eabbbd938cc23258a4dfe3910fe083b207ad8107
[deliverable/binutils-gdb.git] / gdb / monitor.c
1 /* Remote debugging interface for boot monitors, for GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support. Written by Rob Savoye for Cygnus.
7 Resurrected from the ashes by Stu Grossman.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 /* This file was derived from various remote-* modules. It is a collection
27 of generic support functions so GDB can talk directly to a ROM based
28 monitor. This saves use from having to hack an exception based handler
29 into existence, and makes for quick porting.
30
31 This module talks to a debug monitor called 'MONITOR', which
32 We communicate with MONITOR via either a direct serial line, or a TCP
33 (or possibly TELNET) stream to a terminal multiplexor,
34 which in turn talks to the target board. */
35
36 /* FIXME 32x64: This code assumes that registers and addresses are at
37 most 32 bits long. If they can be larger, you will need to declare
38 values as LONGEST and use %llx or some such to print values when
39 building commands to send to the monitor. Since we don't know of
40 any actual 64-bit targets with ROM monitors that use this code,
41 it's not an issue right now. -sts 4/18/96 */
42
43 #include "defs.h"
44 #include "gdbcore.h"
45 #include "target.h"
46 #include <signal.h>
47 #include <ctype.h>
48 #include "gdb_string.h"
49 #include <sys/types.h>
50 #include "command.h"
51 #include "serial.h"
52 #include "monitor.h"
53 #include "gdbcmd.h"
54 #include "inferior.h"
55 #include "gdb_regex.h"
56 #include "srec.h"
57 #include "regcache.h"
58
59 static char *dev_name;
60 static struct target_ops *targ_ops;
61
62 static void monitor_vsprintf (char *sndbuf, char *pattern, va_list args);
63
64 static int readchar (int timeout);
65
66 static void monitor_fetch_register (int regno);
67 static void monitor_store_register (int regno);
68
69 static void monitor_printable_string (char *newstr, char *oldstr, int len);
70 static void monitor_error (char *function, char *message, CORE_ADDR memaddr, int len, char *string, int final_char);
71 static void monitor_detach (char *args, int from_tty);
72 static void monitor_resume (ptid_t ptid, int step, enum target_signal sig);
73 static void monitor_interrupt (int signo);
74 static void monitor_interrupt_twice (int signo);
75 static void monitor_interrupt_query (void);
76 static void monitor_wait_cleanup (void *old_timeout);
77
78 static ptid_t monitor_wait (ptid_t ptid, struct target_waitstatus *status);
79 static void monitor_fetch_registers (int regno);
80 static void monitor_store_registers (int regno);
81 static void monitor_prepare_to_store (void);
82 static int monitor_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len,
83 int write,
84 struct mem_attrib *attrib,
85 struct target_ops *target);
86 static void monitor_files_info (struct target_ops *ops);
87 static int monitor_insert_breakpoint (CORE_ADDR addr, char *shadow);
88 static int monitor_remove_breakpoint (CORE_ADDR addr, char *shadow);
89 static void monitor_kill (void);
90 static void monitor_load (char *file, int from_tty);
91 static void monitor_mourn_inferior (void);
92 static void monitor_stop (void);
93
94 static int monitor_read_memory (CORE_ADDR addr, char *myaddr, int len);
95 static int monitor_write_memory (CORE_ADDR addr, char *myaddr, int len);
96 static int monitor_write_memory_bytes (CORE_ADDR addr, char *myaddr, int len);
97 static int monitor_write_memory_block (CORE_ADDR memaddr,
98 char *myaddr, int len);
99 static int monitor_expect_regexp (struct re_pattern_buffer *pat,
100 char *buf, int buflen);
101 static void monitor_dump_regs (void);
102 #if 0
103 static int from_hex (int a);
104 static unsigned long get_hex_word (void);
105 #endif
106 static void parse_register_dump (char *, int);
107
108 static struct monitor_ops *current_monitor;
109
110 static int hashmark; /* flag set by "set hash" */
111
112 static int timeout = 30;
113
114 static int in_monitor_wait = 0; /* Non-zero means we are in monitor_wait() */
115
116 static void (*ofunc) (); /* Old SIGINT signal handler */
117
118 static CORE_ADDR *breakaddr;
119
120 /* Descriptor for I/O to remote machine. Initialize it to NULL so
121 that monitor_open knows that we don't have a file open when the
122 program starts. */
123
124 static struct serial *monitor_desc = NULL;
125
126 /* Pointer to regexp pattern matching data */
127
128 static struct re_pattern_buffer register_pattern;
129 static char register_fastmap[256];
130
131 static struct re_pattern_buffer getmem_resp_delim_pattern;
132 static char getmem_resp_delim_fastmap[256];
133
134 static struct re_pattern_buffer setmem_resp_delim_pattern;
135 static char setmem_resp_delim_fastmap[256];
136
137 static struct re_pattern_buffer setreg_resp_delim_pattern;
138 static char setreg_resp_delim_fastmap[256];
139
140 static int dump_reg_flag; /* Non-zero means do a dump_registers cmd when
141 monitor_wait wakes up. */
142
143 static int first_time = 0; /* is this the first time we're executing after
144 gaving created the child proccess? */
145
146 #define TARGET_BUF_SIZE 2048
147
148 /* Monitor specific debugging information. Typically only useful to
149 the developer of a new monitor interface. */
150
151 static void monitor_debug (const char *fmt, ...) ATTR_FORMAT(printf, 1, 2);
152
153 static int monitor_debug_p = 0;
154
155 /* NOTE: This file alternates between monitor_debug_p and remote_debug
156 when determining if debug information is printed. Perhaphs this
157 could be simplified. */
158
159 static void
160 monitor_debug (const char *fmt, ...)
161 {
162 if (monitor_debug_p)
163 {
164 va_list args;
165 va_start (args, fmt);
166 vfprintf_filtered (gdb_stdlog, fmt, args);
167 va_end (args);
168 }
169 }
170
171
172 /* Convert a string into a printable representation, Return # byte in
173 the new string. When LEN is >0 it specifies the size of the
174 string. Otherwize strlen(oldstr) is used. */
175
176 static void
177 monitor_printable_string (char *newstr, char *oldstr, int len)
178 {
179 int ch;
180 int i;
181
182 if (len <= 0)
183 len = strlen (oldstr);
184
185 for (i = 0; i < len; i++)
186 {
187 ch = oldstr[i];
188 switch (ch)
189 {
190 default:
191 if (isprint (ch))
192 *newstr++ = ch;
193
194 else
195 {
196 sprintf (newstr, "\\x%02x", ch & 0xff);
197 newstr += 4;
198 }
199 break;
200
201 case '\\':
202 *newstr++ = '\\';
203 *newstr++ = '\\';
204 break;
205 case '\b':
206 *newstr++ = '\\';
207 *newstr++ = 'b';
208 break;
209 case '\f':
210 *newstr++ = '\\';
211 *newstr++ = 't';
212 break;
213 case '\n':
214 *newstr++ = '\\';
215 *newstr++ = 'n';
216 break;
217 case '\r':
218 *newstr++ = '\\';
219 *newstr++ = 'r';
220 break;
221 case '\t':
222 *newstr++ = '\\';
223 *newstr++ = 't';
224 break;
225 case '\v':
226 *newstr++ = '\\';
227 *newstr++ = 'v';
228 break;
229 }
230 }
231
232 *newstr++ = '\0';
233 }
234
235 /* Print monitor errors with a string, converting the string to printable
236 representation. */
237
238 static void
239 monitor_error (char *function, char *message,
240 CORE_ADDR memaddr, int len, char *string, int final_char)
241 {
242 int real_len = (len == 0 && string != (char *) 0) ? strlen (string) : len;
243 char *safe_string = alloca ((real_len * 4) + 1);
244 monitor_printable_string (safe_string, string, real_len);
245
246 if (final_char)
247 error ("%s (0x%s): %s: %s%c", function, paddr_nz (memaddr), message, safe_string, final_char);
248 else
249 error ("%s (0x%s): %s: %s", function, paddr_nz (memaddr), message, safe_string);
250 }
251
252 /* Convert hex digit A to a number. */
253
254 static int
255 fromhex (int a)
256 {
257 if (a >= '0' && a <= '9')
258 return a - '0';
259 else if (a >= 'a' && a <= 'f')
260 return a - 'a' + 10;
261 else if (a >= 'A' && a <= 'F')
262 return a - 'A' + 10;
263 else
264 error ("Invalid hex digit %d", a);
265 }
266
267 /* monitor_vsprintf - similar to vsprintf but handles 64-bit addresses
268
269 This function exists to get around the problem that many host platforms
270 don't have a printf that can print 64-bit addresses. The %A format
271 specification is recognized as a special case, and causes the argument
272 to be printed as a 64-bit hexadecimal address.
