else with your gdb. */
862
863 static void
864 monitor_detach (struct target_ops *ops, char *args, int from_tty)
865 {
866 pop_target (); /* calls monitor_close to do the real work */
867 if (from_tty)
868 printf_unfiltered (_("Ending remote %s debugging\n"), target_shortname);
869 }
870
871 /* Convert VALSTR into the target byte-ordered value of REGNO and store it. */
872
873 char *
874 monitor_supply_register (struct regcache *regcache, int regno, char *valstr)
875 {
876 struct gdbarch *gdbarch = get_regcache_arch (regcache);
877 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
878 ULONGEST val;
879 unsigned char regbuf[MAX_REGISTER_SIZE];
880 char *p;
881
882 val = 0;
883 p = valstr;
884 while (p && *p != '\0')
885 {
886 if (*p == '\r' || *p == '\n')
887 {
888 while (*p != '\0')
889 p++;
890 break;
891 }
892 if (isspace (*p))
893 {
894 p++;
895 continue;
896 }
897 if (!isxdigit (*p) && *p != 'x')
898 {
899 break;
900 }
901
902 val <<= 4;
903 val += fromhex (*p++);
904 }
905 monitor_debug ("Supplying Register %d %s\n", regno, valstr);
906
907 if (val == 0 && valstr == p)
908 error (_("monitor_supply_register (%d): bad value from monitor: %s."),
909 regno, valstr);
910
911 /* supply register stores in target byte order, so swap here */
912
913 store_unsigned_integer (regbuf, register_size (gdbarch, regno), byte_order,
914 val);
915
916 regcache_raw_supply (regcache, regno, regbuf);
917
918 return p;
919 }
920
921 /* Tell the remote machine to resume. */
922
923 static void
924 monitor_resume (struct target_ops *ops,
925 ptid_t ptid, int step, enum target_signal sig)
926 {
927 /* Some monitors require a different command when starting a program */
928 monitor_debug ("MON resume\n");
929 if (current_monitor->flags & MO_RUN_FIRST_TIME && first_time == 1)
930 {
931 first_time = 0;
932 monitor_printf ("run\r");
933 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
934 dump_reg_flag = 1;
935 return;
936 }
937 if (step)
938 monitor_printf (current_monitor->step);
939 else
940 {
941 if (current_monitor->continue_hook)
942 (*current_monitor->continue_hook) ();
943 else
944 monitor_printf (current_monitor->cont);
945 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
946 dump_reg_flag = 1;
947 }
948 }
949
950 /* Parse the output of a register dump command. A monitor specific
951 regexp is used to extract individual register descriptions of the
952 form REG=VAL. Each description is split up into a name and a value
953 string which are passed down to monitor specific code. */
954
955 static void
956 parse_register_dump (struct regcache *regcache, char *buf, int len)
957 {
958 monitor_debug ("MON Parsing register dump\n");
959 while (1)
960 {
961 int regnamelen, vallen;
962 char *regname, *val;
963 /* Element 0 points to start of register name, and element 1
964 points to the start of the register value. */
965 struct re_registers register_strings;
966
967 memset (&register_strings, 0, sizeof (struct re_registers));
968
969 if (re_search (&register_pattern, buf, len, 0, len,
970 &register_strings) == -1)
971 break;
972
973 regnamelen = register_strings.end[1] - register_strings.start[1];
974 regname = buf + register_strings.start[1];
975 vallen = register_strings.end[2] - register_strings.start[2];
976 val = buf + register_strings.start[2];
977
978 current_monitor->supply_register (regcache, regname, regnamelen,
979 val, vallen);
980
981 buf += register_strings.end[0];
982 len -= register_strings.end[0];
983 }
984 }
985
986 /* Send ^C to target to halt it. Target will respond, and send us a
987 packet. */
988
989 static void
990 monitor_interrupt (int signo)
991 {
992 /* If this doesn't work, try more severe steps. */
993 signal (signo, monitor_interrupt_twice);
994
995 if (monitor_debug_p || remote_debug)
996 fprintf_unfiltered (gdb_stdlog, "monitor_interrupt called\n");
997
998 target_stop (inferior_ptid);
999 }
1000
1001 /* The user typed ^C twice. */
1002
1003 static void
1004 monitor_interrupt_twice (int signo)
1005 {
1006 signal (signo, ofunc);
1007
1008 monitor_interrupt_query ();
1009
1010 signal (signo, monitor_interrupt);
1011 }
1012
1013 /* Ask the user what to do when an interrupt is received. */
1014
1015 static void
1016 monitor_interrupt_query (void)
1017 {
1018 target_terminal_ours ();
1019
1020 if (query (_("Interrupted while waiting for the program.\n\
1021 Give up (and stop debugging it)? ")))
1022 {
1023 target_mourn_inferior ();
1024 deprecated_throw_reason (RETURN_QUIT);
1025 }
1026
1027 target_terminal_inferior ();
1028 }
1029
1030 static void
1031 monitor_wait_cleanup (void *old_timeout)
1032 {
1033 timeout = *(int *) old_timeout;
1034 signal (SIGINT, ofunc);
1035 in_monitor_wait = 0;
1036 }
1037
1038
1039
1040 static void
1041 monitor_wait_filter (char *buf,
1042 int bufmax,
1043 int *ext_resp_len,
1044 struct target_waitstatus *status)
1045 {
1046 int resp_len;
1047 do
1048 {
1049 resp_len = monitor_expect_prompt (buf, bufmax);
1050 *ext_resp_len = resp_len;
1051
1052 if (resp_len <= 0)
1053 fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive response from monitor: %s.", buf);
1054 }
1055 while (resp_len < 0);
1056
1057 /* Print any output characters that were preceded by ^O. */
1058 /* FIXME - This would be great as a user settabgle flag */
1059 if (monitor_debug_p || remote_debug
1060 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1061 {
1062 int i;
1063
1064 for (i = 0; i < resp_len - 1; i++)
1065 if (buf[i] == 0x0f)
1066 putchar_unfiltered (buf[++i]);
1067 }
1068 }
1069
1070
1071
1072 /* Wait until the remote machine stops, then return, storing status in
1073 status just as `wait' would. */
1074
1075 static ptid_t
1076 monitor_wait (struct target_ops *ops,
1077 ptid_t ptid, struct target_waitstatus *status, int options)
