2010-05-15 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / monitor.c
1 /* Remote debugging interface for boot monitors, for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support. Written by Rob Savoye for Cygnus.
8 Resurrected from the ashes by Stu Grossman.
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24
25 /* This file was derived from various remote-* modules. It is a collection
26 of generic support functions so GDB can talk directly to a ROM based
27 monitor. This saves use from having to hack an exception based handler
28 into existence, and makes for quick porting.
29
30 This module talks to a debug monitor called 'MONITOR', which
31 We communicate with MONITOR via either a direct serial line, or a TCP
32 (or possibly TELNET) stream to a terminal multiplexor,
33 which in turn talks to the target board. */
34
35 /* FIXME 32x64: This code assumes that registers and addresses are at
36 most 32 bits long. If they can be larger, you will need to declare
37 values as LONGEST and use %llx or some such to print values when
38 building commands to send to the monitor. Since we don't know of
39 any actual 64-bit targets with ROM monitors that use this code,
40 it's not an issue right now. -sts 4/18/96 */
41
42 #include "defs.h"
43 #include "gdbcore.h"
44 #include "target.h"
45 #include "exceptions.h"
46 #include <signal.h>
47 #include <ctype.h>
48 #include "gdb_string.h"
49 #include <sys/types.h>
50 #include "command.h"
51 #include "serial.h"
52 #include "monitor.h"
53 #include "gdbcmd.h"
54 #include "inferior.h"
55 #include "gdb_regex.h"
56 #include "srec.h"
57 #include "regcache.h"
58 #include "gdbthread.h"
59
60 static char *dev_name;
61 static struct target_ops *targ_ops;
62
63 static void monitor_interrupt_query (void);
64 static void monitor_interrupt_twice (int);
65 static void monitor_stop (ptid_t);
66 static void monitor_dump_regs (struct regcache *regcache);
67
68 #if 0
69 static int from_hex (int a);
70 #endif
71
72 static struct monitor_ops *current_monitor;
73
74 static int hashmark; /* flag set by "set hash" */
75
76 static int timeout = 30;
77
78 static int in_monitor_wait = 0; /* Non-zero means we are in monitor_wait() */
79
80 static void (*ofunc) (); /* Old SIGINT signal handler */
81
82 static CORE_ADDR *breakaddr;
83
84 /* Descriptor for I/O to remote machine. Initialize it to NULL so
85 that monitor_open knows that we don't have a file open when the
86 program starts. */
87
88 static struct serial *monitor_desc = NULL;
89
90 /* Pointer to regexp pattern matching data */
91
92 static struct re_pattern_buffer register_pattern;
93 static char register_fastmap[256];
94
95 static struct re_pattern_buffer getmem_resp_delim_pattern;
96 static char getmem_resp_delim_fastmap[256];
97
98 static struct re_pattern_buffer setmem_resp_delim_pattern;
99 static char setmem_resp_delim_fastmap[256];
100
101 static struct re_pattern_buffer setreg_resp_delim_pattern;
102 static char setreg_resp_delim_fastmap[256];
103
104 static int dump_reg_flag; /* Non-zero means do a dump_registers cmd when
105 monitor_wait wakes up. */
106
107 static int first_time = 0; /* is this the first time we're executing after
108 gaving created the child proccess? */
109
110
111 /* This is the ptid we use while we're connected to a monitor. Its
112 value is arbitrary, as monitor targets don't have a notion of
113 processes or threads, but we need something non-null to place in
114 inferior_ptid. */
115 static ptid_t monitor_ptid;
116
117 #define TARGET_BUF_SIZE 2048
118
119 /* Monitor specific debugging information. Typically only useful to
120 the developer of a new monitor interface. */
121
122 static void monitor_debug (const char *fmt, ...) ATTRIBUTE_PRINTF (1, 2);
123
124 static int monitor_debug_p = 0;
125
126 /* NOTE: This file alternates between monitor_debug_p and remote_debug
127 when determining if debug information is printed. Perhaps this
128 could be simplified. */
129
130 static void
131 monitor_debug (const char *fmt, ...)
132 {
133 if (monitor_debug_p)
134 {
135 va_list args;
136
137 va_start (args, fmt);
138 vfprintf_filtered (gdb_stdlog, fmt, args);
139 va_end (args);
140 }
141 }
142
143
144 /* Convert a string into a printable representation, Return # byte in
145 the new string. When LEN is >0 it specifies the size of the
146 string. Otherwize strlen(oldstr) is used. */
147
148 static void
149 monitor_printable_string (char *newstr, char *oldstr, int len)
150 {
151 int ch;
152 int i;
153
154 if (len <= 0)
155 len = strlen (oldstr);
156
157 for (i = 0; i < len; i++)
158 {
159 ch = oldstr[i];
160 switch (ch)
161 {
162 default:
163 if (isprint (ch))
164 *newstr++ = ch;
165
166 else
167 {
168 sprintf (newstr, "\\x%02x", ch & 0xff);
169 newstr += 4;
170 }
171 break;
172
173 case '\\':
174 *newstr++ = '\\';
175 *newstr++ = '\\';
176 break;
177 case '\b':
178 *newstr++ = '\\';
179 *newstr++ = 'b';
180 break;
181 case '\f':
182 *newstr++ = '\\';
183 *newstr++ = 't';
184 break;
185 case '\n':
186 *newstr++ = '\\';
187 *newstr++ = 'n';
188 break;
189 case '\r':
190 *newstr++ = '\\';
191 *newstr++ = 'r';
192 break;
193 case '\t':
194 *newstr++ = '\\';
195 *newstr++ = 't';
196 break;
197 case '\v':
198 *newstr++ = '\\';
199 *newstr++ = 'v';
200 break;
201 }
202 }
203
204 *newstr++ = '\0';
205 }
206
207 /* Print monitor errors with a string, converting the string to printable
208 representation. */
209
210 static void
211 monitor_error (char *function, char *message,
212 CORE_ADDR memaddr, int len, char *string, int final_char)
213 {
214 int real_len = (len == 0 && string != (char *) 0) ? strlen (string) : len;
215 char *safe_string = alloca ((real_len * 4) + 1);
216
217 monitor_printable_string (safe_string, string, real_len);
218
219 if (final_char)
220 error (_("%s (%s): %s: %s%c"),
221 function, paddress (target_gdbarch, memaddr),
222 message, safe_string, final_char);
223 else
224 error (_("%s (%s): %s: %s"),
225 function, paddress (target_gdbarch, memaddr),
226 message, safe_string);
227 }
228
229 /* Convert hex digit A to a number. */
230
231 static int
232 fromhex (int a)
233 {
234 if (a >= '0' && a <= '9')
235 return a - '0';
236 else if (a >= 'a' && a <= 'f')
237 return a - 'a' + 10;
238 else if (a >= 'A' && a <= 'F')
239 return a - 'A' + 10;
240 else
241 error (_("Invalid hex digit %d"), a);
242 }
243
244 /* monitor_vsprintf - similar to vsprintf but handles 64-bit addresses
245
246 This function exists to get around the problem that many host platforms
247 don't have a printf that can print 64-bit addresses. The %A format
248 specification is recognized as a special case, and causes the argument
249 to be printed as a 64-bit hexadecimal address.
250
251 Only format specifiers of the form "[0-9]*[a-z]" are recognized.
252 If it is a '%s' format, the argument is a string; otherwise the
253 argument is assumed to be a long integer.
254
255 %% is also turned into a single %.
256 */
257
258 static void
259 monitor_vsprintf (char *sndbuf, char *pattern, va_list args)
260 {
261 int addr_bit = gdbarch_addr_bit (target_gdbarch);
262 char format[10];
263 char fmt;
264 char *p;
265 int i;
266 long arg_int;
267 CORE_ADDR arg_addr;
268 char *arg_string;
269
270 for (p = pattern; *p; p++)
271 {
272 if (*p == '%')
273 {
274 /* Copy the format specifier to a separate buffer. */
275 format[0] = *p++;
276 for (i = 1; *p >= '0' && *p <= '9' && i < (int) sizeof (format) - 2;
277 i++, p++)
278 format[i] = *p;
279 format[i] = fmt = *p;
280 format[i + 1] = '\0';
281
282 /* Fetch the next argument and print it. */
283 switch (fmt)
284 {
285 case '%':
286 strcpy (sndbuf, "%");
287 break;
288 case 'A':
289 arg_addr = va_arg (args, CORE_ADDR);
290 strcpy (sndbuf, phex_nz (arg_addr, addr_bit / 8));
291 break;
292 case 's':
293 arg_string = va_arg (args, char *);
294 sprintf (sndbuf, format, arg_string);
295 break;
296 default:
297 arg_int = va_arg (args, long);
298 sprintf (sndbuf, format, arg_int);
299 break;
300 }
301 sndbuf += strlen (sndbuf);
302 }
303 else
304 *sndbuf++ = *p;
305 }
306 *sndbuf = '\0';
307 }
308
309
310 /* monitor_printf_noecho -- Send data to monitor, but don't expect an echo.
311 Works just like printf. */
312
313 void
314 monitor_printf_noecho (char *pattern,...)