273
274 Only format specifiers of the form "[0-9]*[a-z]" are recognized.
275 If it is a '%s' format, the argument is a string; otherwise the
276 argument is assumed to be a long integer.
277
278 %% is also turned into a single %.
279 */
280
281 static void
282 monitor_vsprintf (char *sndbuf, char *pattern, va_list args)
283 {
284 char format[10];
285 char fmt;
286 char *p;
287 int i;
288 long arg_int;
289 CORE_ADDR arg_addr;
290 char *arg_string;
291
292 for (p = pattern; *p; p++)
293 {
294 if (*p == '%')
295 {
296 /* Copy the format specifier to a separate buffer. */
297 format[0] = *p++;
298 for (i = 1; *p >= '0' && *p <= '9' && i < (int) sizeof (format) - 2;
299 i++, p++)
300 format[i] = *p;
301 format[i] = fmt = *p;
302 format[i + 1] = '\0';
303
304 /* Fetch the next argument and print it. */
305 switch (fmt)
306 {
307 case '%':
308 strcpy (sndbuf, "%");
309 break;
310 case 'A':
311 arg_addr = va_arg (args, CORE_ADDR);
312 strcpy (sndbuf, paddr_nz (arg_addr));
313 break;
314 case 's':
315 arg_string = va_arg (args, char *);
316 sprintf (sndbuf, format, arg_string);
317 break;
318 default:
319 arg_int = va_arg (args, long);
320 sprintf (sndbuf, format, arg_int);
321 break;
322 }
323 sndbuf += strlen (sndbuf);
324 }
325 else
326 *sndbuf++ = *p;
327 }
328 *sndbuf = '\0';
329 }
330
331
332 /* monitor_printf_noecho -- Send data to monitor, but don't expect an echo.
333 Works just like printf. */
334
335 void
336 monitor_printf_noecho (char *pattern,...)
337 {
338 va_list args;
339 char sndbuf[2000];
340 int len;
341
342 va_start (args, pattern);
343
344 monitor_vsprintf (sndbuf, pattern, args);
345
346 len = strlen (sndbuf);
347 if (len + 1 > sizeof sndbuf)
348 internal_error (__FILE__, __LINE__, "failed internal consistency check");
349
350 if (monitor_debug_p)
351 {
352 char *safe_string = (char *) alloca ((strlen (sndbuf) * 4) + 1);
353 monitor_printable_string (safe_string, sndbuf, 0);
354 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
355 }
356
357 monitor_write (sndbuf, len);
358 }
359
360 /* monitor_printf -- Send data to monitor and check the echo. Works just like
361 printf. */
362
363 void
364 monitor_printf (char *pattern,...)
365 {
366 va_list args;
367 char sndbuf[2000];
368 int len;
369
370 va_start (args, pattern);
371
372 monitor_vsprintf (sndbuf, pattern, args);
373
374 len = strlen (sndbuf);
375 if (len + 1 > sizeof sndbuf)
376 internal_error (__FILE__, __LINE__, "failed internal consistency check");
377
378 if (monitor_debug_p)
379 {
380 char *safe_string = (char *) alloca ((len * 4) + 1);
381 monitor_printable_string (safe_string, sndbuf, 0);
382 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
383 }
384
385 monitor_write (sndbuf, len);
386
387 /* We used to expect that the next immediate output was the characters we
388 just output, but sometimes some extra junk appeared before the characters
389 we expected, like an extra prompt, or a portmaster sending telnet negotiations.
390 So, just start searching for what we sent, and skip anything unknown. */
391 monitor_debug ("ExpectEcho\n");
392 monitor_expect (sndbuf, (char *) 0, 0);
393 }
394
395
396 /* Write characters to the remote system. */
397
398 void
399 monitor_write (char *buf, int buflen)
400 {
401 if (serial_write (monitor_desc, buf, buflen))
402 fprintf_unfiltered (gdb_stderr, "serial_write failed: %s\n",
403 safe_strerror (errno));
404 }
405
406
407 /* Read a binary character from the remote system, doing all the fancy
408 timeout stuff, but without interpreting the character in any way,
409 and without printing remote debug information. */
410
411 int
412 monitor_readchar (void)
413 {
414 int c;
415 int looping;
416
417 do
418 {
419 looping = 0;
420 c = serial_readchar (monitor_desc, timeout);
421
422 if (c >= 0)
423 c &= 0xff; /* don't lose bit 7 */
424 }
425 while (looping);
426
427 if (c >= 0)
428 return c;
429
430 if (c == SERIAL_TIMEOUT)
431 error ("Timeout reading from remote system.");
432
433 perror_with_name ("remote-monitor");
434 }
435
436
437 /* Read a character from the remote system, doing all the fancy
438 timeout stuff. */
439
440 static int
441 readchar (int timeout)
442 {
443 int c;
444 static enum
445 {
446 last_random, last_nl, last_cr, last_crnl
447 }
448 state = last_random;
449 int looping;
450
451 do
452 {
453 looping = 0;
454 c = serial_readchar (monitor_desc, timeout);
455
456 if (c >= 0)
457 {
458 c &= 0x7f;
459 /* This seems to interfere with proper function of the
460 input stream */
461 if (monitor_debug_p || remote_debug)
462 {
463 char buf[2];
464 buf[0] = c;
465 buf[1] = '\0';
466 puts_debug ("read -->", buf, "<--");
467 }
468
469 }
470
471 /* Canonicialize \n\r combinations into one \r */
472 if ((current_monitor->flags & MO_HANDLE_NL) != 0)
473 {
474 if ((c == '\r' && state == last_nl)
475 || (c == '\n' && state == last_cr))
476 {
477 state = last_crnl;
478 looping = 1;
479 }
480 else if (c == '\r')
481 state = last_cr;
482 else if (c != '\n')
483 state = last_random;
484 else
485 {
486 state = last_nl;
487 c = '\r';
488 }
489 }
490 }
491 while (looping);
492
493 if (c >= 0)
494 return c;
495
496 if (c == SERIAL_TIMEOUT)
497 #if 0
498 /* I fail to see how detaching here can be useful */
499 if (in_monitor_wait) /* Watchdog went off */
500 {
501 target_mourn_inferior ();
502 error ("GDB serial timeout has expired. Target detached.\n");
503 }
504 else
505 #endif
506 error ("Timeout reading from remote system.");
507
508 perror_with_name ("remote-monitor");
509 }
510
511 /* Scan input from the remote system, until STRING is found. If BUF is non-
512 zero, then collect input until we have collected either STRING or BUFLEN-1
513 chars. In either case we terminate BUF with a 0. If input overflows BUF
514 because STRING can't be found, return -1, else return number of chars in BUF
515 (minus the terminating NUL). Note that in the non-overflow case, STRING
516 will be at the end of BUF. */
517
518 int
519 monitor_expect (char *string, char *buf, int buflen)
520 {
521 char *p = string;
522 int obuflen = buflen;
523 int c;
524 extern struct target_ops *targ_ops;
525
526 if (monitor_debug_p)
527 {
528 char *safe_string = (char *) alloca ((strlen (string) * 4) + 1);
529 monitor_printable_string (safe_string, string, 0);
530 fprintf_unfiltered (gdb_stdlog, "MON Expecting '%s'\n", safe_string);
531 }
532
533 immediate_quit++;
534 while (1)
535 {
536 if (buf)
537 {
538 if (buflen < 2)
539 {
540 *buf = '\000';
541 immediate_quit--;
542 return -1;
543 }
544
545 c = readchar (timeout);
546 if (c == '\000')
547 continue;
548 *buf++ = c;
549 buflen--;
550 }
551 else
552 c = readchar (timeout);
553
554 /* Don't expect any ^C sent to be echoed */
555
556 if (*p == '\003' || c == *p)
557 {
558 p++;
559 if (*p == '\0')
560 {
561 immediate_quit--;
562
563 if (buf)
564 {
565 *buf++ = '\000';
566 return obuflen - buflen;
567 }
568 else
569 return 0;
570 }
571 }
572 #if 0
573 // OBSOLETE else if ((c == '\021' || c == '\023') &&
574 // OBSOLETE (STREQ (targ_ops->to_shortname, "m32r")
575 // OBSOLETE || STREQ (targ_ops->to_shortname, "mon2000")))
576 // OBSOLETE { /* m32r monitor emits random DC1/DC3 chars */
577 // OBSOLETE continue;
578 // OBSOLETE }
579 #endif
580 else
581 {
582 /* We got a character that doesn't match the string. We need to
583 back up p, but how far? If we're looking for "..howdy" and the
584 monitor sends "...howdy"? There's certainly a match in there,
585 but when we receive the third ".", we won't find it if we just
586 restart the matching at the beginning of the string.