1078 {
1079 int old_timeout = timeout;
1080 char buf[TARGET_BUF_SIZE];
1081 int resp_len;
1082 struct cleanup *old_chain;
1083
1084 status->kind = TARGET_WAITKIND_EXITED;
1085 status->value.integer = 0;
1086
1087 old_chain = make_cleanup (monitor_wait_cleanup, &old_timeout);
1088 monitor_debug ("MON wait\n");
1089
1090 #if 0
1091 /* This is somthing other than a maintenance command */
1092 in_monitor_wait = 1;
1093 timeout = watchdog > 0 ? watchdog : -1;
1094 #else
1095 timeout = -1; /* Don't time out -- user program is running. */
1096 #endif
1097
1098 ofunc = (void (*)()) signal (SIGINT, monitor_interrupt);
1099
1100 if (current_monitor->wait_filter)
1101 (*current_monitor->wait_filter) (buf, sizeof (buf), &resp_len, status);
1102 else
1103 monitor_wait_filter (buf, sizeof (buf), &resp_len, status);
1104
1105 #if 0 /* Transferred to monitor wait filter */
1106 do
1107 {
1108 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1109
1110 if (resp_len <= 0)
1111 fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive response from monitor: %s.", buf);
1112 }
1113 while (resp_len < 0);
1114
1115 /* Print any output characters that were preceded by ^O. */
1116 /* FIXME - This would be great as a user settabgle flag */
1117 if (monitor_debug_p || remote_debug
1118 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1119 {
1120 int i;
1121
1122 for (i = 0; i < resp_len - 1; i++)
1123 if (buf[i] == 0x0f)
1124 putchar_unfiltered (buf[++i]);
1125 }
1126 #endif
1127
1128 signal (SIGINT, ofunc);
1129
1130 timeout = old_timeout;
1131 #if 0
1132 if (dump_reg_flag && current_monitor->dump_registers)
1133 {
1134 dump_reg_flag = 0;
1135 monitor_printf (current_monitor->dump_registers);
1136 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1137 }
1138
1139 if (current_monitor->register_pattern)
1140 parse_register_dump (get_current_regcache (), buf, resp_len);
1141 #else
1142 monitor_debug ("Wait fetching registers after stop\n");
1143 monitor_dump_regs (get_current_regcache ());
1144 #endif
1145
1146 status->kind = TARGET_WAITKIND_STOPPED;
1147 status->value.sig = TARGET_SIGNAL_TRAP;
1148
1149 discard_cleanups (old_chain);
1150
1151 in_monitor_wait = 0;
1152
1153 return inferior_ptid;
1154 }
1155
1156 /* Fetch register REGNO, or all registers if REGNO is -1. Returns
1157 errno value. */
1158
1159 static void
1160 monitor_fetch_register (struct regcache *regcache, int regno)
1161 {
1162 const char *name;
1163 char *zerobuf;
1164 char *regbuf;
1165 int i;
1166
1167 regbuf = alloca (MAX_REGISTER_SIZE * 2 + 1);
1168 zerobuf = alloca (MAX_REGISTER_SIZE);
1169 memset (zerobuf, 0, MAX_REGISTER_SIZE);
1170
1171 if (current_monitor->regname != NULL)
1172 name = current_monitor->regname (regno);
1173 else
1174 name = current_monitor->regnames[regno];
1175 monitor_debug ("MON fetchreg %d '%s'\n", regno, name ? name : "(null name)");
1176
1177 if (!name || (*name == '\0'))
1178 {
1179 monitor_debug ("No register known for %d\n", regno);
1180 regcache_raw_supply (regcache, regno, zerobuf);
1181 return;
1182 }
1183
1184 /* send the register examine command */
1185
1186 monitor_printf (current_monitor->getreg.cmd, name);
1187
1188 /* If RESP_DELIM is specified, we search for that as a leading
1189 delimiter for the register value. Otherwise, we just start
1190 searching from the start of the buf. */
1191
1192 if (current_monitor->getreg.resp_delim)
1193 {
1194 monitor_debug ("EXP getreg.resp_delim\n");
1195 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1196 /* Handle case of first 32 registers listed in pairs. */
1197 if (current_monitor->flags & MO_32_REGS_PAIRED
1198 && (regno & 1) != 0 && regno < 32)
1199 {
1200 monitor_debug ("EXP getreg.resp_delim\n");
1201 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1202 }
1203 }
1204
1205 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set */
1206 if (current_monitor->flags & MO_HEX_PREFIX)
1207 {
1208 int c;
1209 c = readchar (timeout);
1210 while (c == ' ')
1211 c = readchar (timeout);
1212 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1213 ;
1214 else
1215 error (_("Bad value returned from monitor while fetching register %x."),
1216 regno);
1217 }
1218
1219 /* Read upto the maximum number of hex digits for this register, skipping
1220 spaces, but stop reading if something else is seen. Some monitors
1221 like to drop leading zeros. */
1222
1223 for (i = 0; i < register_size (get_regcache_arch (regcache), regno) * 2; i++)
1224 {
1225 int c;
1226 c = readchar (timeout);
1227 while (c == ' ')
1228 c = readchar (timeout);
1229
1230 if (!isxdigit (c))
1231 break;
1232
1233 regbuf[i] = c;
1234 }
1235
1236 regbuf[i] = '\000'; /* terminate the number */
1237 monitor_debug ("REGVAL '%s'\n", regbuf);
1238
1239 /* If TERM is present, we wait for that to show up. Also, (if TERM
1240 is present), we will send TERM_CMD if that is present. In any
1241 case, we collect all of the output into buf, and then wait for
1242 the normal prompt. */
1243
1244 if (current_monitor->getreg.term)
1245 {
1246 monitor_debug ("EXP getreg.term\n");
1247 monitor_expect (current_monitor->getreg.term, NULL, 0); /* get response */
1248 }
1249
1250 if (current_monitor->getreg.term_cmd)
1251 {
1252 monitor_debug ("EMIT getreg.term.cmd\n");
1253 monitor_printf (current_monitor->getreg.term_cmd);
1254 }
1255 if (!current_monitor->getreg.term || /* Already expected or */
1256 current_monitor->getreg.term_cmd) /* ack expected */
1257 monitor_expect_prompt (NULL, 0); /* get response */
1258
1259 monitor_supply_register (regcache, regno, regbuf);
1260 }
1261
1262 /* Sometimes, it takes several commands to dump the registers */
1263 /* This is a primitive for use by variations of monitor interfaces in
1264 case they need to compose the operation.