315 {
316 va_list args;
317 char sndbuf[2000];
318 int len;
319
320 va_start (args, pattern);
321
322 monitor_vsprintf (sndbuf, pattern, args);
323
324 len = strlen (sndbuf);
325 if (len + 1 > sizeof sndbuf)
326 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
327
328 if (monitor_debug_p)
329 {
330 char *safe_string = (char *) alloca ((strlen (sndbuf) * 4) + 1);
331
332 monitor_printable_string (safe_string, sndbuf, 0);
333 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
334 }
335
336 monitor_write (sndbuf, len);
337 }
338
339 /* monitor_printf -- Send data to monitor and check the echo. Works just like
340 printf. */
341
342 void
343 monitor_printf (char *pattern,...)
344 {
345 va_list args;
346 char sndbuf[2000];
347 int len;
348
349 va_start (args, pattern);
350
351 monitor_vsprintf (sndbuf, pattern, args);
352
353 len = strlen (sndbuf);
354 if (len + 1 > sizeof sndbuf)
355 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
356
357 if (monitor_debug_p)
358 {
359 char *safe_string = (char *) alloca ((len * 4) + 1);
360
361 monitor_printable_string (safe_string, sndbuf, 0);
362 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
363 }
364
365 monitor_write (sndbuf, len);
366
367 /* We used to expect that the next immediate output was the characters we
368 just output, but sometimes some extra junk appeared before the characters
369 we expected, like an extra prompt, or a portmaster sending telnet negotiations.
370 So, just start searching for what we sent, and skip anything unknown. */
371 monitor_debug ("ExpectEcho\n");
372 monitor_expect (sndbuf, (char *) 0, 0);
373 }
374
375
376 /* Write characters to the remote system. */
377
378 void
379 monitor_write (char *buf, int buflen)
380 {
381 if (serial_write (monitor_desc, buf, buflen))
382 fprintf_unfiltered (gdb_stderr, "serial_write failed: %s\n",
383 safe_strerror (errno));
384 }
385
386
387 /* Read a binary character from the remote system, doing all the fancy
388 timeout stuff, but without interpreting the character in any way,
389 and without printing remote debug information. */
390
391 int
392 monitor_readchar (void)
393 {
394 int c;
395 int looping;
396
397 do
398 {
399 looping = 0;
400 c = serial_readchar (monitor_desc, timeout);
401
402 if (c >= 0)
403 c &= 0xff; /* don't lose bit 7 */
404 }
405 while (looping);
406
407 if (c >= 0)
408 return c;
409
410 if (c == SERIAL_TIMEOUT)
411 error (_("Timeout reading from remote system."));
412
413 perror_with_name (_("remote-monitor"));
414 }
415
416
417 /* Read a character from the remote system, doing all the fancy
418 timeout stuff. */
419
420 static int
421 readchar (int timeout)
422 {
423 int c;
424 static enum
425 {
426 last_random, last_nl, last_cr, last_crnl
427 }
428 state = last_random;
429 int looping;
430
431 do
432 {
433 looping = 0;
434 c = serial_readchar (monitor_desc, timeout);
435
436 if (c >= 0)
437 {
438 c &= 0x7f;
439 /* This seems to interfere with proper function of the
440 input stream */
441 if (monitor_debug_p || remote_debug)
442 {
443 char buf[2];
444
445 buf[0] = c;
446 buf[1] = '\0';
447 puts_debug ("read -->", buf, "<--");
448 }
449
450 }
451
452 /* Canonicialize \n\r combinations into one \r */
453 if ((current_monitor->flags & MO_HANDLE_NL) != 0)
454 {
455 if ((c == '\r' && state == last_nl)
456 || (c == '\n' && state == last_cr))
457 {
458 state = last_crnl;
459 looping = 1;
460 }
461 else if (c == '\r')
462 state = last_cr;
463 else if (c != '\n')
464 state = last_random;
465 else
466 {
467 state = last_nl;
468 c = '\r';
469 }
470 }
471 }
472 while (looping);
473
474 if (c >= 0)
475 return c;
476
477 if (c == SERIAL_TIMEOUT)
478 #if 0
479 /* I fail to see how detaching here can be useful */
480 if (in_monitor_wait) /* Watchdog went off */
481 {
482 target_mourn_inferior ();
483 error (_("GDB serial timeout has expired. Target detached."));
484 }
485 else
486 #endif
487 error (_("Timeout reading from remote system."));
488
489 perror_with_name (_("remote-monitor"));
490 }
491
492 /* Scan input from the remote system, until STRING is found. If BUF is non-
493 zero, then collect input until we have collected either STRING or BUFLEN-1
494 chars. In either case we terminate BUF with a 0. If input overflows BUF
495 because STRING can't be found, return -1, else return number of chars in BUF
496 (minus the terminating NUL). Note that in the non-overflow case, STRING
497 will be at the end of BUF. */
498
499 int
500 monitor_expect (char *string, char *buf, int buflen)
501 {
502 char *p = string;
503 int obuflen = buflen;
504 int c;
505
506 if (monitor_debug_p)
507 {
508 char *safe_string = (char *) alloca ((strlen (string) * 4) + 1);
509 monitor_printable_string (safe_string, string, 0);
510 fprintf_unfiltered (gdb_stdlog, "MON Expecting '%s'\n", safe_string);
511 }
512
513 immediate_quit++;
514 while (1)
515 {
516 if (buf)
517 {
518 if (buflen < 2)
519 {
520 *buf = '\000';
521 immediate_quit--;
522 return -1;
523 }
524
525 c = readchar (timeout);
526 if (c == '\000')
527 continue;
528 *buf++ = c;
529 buflen--;
530 }
531 else
532 c = readchar (timeout);
533
534 /* Don't expect any ^C sent to be echoed */
535
536 if (*p == '\003' || c == *p)
537 {
538 p++;
539 if (*p == '\0')
540 {
541 immediate_quit--;
542
543 if (buf)
544 {
545 *buf++ = '\000';
546 return obuflen - buflen;
547 }
548 else
549 return 0;
550 }
551 }
552 else
553 {
554 /* We got a character that doesn't match the string. We need to
555 back up p, but how far? If we're looking for "..howdy" and the
556 monitor sends "...howdy"? There's certainly a match in there,
557 but when we receive the third ".", we won't find it if we just
558 restart the matching at the beginning of the string.
559
560 This is a Boyer-Moore kind of situation. We want to reset P to
561 the end of the longest prefix of STRING that is a suffix of
562 what we've read so far. In the example above, that would be
563 ".." --- the longest prefix of "..howdy" that is a suffix of
564 "...". This longest prefix could be the empty string, if C
565 is nowhere to be found in STRING.
566
567 If this longest prefix is not the empty string, it must contain
568 C, so let's search from the end of STRING for instances of C,
569 and see if the portion of STRING before that is a suffix of
570 what we read before C. Actually, we can search backwards from
571 p, since we know no prefix can be longer than that.
572
573 Note that we can use STRING itself, along with C, as a record
574 of what we've received so far. :) */
575 int i;
576
577 for (i = (p - string) - 1; i >= 0; i--)
578 if (string[i] == c)
579 {
580 /* Is this prefix a suffix of what we've read so far?
581 In other words, does
582 string[0 .. i-1] == string[p - i, p - 1]? */
583 if (! memcmp (string, p - i, i))
584 {
585 p = string + i + 1;
586 break;
587 }
588 }
589 if (i < 0)
590 p = string;
591 }
592 }
593 }
594
595 /* Search for a regexp. */
596
597 static int
598 monitor_expect_regexp (struct re_pattern_buffer *pat, char *buf, int buflen)
599 {
600 char *mybuf;
601 char *p;
602
603 monitor_debug ("MON Expecting regexp\n");
604 if (buf)
605 mybuf = buf;
606 else
607 {
608 mybuf = alloca (TARGET_BUF_SIZE);
609 buflen = TARGET_BUF_SIZE;
610 }
611
612 p = mybuf;
613 while (1)
614 {
615 int retval;
616
617 if (p - mybuf >= buflen)
618 { /* Buffer about to overflow */
619
620 /* On overflow, we copy the upper half of the buffer to the lower half. Not
621 great, but it usually works... */
622
623 memcpy (mybuf, mybuf + buflen / 2, buflen / 2);
624 p = mybuf + buflen / 2;
625 }
626
627 *p++ = readchar (timeout);
628
629 retval = re_search (pat, mybuf, p - mybuf, 0, p - mybuf, NULL);
630 if (retval >= 0)
631 return 1;
632 }
633 }
634
635 /* Keep discarding input until we see the MONITOR prompt.
636
637 The convention for dealing with the prompt is that you
638 o give your command
639 o *then* wait for the prompt.