587
588 This is a Boyer-Moore kind of situation. We want to reset P to
589 the end of the longest prefix of STRING that is a suffix of
590 what we've read so far. In the example above, that would be
591 ".." --- the longest prefix of "..howdy" that is a suffix of
592 "...". This longest prefix could be the empty string, if C
593 is nowhere to be found in STRING.
594
595 If this longest prefix is not the empty string, it must contain
596 C, so let's search from the end of STRING for instances of C,
597 and see if the portion of STRING before that is a suffix of
598 what we read before C. Actually, we can search backwards from
599 p, since we know no prefix can be longer than that.
600
601 Note that we can use STRING itself, along with C, as a record
602 of what we've received so far. :) */
603 int i;
604
605 for (i = (p - string) - 1; i >= 0; i--)
606 if (string[i] == c)
607 {
608 /* Is this prefix a suffix of what we've read so far?
609 In other words, does
610 string[0 .. i-1] == string[p - i, p - 1]? */
611 if (! memcmp (string, p - i, i))
612 {
613 p = string + i + 1;
614 break;
615 }
616 }
617 if (i < 0)
618 p = string;
619 }
620 }
621 }
622
623 /* Search for a regexp. */
624
625 static int
626 monitor_expect_regexp (struct re_pattern_buffer *pat, char *buf, int buflen)
627 {
628 char *mybuf;
629 char *p;
630 monitor_debug ("MON Expecting regexp\n");
631 if (buf)
632 mybuf = buf;
633 else
634 {
635 mybuf = alloca (TARGET_BUF_SIZE);
636 buflen = TARGET_BUF_SIZE;
637 }
638
639 p = mybuf;
640 while (1)
641 {
642 int retval;
643
644 if (p - mybuf >= buflen)
645 { /* Buffer about to overflow */
646
647 /* On overflow, we copy the upper half of the buffer to the lower half. Not
648 great, but it usually works... */
649
650 memcpy (mybuf, mybuf + buflen / 2, buflen / 2);
651 p = mybuf + buflen / 2;
652 }
653
654 *p++ = readchar (timeout);
655
656 retval = re_search (pat, mybuf, p - mybuf, 0, p - mybuf, NULL);
657 if (retval >= 0)
658 return 1;
659 }
660 }
661
662 /* Keep discarding input until we see the MONITOR prompt.
663
664 The convention for dealing with the prompt is that you
665 o give your command
666 o *then* wait for the prompt.
667
668 Thus the last thing that a procedure does with the serial line will
669 be an monitor_expect_prompt(). Exception: monitor_resume does not
670 wait for the prompt, because the terminal is being handed over to
671 the inferior. However, the next thing which happens after that is
672 a monitor_wait which does wait for the prompt. Note that this
673 includes abnormal exit, e.g. error(). This is necessary to prevent
674 getting into states from which we can't recover. */
675
676 int
677 monitor_expect_prompt (char *buf, int buflen)
678 {
679 monitor_debug ("MON Expecting prompt\n");
680 return monitor_expect (current_monitor->prompt, buf, buflen);
681 }
682
683 /* Get N 32-bit words from remote, each preceded by a space, and put
684 them in registers starting at REGNO. */
685
686 #if 0
687 static unsigned long
688 get_hex_word (void)
689 {
690 unsigned long val;
691 int i;
692 int ch;
693
694 do
695 ch = readchar (timeout);
696 while (isspace (ch));
697
698 val = from_hex (ch);
699
700 for (i = 7; i >= 1; i--)
701 {
702 ch = readchar (timeout);
703 if (!isxdigit (ch))
704 break;
705 val = (val << 4) | from_hex (ch);
706 }
707
708 return val;
709 }
710 #endif
711
712 static void
713 compile_pattern (char *pattern, struct re_pattern_buffer *compiled_pattern,
714 char *fastmap)
715 {
716 int tmp;
717 const char *val;
718
719 compiled_pattern->fastmap = fastmap;
720
721 tmp = re_set_syntax (RE_SYNTAX_EMACS);
722 val = re_compile_pattern (pattern,
723 strlen (pattern),
724 compiled_pattern);
725 re_set_syntax (tmp);
726
727 if (val)
728 error ("compile_pattern: Can't compile pattern string `%s': %s!", pattern, val);
729
730 if (fastmap)
731 re_compile_fastmap (compiled_pattern);
732 }
733
734 /* Open a connection to a remote debugger. NAME is the filename used
735 for communication. */
736
737 void
738 monitor_open (char *args, struct monitor_ops *mon_ops, int from_tty)
739 {
740 char *name;
741 char **p;
742
743 if (mon_ops->magic != MONITOR_OPS_MAGIC)
744 error ("Magic number of monitor_ops struct wrong.");
745
746 targ_ops = mon_ops->target;
747 name = targ_ops->to_shortname;
748
749 if (!args)
750 error ("Use `target %s DEVICE-NAME' to use a serial port, or \n\
751 `target %s HOST-NAME:PORT-NUMBER' to use a network connection.", name, name);
752
753 target_preopen (from_tty);
754
755 /* Setup pattern for register dump */
756
757 if (mon_ops->register_pattern)
758 compile_pattern (mon_ops->register_pattern, &register_pattern,
759 register_fastmap);
760
761 if (mon_ops->getmem.resp_delim)
762 compile_pattern (mon_ops->getmem.resp_delim, &getmem_resp_delim_pattern,
763 getmem_resp_delim_fastmap);
764
765 if (mon_ops->setmem.resp_delim)
766 compile_pattern (mon_ops->setmem.resp_delim, &setmem_resp_delim_pattern,
767 setmem_resp_delim_fastmap);
768
769 if (mon_ops->setreg.resp_delim)
770 compile_pattern (mon_ops->setreg.resp_delim, &setreg_resp_delim_pattern,
771 setreg_resp_delim_fastmap);
772
773 unpush_target (targ_ops);
774
775 if (dev_name)
776 xfree (dev_name);
777 dev_name = xstrdup (args);
778
779 monitor_desc = serial_open (dev_name);
780
781 if (!monitor_desc)
782 perror_with_name (dev_name);
783
784 if (baud_rate != -1)
785 {
786 if (serial_setbaudrate (monitor_desc, baud_rate))
787 {
788 serial_close (monitor_desc);
789 perror_with_name (dev_name);
790 }
791 }
792
793 serial_raw (monitor_desc);
794
795 serial_flush_input (monitor_desc);
796
797 /* some systems only work with 2 stop bits */
798
799 serial_setstopbits (monitor_desc, mon_ops->stopbits);
800
801 current_monitor = mon_ops;
802
803 /* See if we can wake up the monitor. First, try sending a stop sequence,
804 then send the init strings. Last, remove all breakpoints. */
805
806 if (current_monitor->stop)
807 {
808 monitor_stop ();
809 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
810 {
811 monitor_debug ("EXP Open echo\n");
812 monitor_expect_prompt (NULL, 0);
813 }
814 }
815
816 /* wake up the monitor and see if it's alive */
817 for (p = mon_ops->init; *p != NULL; p++)
818 {
819 /* Some of the characters we send may not be echoed,
820 but we hope to get a prompt at the end of it all. */
821
822 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
823 monitor_printf (*p);
824 else
825 monitor_printf_noecho (*p);
826 monitor_expect_prompt (NULL, 0);
827 }
828
829 serial_flush_input (monitor_desc);
830
831 /* Alloc breakpoints */
832 if (mon_ops->set_break != NULL)
833 {
834 if (mon_ops->num_breakpoints == 0)
835 mon_ops->num_breakpoints = 8;
836
837 breakaddr = (CORE_ADDR *) xmalloc (mon_ops->num_breakpoints * sizeof (CORE_ADDR));
838 memset (breakaddr, 0, mon_ops->num_breakpoints * sizeof (CORE_ADDR));
839 }
840
841 /* Remove all breakpoints */
842
843 if (mon_ops->clr_all_break)
844 {
845 monitor_printf (mon_ops->clr_all_break);
846 monitor_expect_prompt (NULL, 0);
847 }
848
849 if (from_tty)
850 printf_unfiltered ("Remote target %s connected to %s\n", name, dev_name);
851
852 push_target (targ_ops);
853
854 inferior_ptid = pid_to_ptid (42000); /* Make run command think we are busy... */
855
856 /* Give monitor_wait something to read */
857
858 monitor_printf (current_monitor->line_term);
859
860 start_remote ();
861 }
862
863 /* Close out all files and local state before this target loses
864 control. */
865
866 void