1265 */
1266 int
1267 monitor_dump_reg_block (struct regcache *regcache, char *block_cmd)
1268 {
1269 char buf[TARGET_BUF_SIZE];
1270 int resp_len;
1271 monitor_printf (block_cmd);
1272 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1273 parse_register_dump (regcache, buf, resp_len);
1274 return 1;
1275 }
1276
1277
1278 /* Read the remote registers into the block regs. */
1279 /* Call the specific function if it has been provided */
1280
1281 static void
1282 monitor_dump_regs (struct regcache *regcache)
1283 {
1284 char buf[TARGET_BUF_SIZE];
1285 int resp_len;
1286 if (current_monitor->dumpregs)
1287 (*(current_monitor->dumpregs)) (regcache); /* call supplied function */
1288 else if (current_monitor->dump_registers) /* default version */
1289 {
1290 monitor_printf (current_monitor->dump_registers);
1291 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1292 parse_register_dump (regcache, buf, resp_len);
1293 }
1294 else
1295 internal_error (__FILE__, __LINE__, _("failed internal consistency check")); /* Need some way to read registers */
1296 }
1297
1298 static void
1299 monitor_fetch_registers (struct target_ops *ops,
1300 struct regcache *regcache, int regno)
1301 {
1302 monitor_debug ("MON fetchregs\n");
1303 if (current_monitor->getreg.cmd)
1304 {
1305 if (regno >= 0)
1306 {
1307 monitor_fetch_register (regcache, regno);
1308 return;
1309 }
1310
1311 for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache));
1312 regno++)
1313 monitor_fetch_register (regcache, regno);
1314 }
1315 else
1316 {
1317 monitor_dump_regs (regcache);
1318 }
1319 }
1320
1321 /* Store register REGNO, or all if REGNO == 0. Return errno value. */
1322
1323 static void
1324 monitor_store_register (struct regcache *regcache, int regno)
1325 {
1326 int reg_size = register_size (get_regcache_arch (regcache), regno);
1327 const char *name;
1328 ULONGEST val;
1329
1330 if (current_monitor->regname != NULL)
1331 name = current_monitor->regname (regno);
1332 else
1333 name = current_monitor->regnames[regno];
1334
1335 if (!name || (*name == '\0'))
1336 {
1337 monitor_debug ("MON Cannot store unknown register\n");
1338 return;
1339 }
1340
1341 regcache_cooked_read_unsigned (regcache, regno, &val);
1342 monitor_debug ("MON storeg %d %s\n", regno, phex (val, reg_size));
1343
1344 /* send the register deposit command */
1345
1346 if (current_monitor->flags & MO_REGISTER_VALUE_FIRST)
1347 monitor_printf (current_monitor->setreg.cmd, val, name);
1348 else if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1349 monitor_printf (current_monitor->setreg.cmd, name);
1350 else
1351 monitor_printf (current_monitor->setreg.cmd, name, val);
1352
1353 if (current_monitor->setreg.resp_delim)
1354 {
1355 monitor_debug ("EXP setreg.resp_delim\n");
1356 monitor_expect_regexp (&setreg_resp_delim_pattern, NULL, 0);
1357 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1358 monitor_printf ("%s\r", phex_nz (val, reg_size));
1359 }
1360 if (current_monitor->setreg.term)
1361 {
1362 monitor_debug ("EXP setreg.term\n");
1363 monitor_expect (current_monitor->setreg.term, NULL, 0);
1364 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1365 monitor_printf ("%s\r", phex_nz (val, reg_size));
1366 monitor_expect_prompt (NULL, 0);
1367 }
1368 else
1369 monitor_expect_prompt (NULL, 0);
1370 if (current_monitor->setreg.term_cmd) /* Mode exit required */
1371 {
1372 monitor_debug ("EXP setreg_termcmd\n");
1373 monitor_printf ("%s", current_monitor->setreg.term_cmd);
1374 monitor_expect_prompt (NULL, 0);
1375 }
1376 } /* monitor_store_register */
1377
1378 /* Store the remote registers. */
1379
1380 static void
1381 monitor_store_registers (struct target_ops *ops,
1382 struct regcache *regcache, int regno)
1383 {
1384 if (regno >= 0)
1385 {
1386 monitor_store_register (regcache, regno);
1387 return;
1388 }
1389
1390 for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache));
1391 regno++)
1392 monitor_store_register (regcache, regno);
1393 }
1394
1395 /* Get ready to modify the registers array. On machines which store
1396 individual registers, this doesn't need to do anything. On machines
1397 which store all the registers in one fell swoop, this makes sure
1398 that registers contains all the registers from the program being
1399 debugged. */
1400
1401 static void
1402 monitor_prepare_to_store (struct regcache *regcache)
1403 {
1404 /* Do nothing, since we can store individual regs */
1405 }
1406
1407 static void
1408 monitor_files_info (struct target_ops *ops)
1409 {
1410 printf_unfiltered (_("\tAttached to %s at %d baud.\n"), dev_name, baud_rate);
1411 }
1412
1413 static int
1414 monitor_write_memory (CORE_ADDR memaddr, char *myaddr, int len)
1415 {
1416 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1417 unsigned int val, hostval;
1418 char *cmd;
1419 int i;
1420
1421 monitor_debug ("MON write %d %s\n", len, paddress (target_gdbarch, memaddr));
1422
1423 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1424 memaddr = gdbarch_addr_bits_remove (target_gdbarch, memaddr);
1425
1426 /* Use memory fill command for leading 0 bytes. */
1427
1428 if (current_monitor->fill)
1429 {
1430 for (i = 0; i < len; i++)
1431 if (myaddr[i] != 0)
1432 break;
1433
1434 if (i > 4) /* More than 4 zeros is worth doing */
1435 {
1436 monitor_debug ("MON FILL %d\n", i);
1437 if (current_monitor->flags & MO_FILL_USES_ADDR)