640
641 Thus the last thing that a procedure does with the serial line will
642 be an monitor_expect_prompt(). Exception: monitor_resume does not
643 wait for the prompt, because the terminal is being handed over to
644 the inferior. However, the next thing which happens after that is
645 a monitor_wait which does wait for the prompt. Note that this
646 includes abnormal exit, e.g. error(). This is necessary to prevent
647 getting into states from which we can't recover. */
648
649 int
650 monitor_expect_prompt (char *buf, int buflen)
651 {
652 monitor_debug ("MON Expecting prompt\n");
653 return monitor_expect (current_monitor->prompt, buf, buflen);
654 }
655
656 /* Get N 32-bit words from remote, each preceded by a space, and put
657 them in registers starting at REGNO. */
658
659 #if 0
660 static unsigned long
661 get_hex_word (void)
662 {
663 unsigned long val;
664 int i;
665 int ch;
666
667 do
668 ch = readchar (timeout);
669 while (isspace (ch));
670
671 val = from_hex (ch);
672
673 for (i = 7; i >= 1; i--)
674 {
675 ch = readchar (timeout);
676 if (!isxdigit (ch))
677 break;
678 val = (val << 4) | from_hex (ch);
679 }
680
681 return val;
682 }
683 #endif
684
685 static void
686 compile_pattern (char *pattern, struct re_pattern_buffer *compiled_pattern,
687 char *fastmap)
688 {
689 int tmp;
690 const char *val;
691
692 compiled_pattern->fastmap = fastmap;
693
694 tmp = re_set_syntax (RE_SYNTAX_EMACS);
695 val = re_compile_pattern (pattern,
696 strlen (pattern),
697 compiled_pattern);
698 re_set_syntax (tmp);
699
700 if (val)
701 error (_("compile_pattern: Can't compile pattern string `%s': %s!"), pattern, val);
702
703 if (fastmap)
704 re_compile_fastmap (compiled_pattern);
705 }
706
707 /* Open a connection to a remote debugger. NAME is the filename used
708 for communication. */
709
710 void
711 monitor_open (char *args, struct monitor_ops *mon_ops, int from_tty)
712 {
713 char *name;
714 char **p;
715 struct inferior *inf;
716
717 if (mon_ops->magic != MONITOR_OPS_MAGIC)
718 error (_("Magic number of monitor_ops struct wrong."));
719
720 targ_ops = mon_ops->target;
721 name = targ_ops->to_shortname;
722
723 if (!args)
724 error (_("Use `target %s DEVICE-NAME' to use a serial port, or \n\
725 `target %s HOST-NAME:PORT-NUMBER' to use a network connection."), name, name);
726
727 target_preopen (from_tty);
728
729 /* Setup pattern for register dump */
730
731 if (mon_ops->register_pattern)
732 compile_pattern (mon_ops->register_pattern, &register_pattern,
733 register_fastmap);
734
735 if (mon_ops->getmem.resp_delim)
736 compile_pattern (mon_ops->getmem.resp_delim, &getmem_resp_delim_pattern,
737 getmem_resp_delim_fastmap);
738
739 if (mon_ops->setmem.resp_delim)
740 compile_pattern (mon_ops->setmem.resp_delim, &setmem_resp_delim_pattern,
741 setmem_resp_delim_fastmap);
742
743 if (mon_ops->setreg.resp_delim)
744 compile_pattern (mon_ops->setreg.resp_delim, &setreg_resp_delim_pattern,
745 setreg_resp_delim_fastmap);
746
747 unpush_target (targ_ops);
748
749 if (dev_name)
750 xfree (dev_name);
751 dev_name = xstrdup (args);
752
753 monitor_desc = serial_open (dev_name);
754
755 if (!monitor_desc)
756 perror_with_name (dev_name);
757
758 if (baud_rate != -1)
759 {
760 if (serial_setbaudrate (monitor_desc, baud_rate))
761 {
762 serial_close (monitor_desc);
763 perror_with_name (dev_name);
764 }
765 }
766
767 serial_raw (monitor_desc);
768
769 serial_flush_input (monitor_desc);
770
771 /* some systems only work with 2 stop bits */
772
773 serial_setstopbits (monitor_desc, mon_ops->stopbits);
774
775 current_monitor = mon_ops;
776
777 /* See if we can wake up the monitor. First, try sending a stop sequence,
778 then send the init strings. Last, remove all breakpoints. */
779
780 if (current_monitor->stop)
781 {
782 monitor_stop (inferior_ptid);
783 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
784 {
785 monitor_debug ("EXP Open echo\n");
786 monitor_expect_prompt (NULL, 0);
787 }
788 }
789
790 /* wake up the monitor and see if it's alive */
791 for (p = mon_ops->init; *p != NULL; p++)
792 {
793 /* Some of the characters we send may not be echoed,
794 but we hope to get a prompt at the end of it all. */
795
796 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
797 monitor_printf (*p);
798 else
799 monitor_printf_noecho (*p);
800 monitor_expect_prompt (NULL, 0);
801 }
802
803 serial_flush_input (monitor_desc);
804
805 /* Alloc breakpoints */
806 if (mon_ops->set_break != NULL)
807 {
808 if (mon_ops->num_breakpoints == 0)
809 mon_ops->num_breakpoints = 8;
810
811 breakaddr = (CORE_ADDR *) xmalloc (mon_ops->num_breakpoints * sizeof (CORE_ADDR));
812 memset (breakaddr, 0, mon_ops->num_breakpoints * sizeof (CORE_ADDR));
813 }
814
815 /* Remove all breakpoints */
816
817 if (mon_ops->clr_all_break)
818 {
819 monitor_printf (mon_ops->clr_all_break);
820 monitor_expect_prompt (NULL, 0);
821 }
822
823 if (from_tty)
824 printf_unfiltered (_("Remote target %s connected to %s\n"), name, dev_name);
825
826 push_target (targ_ops);
827
828 /* Start afresh. */
829 init_thread_list ();
830
831 /* Make run command think we are busy... */
832 inferior_ptid = monitor_ptid;
833 inf = current_inferior ();
834 inferior_appeared (inf, ptid_get_pid (inferior_ptid));
835 add_thread_silent (inferior_ptid);
836
837 /* Give monitor_wait something to read */
838
839 monitor_printf (current_monitor->line_term);
840
841 start_remote (from_tty);
842 }
843
844 /* Close out all files and local state before this target loses
845 control. */
846
847 void
848 monitor_close (int quitting)
849 {
850 if (monitor_desc)
851 serial_close (monitor_desc);
852
853 /* Free breakpoint memory */
854 if (breakaddr != NULL)
855 {
856 xfree (breakaddr);
857 breakaddr = NULL;
858 }
859
860 monitor_desc = NULL;
861
862 delete_thread_silent (monitor_ptid);
863 delete_inferior_silent (ptid_get_pid (monitor_ptid));
864 }
865
866 /* Terminate the open connection to the remote debugger. Use this
867 when you want to detach and do something else with your gdb. */
868
869 static void
870 monitor_detach (struct target_ops *ops, char *args, int from_tty)
871 {
872 pop_target (); /* calls monitor_close to do the real work */
873 if (from_tty)
874 printf_unfiltered (_("Ending remote %s debugging\n"), target_shortname);
875 }
876
877 /* Convert VALSTR into the target byte-ordered value of REGNO and store it. */
878
879 char *
880 monitor_supply_register (struct regcache *regcache, int regno, char *valstr)
881 {
882 struct gdbarch *gdbarch = get_regcache_arch (regcache);
883 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
884 ULONGEST val;
885 unsigned char regbuf[MAX_REGISTER_SIZE];
886 char *p;
887
888 val = 0;
889 p = valstr;
890 while (p && *p != '\0')
891 {
892 if (*p == '\r' || *p == '\n')
893 {
894 while (*p != '\0')
895 p++;
896 break;
897 }
898 if (isspace (*p))
899 {
900 p++;
901 continue;
902 }
903 if (!isxdigit (*p) && *p != 'x')
904 {
905 break;
906 }
907
908 val <<= 4;
909 val += fromhex (*p++);
910 }
911 monitor_debug ("Supplying Register %d %s\n", regno, valstr);
912
913 if (val == 0 && valstr == p)
914 error (_("monitor_supply_register (%d): bad value from monitor: %s."),
915 regno, valstr);
916
917 /* supply register stores in target byte order, so swap here */
918
919 store_unsigned_integer (regbuf, register_size (gdbarch, regno), byte_order,
920 val);
921
922 regcache_raw_supply (regcache, regno, regbuf);
923
924 return p;
925 }
926
927 /* Tell the remote machine to resume. */
928
929 static void
930 monitor_resume (struct target_ops *ops,
931 ptid_t ptid, int step, enum target_signal sig)
932 {
933 /* Some monitors require a different command when starting a program */
934 monitor_debug ("MON resume\n");
935 if (current_monitor->flags & MO_RUN_FIRST_TIME && first_time == 1)
936 {
937 first_time = 0;
938 monitor_printf ("run\r");
939 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
940 dump_reg_flag = 1;
941 return;
942 }
943 if (step)
944 monitor_printf (current_monitor->step);
945 else
946 {
947 if (current_monitor->continue_hook)
948 (*current_monitor->continue_hook) ();
949 else
950 monitor_printf (current_monitor->cont);
951 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
952 dump_reg_flag = 1;
953 }
954 }
955
956 /* Parse the output of a register dump command. A monitor specific
957 regexp is used to extract individual register descriptions of the
958 form REG=VAL. Each description is split up into a name and a value
959 string which are passed down to monitor specific code. */
960
961 static void
962 parse_register_dump (struct regcache *regcache, char *buf, int len)
963 {
964 monitor_debug ("MON Parsing register dump\n");
965 while (1)
966 {
967 int regnamelen, vallen;
968 char *regname, *val;
969