867 monitor_close (int quitting)
868 {
869 if (monitor_desc)
870 serial_close (monitor_desc);
871
872 /* Free breakpoint memory */
873 if (breakaddr != NULL)
874 {
875 xfree (breakaddr);
876 breakaddr = NULL;
877 }
878
879 monitor_desc = NULL;
880 }
881
882 /* Terminate the open connection to the remote debugger. Use this
883 when you want to detach and do something else with your gdb. */
884
885 static void
886 monitor_detach (char *args, int from_tty)
887 {
888 pop_target (); /* calls monitor_close to do the real work */
889 if (from_tty)
890 printf_unfiltered ("Ending remote %s debugging\n", target_shortname);
891 }
892
893 /* Convert VALSTR into the target byte-ordered value of REGNO and store it. */
894
895 char *
896 monitor_supply_register (int regno, char *valstr)
897 {
898 ULONGEST val;
899 unsigned char regbuf[MAX_REGISTER_SIZE];
900 char *p;
901
902 val = 0;
903 p = valstr;
904 while (p && *p != '\0')
905 {
906 if (*p == '\r' || *p == '\n')
907 {
908 while (*p != '\0')
909 p++;
910 break;
911 }
912 if (isspace (*p))
913 {
914 p++;
915 continue;
916 }
917 if (!isxdigit (*p) && *p != 'x')
918 {
919 break;
920 }
921
922 val <<= 4;
923 val += fromhex (*p++);
924 }
925 monitor_debug ("Supplying Register %d %s\n", regno, valstr);
926
927 if (val == 0 && valstr == p)
928 error ("monitor_supply_register (%d): bad value from monitor: %s.",
929 regno, valstr);
930
931 /* supply register stores in target byte order, so swap here */
932
933 store_unsigned_integer (regbuf, REGISTER_RAW_SIZE (regno), val);
934
935 supply_register (regno, regbuf);
936
937 return p;
938 }
939
940 /* Tell the remote machine to resume. */
941
942 static void
943 monitor_resume (ptid_t ptid, int step, enum target_signal sig)
944 {
945 /* Some monitors require a different command when starting a program */
946 monitor_debug ("MON resume\n");
947 if (current_monitor->flags & MO_RUN_FIRST_TIME && first_time == 1)
948 {
949 first_time = 0;
950 monitor_printf ("run\r");
951 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
952 dump_reg_flag = 1;
953 return;
954 }
955 if (step)
956 monitor_printf (current_monitor->step);
957 else
958 {
959 if (current_monitor->continue_hook)
960 (*current_monitor->continue_hook) ();
961 else
962 monitor_printf (current_monitor->cont);
963 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
964 dump_reg_flag = 1;
965 }
966 }
967
968 /* Parse the output of a register dump command. A monitor specific
969 regexp is used to extract individual register descriptions of the
970 form REG=VAL. Each description is split up into a name and a value
971 string which are passed down to monitor specific code. */
972
973 static void
974 parse_register_dump (char *buf, int len)
975 {
976 monitor_debug ("MON Parsing register dump\n");
977 while (1)
978 {
979 int regnamelen, vallen;
980 char *regname, *val;
981 /* Element 0 points to start of register name, and element 1
982 points to the start of the register value. */
983 struct re_registers register_strings;
984
985 memset (&register_strings, 0, sizeof (struct re_registers));
986
987 if (re_search (&register_pattern, buf, len, 0, len,
988 &register_strings) == -1)
989 break;
990
991 regnamelen = register_strings.end[1] - register_strings.start[1];
992 regname = buf + register_strings.start[1];
993 vallen = register_strings.end[2] - register_strings.start[2];
994 val = buf + register_strings.start[2];
995
996 current_monitor->supply_register (regname, regnamelen, val, vallen);
997
998 buf += register_strings.end[0];
999 len -= register_strings.end[0];
1000 }
1001 }
1002
1003 /* Send ^C to target to halt it. Target will respond, and send us a
1004 packet. */
1005
1006 static void
1007 monitor_interrupt (int signo)
1008 {
1009 /* If this doesn't work, try more severe steps. */
1010 signal (signo, monitor_interrupt_twice);
1011
1012 if (monitor_debug_p || remote_debug)
1013 fprintf_unfiltered (gdb_stdlog, "monitor_interrupt called\n");
1014
1015 target_stop ();
1016 }
1017
1018 /* The user typed ^C twice. */
1019
1020 static void
1021 monitor_interrupt_twice (int signo)
1022 {
1023 signal (signo, ofunc);
1024
1025 monitor_interrupt_query ();
1026
1027 signal (signo, monitor_interrupt);
1028 }
1029
1030 /* Ask the user what to do when an interrupt is received. */
1031
1032 static void
1033 monitor_interrupt_query (void)
1034 {
1035 target_terminal_ours ();
1036
1037 if (query ("Interrupted while waiting for the program.\n\
1038 Give up (and stop debugging it)? "))
1039 {
1040 target_mourn_inferior ();
1041 throw_exception (RETURN_QUIT);
1042 }
1043
1044 target_terminal_inferior ();
1045 }
1046
1047 static void
1048 monitor_wait_cleanup (void *old_timeout)
1049 {
1050 timeout = *(int *) old_timeout;
1051 signal (SIGINT, ofunc);
1052 in_monitor_wait = 0;
1053 }
1054
1055
1056
1057 void
1058 monitor_wait_filter (char *buf,
1059 int bufmax,
1060 int *ext_resp_len,
1061 struct target_waitstatus *status
1062 )
1063 {
1064 int resp_len;
1065 do
1066 {
1067 resp_len = monitor_expect_prompt (buf, bufmax);
1068 *ext_resp_len = resp_len;
1069
1070 if (resp_len <= 0)
1071 fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive response from monitor: %s.", buf);
1072 }
1073 while (resp_len < 0);
1074
1075 /* Print any output characters that were preceded by ^O. */
1076 /* FIXME - This would be great as a user settabgle flag */
1077 if (monitor_debug_p || remote_debug
1078 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1079 {
1080 int i;
1081
1082 for (i = 0; i < resp_len - 1; i++)
1083 if (buf[i] == 0x0f)
1084 putchar_unfiltered (buf[++i]);
1085 }
1086 }
1087
1088
1089
1090 /* Wait until the remote machine stops, then return, storing status in
1091 status just as `wait' would. */
1092
1093 static ptid_t
1094 monitor_wait (ptid_t ptid, struct target_waitstatus *status)
1095 {
1096 int old_timeout = timeout;
1097 char buf[TARGET_BUF_SIZE];
1098 int resp_len;
1099 struct cleanup *old_chain;
1100
1101 status->kind = TARGET_WAITKIND_EXITED;
1102 status->value.integer = 0;
1103
1104 old_chain = make_cleanup (monitor_wait_cleanup, &old_timeout);
1105 monitor_debug ("MON wait\n");
1106
1107 #if 0
1108 /* This is somthing other than a maintenance command */
1109 in_monitor_wait = 1;
1110 timeout = watchdog > 0 ? watchdog : -1;
1111 #else
1112 timeout = -1; /* Don't time out -- user program is running. */
1113 #endif
1114
1115 ofunc = (void (*)()) signal (SIGINT, monitor_interrupt);
1116
1117 if (current_monitor->wait_filter)
1118 (*current_monitor->wait_filter) (buf, sizeof (buf), &resp_len, status);
1119 else
1120 monitor_wait_filter (buf, sizeof (buf), &resp_len, status);
1121
1122 #if 0 /* Transferred to monitor wait filter */
1123 do
1124 {
1125 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1126
1127 if (resp_len <= 0)
1128 fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive response from monitor: %s.", buf);
1129 }
1130 while (resp_len < 0);
1131
1132 /* Print any output characters that were preceded by ^O. */
1133 /* FIXME - This would be great as a user settabgle flag */
1134 if (monitor_debug_p || remote_debug
1135 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1136 {
1137 int i;
1138
1139 for (i = 0; i < resp_len - 1; i++)
1140 if (buf[i] == 0x0f)
1141 putchar_unfiltered (buf[++i]);
1142 }
1143 #endif
1144
1145 signal (SIGINT, ofunc);
1146
1147 timeout = old_timeout;
1148 #if 0
1149 if (dump_reg_flag && current_monitor->dump_registers)
1150 {
1151 dump_reg_flag = 0;