1438 monitor_printf (current_monitor->fill, memaddr, (memaddr + i) - 1, 0);
1439 else
1440 monitor_printf (current_monitor->fill, memaddr, i, 0);
1441
1442 monitor_expect_prompt (NULL, 0);
1443
1444 return i;
1445 }
1446 }
1447
1448 #if 0
1449 /* Can't actually use long longs if VAL is an int (nice idea, though). */
1450 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->setmem.cmdll)
1451 {
1452 len = 8;
1453 cmd = current_monitor->setmem.cmdll;
1454 }
1455 else
1456 #endif
1457 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->setmem.cmdl)
1458 {
1459 len = 4;
1460 cmd = current_monitor->setmem.cmdl;
1461 }
1462 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->setmem.cmdw)
1463 {
1464 len = 2;
1465 cmd = current_monitor->setmem.cmdw;
1466 }
1467 else
1468 {
1469 len = 1;
1470 cmd = current_monitor->setmem.cmdb;
1471 }
1472
1473 val = extract_unsigned_integer (myaddr, len, byte_order);
1474
1475 if (len == 4)
1476 {
1477 hostval = *(unsigned int *) myaddr;
1478 monitor_debug ("Hostval(%08x) val(%08x)\n", hostval, val);
1479 }
1480
1481
1482 if (current_monitor->flags & MO_NO_ECHO_ON_SETMEM)
1483 monitor_printf_noecho (cmd, memaddr, val);
1484 else if (current_monitor->flags & MO_SETMEM_INTERACTIVE)
1485 {
1486
1487 monitor_printf_noecho (cmd, memaddr);
1488
1489 if (current_monitor->setmem.resp_delim)
1490 {
1491 monitor_debug ("EXP setmem.resp_delim");
1492 monitor_expect_regexp (&setmem_resp_delim_pattern, NULL, 0);
1493 monitor_printf ("%x\r", val);
1494 }
1495 if (current_monitor->setmem.term)
1496 {
1497 monitor_debug ("EXP setmem.term");
1498 monitor_expect (current_monitor->setmem.term, NULL, 0);
1499 monitor_printf ("%x\r", val);
1500 }
1501 if (current_monitor->setmem.term_cmd)
1502 { /* Emit this to get out of the memory editing state */
1503 monitor_printf ("%s", current_monitor->setmem.term_cmd);
1504 /* Drop through to expecting a prompt */
1505 }
1506 }
1507 else
1508 monitor_printf (cmd, memaddr, val);
1509
1510 monitor_expect_prompt (NULL, 0);
1511
1512 return len;
1513 }
1514
1515
1516 static int
1517 monitor_write_memory_bytes (CORE_ADDR memaddr, char *myaddr, int len)
1518 {
1519 unsigned char val;
1520 int written = 0;
1521 if (len == 0)
1522 return 0;
1523 /* Enter the sub mode */
1524 monitor_printf (current_monitor->setmem.cmdb, memaddr);
1525 monitor_expect_prompt (NULL, 0);
1526 while (len)
1527 {
1528 val = *myaddr;
1529 monitor_printf ("%x\r", val);
1530 myaddr++;
1531 memaddr++;
1532 written++;
1533 /* If we wanted to, here we could validate the address */
1534 monitor_expect_prompt (NULL, 0);
1535 len--;
1536 }
1537 /* Now exit the sub mode */
1538 monitor_printf (current_monitor->getreg.term_cmd);
1539 monitor_expect_prompt (NULL, 0);
1540 return written;
1541 }
1542
1543
1544 static void
1545 longlongendswap (unsigned char *a)
1546 {
1547 int i, j;
1548 unsigned char x;
1549 i = 0;
1550 j = 7;
1551 while (i < 4)
1552 {
1553 x = *(a + i);
1554 *(a + i) = *(a + j);
1555 *(a + j) = x;
1556 i++, j--;
1557 }
1558 }
1559 /* Format 32 chars of long long value, advance the pointer */
1560 static char *hexlate = "0123456789abcdef";
1561 static char *
1562 longlong_hexchars (unsigned long long value,
1563 char *outbuff)
1564 {
1565 if (value == 0)
1566 {
1567 *outbuff++ = '0';
1568 return outbuff;
1569 }
1570 else
1571 {
1572 static unsigned char disbuf[8]; /* disassembly buffer */
1573 unsigned char *scan, *limit; /* loop controls */
1574 unsigned char c, nib;
1575 int leadzero = 1;
1576 scan = disbuf;
1577 limit = scan + 8;
1578 {
1579 unsigned long long *dp;
1580 dp = (unsigned long long *) scan;
1581 *dp = value;
1582 }
1583 longlongendswap (disbuf); /* FIXME: ONly on big endian hosts */
1584 while (scan < limit)
1585 {
1586 c = *scan++; /* a byte of our long long value */
1587 if (leadzero)
1588 {
1589 if (c == 0)
1590 continue;
1591 else
1592 leadzero = 0; /* henceforth we print even zeroes */
1593 }
1594 nib = c >> 4; /* high nibble bits */
1595 *outbuff++ = hexlate[nib];
1596 nib = c & 0x0f; /* low nibble bits */
1597 *outbuff++ = hexlate[nib];
1598 }
1599 return outbuff;
1600 }
1601 } /* longlong_hexchars */
1602
1603
1604
1605 /* I am only going to call this when writing virtual byte streams.
1606 Which possably entails endian conversions
1607 */
1608 static int
1609 monitor_write_memory_longlongs (CORE_ADDR memaddr, char *myaddr, int len)
1610 {
1611 static char hexstage[20]; /* At least 16 digits required, plus null */
1612 char *endstring;
1613 long long *llptr;
1614 long long value;
1615 int written = 0;
1616 llptr = (unsigned long long *) myaddr;
1617 if (len == 0)
1618 return 0;
1619 monitor_printf (current_monitor->setmem.cmdll, memaddr);
1620 monitor_expect_prompt (NULL, 0);
1621 while (len >= 8)
1622 {
1623 value = *llptr;
1624 endstring = longlong_hexchars (*llptr, hexstage);
1625 *endstring = '\0'; /* NUll terminate for printf */
1626 monitor_printf ("%s\r", hexstage);
1627 llptr++;
1628 memaddr += 8;
1629 written += 8;
1630 /* If we wanted to, here we could validate the address */
1631 monitor_expect_prompt (NULL, 0);
1632 len -= 8;
1633 }
1634 /* Now exit the sub mode */
1635 monitor_printf (current_monitor->getreg.term_cmd);
1636 monitor_expect_prompt (NULL, 0);
1637 return written;
1638 } /* */
1639
1640
1641
1642 /* ----- MONITOR_WRITE_MEMORY_BLOCK ---------------------------- */
1643 /* This is for the large blocks of memory which may occur in downloading.