970 /* Element 0 points to start of register name, and element 1
971 points to the start of the register value. */
972 struct re_registers register_strings;
973
974 memset (&register_strings, 0, sizeof (struct re_registers));
975
976 if (re_search (&register_pattern, buf, len, 0, len,
977 &register_strings) == -1)
978 break;
979
980 regnamelen = register_strings.end[1] - register_strings.start[1];
981 regname = buf + register_strings.start[1];
982 vallen = register_strings.end[2] - register_strings.start[2];
983 val = buf + register_strings.start[2];
984
985 current_monitor->supply_register (regcache, regname, regnamelen,
986 val, vallen);
987
988 buf += register_strings.end[0];
989 len -= register_strings.end[0];
990 }
991 }
992
993 /* Send ^C to target to halt it. Target will respond, and send us a
994 packet. */
995
996 static void
997 monitor_interrupt (int signo)
998 {
999 /* If this doesn't work, try more severe steps. */
1000 signal (signo, monitor_interrupt_twice);
1001
1002 if (monitor_debug_p || remote_debug)
1003 fprintf_unfiltered (gdb_stdlog, "monitor_interrupt called\n");
1004
1005 target_stop (inferior_ptid);
1006 }
1007
1008 /* The user typed ^C twice. */
1009
1010 static void
1011 monitor_interrupt_twice (int signo)
1012 {
1013 signal (signo, ofunc);
1014
1015 monitor_interrupt_query ();
1016
1017 signal (signo, monitor_interrupt);
1018 }
1019
1020 /* Ask the user what to do when an interrupt is received. */
1021
1022 static void
1023 monitor_interrupt_query (void)
1024 {
1025 target_terminal_ours ();
1026
1027 if (query (_("Interrupted while waiting for the program.\n\
1028 Give up (and stop debugging it)? ")))
1029 {
1030 target_mourn_inferior ();
1031 deprecated_throw_reason (RETURN_QUIT);
1032 }
1033
1034 target_terminal_inferior ();
1035 }
1036
1037 static void
1038 monitor_wait_cleanup (void *old_timeout)
1039 {
1040 timeout = *(int *) old_timeout;
1041 signal (SIGINT, ofunc);
1042 in_monitor_wait = 0;
1043 }
1044
1045
1046
1047 static void
1048 monitor_wait_filter (char *buf,
1049 int bufmax,
1050 int *ext_resp_len,
1051 struct target_waitstatus *status)
1052 {
1053 int resp_len;
1054
1055 do
1056 {
1057 resp_len = monitor_expect_prompt (buf, bufmax);
1058 *ext_resp_len = resp_len;
1059
1060 if (resp_len <= 0)
1061 fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive response from monitor: %s.", buf);
1062 }
1063 while (resp_len < 0);
1064
1065 /* Print any output characters that were preceded by ^O. */
1066 /* FIXME - This would be great as a user settabgle flag */
1067 if (monitor_debug_p || remote_debug
1068 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1069 {
1070 int i;
1071
1072 for (i = 0; i < resp_len - 1; i++)
1073 if (buf[i] == 0x0f)
1074 putchar_unfiltered (buf[++i]);
1075 }
1076 }
1077
1078
1079
1080 /* Wait until the remote machine stops, then return, storing status in
1081 status just as `wait' would. */
1082
1083 static ptid_t
1084 monitor_wait (struct target_ops *ops,
1085 ptid_t ptid, struct target_waitstatus *status, int options)
1086 {
1087 int old_timeout = timeout;
1088 char buf[TARGET_BUF_SIZE];
1089 int resp_len;
1090 struct cleanup *old_chain;
1091
1092 status->kind = TARGET_WAITKIND_EXITED;
1093 status->value.integer = 0;
1094
1095 old_chain = make_cleanup (monitor_wait_cleanup, &old_timeout);
1096 monitor_debug ("MON wait\n");
1097
1098 #if 0
1099 /* This is somthing other than a maintenance command */
1100 in_monitor_wait = 1;
1101 timeout = watchdog > 0 ? watchdog : -1;
1102 #else
1103 timeout = -1; /* Don't time out -- user program is running. */
1104 #endif
1105
1106 ofunc = (void (*)()) signal (SIGINT, monitor_interrupt);
1107
1108 if (current_monitor->wait_filter)
1109 (*current_monitor->wait_filter) (buf, sizeof (buf), &resp_len, status);
1110 else
1111 monitor_wait_filter (buf, sizeof (buf), &resp_len, status);
1112
1113 #if 0 /* Transferred to monitor wait filter */
1114 do
1115 {
1116 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1117
1118 if (resp_len <= 0)
1119 fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive response from monitor: %s.", buf);
1120 }
1121 while (resp_len < 0);
1122
1123 /* Print any output characters that were preceded by ^O. */
1124 /* FIXME - This would be great as a user settabgle flag */
1125 if (monitor_debug_p || remote_debug
1126 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1127 {
1128 int i;
1129
1130 for (i = 0; i < resp_len - 1; i++)
1131 if (buf[i] == 0x0f)
1132 putchar_unfiltered (buf[++i]);
1133 }
1134 #endif
1135
1136 signal (SIGINT, ofunc);
1137
1138 timeout = old_timeout;
1139 #if 0
1140 if (dump_reg_flag && current_monitor->dump_registers)
1141 {
1142 dump_reg_flag = 0;
1143 monitor_printf (current_monitor->dump_registers);
1144 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1145 }
1146
1147 if (current_monitor->register_pattern)
1148 parse_register_dump (get_current_regcache (), buf, resp_len);
1149 #else
1150 monitor_debug ("Wait fetching registers after stop\n");
1151 monitor_dump_regs (get_current_regcache ());
1152 #endif
1153
1154 status->kind = TARGET_WAITKIND_STOPPED;
1155 status->value.sig = TARGET_SIGNAL_TRAP;
1156
1157 discard_cleanups (old_chain);
1158
1159 in_monitor_wait = 0;
1160
1161 return inferior_ptid;
1162 }
1163
1164 /* Fetch register REGNO, or all registers if REGNO is -1. Returns
1165 errno value. */
1166
1167 static void
1168 monitor_fetch_register (struct regcache *regcache, int regno)
1169 {
1170 const char *name;
1171 char *zerobuf;
1172 char *regbuf;
1173 int i;
1174
1175 regbuf = alloca (MAX_REGISTER_SIZE * 2 + 1);
1176 zerobuf = alloca (MAX_REGISTER_SIZE);
1177 memset (zerobuf, 0, MAX_REGISTER_SIZE);
1178
1179 if (current_monitor->regname != NULL)
1180 name = current_monitor->regname (regno);
1181 else
1182 name = current_monitor->regnames[regno];
1183 monitor_debug ("MON fetchreg %d '%s'\n", regno, name ? name : "(null name)");
1184
1185 if (!name || (*name == '\0'))
1186 {
1187 monitor_debug ("No register known for %d\n", regno);
1188 regcache_raw_supply (regcache, regno, zerobuf);
1189 return;
1190 }
1191
1192 /* send the register examine command */
1193
1194 monitor_printf (current_monitor->getreg.cmd, name);
1195
1196 /* If RESP_DELIM is specified, we search for that as a leading
1197 delimiter for the register value. Otherwise, we just start
1198 searching from the start of the buf. */
1199
1200 if (current_monitor->getreg.resp_delim)
1201 {
1202 monitor_debug ("EXP getreg.resp_delim\n");
1203 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1204 /* Handle case of first 32 registers listed in pairs. */
1205 if (current_monitor->flags & MO_32_REGS_PAIRED
1206 && (regno & 1) != 0 && regno < 32)
1207 {
1208 monitor_debug ("EXP getreg.resp_delim\n");
1209 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1210 }
1211 }
1212
1213 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set */
1214 if (current_monitor->flags & MO_HEX_PREFIX)
1215 {
1216 int c;
1217
1218 c = readchar (timeout);
1219 while (c == ' ')
1220 c = readchar (timeout);
1221 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1222 ;
1223 else
1224 error (_("Bad value returned from monitor while fetching register %x."),
1225 regno);
1226 }
1227
1228 /* Read upto the maximum number of hex digits for this register, skipping
1229 spaces, but stop reading if something else is seen. Some monitors
1230 like to drop leading zeros. */
1231
1232 for (i = 0; i < register_size (get_regcache_arch (regcache), regno) * 2; i++)
1233 {
1234 int c;
1235
1236 c = readchar (timeout);
1237 while (c == ' ')
1238 c = readchar (timeout);
1239
1240 if (!isxdigit (c))
1241 break;
1242
1243 regbuf[i] = c;
1244 }
1245
1246 regbuf[i] = '\000'; /* terminate the number */
1247 monitor_debug ("REGVAL '%s'\n", regbuf);
1248
1249 /* If TERM is present, we wait for that to show up. Also, (if TERM
1250 is present), we will send TERM_CMD if that is present. In any
1251 case, we collect all of the output into buf, and then wait for
1252 the normal prompt. */
1253
1254 if (current_monitor->getreg.term)
1255 {
1256 monitor_debug ("EXP getreg.term\n");
1257 monitor_expect (current_monitor->getreg.term, NULL, 0); /* get response */
1258 }
1259
1260 if (current_monitor->getreg.term_cmd)
1261 {
1262 monitor_debug ("EMIT getreg.term.cmd\n");
1263 monitor_printf (current_monitor->getreg.term_cmd);
1264 }
1265 if (!current_monitor->getreg.term || /* Already expected or */
1266 current_monitor->getreg.term_cmd) /* ack expected */
1267 monitor_expect_prompt (NULL, 0); /* get response */
1268
1269 monitor_supply_register (regcache, regno, regbuf);
1270 }
1271
1272 /* Sometimes, it takes several commands to dump the registers */
1273 /* This is a primitive for use by variations of monitor interfaces in
1274 case they need to compose the operation.