1152 monitor_printf (current_monitor->dump_registers);
1153 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1154 }
1155
1156 if (current_monitor->register_pattern)
1157 parse_register_dump (buf, resp_len);
1158 #else
1159 monitor_debug ("Wait fetching registers after stop\n");
1160 monitor_dump_regs ();
1161 #endif
1162
1163 status->kind = TARGET_WAITKIND_STOPPED;
1164 status->value.sig = TARGET_SIGNAL_TRAP;
1165
1166 discard_cleanups (old_chain);
1167
1168 in_monitor_wait = 0;
1169
1170 return inferior_ptid;
1171 }
1172
1173 /* Fetch register REGNO, or all registers if REGNO is -1. Returns
1174 errno value. */
1175
1176 static void
1177 monitor_fetch_register (int regno)
1178 {
1179 const char *name;
1180 char *zerobuf;
1181 char *regbuf;
1182 int i;
1183
1184 regbuf = alloca (MAX_REGISTER_SIZE * 2 + 1);
1185 zerobuf = alloca (MAX_REGISTER_SIZE);
1186 memset (zerobuf, 0, MAX_REGISTER_SIZE);
1187
1188 if (current_monitor->regname != NULL)
1189 name = current_monitor->regname (regno);
1190 else
1191 name = current_monitor->regnames[regno];
1192 monitor_debug ("MON fetchreg %d '%s'\n", regno, name ? name : "(null name)");
1193
1194 if (!name || (*name == '\0'))
1195 {
1196 monitor_debug ("No register known for %d\n", regno);
1197 supply_register (regno, zerobuf);
1198 return;
1199 }
1200
1201 /* send the register examine command */
1202
1203 monitor_printf (current_monitor->getreg.cmd, name);
1204
1205 /* If RESP_DELIM is specified, we search for that as a leading
1206 delimiter for the register value. Otherwise, we just start
1207 searching from the start of the buf. */
1208
1209 if (current_monitor->getreg.resp_delim)
1210 {
1211 monitor_debug ("EXP getreg.resp_delim\n");
1212 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1213 /* Handle case of first 32 registers listed in pairs. */
1214 if (current_monitor->flags & MO_32_REGS_PAIRED
1215 && (regno & 1) != 0 && regno < 32)
1216 {
1217 monitor_debug ("EXP getreg.resp_delim\n");
1218 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1219 }
1220 }
1221
1222 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set */
1223 if (current_monitor->flags & MO_HEX_PREFIX)
1224 {
1225 int c;
1226 c = readchar (timeout);
1227 while (c == ' ')
1228 c = readchar (timeout);
1229 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1230 ;
1231 else
1232 error ("Bad value returned from monitor while fetching register %x.",
1233 regno);
1234 }
1235
1236 /* Read upto the maximum number of hex digits for this register, skipping
1237 spaces, but stop reading if something else is seen. Some monitors
1238 like to drop leading zeros. */
1239
1240 for (i = 0; i < REGISTER_RAW_SIZE (regno) * 2; i++)
1241 {
1242 int c;
1243 c = readchar (timeout);
1244 while (c == ' ')
1245 c = readchar (timeout);
1246
1247 if (!isxdigit (c))
1248 break;
1249
1250 regbuf[i] = c;
1251 }
1252
1253 regbuf[i] = '\000'; /* terminate the number */
1254 monitor_debug ("REGVAL '%s'\n", regbuf);
1255
1256 /* If TERM is present, we wait for that to show up. Also, (if TERM
1257 is present), we will send TERM_CMD if that is present. In any
1258 case, we collect all of the output into buf, and then wait for
1259 the normal prompt. */
1260
1261 if (current_monitor->getreg.term)
1262 {
1263 monitor_debug ("EXP getreg.term\n");
1264 monitor_expect (current_monitor->getreg.term, NULL, 0); /* get response */
1265 }
1266
1267 if (current_monitor->getreg.term_cmd)
1268 {
1269 monitor_debug ("EMIT getreg.term.cmd\n");
1270 monitor_printf (current_monitor->getreg.term_cmd);
1271 }
1272 if (!current_monitor->getreg.term || /* Already expected or */
1273 current_monitor->getreg.term_cmd) /* ack expected */
1274 monitor_expect_prompt (NULL, 0); /* get response */
1275
1276 monitor_supply_register (regno, regbuf);
1277 }
1278
1279 /* Sometimes, it takes several commands to dump the registers */
1280 /* This is a primitive for use by variations of monitor interfaces in
1281 case they need to compose the operation.
1282 */
1283 int
1284 monitor_dump_reg_block (char *block_cmd)
1285 {
1286 char buf[TARGET_BUF_SIZE];
1287 int resp_len;
1288 monitor_printf (block_cmd);
1289 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1290 parse_register_dump (buf, resp_len);
1291 return 1;
1292 }
1293
1294
1295 /* Read the remote registers into the block regs. */
1296 /* Call the specific function if it has been provided */
1297
1298 static void
1299 monitor_dump_regs (void)
1300 {
1301 char buf[TARGET_BUF_SIZE];
1302 int resp_len;
1303 if (current_monitor->dumpregs)
1304 (*(current_monitor->dumpregs)) (); /* call supplied function */
1305 else if (current_monitor->dump_registers) /* default version */
1306 {
1307 monitor_printf (current_monitor->dump_registers);
1308 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1309 parse_register_dump (buf, resp_len);
1310 }
1311 else
1312 internal_error (__FILE__, __LINE__, "failed internal consistency check"); /* Need some way to read registers */
1313 }
1314
1315 static void
1316 monitor_fetch_registers (int regno)
1317 {
1318 monitor_debug ("MON fetchregs\n");
1319 if (current_monitor->getreg.cmd)
1320 {
1321 if (regno >= 0)
1322 {
1323 monitor_fetch_register (regno);
1324 return;
1325 }
1326
1327 for (regno = 0; regno < NUM_REGS; regno++)
1328 monitor_fetch_register (regno);
1329 }
1330 else
1331 {
1332 monitor_dump_regs ();
1333 }
1334 }
1335
1336 /* Store register REGNO, or all if REGNO == 0. Return errno value. */
1337
1338 static void
1339 monitor_store_register (int regno)
1340 {
1341 const char *name;
1342 ULONGEST val;
1343
1344 if (current_monitor->regname != NULL)
1345 name = current_monitor->regname (regno);
1346 else
1347 name = current_monitor->regnames[regno];
1348
1349 if (!name || (*name == '\0'))
1350 {
1351 monitor_debug ("MON Cannot store unknown register\n");
1352 return;
1353 }
1354
1355 val = read_register (regno);
1356 monitor_debug ("MON storeg %d %s\n", regno,
1357 phex (val, REGISTER_RAW_SIZE (regno)));
1358
1359 /* send the register deposit command */
1360
1361 if (current_monitor->flags & MO_REGISTER_VALUE_FIRST)
1362 monitor_printf (current_monitor->setreg.cmd, val, name);
1363 else if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1364 monitor_printf (current_monitor->setreg.cmd, name);
1365 else
1366 monitor_printf (current_monitor->setreg.cmd, name, val);
1367
1368 if (current_monitor->setreg.resp_delim)
1369 {
1370 monitor_debug ("EXP setreg.resp_delim\n");
1371 monitor_expect_regexp (&setreg_resp_delim_pattern, NULL, 0);
1372 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1373 monitor_printf ("%s\r", paddr_nz (val));
1374 }
1375 if (current_monitor->setreg.term)
1376 {
1377 monitor_debug ("EXP setreg.term\n");
1378 monitor_expect (current_monitor->setreg.term, NULL, 0);
1379 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1380 monitor_printf ("%s\r", paddr_nz (val));
1381 monitor_expect_prompt (NULL, 0);
1382 }
1383 else
1384 monitor_expect_prompt (NULL, 0);
1385 if (current_monitor->setreg.term_cmd) /* Mode exit required */
1386 {
1387 monitor_debug ("EXP setreg_termcmd\n");
1388 monitor_printf ("%s", current_monitor->setreg.term_cmd);
1389 monitor_expect_prompt (NULL, 0);
1390 }
1391 } /* monitor_store_register */
1392
1393 /* Store the remote registers. */
1394
1395 static void
1396 monitor_store_registers (int regno)
1397 {
1398 if (regno >= 0)
1399 {
1400 monitor_store_register (regno);
1401 return;
1402 }
1403
1404 for (regno = 0; regno < NUM_REGS; regno++)
1405 monitor_store_register (regno);