1644 And for monitors which use interactive entry,
1645 And for monitors which do not have other downloading methods.
1646 Without this, we will end up calling monitor_write_memory many times
1647 and do the entry and exit of the sub mode many times
1648 This currently assumes...
1649 MO_SETMEM_INTERACTIVE
1650 ! MO_NO_ECHO_ON_SETMEM
1651 To use this, the you have to patch the monitor_cmds block with
1652 this function. Otherwise, its not tuned up for use by all
1653 monitor variations.
1654 */
1655
1656 static int
1657 monitor_write_memory_block (CORE_ADDR memaddr, char *myaddr, int len)
1658 {
1659 int written;
1660 written = 0;
1661 /* FIXME: This would be a good place to put the zero test */
1662 #if 1
1663 if ((len > 8) && (((len & 0x07)) == 0) && current_monitor->setmem.cmdll)
1664 {
1665 return monitor_write_memory_longlongs (memaddr, myaddr, len);
1666 }
1667 #endif
1668 written = monitor_write_memory_bytes (memaddr, myaddr, len);
1669 return written;
1670 }
1671
1672 /* This is an alternate form of monitor_read_memory which is used for monitors
1673 which can only read a single byte/word/etc. at a time. */
1674
1675 static int
1676 monitor_read_memory_single (CORE_ADDR memaddr, char *myaddr, int len)
1677 {
1678 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1679 unsigned int val;
1680 char membuf[sizeof (int) * 2 + 1];
1681 char *p;
1682 char *cmd;
1683
1684 monitor_debug ("MON read single\n");
1685 #if 0
1686 /* Can't actually use long longs (nice idea, though). In fact, the
1687 call to strtoul below will fail if it tries to convert a value
1688 that's too big to fit in a long. */
1689 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->getmem.cmdll)
1690 {
1691 len = 8;
1692 cmd = current_monitor->getmem.cmdll;
1693 }
1694 else
1695 #endif
1696 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->getmem.cmdl)
1697 {
1698 len = 4;
1699 cmd = current_monitor->getmem.cmdl;
1700 }
1701 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->getmem.cmdw)
1702 {
1703 len = 2;
1704 cmd = current_monitor->getmem.cmdw;
1705 }
1706 else
1707 {
1708 len = 1;
1709 cmd = current_monitor->getmem.cmdb;
1710 }
1711
1712 /* Send the examine command. */
1713
1714 monitor_printf (cmd, memaddr);
1715
1716 /* If RESP_DELIM is specified, we search for that as a leading
1717 delimiter for the memory value. Otherwise, we just start
1718 searching from the start of the buf. */
1719
1720 if (current_monitor->getmem.resp_delim)
1721 {
1722 monitor_debug ("EXP getmem.resp_delim\n");
1723 monitor_expect_regexp (&getmem_resp_delim_pattern, NULL, 0);
1724 }
1725
1726 /* Now, read the appropriate number of hex digits for this loc,
1727 skipping spaces. */
1728
1729 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */
1730 if (current_monitor->flags & MO_HEX_PREFIX)
1731 {
1732 int c;
1733
1734 c = readchar (timeout);
1735 while (c == ' ')
1736 c = readchar (timeout);
1737 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1738 ;
1739 else
1740 monitor_error ("monitor_read_memory_single",
1741 "bad response from monitor",
1742 memaddr, 0, NULL, 0);
1743 }
1744
1745 {
1746 int i;
1747 for (i = 0; i < len * 2; i++)
1748 {
1749 int c;
1750
1751 while (1)
1752 {
1753 c = readchar (timeout);
1754 if (isxdigit (c))
1755 break;
1756 if (c == ' ')
1757 continue;
1758
1759 monitor_error ("monitor_read_memory_single",
1760 "bad response from monitor",
1761 memaddr, i, membuf, 0);
1762 }
1763 membuf[i] = c;
1764 }
1765 membuf[i] = '\000'; /* terminate the number */
1766 }
1767
1768 /* If TERM is present, we wait for that to show up. Also, (if TERM is
1769 present), we will send TERM_CMD if that is present. In any case, we collect
1770 all of the output into buf, and then wait for the normal prompt. */
1771
1772 if (current_monitor->getmem.term)
1773 {
1774 monitor_expect (current_monitor->getmem.term, NULL, 0); /* get response */
1775
1776 if (current_monitor->getmem.term_cmd)
1777 {
1778 monitor_printf (current_monitor->getmem.term_cmd);
1779 monitor_expect_prompt (NULL, 0);
1780 }
1781 }
1782 else
1783 monitor_expect_prompt (NULL, 0); /* get response */
1784
1785 p = membuf;
1786 val = strtoul (membuf, &p, 16);
1787
1788 if (val == 0 && membuf == p)
1789 monitor_error ("monitor_read_memory_single",
1790 "bad value from monitor",
1791 memaddr, 0, membuf, 0);
1792
1793 /* supply register stores in target byte order, so swap here */
1794
1795 store_unsigned_integer (myaddr, len, byte_order, val);
1796
1797 return len;
1798 }
1799
1800 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
1801 memory at MEMADDR. Returns length moved. Currently, we do no more
1802 than 16 bytes at a time. */
1803
1804 static int
1805 monitor_read_memory (CORE_ADDR memaddr, char *myaddr, int len)
1806 {
1807 unsigned int val;
1808 char buf[512];
1809 char *p, *p1;
1810 int resp_len;
1811 int i;
1812 CORE_ADDR dumpaddr;
1813
1814 if (len <= 0)
1815 {
1816 monitor_debug ("Zero length call to monitor_read_memory\n");
1817 return 0;
1818 }
1819
1820 monitor_debug ("MON read block ta(%s) ha(%lx) %d\n",
1821 paddress (target_gdbarch, memaddr), (long) myaddr, len);
1822
1823 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1824 memaddr = gdbarch_addr_bits_remove (target_gdbarch, memaddr);
1825
1826 if (current_monitor->flags & MO_GETMEM_READ_SINGLE)
1827 return monitor_read_memory_single (memaddr, myaddr, len);
1828
1829 len = min (len, 16);
1830
1831 /* Some dumpers align the first data with the preceeding 16
1832 byte boundary. Some print blanks and start at the