1275 */
1276 int
1277 monitor_dump_reg_block (struct regcache *regcache, char *block_cmd)
1278 {
1279 char buf[TARGET_BUF_SIZE];
1280 int resp_len;
1281
1282 monitor_printf (block_cmd);
1283 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1284 parse_register_dump (regcache, buf, resp_len);
1285 return 1;
1286 }
1287
1288
1289 /* Read the remote registers into the block regs. */
1290 /* Call the specific function if it has been provided */
1291
1292 static void
1293 monitor_dump_regs (struct regcache *regcache)
1294 {
1295 char buf[TARGET_BUF_SIZE];
1296 int resp_len;
1297
1298 if (current_monitor->dumpregs)
1299 (*(current_monitor->dumpregs)) (regcache); /* call supplied function */
1300 else if (current_monitor->dump_registers) /* default version */
1301 {
1302 monitor_printf (current_monitor->dump_registers);
1303 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1304 parse_register_dump (regcache, buf, resp_len);
1305 }
1306 else
1307 internal_error (__FILE__, __LINE__, _("failed internal consistency check")); /* Need some way to read registers */
1308 }
1309
1310 static void
1311 monitor_fetch_registers (struct target_ops *ops,
1312 struct regcache *regcache, int regno)
1313 {
1314 monitor_debug ("MON fetchregs\n");
1315 if (current_monitor->getreg.cmd)
1316 {
1317 if (regno >= 0)
1318 {
1319 monitor_fetch_register (regcache, regno);
1320 return;
1321 }
1322
1323 for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache));
1324 regno++)
1325 monitor_fetch_register (regcache, regno);
1326 }
1327 else
1328 {
1329 monitor_dump_regs (regcache);
1330 }
1331 }
1332
1333 /* Store register REGNO, or all if REGNO == 0. Return errno value. */
1334
1335 static void
1336 monitor_store_register (struct regcache *regcache, int regno)
1337 {
1338 int reg_size = register_size (get_regcache_arch (regcache), regno);
1339 const char *name;
1340 ULONGEST val;
1341
1342 if (current_monitor->regname != NULL)
1343 name = current_monitor->regname (regno);
1344 else
1345 name = current_monitor->regnames[regno];
1346
1347 if (!name || (*name == '\0'))
1348 {
1349 monitor_debug ("MON Cannot store unknown register\n");
1350 return;
1351 }
1352
1353 regcache_cooked_read_unsigned (regcache, regno, &val);
1354 monitor_debug ("MON storeg %d %s\n", regno, phex (val, reg_size));
1355
1356 /* send the register deposit command */
1357
1358 if (current_monitor->flags & MO_REGISTER_VALUE_FIRST)
1359 monitor_printf (current_monitor->setreg.cmd, val, name);
1360 else if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1361 monitor_printf (current_monitor->setreg.cmd, name);
1362 else
1363 monitor_printf (current_monitor->setreg.cmd, name, val);
1364
1365 if (current_monitor->setreg.resp_delim)
1366 {
1367 monitor_debug ("EXP setreg.resp_delim\n");
1368 monitor_expect_regexp (&setreg_resp_delim_pattern, NULL, 0);
1369 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1370 monitor_printf ("%s\r", phex_nz (val, reg_size));
1371 }
1372 if (current_monitor->setreg.term)
1373 {
1374 monitor_debug ("EXP setreg.term\n");
1375 monitor_expect (current_monitor->setreg.term, NULL, 0);
1376 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1377 monitor_printf ("%s\r", phex_nz (val, reg_size));
1378 monitor_expect_prompt (NULL, 0);
1379 }
1380 else
1381 monitor_expect_prompt (NULL, 0);
1382 if (current_monitor->setreg.term_cmd) /* Mode exit required */
1383 {
1384 monitor_debug ("EXP setreg_termcmd\n");
1385 monitor_printf ("%s", current_monitor->setreg.term_cmd);
1386 monitor_expect_prompt (NULL, 0);
1387 }
1388 } /* monitor_store_register */
1389
1390 /* Store the remote registers. */
1391
1392 static void
1393 monitor_store_registers (struct target_ops *ops,
1394 struct regcache *regcache, int regno)
1395 {
1396 if (regno >= 0)
1397 {
1398 monitor_store_register (regcache, regno);
1399 return;
1400 }
1401
1402 for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache));
1403 regno++)
1404 monitor_store_register (regcache, regno);
1405 }
1406
1407 /* Get ready to modify the registers array. On machines which store
1408 individual registers, this doesn't need to do anything. On machines
1409 which store all the registers in one fell swoop, this makes sure
1410 that registers contains all the registers from the program being
1411 debugged. */
1412
1413 static void
1414 monitor_prepare_to_store (struct regcache *regcache)
1415 {
1416 /* Do nothing, since we can store individual regs */
1417 }
1418
1419 static void
1420 monitor_files_info (struct target_ops *ops)
1421 {
1422 printf_unfiltered (_("\tAttached to %s at %d baud.\n"), dev_name, baud_rate);
1423 }
1424
1425 static int
1426 monitor_write_memory (CORE_ADDR memaddr, char *myaddr, int len)
1427 {
1428 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1429 unsigned int val, hostval;
1430 char *cmd;
1431 int i;
1432
1433 monitor_debug ("MON write %d %s\n", len, paddress (target_gdbarch, memaddr));
1434
1435 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1436 memaddr = gdbarch_addr_bits_remove (target_gdbarch, memaddr);
1437
1438 /* Use memory fill command for leading 0 bytes. */
1439
1440 if (current_monitor->fill)
1441 {
1442 for (i = 0; i < len; i++)
1443 if (myaddr[i] != 0)
1444 break;
1445
1446 if (i > 4) /* More than 4 zeros is worth doing */
1447 {
1448 monitor_debug ("MON FILL %d\n", i);
1449 if (current_monitor->flags & MO_FILL_USES_ADDR)
1450 monitor_printf (current_monitor->fill, memaddr, (memaddr + i) - 1, 0);
1451 else
1452 monitor_printf (current_monitor->fill, memaddr, i, 0);
1453
1454 monitor_expect_prompt (NULL, 0);
1455
1456 return i;
1457 }
1458 }
1459
1460 #if 0
1461 /* Can't actually use long longs if VAL is an int (nice idea, though). */
1462 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->setmem.cmdll)
1463 {
1464 len = 8;
1465 cmd = current_monitor->setmem.cmdll;
1466 }
1467 else
1468 #endif
1469 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->setmem.cmdl)
1470 {
1471 len = 4;
1472 cmd = current_monitor->setmem.cmdl;
1473 }
1474 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->setmem.cmdw)
1475 {
1476 len = 2;
1477 cmd = current_monitor->setmem.cmdw;
1478 }
1479 else
1480 {
1481 len = 1;
1482 cmd = current_monitor->setmem.cmdb;
1483 }
1484
1485 val = extract_unsigned_integer (myaddr, len, byte_order);
1486
1487 if (len == 4)
1488 {
1489 hostval = *(unsigned int *) myaddr;
1490 monitor_debug ("Hostval(%08x) val(%08x)\n", hostval, val);
1491 }
1492
1493
1494 if (current_monitor->flags & MO_NO_ECHO_ON_SETMEM)
1495 monitor_printf_noecho (cmd, memaddr, val);
1496 else if (current_monitor->flags & MO_SETMEM_INTERACTIVE)
1497 {
1498 monitor_printf_noecho (cmd, memaddr);
1499
1500 if (current_monitor->setmem.resp_delim)
1501 {
1502 monitor_debug ("EXP setmem.resp_delim");
1503 monitor_expect_regexp (&setmem_resp_delim_pattern, NULL, 0);
1504 monitor_printf ("%x\r", val);
1505 }
1506 if (current_monitor->setmem.term)
1507 {
1508 monitor_debug ("EXP setmem.term");
1509 monitor_expect (current_monitor->setmem.term, NULL, 0);
1510 monitor_printf ("%x\r", val);
1511 }
1512 if (current_monitor->setmem.term_cmd)
1513 { /* Emit this to get out of the memory editing state */
1514 monitor_printf ("%s", current_monitor->setmem.term_cmd);
1515 /* Drop through to expecting a prompt */
1516 }
1517 }
1518 else
1519 monitor_printf (cmd, memaddr, val);
1520
1521 monitor_expect_prompt (NULL, 0);
1522
1523 return len;
1524 }
1525
1526
1527 static int
1528 monitor_write_memory_bytes (CORE_ADDR memaddr, char *myaddr, int len)
1529 {
1530 unsigned char val;
1531 int written = 0;
1532
1533 if (len == 0)
1534 return 0;
1535 /* Enter the sub mode */
1536 monitor_printf (current_monitor->setmem.cmdb, memaddr);
1537 monitor_expect_prompt (NULL, 0);
1538 while (len)
1539 {
1540 val = *myaddr;
1541 monitor_printf ("%x\r", val);
1542 myaddr++;
1543 memaddr++;
1544 written++;
1545 /* If we wanted to, here we could validate the address */
1546 monitor_expect_prompt (NULL, 0);
1547 len--;
1548 }
1549 /* Now exit the sub mode */
1550 monitor_printf (current_monitor->getreg.term_cmd);
1551 monitor_expect_prompt (NULL, 0);
1552 return written;
1553 }
1554
1555
1556 static void
1557 longlongendswap (unsigned char *a)
1558 {
1559 int i, j;
1560 unsigned char x;
1561
1562 i = 0;
1563 j = 7;
1564 while (i < 4)
1565 {
1566 x = *(a + i);
1567 *(a + i) = *(a + j);
1568 *(a + j) = x;
1569 i++, j--;
1570 }
1571 }
1572 /* Format 32 chars of long long value, advance the pointer */
1573 static char *hexlate = "0123456789abcdef";
1574 static char *
1575 longlong_hexchars (unsigned long long value,
1576 char *outbuff)
1577 {
1578 if (value == 0)
1579 {
1580 *outbuff++ = '0';
1581 return outbuff;
1582 }
1583 else
1584 {
1585 static unsigned char disbuf[8]; /* disassembly buffer */
1586 unsigned char *scan, *limit; /* loop controls */
1587 unsigned char c, nib;
1588 int leadzero = 1;
1589
1590 scan = disbuf;
1591 limit = scan + 8;
1592 {
1593 unsigned long long *dp;
1594
1595 dp = (unsigned long long *) scan;
1596 *dp = value;
1597 }
1598 longlongendswap (disbuf); /* FIXME: ONly on big endian hosts */
1599 while (scan < limit)
1600 {
1601 c = *scan++; /* a byte of our long long value */
1602 if (leadzero)
1603 {
1604 if (c == 0)
1605 continue;
1606 else
1607 leadzero = 0; /* henceforth we print even zeroes */
1608 }
1609 nib = c >> 4; /* high nibble bits */
1610 *outbuff++ = hexlate[nib];
1611 nib = c & 0x0f; /* low nibble bits */
1612 *outbuff++ = hexlate[nib];
1613 }
1614 return outbuff;
1615 }
1616 } /* longlong_hexchars */
1617
1618
1619
1620 /* I am only going to call this when writing virtual byte streams.