1406 }
1407
1408 /* Get ready to modify the registers array. On machines which store
1409 individual registers, this doesn't need to do anything. On machines
1410 which store all the registers in one fell swoop, this makes sure
1411 that registers contains all the registers from the program being
1412 debugged. */
1413
1414 static void
1415 monitor_prepare_to_store (void)
1416 {
1417 /* Do nothing, since we can store individual regs */
1418 }
1419
1420 static void
1421 monitor_files_info (struct target_ops *ops)
1422 {
1423 printf_unfiltered ("\tAttached to %s at %d baud.\n", dev_name, baud_rate);
1424 }
1425
1426 static int
1427 monitor_write_memory (CORE_ADDR memaddr, char *myaddr, int len)
1428 {
1429 unsigned int val, hostval;
1430 char *cmd;
1431 int i;
1432
1433 monitor_debug ("MON write %d %s\n", len, paddr (memaddr));
1434
1435 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1436 memaddr = ADDR_BITS_REMOVE (memaddr);
1437
1438 /* Use memory fill command for leading 0 bytes. */
1439
1440 if (current_monitor->fill)
1441 {
1442 for (i = 0; i < len; i++)
1443 if (myaddr[i] != 0)
1444 break;
1445
1446 if (i > 4) /* More than 4 zeros is worth doing */
1447 {
1448 monitor_debug ("MON FILL %d\n", i);
1449 if (current_monitor->flags & MO_FILL_USES_ADDR)
1450 monitor_printf (current_monitor->fill, memaddr, (memaddr + i) - 1, 0);
1451 else
1452 monitor_printf (current_monitor->fill, memaddr, i, 0);
1453
1454 monitor_expect_prompt (NULL, 0);
1455
1456 return i;
1457 }
1458 }
1459
1460 #if 0
1461 /* Can't actually use long longs if VAL is an int (nice idea, though). */
1462 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->setmem.cmdll)
1463 {
1464 len = 8;
1465 cmd = current_monitor->setmem.cmdll;
1466 }
1467 else
1468 #endif
1469 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->setmem.cmdl)
1470 {
1471 len = 4;
1472 cmd = current_monitor->setmem.cmdl;
1473 }
1474 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->setmem.cmdw)
1475 {
1476 len = 2;
1477 cmd = current_monitor->setmem.cmdw;
1478 }
1479 else
1480 {
1481 len = 1;
1482 cmd = current_monitor->setmem.cmdb;
1483 }
1484
1485 val = extract_unsigned_integer (myaddr, len);
1486
1487 if (len == 4)
1488 {
1489 hostval = *(unsigned int *) myaddr;
1490 monitor_debug ("Hostval(%08x) val(%08x)\n", hostval, val);
1491 }
1492
1493
1494 if (current_monitor->flags & MO_NO_ECHO_ON_SETMEM)
1495 monitor_printf_noecho (cmd, memaddr, val);
1496 else if (current_monitor->flags & MO_SETMEM_INTERACTIVE)
1497 {
1498
1499 monitor_printf_noecho (cmd, memaddr);
1500
1501 if (current_monitor->setmem.resp_delim)
1502 {
1503 monitor_debug ("EXP setmem.resp_delim");
1504 monitor_expect_regexp (&setmem_resp_delim_pattern, NULL, 0);
1505 monitor_printf ("%x\r", val);
1506 }
1507 if (current_monitor->setmem.term)
1508 {
1509 monitor_debug ("EXP setmem.term");
1510 monitor_expect (current_monitor->setmem.term, NULL, 0);
1511 monitor_printf ("%x\r", val);
1512 }
1513 if (current_monitor->setmem.term_cmd)
1514 { /* Emit this to get out of the memory editing state */
1515 monitor_printf ("%s", current_monitor->setmem.term_cmd);
1516 /* Drop through to expecting a prompt */
1517 }
1518 }
1519 else
1520 monitor_printf (cmd, memaddr, val);
1521
1522 monitor_expect_prompt (NULL, 0);
1523
1524 return len;
1525 }
1526
1527
1528 static int
1529 monitor_write_even_block (CORE_ADDR memaddr, char *myaddr, int len)
1530 {
1531 unsigned int val;
1532 int written = 0;;
1533 /* Enter the sub mode */
1534 monitor_printf (current_monitor->setmem.cmdl, memaddr);
1535 monitor_expect_prompt (NULL, 0);
1536
1537 while (len)
1538 {
1539 val = extract_unsigned_integer (myaddr, 4); /* REALLY */
1540 monitor_printf ("%x\r", val);
1541 myaddr += 4;
1542 memaddr += 4;
1543 written += 4;
1544 monitor_debug (" @ %s\n", paddr (memaddr));
1545 /* If we wanted to, here we could validate the address */
1546 monitor_expect_prompt (NULL, 0);
1547 }
1548 /* Now exit the sub mode */
1549 monitor_printf (current_monitor->getreg.term_cmd);
1550 monitor_expect_prompt (NULL, 0);
1551 return written;
1552 }
1553
1554
1555 static int
1556 monitor_write_memory_bytes (CORE_ADDR memaddr, char *myaddr, int len)
1557 {
1558 unsigned char val;
1559 int written = 0;
1560 if (len == 0)
1561 return 0;
1562 /* Enter the sub mode */
1563 monitor_printf (current_monitor->setmem.cmdb, memaddr);
1564 monitor_expect_prompt (NULL, 0);
1565 while (len)
1566 {
1567 val = *myaddr;
1568 monitor_printf ("%x\r", val);
1569 myaddr++;
1570 memaddr++;
1571 written++;
1572 /* If we wanted to, here we could validate the address */
1573 monitor_expect_prompt (NULL, 0);
1574 len--;
1575 }
1576 /* Now exit the sub mode */
1577 monitor_printf (current_monitor->getreg.term_cmd);
1578 monitor_expect_prompt (NULL, 0);
1579 return written;
1580 }
1581
1582
1583 static void
1584 longlongendswap (unsigned char *a)
1585 {
1586 int i, j;
1587 unsigned char x;
1588 i = 0;
1589 j = 7;
1590 while (i < 4)
1591 {
1592 x = *(a + i);
1593 *(a + i) = *(a + j);
1594 *(a + j) = x;
1595 i++, j--;
1596 }
1597 }
1598 /* Format 32 chars of long long value, advance the pointer */
1599 static char *hexlate = "0123456789abcdef";
1600 static char *
1601 longlong_hexchars (unsigned long long value,
1602 char *outbuff)
1603 {
1604 if (value == 0)
1605 {
1606 *outbuff++ = '0';
1607 return outbuff;
1608 }
1609 else
1610 {
1611 static unsigned char disbuf[8]; /* disassembly buffer */
1612 unsigned char *scan, *limit; /* loop controls */
1613 unsigned char c, nib;
1614 int leadzero = 1;
1615 scan = disbuf;
1616 limit = scan + 8;
1617 {
1618 unsigned long long *dp;
1619 dp = (unsigned long long *) scan;
1620 *dp = value;
1621 }
1622 longlongendswap (disbuf); /* FIXME: ONly on big endian hosts */
1623 while (scan < limit)
1624 {
1625 c = *scan++; /* a byte of our long long value */
1626 if (leadzero)
1627 {
1628 if (c == 0)
1629 continue;
1630 else
1631 leadzero = 0; /* henceforth we print even zeroes */
1632 }
1633 nib = c >> 4; /* high nibble bits */
1634 *outbuff++ = hexlate[nib];
1635 nib = c & 0x0f; /* low nibble bits */
1636 *outbuff++ = hexlate[nib];
1637 }
1638 return outbuff;
1639 }
1640 } /* longlong_hexchars */
1641
1642
1643
1644 /* I am only going to call this when writing virtual byte streams.
1645 Which possably entails endian conversions
1646 */
1647 static int
1648 monitor_write_memory_longlongs (CORE_ADDR memaddr, char *myaddr, int len)
1649 {
1650 static char hexstage[20]; /* At least 16 digits required, plus null */
1651 char *endstring;
1652 long long *llptr;
1653 long long value;
1654 int written = 0;
1655 llptr = (unsigned long long *) myaddr;
1656 if (len == 0)
1657 return 0;
1658 monitor_printf (current_monitor->setmem.cmdll, memaddr);
1659 monitor_expect_prompt (NULL, 0);
1660 while (len >= 8)
1661 {
1662 value = *llptr;
1663 endstring = longlong_hexchars (*llptr, hexstage);
1664 *endstring = '\0'; /* NUll terminate for printf */
1665 monitor_printf ("%s\r", hexstage);
1666 llptr++;
1667 memaddr += 8;
1668 written += 8;
1669 /* If we wanted to, here we could validate the address */
1670 monitor_expect_prompt (NULL, 0);
1671 len -= 8;
1672 }
1673 /* Now exit the sub mode */
1674 monitor_printf (current_monitor->getreg.term_cmd);
1675 monitor_expect_prompt (NULL, 0);
1676 return written;
1677 } /* */
1678
1679
1680
1681 /* ----- MONITOR_WRITE_MEMORY_BLOCK ---------------------------- */
1682 /* This is for the large blocks of memory which may occur in downloading.