1833 requested boundary. EXACT_DUMPADDR
1834 */
1835
1836 dumpaddr = (current_monitor->flags & MO_EXACT_DUMPADDR)
1837 ? memaddr : memaddr & ~0x0f;
1838
1839 /* See if xfer would cross a 16 byte boundary. If so, clip it. */
1840 if (((memaddr ^ (memaddr + len - 1)) & ~0xf) != 0)
1841 len = ((memaddr + len) & ~0xf) - memaddr;
1842
1843 /* send the memory examine command */
1844
1845 if (current_monitor->flags & MO_GETMEM_NEEDS_RANGE)
1846 monitor_printf (current_monitor->getmem.cmdb, memaddr, memaddr + len);
1847 else if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1848 monitor_printf (current_monitor->getmem.cmdb, dumpaddr);
1849 else
1850 monitor_printf (current_monitor->getmem.cmdb, memaddr, len);
1851
1852 /* If TERM is present, we wait for that to show up. Also, (if TERM
1853 is present), we will send TERM_CMD if that is present. In any
1854 case, we collect all of the output into buf, and then wait for
1855 the normal prompt. */
1856
1857 if (current_monitor->getmem.term)
1858 {
1859 resp_len = monitor_expect (current_monitor->getmem.term, buf, sizeof buf); /* get response */
1860
1861 if (resp_len <= 0)
1862 monitor_error ("monitor_read_memory",
1863 "excessive response from monitor",
1864 memaddr, resp_len, buf, 0);
1865
1866 if (current_monitor->getmem.term_cmd)
1867 {
1868 serial_write (monitor_desc, current_monitor->getmem.term_cmd,
1869 strlen (current_monitor->getmem.term_cmd));
1870 monitor_expect_prompt (NULL, 0);
1871 }
1872 }
1873 else
1874 resp_len = monitor_expect_prompt (buf, sizeof buf); /* get response */
1875
1876 p = buf;
1877
1878 /* If RESP_DELIM is specified, we search for that as a leading
1879 delimiter for the values. Otherwise, we just start searching
1880 from the start of the buf. */
1881
1882 if (current_monitor->getmem.resp_delim)
1883 {
1884 int retval, tmp;
1885 struct re_registers resp_strings;
1886 monitor_debug ("MON getmem.resp_delim %s\n", current_monitor->getmem.resp_delim);
1887
1888 memset (&resp_strings, 0, sizeof (struct re_registers));
1889 tmp = strlen (p);
1890 retval = re_search (&getmem_resp_delim_pattern, p, tmp, 0, tmp,
1891 &resp_strings);
1892
1893 if (retval < 0)
1894 monitor_error ("monitor_read_memory",
1895 "bad response from monitor",
1896 memaddr, resp_len, buf, 0);
1897
1898 p += resp_strings.end[0];
1899 #if 0
1900 p = strstr (p, current_monitor->getmem.resp_delim);
1901 if (!p)
1902 monitor_error ("monitor_read_memory",
1903 "bad response from monitor",
1904 memaddr, resp_len, buf, 0);
1905 p += strlen (current_monitor->getmem.resp_delim);
1906 #endif
1907 }
1908 monitor_debug ("MON scanning %d ,%lx '%s'\n", len, (long) p, p);
1909 if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1910 {
1911 char c;
1912 int fetched = 0;
1913 i = len;
1914 c = *p;
1915
1916
1917 while (!(c == '\000' || c == '\n' || c == '\r') && i > 0)
1918 {
1919 if (isxdigit (c))
1920 {
1921 if ((dumpaddr >= memaddr) && (i > 0))
1922 {
1923 val = fromhex (c) * 16 + fromhex (*(p + 1));
1924 *myaddr++ = val;
1925 if (monitor_debug_p || remote_debug)
1926 fprintf_unfiltered (gdb_stdlog, "[%02x]", val);
1927 --i;
1928 fetched++;
1929 }
1930 ++dumpaddr;
1931 ++p;
1932 }
1933 ++p; /* skip a blank or other non hex char */
1934 c = *p;
1935 }
1936 if (fetched == 0)
1937 error (_("Failed to read via monitor"));
1938 if (monitor_debug_p || remote_debug)
1939 fprintf_unfiltered (gdb_stdlog, "\n");
1940 return fetched; /* Return the number of bytes actually read */
1941 }
1942 monitor_debug ("MON scanning bytes\n");
1943
1944 for (i = len; i > 0; i--)
1945 {
1946 /* Skip non-hex chars, but bomb on end of string and newlines */
1947
1948 while (1)
1949 {
1950 if (isxdigit (*p))
1951 break;
1952
1953 if (*p == '\000' || *p == '\n' || *p == '\r')
1954 monitor_error ("monitor_read_memory",
1955 "badly terminated response from monitor",
1956 memaddr, resp_len, buf, 0);
1957 p++;
1958 }
1959
1960 val = strtoul (p, &p1, 16);
1961
1962 if (val == 0 && p == p1)
1963 monitor_error ("monitor_read_memory",
1964 "bad value from monitor",
1965 memaddr, resp_len, buf, 0);
1966
1967 *myaddr++ = val;
1968
1969 if (i == 1)
1970 break;
1971
1972 p = p1;
1973 }
1974
1975 return len;
1976 }
1977
1978 /* Transfer LEN bytes between target address MEMADDR and GDB address
1979 MYADDR. Returns 0 for success, errno code for failure. TARGET is
1980 unused. */
1981
1982 static int
1983 monitor_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int write,
1984 struct mem_attrib *attrib, struct target_ops *target)
1985 {
1986 int res;
1987
1988 if (write)
1989 {
1990 if (current_monitor->flags & MO_HAS_BLOCKWRITES)
1991 res = monitor_write_memory_block(memaddr, myaddr, len);
1992 else
1993 res = monitor_write_memory(memaddr, myaddr, len);
1994 }
1995 else
1996 {
1997 res = monitor_read_memory(memaddr, myaddr, len);
1998 }
1999
2000 return res;
2001 }
2002
2003 static void
2004 monitor_kill (struct target_ops *ops)
2005 {
2006 return; /* ignore attempts to kill target system */
2007 }
2008
2009 /* All we actually do is set the PC to the start address of exec_bfd. */
2010
2011 static void
2012 monitor_create_inferior (struct target_ops *ops, char *exec_file,
2013 char *args, char **env, int from_tty)
2014 {
2015 if (args && (*args != '\000'))
2016 error (_("Args are not supported by the monitor."));
2017
2018 first_time = 1;
2019 clear_proceed_status ();
2020 regcache_write_pc (get_current_regcache (),
2021 bfd_get_start_address (exec_bfd));
2022 }
2023
2024 /* Clean up when a program exits.