1621 Which possably entails endian conversions
1622 */
1623 static int
1624 monitor_write_memory_longlongs (CORE_ADDR memaddr, char *myaddr, int len)
1625 {
1626 static char hexstage[20]; /* At least 16 digits required, plus null */
1627 char *endstring;
1628 long long *llptr;
1629 long long value;
1630 int written = 0;
1631
1632 llptr = (unsigned long long *) myaddr;
1633 if (len == 0)
1634 return 0;
1635 monitor_printf (current_monitor->setmem.cmdll, memaddr);
1636 monitor_expect_prompt (NULL, 0);
1637 while (len >= 8)
1638 {
1639 value = *llptr;
1640 endstring = longlong_hexchars (*llptr, hexstage);
1641 *endstring = '\0'; /* NUll terminate for printf */
1642 monitor_printf ("%s\r", hexstage);
1643 llptr++;
1644 memaddr += 8;
1645 written += 8;
1646 /* If we wanted to, here we could validate the address */
1647 monitor_expect_prompt (NULL, 0);
1648 len -= 8;
1649 }
1650 /* Now exit the sub mode */
1651 monitor_printf (current_monitor->getreg.term_cmd);
1652 monitor_expect_prompt (NULL, 0);
1653 return written;
1654 } /* */
1655
1656
1657
1658 /* ----- MONITOR_WRITE_MEMORY_BLOCK ---------------------------- */
1659 /* This is for the large blocks of memory which may occur in downloading.
1660 And for monitors which use interactive entry,
1661 And for monitors which do not have other downloading methods.
1662 Without this, we will end up calling monitor_write_memory many times
1663 and do the entry and exit of the sub mode many times
1664 This currently assumes...
1665 MO_SETMEM_INTERACTIVE
1666 ! MO_NO_ECHO_ON_SETMEM
1667 To use this, the you have to patch the monitor_cmds block with
1668 this function. Otherwise, its not tuned up for use by all
1669 monitor variations.
1670 */
1671
1672 static int
1673 monitor_write_memory_block (CORE_ADDR memaddr, char *myaddr, int len)
1674 {
1675 int written;
1676
1677 written = 0;
1678 /* FIXME: This would be a good place to put the zero test */
1679 #if 1
1680 if ((len > 8) && (((len & 0x07)) == 0) && current_monitor->setmem.cmdll)
1681 {
1682 return monitor_write_memory_longlongs (memaddr, myaddr, len);
1683 }
1684 #endif
1685 written = monitor_write_memory_bytes (memaddr, myaddr, len);
1686 return written;
1687 }
1688
1689 /* This is an alternate form of monitor_read_memory which is used for monitors
1690 which can only read a single byte/word/etc. at a time. */
1691
1692 static int
1693 monitor_read_memory_single (CORE_ADDR memaddr, char *myaddr, int len)
1694 {
1695 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1696 unsigned int val;
1697 char membuf[sizeof (int) * 2 + 1];
1698 char *p;
1699 char *cmd;
1700
1701 monitor_debug ("MON read single\n");
1702 #if 0
1703 /* Can't actually use long longs (nice idea, though). In fact, the
1704 call to strtoul below will fail if it tries to convert a value
1705 that's too big to fit in a long. */
1706 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->getmem.cmdll)
1707 {
1708 len = 8;
1709 cmd = current_monitor->getmem.cmdll;
1710 }
1711 else
1712 #endif
1713 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->getmem.cmdl)
1714 {
1715 len = 4;
1716 cmd = current_monitor->getmem.cmdl;
1717 }
1718 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->getmem.cmdw)
1719 {
1720 len = 2;
1721 cmd = current_monitor->getmem.cmdw;
1722 }
1723 else
1724 {
1725 len = 1;
1726 cmd = current_monitor->getmem.cmdb;
1727 }
1728
1729 /* Send the examine command. */
1730
1731 monitor_printf (cmd, memaddr);
1732
1733 /* If RESP_DELIM is specified, we search for that as a leading
1734 delimiter for the memory value. Otherwise, we just start
1735 searching from the start of the buf. */
1736
1737 if (current_monitor->getmem.resp_delim)
1738 {
1739 monitor_debug ("EXP getmem.resp_delim\n");
1740 monitor_expect_regexp (&getmem_resp_delim_pattern, NULL, 0);
1741 }
1742
1743 /* Now, read the appropriate number of hex digits for this loc,
1744 skipping spaces. */
1745
1746 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */
1747 if (current_monitor->flags & MO_HEX_PREFIX)
1748 {
1749 int c;
1750
1751 c = readchar (timeout);
1752 while (c == ' ')
1753 c = readchar (timeout);
1754 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1755 ;
1756 else
1757 monitor_error ("monitor_read_memory_single",
1758 "bad response from monitor",
1759 memaddr, 0, NULL, 0);
1760 }
1761
1762 {
1763 int i;
1764
1765 for (i = 0; i < len * 2; i++)
1766 {
1767 int c;
1768
1769 while (1)
1770 {
1771 c = readchar (timeout);
1772 if (isxdigit (c))
1773 break;
1774 if (c == ' ')
1775 continue;
1776
1777 monitor_error ("monitor_read_memory_single",
1778 "bad response from monitor",
1779 memaddr, i, membuf, 0);
1780 }
1781 membuf[i] = c;
1782 }
1783 membuf[i] = '\000'; /* terminate the number */
1784 }
1785
1786 /* If TERM is present, we wait for that to show up. Also, (if TERM is
1787 present), we will send TERM_CMD if that is present. In any case, we collect
1788 all of the output into buf, and then wait for the normal prompt. */
1789
1790 if (current_monitor->getmem.term)
1791 {
1792 monitor_expect (current_monitor->getmem.term, NULL, 0); /* get response */
1793
1794 if (current_monitor->getmem.term_cmd)
1795 {
1796 monitor_printf (current_monitor->getmem.term_cmd);
1797 monitor_expect_prompt (NULL, 0);
1798 }
1799 }
1800 else
1801 monitor_expect_prompt (NULL, 0); /* get response */
1802
1803 p = membuf;
1804 val = strtoul (membuf, &p, 16);
1805
1806 if (val == 0 && membuf == p)
1807 monitor_error ("monitor_read_memory_single",
1808 "bad value from monitor",
1809 memaddr, 0, membuf, 0);
1810
1811 /* supply register stores in target byte order, so swap here */
1812
1813 store_unsigned_integer (myaddr, len, byte_order, val);
1814
1815 return len;
1816 }
1817
1818 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
1819 memory at MEMADDR. Returns length moved. Currently, we do no more
1820 than 16 bytes at a time. */
1821
1822 static int
1823 monitor_read_memory (CORE_ADDR memaddr, char *myaddr, int len)
1824 {
1825 unsigned int val;
1826 char buf[512];
1827 char *p, *p1;
1828 int resp_len;
1829 int i;
1830 CORE_ADDR dumpaddr;
1831
1832 if (len <= 0)
1833 {
1834 monitor_debug ("Zero length call to monitor_read_memory\n");
1835 return 0;
1836 }
1837
1838 monitor_debug ("MON read block ta(%s) ha(%lx) %d\n",
1839 paddress (target_gdbarch, memaddr), (long) myaddr, len);
1840
1841 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1842 memaddr = gdbarch_addr_bits_remove (target_gdbarch, memaddr);
1843
1844 if (current_monitor->flags & MO_GETMEM_READ_SINGLE)
1845 return monitor_read_memory_single (memaddr, myaddr, len);
1846
1847 len = min (len, 16);
1848
1849 /* Some dumpers align the first data with the preceeding 16
1850 byte boundary. Some print blanks and start at the
1851 requested boundary. EXACT_DUMPADDR
1852 */
1853
1854 dumpaddr = (current_monitor->flags & MO_EXACT_DUMPADDR)
1855 ? memaddr : memaddr & ~0x0f;
1856
1857 /* See if xfer would cross a 16 byte boundary. If so, clip it. */
1858 if (((memaddr ^ (memaddr + len - 1)) & ~0xf) != 0)
1859 len = ((memaddr + len) & ~0xf) - memaddr;
1860
1861 /* send the memory examine command */
1862
1863 if (current_monitor->flags & MO_GETMEM_NEEDS_RANGE)
1864 monitor_printf (current_monitor->getmem.cmdb, memaddr, memaddr + len);
1865 else if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1866 monitor_printf (current_monitor->getmem.cmdb, dumpaddr);
1867 else
1868 monitor_printf (current_monitor->getmem.cmdb, memaddr, len);
1869
1870 /* If TERM is present, we wait for that to show up. Also, (if TERM
1871 is present), we will send TERM_CMD if that is present. In any
1872 case, we collect all of the output into buf, and then wait for
1873 the normal prompt. */
1874
1875 if (current_monitor->getmem.term)
1876 {
1877 resp_len = monitor_expect (current_monitor->getmem.term, buf, sizeof buf); /* get response */
1878
1879 if (resp_len <= 0)
1880 monitor_error ("monitor_read_memory",
1881 "excessive response from monitor",
1882 memaddr, resp_len, buf, 0);
1883
1884 if (current_monitor->getmem.term_cmd)
1885 {
1886 serial_write (monitor_desc, current_monitor->getmem.term_cmd,
1887 strlen (current_monitor->getmem.term_cmd));
1888 monitor_expect_prompt (NULL, 0);
1889 }
1890 }