1683 And for monitors which use interactive entry,
1684 And for monitors which do not have other downloading methods.
1685 Without this, we will end up calling monitor_write_memory many times
1686 and do the entry and exit of the sub mode many times
1687 This currently assumes...
1688 MO_SETMEM_INTERACTIVE
1689 ! MO_NO_ECHO_ON_SETMEM
1690 To use this, the you have to patch the monitor_cmds block with
1691 this function. Otherwise, its not tuned up for use by all
1692 monitor variations.
1693 */
1694
1695 static int
1696 monitor_write_memory_block (CORE_ADDR memaddr, char *myaddr, int len)
1697 {
1698 int written;
1699 written = 0;
1700 /* FIXME: This would be a good place to put the zero test */
1701 #if 1
1702 if ((len > 8) && (((len & 0x07)) == 0) && current_monitor->setmem.cmdll)
1703 {
1704 return monitor_write_memory_longlongs (memaddr, myaddr, len);
1705 }
1706 #endif
1707 #if 0
1708 if (len > 4)
1709 {
1710 int sublen;
1711 written = monitor_write_even_block (memaddr, myaddr, len);
1712 /* Adjust calling parameters by written amount */
1713 memaddr += written;
1714 myaddr += written;
1715 len -= written;
1716 }
1717 #endif
1718 written = monitor_write_memory_bytes (memaddr, myaddr, len);
1719 return written;
1720 }
1721
1722 /* This is an alternate form of monitor_read_memory which is used for monitors
1723 which can only read a single byte/word/etc. at a time. */
1724
1725 static int
1726 monitor_read_memory_single (CORE_ADDR memaddr, char *myaddr, int len)
1727 {
1728 unsigned int val;
1729 char membuf[sizeof (int) * 2 + 1];
1730 char *p;
1731 char *cmd;
1732
1733 monitor_debug ("MON read single\n");
1734 #if 0
1735 /* Can't actually use long longs (nice idea, though). In fact, the
1736 call to strtoul below will fail if it tries to convert a value
1737 that's too big to fit in a long. */
1738 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->getmem.cmdll)
1739 {
1740 len = 8;
1741 cmd = current_monitor->getmem.cmdll;
1742 }
1743 else
1744 #endif
1745 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->getmem.cmdl)
1746 {
1747 len = 4;
1748 cmd = current_monitor->getmem.cmdl;
1749 }
1750 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->getmem.cmdw)
1751 {
1752 len = 2;
1753 cmd = current_monitor->getmem.cmdw;
1754 }
1755 else
1756 {
1757 len = 1;
1758 cmd = current_monitor->getmem.cmdb;
1759 }
1760
1761 /* Send the examine command. */
1762
1763 monitor_printf (cmd, memaddr);
1764
1765 /* If RESP_DELIM is specified, we search for that as a leading
1766 delimiter for the memory value. Otherwise, we just start
1767 searching from the start of the buf. */
1768
1769 if (current_monitor->getmem.resp_delim)
1770 {
1771 monitor_debug ("EXP getmem.resp_delim\n");
1772 monitor_expect_regexp (&getmem_resp_delim_pattern, NULL, 0);
1773 }
1774
1775 /* Now, read the appropriate number of hex digits for this loc,
1776 skipping spaces. */
1777
1778 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */
1779 if (current_monitor->flags & MO_HEX_PREFIX)
1780 {
1781 int c;
1782
1783 c = readchar (timeout);
1784 while (c == ' ')
1785 c = readchar (timeout);
1786 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1787 ;
1788 else
1789 monitor_error ("monitor_read_memory_single",
1790 "bad response from monitor",
1791 memaddr, 0, NULL, 0);
1792 }
1793
1794 {
1795 int i;
1796 for (i = 0; i < len * 2; i++)
1797 {
1798 int c;
1799
1800 while (1)
1801 {
1802 c = readchar (timeout);
1803 if (isxdigit (c))
1804 break;
1805 if (c == ' ')
1806 continue;
1807
1808 monitor_error ("monitor_read_memory_single",
1809 "bad response from monitor",
1810 memaddr, i, membuf, 0);
1811 }
1812 membuf[i] = c;
1813 }
1814 membuf[i] = '\000'; /* terminate the number */
1815 }
1816
1817 /* If TERM is present, we wait for that to show up. Also, (if TERM is
1818 present), we will send TERM_CMD if that is present. In any case, we collect
1819 all of the output into buf, and then wait for the normal prompt. */
1820
1821 if (current_monitor->getmem.term)
1822 {
1823 monitor_expect (current_monitor->getmem.term, NULL, 0); /* get response */
1824
1825 if (current_monitor->getmem.term_cmd)
1826 {
1827 monitor_printf (current_monitor->getmem.term_cmd);
1828 monitor_expect_prompt (NULL, 0);
1829 }
1830 }
1831 else
1832 monitor_expect_prompt (NULL, 0); /* get response */
1833
1834 p = membuf;
1835 val = strtoul (membuf, &p, 16);
1836
1837 if (val == 0 && membuf == p)
1838 monitor_error ("monitor_read_memory_single",
1839 "bad value from monitor",
1840 memaddr, 0, membuf, 0);
1841
1842 /* supply register stores in target byte order, so swap here */
1843
1844 store_unsigned_integer (myaddr, len, val);
1845
1846 return len;
1847 }
1848
1849 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
1850 memory at MEMADDR. Returns length moved. Currently, we do no more
1851 than 16 bytes at a time. */
1852
1853 static int
1854 monitor_read_memory (CORE_ADDR memaddr, char *myaddr, int len)
1855 {
1856 unsigned int val;
1857 char buf[512];
1858 char *p, *p1;
1859 int resp_len;
1860 int i;
1861 CORE_ADDR dumpaddr;
1862
1863 if (len <= 0)
1864 {
1865 monitor_debug ("Zero length call to monitor_read_memory\n");
1866 return 0;
1867 }
1868
1869 monitor_debug ("MON read block ta(%s) ha(%lx) %d\n",
1870 paddr_nz (memaddr), (long) myaddr, len);
1871
1872 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1873 memaddr = ADDR_BITS_REMOVE (memaddr);
1874
1875 if (current_monitor->flags & MO_GETMEM_READ_SINGLE)
1876 return monitor_read_memory_single (memaddr, myaddr, len);
1877
1878 len = min (len, 16);
1879
1880 /* Some dumpers align the first data with the preceeding 16
1881 byte boundary. Some print blanks and start at the
1882 requested boundary. EXACT_DUMPADDR
1883 */
1884
1885 dumpaddr = (current_monitor->flags & MO_EXACT_DUMPADDR)
1886 ? memaddr : memaddr & ~0x0f;
1887
1888 /* See if xfer would cross a 16 byte boundary. If so, clip it. */
1889 if (((memaddr ^ (memaddr + len - 1)) & ~0xf) != 0)
1890 len = ((memaddr + len) & ~0xf) - memaddr;
1891
1892 /* send the memory examine command */
1893
1894 if (current_monitor->flags & MO_GETMEM_NEEDS_RANGE)
1895 monitor_printf (current_monitor->getmem.cmdb, memaddr, memaddr + len);
1896 else if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1897 monitor_printf (current_monitor->getmem.cmdb, dumpaddr);
1898 else
1899 monitor_printf (current_monitor->getmem.cmdb, memaddr, len);
1900
1901 /* If TERM is present, we wait for that to show up. Also, (if TERM
1902 is present), we will send TERM_CMD if that is present. In any
1903 case, we collect all of the output into buf, and then wait for
1904 the normal prompt. */
1905
1906 if (current_monitor->getmem.term)
1907 {
1908 resp_len = monitor_expect (current_monitor->getmem.term, buf, sizeof buf); /* get response */
1909
1910 if (resp_len <= 0)
1911 monitor_error ("monitor_read_memory",
1912 "excessive response from monitor",
1913 memaddr, resp_len, buf, 0);
1914
1915 if (current_monitor->getmem.term_cmd)
1916 {
1917 serial_write (monitor_desc, current_monitor->getmem.term_cmd,
1918 strlen (current_monitor->getmem.term_cmd));
1919 monitor_expect_prompt (NULL, 0);
1920 }
1921 }
1922 else
1923 resp_len = monitor_expect_prompt (buf, sizeof buf); /* get response */
1924
1925 p = buf;
1926
1927 /* If RESP_DELIM is specified, we search for that as a leading