2025 The program actually lives on in the remote processor's RAM, and may be
2026 run again without a download. Don't leave it full of breakpoint
2027 instructions. */
2028
2029 static void
2030 monitor_mourn_inferior (struct target_ops *ops)
2031 {
2032 unpush_target (targ_ops);
2033 generic_mourn_inferior (); /* Do all the proper things now */
2034 delete_thread_silent (monitor_ptid);
2035 }
2036
2037 /* Tell the monitor to add a breakpoint. */
2038
2039 static int
2040 monitor_insert_breakpoint (struct gdbarch *gdbarch,
2041 struct bp_target_info *bp_tgt)
2042 {
2043 CORE_ADDR addr = bp_tgt->placed_address;
2044 int i;
2045 int bplen;
2046
2047 monitor_debug ("MON inst bkpt %s\n", paddress (gdbarch, addr));
2048 if (current_monitor->set_break == NULL)
2049 error (_("No set_break defined for this monitor"));
2050
2051 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
2052 addr = gdbarch_addr_bits_remove (gdbarch, addr);
2053
2054 /* Determine appropriate breakpoint size for this address. */
2055 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
2056 bp_tgt->placed_address = addr;
2057 bp_tgt->placed_size = bplen;
2058
2059 for (i = 0; i < current_monitor->num_breakpoints; i++)
2060 {
2061 if (breakaddr[i] == 0)
2062 {
2063 breakaddr[i] = addr;
2064 monitor_printf (current_monitor->set_break, addr);
2065 monitor_expect_prompt (NULL, 0);
2066 return 0;
2067 }
2068 }
2069
2070 error (_("Too many breakpoints (> %d) for monitor."), current_monitor->num_breakpoints);
2071 }
2072
2073 /* Tell the monitor to remove a breakpoint. */
2074
2075 static int
2076 monitor_remove_breakpoint (struct gdbarch *gdbarch,
2077 struct bp_target_info *bp_tgt)
2078 {
2079 CORE_ADDR addr = bp_tgt->placed_address;
2080 int i;
2081
2082 monitor_debug ("MON rmbkpt %s\n", paddress (gdbarch, addr));
2083 if (current_monitor->clr_break == NULL)
2084 error (_("No clr_break defined for this monitor"));
2085
2086 for (i = 0; i < current_monitor->num_breakpoints; i++)
2087 {
2088 if (breakaddr[i] == addr)
2089 {
2090 breakaddr[i] = 0;
2091 /* some monitors remove breakpoints based on the address */
2092 if (current_monitor->flags & MO_CLR_BREAK_USES_ADDR)
2093 monitor_printf (current_monitor->clr_break, addr);
2094 else if (current_monitor->flags & MO_CLR_BREAK_1_BASED)
2095 monitor_printf (current_monitor->clr_break, i + 1);
2096 else
2097 monitor_printf (current_monitor->clr_break, i);
2098 monitor_expect_prompt (NULL, 0);
2099 return 0;
2100 }
2101 }
2102 fprintf_unfiltered (gdb_stderr,
2103 "Can't find breakpoint associated with %s\n",
2104 paddress (gdbarch, addr));
2105 return 1;
2106 }
2107
2108 /* monitor_wait_srec_ack -- wait for the target to send an acknowledgement for
2109 an S-record. Return non-zero if the ACK is received properly. */
2110
2111 static int
2112 monitor_wait_srec_ack (void)
2113 {
2114 int ch;
2115
2116 if (current_monitor->flags & MO_SREC_ACK_PLUS)
2117 {
2118 return (readchar (timeout) == '+');
2119 }
2120 else if (current_monitor->flags & MO_SREC_ACK_ROTATE)
2121 {
2122 /* Eat two backspaces, a "rotating" char (|/-\), and a space. */
2123 if ((ch = readchar (1)) < 0)
2124 return 0;
2125 if ((ch = readchar (1)) < 0)
2126 return 0;
2127 if ((ch = readchar (1)) < 0)
2128 return 0;
2129 if ((ch = readchar (1)) < 0)
2130 return 0;
2131 }
2132 return 1;
2133 }
2134
2135 /* monitor_load -- download a file. */
2136
2137 static void
2138 monitor_load (char *file, int from_tty)
2139 {
2140 monitor_debug ("MON load\n");
2141
2142 if (current_monitor->load_routine)
2143 current_monitor->load_routine (monitor_desc, file, hashmark);
2144 else
2145 { /* The default is ascii S-records */
2146 int n;
2147 unsigned long load_offset;
2148 char buf[128];
2149
2150 /* enable user to specify address for downloading as 2nd arg to load */
2151 n = sscanf (file, "%s 0x%lx", buf, &load_offset);
2152 if (n > 1)
2153 file = buf;
2154 else
2155 load_offset = 0;
2156
2157 monitor_printf (current_monitor->load);
2158 if (current_monitor->loadresp)
2159 monitor_expect (current_monitor->loadresp, NULL, 0);
2160
2161 load_srec (monitor_desc, file, (bfd_vma) load_offset,
2162 32, SREC_ALL, hashmark,
2163 current_monitor->flags & MO_SREC_ACK ?
2164 monitor_wait_srec_ack : NULL);
2165
2166 monitor_expect_prompt (NULL, 0);
2167 }
2168
2169 /* Finally, make the PC point at the start address */
2170 if (exec_bfd)
2171 regcache_write_pc (get_current_regcache (),
2172 bfd_get_start_address (exec_bfd));
2173
2174 /* There used to be code here which would clear inferior_ptid and
2175 call clear_symtab_users. None of that should be necessary:
2176 monitor targets should behave like remote protocol targets, and
2177 since generic_load does none of those things, this function
2178 shouldn't either.