1891 else
1892 resp_len = monitor_expect_prompt (buf, sizeof buf); /* get response */
1893
1894 p = buf;
1895
1896 /* If RESP_DELIM is specified, we search for that as a leading
1897 delimiter for the values. Otherwise, we just start searching
1898 from the start of the buf. */
1899
1900 if (current_monitor->getmem.resp_delim)
1901 {
1902 int retval, tmp;
1903 struct re_registers resp_strings;
1904
1905 monitor_debug ("MON getmem.resp_delim %s\n", current_monitor->getmem.resp_delim);
1906
1907 memset (&resp_strings, 0, sizeof (struct re_registers));
1908 tmp = strlen (p);
1909 retval = re_search (&getmem_resp_delim_pattern, p, tmp, 0, tmp,
1910 &resp_strings);
1911
1912 if (retval < 0)
1913 monitor_error ("monitor_read_memory",
1914 "bad response from monitor",
1915 memaddr, resp_len, buf, 0);
1916
1917 p += resp_strings.end[0];
1918 #if 0
1919 p = strstr (p, current_monitor->getmem.resp_delim);
1920 if (!p)
1921 monitor_error ("monitor_read_memory",
1922 "bad response from monitor",
1923 memaddr, resp_len, buf, 0);
1924 p += strlen (current_monitor->getmem.resp_delim);
1925 #endif
1926 }
1927 monitor_debug ("MON scanning %d ,%lx '%s'\n", len, (long) p, p);
1928 if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1929 {
1930 char c;
1931 int fetched = 0;
1932 i = len;
1933 c = *p;
1934
1935
1936 while (!(c == '\000' || c == '\n' || c == '\r') && i > 0)
1937 {
1938 if (isxdigit (c))
1939 {
1940 if ((dumpaddr >= memaddr) && (i > 0))
1941 {
1942 val = fromhex (c) * 16 + fromhex (*(p + 1));
1943 *myaddr++ = val;
1944 if (monitor_debug_p || remote_debug)
1945 fprintf_unfiltered (gdb_stdlog, "[%02x]", val);
1946 --i;
1947 fetched++;
1948 }
1949 ++dumpaddr;
1950 ++p;
1951 }
1952 ++p; /* skip a blank or other non hex char */
1953 c = *p;
1954 }
1955 if (fetched == 0)
1956 error (_("Failed to read via monitor"));
1957 if (monitor_debug_p || remote_debug)
1958 fprintf_unfiltered (gdb_stdlog, "\n");
1959 return fetched; /* Return the number of bytes actually read */
1960 }
1961 monitor_debug ("MON scanning bytes\n");
1962
1963 for (i = len; i > 0; i--)
1964 {
1965 /* Skip non-hex chars, but bomb on end of string and newlines */
1966
1967 while (1)
1968 {
1969 if (isxdigit (*p))
1970 break;
1971
1972 if (*p == '\000' || *p == '\n' || *p == '\r')
1973 monitor_error ("monitor_read_memory",
1974 "badly terminated response from monitor",
1975 memaddr, resp_len, buf, 0);
1976 p++;
1977 }
1978
1979 val = strtoul (p, &p1, 16);
1980
1981 if (val == 0 && p == p1)
1982 monitor_error ("monitor_read_memory",
1983 "bad value from monitor",
1984 memaddr, resp_len, buf, 0);
1985
1986 *myaddr++ = val;
1987
1988 if (i == 1)
1989 break;
1990
1991 p = p1;
1992 }
1993
1994 return len;
1995 }
1996
1997 /* Transfer LEN bytes between target address MEMADDR and GDB address
1998 MYADDR. Returns 0 for success, errno code for failure. TARGET is
1999 unused. */
2000
2001 static int
2002 monitor_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int write,
2003 struct mem_attrib *attrib, struct target_ops *target)
2004 {
2005 int res;
2006
2007 if (write)
2008 {
2009 if (current_monitor->flags & MO_HAS_BLOCKWRITES)
2010 res = monitor_write_memory_block(memaddr, myaddr, len);
2011 else
2012 res = monitor_write_memory(memaddr, myaddr, len);
2013 }
2014 else
2015 {
2016 res = monitor_read_memory(memaddr, myaddr, len);
2017 }
2018
2019 return res;
2020 }
2021
2022 static void
2023 monitor_kill (struct target_ops *ops)
2024 {
2025 return; /* ignore attempts to kill target system */
2026 }
2027
2028 /* All we actually do is set the PC to the start address of exec_bfd. */
2029
2030 static void
2031 monitor_create_inferior (struct target_ops *ops, char *exec_file,
2032 char *args, char **env, int from_tty)
2033 {
2034 if (args && (*args != '\000'))
2035 error (_("Args are not supported by the monitor."));
2036
2037 first_time = 1;
2038 clear_proceed_status ();
2039 regcache_write_pc (get_current_regcache (),
2040 bfd_get_start_address (exec_bfd));
2041 }
2042
2043 /* Clean up when a program exits.
2044 The program actually lives on in the remote processor's RAM, and may be
2045 run again without a download. Don't leave it full of breakpoint
2046 instructions. */
2047
2048 static void
2049 monitor_mourn_inferior (struct target_ops *ops)
2050 {
2051 unpush_target (targ_ops);
2052 generic_mourn_inferior (); /* Do all the proper things now */
2053 delete_thread_silent (monitor_ptid);
2054 }
2055
2056 /* Tell the monitor to add a breakpoint. */
2057
2058 static int
2059 monitor_insert_breakpoint (struct gdbarch *gdbarch,
2060 struct bp_target_info *bp_tgt)
2061 {
2062 CORE_ADDR addr = bp_tgt->placed_address;
2063 int i;
2064 int bplen;
2065
2066 monitor_debug ("MON inst bkpt %s\n", paddress (gdbarch, addr));
2067 if (current_monitor->set_break == NULL)
2068 error (_("No set_break defined for this monitor"));
2069
2070 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
2071 addr = gdbarch_addr_bits_remove (gdbarch, addr);
2072
2073 /* Determine appropriate breakpoint size for this address. */
2074 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
2075 bp_tgt->placed_address = addr;
2076 bp_tgt->placed_size = bplen;
2077
2078 for (i = 0; i < current_monitor->num_breakpoints; i++)
2079 {
2080 if (breakaddr[i] == 0)
2081 {
2082 breakaddr[i] = addr;
2083 monitor_printf (current_monitor->set_break, addr);
2084 monitor_expect_prompt (NULL, 0);
2085 return 0;
2086 }
2087 }
2088
2089 error (_("Too many breakpoints (> %d) for monitor."), current_monitor->num_breakpoints);
2090 }
2091
2092 /* Tell the monitor to remove a breakpoint. */
2093
2094 static int
2095 monitor_remove_breakpoint (struct gdbarch *gdbarch,
2096 struct bp_target_info *bp_tgt)
2097 {
2098 CORE_ADDR addr = bp_tgt->placed_address;
2099 int i;
2100
2101 monitor_debug ("MON rmbkpt %s\n", paddress (gdbarch, addr));
2102 if (current_monitor->clr_break == NULL)
2103 error (_("No clr_break defined for this monitor"));
2104
2105 for (i = 0; i < current_monitor->num_breakpoints; i++)
2106 {
2107 if (breakaddr[i] == addr)
2108 {
2109 breakaddr[i] = 0;
2110 /* some monitors remove breakpoints based on the address */
2111 if (current_monitor->flags & MO_CLR_BREAK_USES_ADDR)
2112 monitor_printf (current_monitor->clr_break, addr);
2113 else if (current_monitor->flags & MO_CLR_BREAK_1_BASED)
2114 monitor_printf (current_monitor->clr_break, i + 1);
2115 else
2116 monitor_printf (current_monitor->clr_break, i);
2117 monitor_expect_prompt (NULL, 0);
2118 return 0;
2119 }
2120 }
2121 fprintf_unfiltered (gdb_stderr,
2122 "Can't find breakpoint associated with %s\n",
2123 paddress (gdbarch, addr));
2124 return 1;
2125 }
2126
2127 /* monitor_wait_srec_ack -- wait for the target to send an acknowledgement for
2128 an S-record. Return non-zero if the ACK is received properly. */
2129
2130 static int
2131 monitor_wait_srec_ack (void)
2132 {
2133 int ch;
2134
2135 if (current_monitor->flags & MO_SREC_ACK_PLUS)
2136 {
2137 return (readchar (timeout) == '+');
2138 }
2139 else if (current_monitor->flags & MO_SREC_ACK_ROTATE)
2140 {
2141 /* Eat two backspaces, a "rotating" char (|/-\), and a space. */
2142 if ((ch = readchar (1)) < 0)
2143 return 0;
2144 if ((ch = readchar (1)) < 0)
2145 return 0;
2146 if ((ch = readchar (1)) < 0)
2147 return 0;
2148 if ((ch = readchar (1)) < 0)
2149 return 0;
2150 }
2151 return 1;
2152 }
2153
2154 /* monitor_load -- download a file. */
2155
2156 static void
2157 monitor_load (char *file, int from_tty)
2158 {
2159 monitor_debug ("MON load\n");
2160
2161 if (current_monitor->load_routine)
2162 current_monitor->load_routine (monitor_desc, file, hashmark);
2163 else
2164 { /* The default is ascii S-records */
2165 int n;
2166 unsigned long load_offset;
2167 char buf[128];
2168
2169 /* enable user to specify address for downloading as 2nd arg to load */
2170 n = sscanf (file, "%s 0x%lx", buf, &load_offset);
2171 if (n > 1)
2172 file = buf;
2173 else
2174 load_offset = 0;
2175
2176 monitor_printf (current_monitor->load);
2177 if (current_monitor->loadresp)
2178 monitor_expect (current_monitor->loadresp, NULL, 0);
2179
2180 load_srec (monitor_desc, file, (bfd_vma) load_offset,
2181 32, SREC_ALL, hashmark,
2182 current_monitor->flags & MO_SREC_ACK ?
2183 monitor_wait_srec_ack : NULL);
2184
2185 monitor_expect_prompt (NULL, 0);
2186 }
2187
2188 /* Finally, make the PC point at the start address */
2189 if (exec_bfd)
2190 regcache_write_pc (get_current_regcache (),
2191 bfd_get_start_address (exec_bfd));
2192
2193 /* There used to be code here which would clear inferior_ptid and
2194 call clear_symtab_users. None of that should be necessary:
2195 monitor targets should behave like remote protocol targets, and
2196 since generic_load does none of those things, this function
2197 shouldn't either.
2198
2199 Furthermore, clearing inferior_ptid is *incorrect*. After doing
2200 a load, we still have a valid connection to the monitor, with a
2201 live processor state to fiddle with. The user can type
2202 `continue' or `jump *start' and make the program run. If they do
2203 these things, however, GDB will be talking to a running program
2204 while inferior_ptid is null_ptid; this makes things like
2205 reinit_frame_cache very confused. */
2206 }
2207
2208 static void
2209 monitor_stop (ptid_t ptid)
2210 {
2211 monitor_debug ("MON stop\n");
2212 if ((current_monitor->flags & MO_SEND_BREAK_ON_STOP) != 0)
2213 serial_send_break (monitor_desc);
2214 if (current_monitor->stop)
2215 monitor_printf_noecho (current_monitor->stop);
2216 }
2217
2218 /* Put a COMMAND string out to MONITOR. Output from MONITOR is placed
2219 in OUTPUT until the prompt is seen. FIXME: We read the characters
2220 ourseleves here cause of a nasty echo. */
2221
2222 static void
2223 monitor_rcmd (char *command,
2224 struct ui_file *outbuf)
2225 {
2226 char *p;
2227 int resp_len;
2228 char buf[1000];
2229
2230 if (monitor_desc == NULL)
2231 error (_("monitor target not open."));
2232
2233 p = current_monitor->prompt;
2234
2235 /* Send the command. Note that if no args were supplied, then we're
2236 just sending the monitor a newline, which is sometimes useful. */
2237
2238 monitor_printf ("%s\r", (command ? command : ""));
2239
2240 resp_len = monitor_expect_prompt (buf, sizeof buf);
2241
2242 fputs_unfiltered (buf, outbuf); /* Output the response */
2243 }
2244
2245 /* Convert hex digit A to a number. */
2246
2247 #if 0
2248 static int
2249 from_hex (int a)
2250 {
2251 if (a >= '0' && a <= '9')
2252 return a - '0';
2253 if (a >= 'a' && a <= 'f')
2254 return a - 'a' + 10;
2255 if (a >= 'A' && a <= 'F')
2256 return a - 'A' + 10;
2257
2258 error (_("Reply contains invalid hex digit 0x%x"), a);
2259 }
2260 #endif
2261
2262 char *
2263 monitor_get_dev_name (void)
2264 {
2265 return dev_name;
2266 }
2267
2268 /* Check to see if a thread is still alive. */
2269
2270 static int
2271 monitor_thread_alive (struct target_ops *ops, ptid_t ptid)
2272 {
2273 if (ptid_equal (ptid, monitor_ptid))
2274 /* The monitor's task is always alive. */
2275 return 1;
2276
2277 return 0;
2278 }
2279
2280 /* Convert a thread ID to a string. Returns the string in a static
2281 buffer. */
2282
2283 static char *
2284 monitor_pid_to_str (struct target_ops *ops, ptid_t ptid)
2285 {
2286 static char buf[64];
2287
2288 if (ptid_equal (monitor_ptid, ptid))
2289 {
2290 xsnprintf (buf, sizeof buf, "Thread <main>");
2291 return buf;
2292 }
2293
2294 return normal_pid_to_str (ptid);
2295 }
2296
2297 static struct target_ops monitor_ops;
2298
2299 static void
2300 init_base_monitor_ops (void)
2301 {
2302 monitor_ops.to_close = monitor_close;
2303 monitor_ops.to_detach = monitor_detach;
2304 monitor_ops.to_resume = monitor_resume;
2305 monitor_ops.to_wait = monitor_wait;
2306 monitor_ops.to_fetch_registers = monitor_fetch_registers;
2307 monitor_ops.to_store_registers = monitor_store_registers;
2308 monitor_ops.to_prepare_to_store = monitor_prepare_to_store;
2309 monitor_ops.deprecated_xfer_memory = monitor_xfer_memory;
2310 monitor_ops.to_files_info = monitor_files_info;
2311 monitor_ops.to_insert_breakpoint = monitor_insert_breakpoint;
2312 monitor_ops.to_remove_breakpoint = monitor_remove_breakpoint;
2313 monitor_ops.to_kill = monitor_kill;
2314 monitor_ops.to_load = monitor_load;
2315 monitor_ops.to_create_inferior = monitor_create_inferior;
2316 monitor_ops.to_mourn_inferior = monitor_mourn_inferior;
2317 monitor_ops.to_stop = monitor_stop;
2318 monitor_ops.to_rcmd = monitor_rcmd;
2319 monitor_ops.to_log_command = serial_log_command;
2320 monitor_ops.to_thread_alive = monitor_thread_alive;
2321 monitor_ops.to_pid_to_str = monitor_pid_to_str;
2322 monitor_ops.to_stratum = process_stratum;
2323 monitor_ops.to_has_all_memory = default_child_has_all_memory;
2324 monitor_ops.to_has_memory = default_child_has_memory;
2325 monitor_ops.to_has_stack = default_child_has_stack;
2326 monitor_ops.to_has_registers = default_child_has_registers;
2327 monitor_ops.to_has_execution = default_child_has_execution;
2328 monitor_ops.to_magic = OPS_MAGIC;
2329 } /* init_base_monitor_ops */
2330
2331 /* Init the target_ops structure pointed at by OPS */
2332
2333 void
2334 init_monitor_ops (struct target_ops *ops)
2335 {
2336 if (monitor_ops.to_magic != OPS_MAGIC)
2337 init_base_monitor_ops ();
2338
2339 memcpy (ops, &monitor_ops, sizeof monitor_ops);
2340 }
2341
2342 /* Define additional commands that are usually only used by monitors. */
2343
2344 extern initialize_file_ftype _initialize_remote_monitors; /* -Wmissing-prototypes */
2345
2346 void
2347 _initialize_remote_monitors (void)
2348 {
2349 init_base_monitor_ops ();
2350 add_setshow_boolean_cmd ("hash", no_class, &hashmark, _("\
2351 Set display of activity while downloading a file."), _("\
2352 Show display of activity while downloading a file."), _("\
2353 When enabled, a hashmark \'#\' is displayed."),
2354 NULL,
2355 NULL, /* FIXME: i18n: */
2356 &setlist, &showlist);
2357
2358 add_setshow_zinteger_cmd ("monitor", no_class, &monitor_debug_p, _("\
2359 Set debugging of remote monitor communication."), _("\
2360 Show debugging of remote monitor communication."), _("\
2361 When enabled, communication between GDB and the remote monitor\n\
2362 is displayed."),
2363 NULL,
2364 NULL, /* FIXME: i18n: */
2365 &setdebuglist, &showdebuglist);
2366
2367 /* Yes, 42000 is arbitrary. The only sense out of it, is that it
2368 isn't 0. */
2369 monitor_ptid = ptid_build (42000, 0, 42000);
2370 }
This page took 0.077915 seconds and 4 git commands to generate.