2179
2180 Furthermore, clearing inferior_ptid is *incorrect*. After doing
2181 a load, we still have a valid connection to the monitor, with a
2182 live processor state to fiddle with. The user can type
2183 `continue' or `jump *start' and make the program run. If they do
2184 these things, however, GDB will be talking to a running program
2185 while inferior_ptid is null_ptid; this makes things like
2186 reinit_frame_cache very confused. */
2187 }
2188
2189 static void
2190 monitor_stop (ptid_t ptid)
2191 {
2192 monitor_debug ("MON stop\n");
2193 if ((current_monitor->flags & MO_SEND_BREAK_ON_STOP) != 0)
2194 serial_send_break (monitor_desc);
2195 if (current_monitor->stop)
2196 monitor_printf_noecho (current_monitor->stop);
2197 }
2198
2199 /* Put a COMMAND string out to MONITOR. Output from MONITOR is placed
2200 in OUTPUT until the prompt is seen. FIXME: We read the characters
2201 ourseleves here cause of a nasty echo. */
2202
2203 static void
2204 monitor_rcmd (char *command,
2205 struct ui_file *outbuf)
2206 {
2207 char *p;
2208 int resp_len;
2209 char buf[1000];
2210
2211 if (monitor_desc == NULL)
2212 error (_("monitor target not open."));
2213
2214 p = current_monitor->prompt;
2215
2216 /* Send the command. Note that if no args were supplied, then we're
2217 just sending the monitor a newline, which is sometimes useful. */
2218
2219 monitor_printf ("%s\r", (command ? command : ""));
2220
2221 resp_len = monitor_expect_prompt (buf, sizeof buf);
2222
2223 fputs_unfiltered (buf, outbuf); /* Output the response */
2224 }
2225
2226 /* Convert hex digit A to a number. */
2227
2228 #if 0
2229 static int
2230 from_hex (int a)
2231 {
2232 if (a >= '0' && a <= '9')
2233 return a - '0';
2234 if (a >= 'a' && a <= 'f')
2235 return a - 'a' + 10;
2236 if (a >= 'A' && a <= 'F')
2237 return a - 'A' + 10;
2238
2239 error (_("Reply contains invalid hex digit 0x%x"), a);
2240 }
2241 #endif
2242
2243 char *
2244 monitor_get_dev_name (void)
2245 {
2246 return dev_name;
2247 }
2248
2249 /* Check to see if a thread is still alive. */
2250
2251 static int
2252 monitor_thread_alive (struct target_ops *ops, ptid_t ptid)
2253 {
2254 if (ptid_equal (ptid, monitor_ptid))
2255 /* The monitor's task is always alive. */
2256 return 1;
2257
2258 return 0;
2259 }
2260
2261 /* Convert a thread ID to a string. Returns the string in a static
2262 buffer. */
2263
2264 static char *
2265 monitor_pid_to_str (struct target_ops *ops, ptid_t ptid)
2266 {
2267 static char buf[64];
2268
2269 if (ptid_equal (monitor_ptid, ptid))
2270 {
2271 xsnprintf (buf, sizeof buf, "Thread <main>");
2272 return buf;
2273 }
2274
2275 return normal_pid_to_str (ptid);
2276 }
2277
2278 static struct target_ops monitor_ops;
2279
2280 static void
2281 init_base_monitor_ops (void)
2282 {
2283 monitor_ops.to_close = monitor_close;
2284 monitor_ops.to_detach = monitor_detach;
2285 monitor_ops.to_resume = monitor_resume;
2286 monitor_ops.to_wait = monitor_wait;
2287 monitor_ops.to_fetch_registers = monitor_fetch_registers;
2288 monitor_ops.to_store_registers = monitor_store_registers;
2289 monitor_ops.to_prepare_to_store = monitor_prepare_to_store;
2290 monitor_ops.deprecated_xfer_memory = monitor_xfer_memory;
2291 monitor_ops.to_files_info = monitor_files_info;
2292 monitor_ops.to_insert_breakpoint = monitor_insert_breakpoint;
2293 monitor_ops.to_remove_breakpoint = monitor_remove_breakpoint;
2294 monitor_ops.to_kill = monitor_kill;
2295 monitor_ops.to_load = monitor_load;
2296 monitor_ops.to_create_inferior = monitor_create_inferior;
2297 monitor_ops.to_mourn_inferior = monitor_mourn_inferior;
2298 monitor_ops.to_stop = monitor_stop;
2299 monitor_ops.to_rcmd = monitor_rcmd;
2300 monitor_ops.to_log_command = serial_log_command;
2301 monitor_ops.to_thread_alive = monitor_thread_alive;
2302 monitor_ops.to_pid_to_str = monitor_pid_to_str;
2303 monitor_ops.to_stratum = process_stratum;
2304 monitor_ops.to_has_all_memory = default_child_has_all_memory;
2305 monitor_ops.to_has_memory = default_child_has_memory;
2306 monitor_ops.to_has_stack = default_child_has_stack;
2307 monitor_ops.to_has_registers = default_child_has_registers;
2308 monitor_ops.to_has_execution = default_child_has_execution;
2309 monitor_ops.to_magic = OPS_MAGIC;
2310 } /* init_base_monitor_ops */
2311
2312 /* Init the target_ops structure pointed at by OPS */
2313
2314 void
2315 init_monitor_ops (struct target_ops *ops)
2316 {
2317 if (monitor_ops.to_magic != OPS_MAGIC)
2318 init_base_monitor_ops ();
2319
2320 memcpy (ops, &monitor_ops, sizeof monitor_ops);
2321 }
2322
2323 /* Define additional commands that are usually only used by monitors. */
2324
2325 extern initialize_file_ftype _initialize_remote_monitors; /* -Wmissing-prototypes */
2326
2327 void
2328 _initialize_remote_monitors (void)
2329 {
2330 init_base_monitor_ops ();
2331 add_setshow_boolean_cmd ("hash", no_class, &hashmark, _("\
2332 Set display of activity while downloading a file."), _("\
2333 Show display of activity while downloading a file."), _("\
2334 When enabled, a hashmark \'#\' is displayed."),
2335 NULL,
2336 NULL, /* FIXME: i18n: */
2337 &setlist, &showlist);
2338
2339 add_setshow_zinteger_cmd ("monitor", no_class, &monitor_debug_p, _("\
2340 Set debugging of remote monitor communication."), _("\
2341 Show debugging of remote monitor communication."), _("\
2342 When enabled, communication between GDB and the remote monitor\n\
2343 is displayed."),
2344 NULL,
2345 NULL, /* FIXME: i18n: */
2346 &setdebuglist, &showdebuglist);
2347
2348 /* Yes, 42000 is arbitrary. The only sense out of it, is that it
2349 isn't 0. */
2350 monitor_ptid = ptid_build (42000, 0, 42000);
2351 }
This page took 0.076277 seconds and 4 git commands to generate.