1928 delimiter for the values. Otherwise, we just start searching
1929 from the start of the buf. */
1930
1931 if (current_monitor->getmem.resp_delim)
1932 {
1933 int retval, tmp;
1934 struct re_registers resp_strings;
1935 monitor_debug ("MON getmem.resp_delim %s\n", current_monitor->getmem.resp_delim);
1936
1937 memset (&resp_strings, 0, sizeof (struct re_registers));
1938 tmp = strlen (p);
1939 retval = re_search (&getmem_resp_delim_pattern, p, tmp, 0, tmp,
1940 &resp_strings);
1941
1942 if (retval < 0)
1943 monitor_error ("monitor_read_memory",
1944 "bad response from monitor",
1945 memaddr, resp_len, buf, 0);
1946
1947 p += resp_strings.end[0];
1948 #if 0
1949 p = strstr (p, current_monitor->getmem.resp_delim);
1950 if (!p)
1951 monitor_error ("monitor_read_memory",
1952 "bad response from monitor",
1953 memaddr, resp_len, buf, 0);
1954 p += strlen (current_monitor->getmem.resp_delim);
1955 #endif
1956 }
1957 monitor_debug ("MON scanning %d ,%lx '%s'\n", len, (long) p, p);
1958 if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1959 {
1960 char c;
1961 int fetched = 0;
1962 i = len;
1963 c = *p;
1964
1965
1966 while (!(c == '\000' || c == '\n' || c == '\r') && i > 0)
1967 {
1968 if (isxdigit (c))
1969 {
1970 if ((dumpaddr >= memaddr) && (i > 0))
1971 {
1972 val = fromhex (c) * 16 + fromhex (*(p + 1));
1973 *myaddr++ = val;
1974 if (monitor_debug_p || remote_debug)
1975 fprintf_unfiltered (gdb_stdlog, "[%02x]", val);
1976 --i;
1977 fetched++;
1978 }
1979 ++dumpaddr;
1980 ++p;
1981 }
1982 ++p; /* skip a blank or other non hex char */
1983 c = *p;
1984 }
1985 if (fetched == 0)
1986 error ("Failed to read via monitor");
1987 if (monitor_debug_p || remote_debug)
1988 fprintf_unfiltered (gdb_stdlog, "\n");
1989 return fetched; /* Return the number of bytes actually read */
1990 }
1991 monitor_debug ("MON scanning bytes\n");
1992
1993 for (i = len; i > 0; i--)
1994 {
1995 /* Skip non-hex chars, but bomb on end of string and newlines */
1996
1997 while (1)
1998 {
1999 if (isxdigit (*p))
2000 break;
2001
2002 if (*p == '\000' || *p == '\n' || *p == '\r')
2003 monitor_error ("monitor_read_memory",
2004 "badly terminated response from monitor",
2005 memaddr, resp_len, buf, 0);
2006 p++;
2007 }
2008
2009 val = strtoul (p, &p1, 16);
2010
2011 if (val == 0 && p == p1)
2012 monitor_error ("monitor_read_memory",
2013 "bad value from monitor",
2014 memaddr, resp_len, buf, 0);
2015
2016 *myaddr++ = val;
2017
2018 if (i == 1)
2019 break;
2020
2021 p = p1;
2022 }
2023
2024 return len;
2025 }
2026
2027 /* Transfer LEN bytes between target address MEMADDR and GDB address
2028 MYADDR. Returns 0 for success, errno code for failure. TARGET is
2029 unused. */
2030
2031 static int
2032 monitor_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
2033 struct mem_attrib *attrib, struct target_ops *target)
2034 {
2035 int res;
2036
2037 if (write)
2038 {
2039 if (current_monitor->flags & MO_HAS_BLOCKWRITES)
2040 res = monitor_write_memory_block(memaddr, myaddr, len);
2041 else
2042 res = monitor_write_memory(memaddr, myaddr, len);
2043 }
2044 else
2045 {
2046 res = monitor_read_memory(memaddr, myaddr, len);
2047 }
2048
2049 return res;
2050 }
2051
2052 static void
2053 monitor_kill (void)
2054 {
2055 return; /* ignore attempts to kill target system */
2056 }
2057
2058 /* All we actually do is set the PC to the start address of exec_bfd, and start
2059 the program at that point. */
2060
2061 static void
2062 monitor_create_inferior (char *exec_file, char *args, char **env)
2063 {
2064 if (args && (*args != '\000'))
2065 error ("Args are not supported by the monitor.");
2066
2067 first_time = 1;
2068 clear_proceed_status ();
2069 proceed (bfd_get_start_address (exec_bfd), TARGET_SIGNAL_0, 0);
2070 }
2071
2072 /* Clean up when a program exits.
2073 The program actually lives on in the remote processor's RAM, and may be
2074 run again without a download. Don't leave it full of breakpoint
2075 instructions. */
2076
2077 static void
2078 monitor_mourn_inferior (void)
2079 {
2080 unpush_target (targ_ops);
2081 generic_mourn_inferior (); /* Do all the proper things now */
2082 }
2083
2084 /* Tell the monitor to add a breakpoint. */
2085
2086 static int
2087 monitor_insert_breakpoint (CORE_ADDR addr, char *shadow)
2088 {
2089 int i;
2090 const unsigned char *bp;
2091 int bplen;
2092
2093 monitor_debug ("MON inst bkpt %s\n", paddr (addr));
2094 if (current_monitor->set_break == NULL)
2095 error ("No set_break defined for this monitor");
2096
2097 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
2098 addr = ADDR_BITS_REMOVE (addr);
2099
2100 /* Determine appropriate breakpoint size for this address. */
2101 bp = gdbarch_breakpoint_from_pc (current_gdbarch, &addr, &bplen);
2102
2103 for (i = 0; i < current_monitor->num_breakpoints; i++)
2104 {
2105 if (breakaddr[i] == 0)
2106 {
2107 breakaddr[i] = addr;
2108 monitor_read_memory (addr, shadow, bplen);
2109 monitor_printf (current_monitor->set_break, addr);
2110 monitor_expect_prompt (NULL, 0);
2111 return 0;
2112 }
2113 }
2114
2115 error ("Too many breakpoints (> %d) for monitor.", current_monitor->num_breakpoints);
2116 }
2117
2118 /* Tell the monitor to remove a breakpoint. */
2119
2120 static int
2121 monitor_remove_breakpoint (CORE_ADDR addr, char *shadow)
2122 {
2123 int i;
2124
2125 monitor_debug ("MON rmbkpt %s\n", paddr (addr));
2126 if (current_monitor->clr_break == NULL)
2127 error ("No clr_break defined for this monitor");
2128
2129 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
2130 addr = ADDR_BITS_REMOVE (addr);
2131
2132 for (i = 0; i < current_monitor->num_breakpoints; i++)
2133 {
2134 if (breakaddr[i] == addr)
2135 {
2136 breakaddr[i] = 0;
2137 /* some monitors remove breakpoints based on the address */
2138 if (current_monitor->flags & MO_CLR_BREAK_USES_ADDR)
2139 monitor_printf (current_monitor->clr_break, addr);
2140 else if (current_monitor->flags & MO_CLR_BREAK_1_BASED)
2141 monitor_printf (current_monitor->clr_break, i + 1);
2142 else
2143 monitor_printf (current_monitor->clr_break, i);
2144 monitor_expect_prompt (NULL, 0);
2145 return 0;
2146 }
2147 }
2148 fprintf_unfiltered (gdb_stderr,
2149 "Can't find breakpoint associated with 0x%s\n",
2150 paddr_nz (addr));
2151 return 1;
2152 }
2153
2154 /* monitor_wait_srec_ack -- wait for the target to send an acknowledgement for
2155 an S-record. Return non-zero if the ACK is received properly. */
2156
2157 static int
2158 monitor_wait_srec_ack (void)
2159 {
2160 int ch;
2161
2162 if (current_monitor->flags & MO_SREC_ACK_PLUS)
2163 {
2164 return (readchar (timeout) == '+');
2165 }
2166 else if (current_monitor->flags & MO_SREC_ACK_ROTATE)
2167 {
2168 /* Eat two backspaces, a "rotating" char (|/-\), and a space. */
2169 if ((ch = readchar (1)) < 0)
2170 return 0;
2171 if ((ch = readchar (1)) < 0)
2172 return 0;
2173 if ((ch = readchar (1)) < 0)
2174 return 0;
2175 if ((ch = readchar (1)) < 0)
2176 return 0;
2177 }
2178 return 1;
2179 }
2180
2181 /* monitor_load -- download a file. */
2182
2183 static void
2184 monitor_load (char *file, int from_tty)
2185 {
2186 monitor_debug ("MON load\n");
2187
2188 if (current_monitor->load_routine)
2189 current_monitor->load_routine (monitor_desc, file, hashmark);
2190 else
2191 { /* The default is ascii S-records */
2192 int n;
2193 unsigned long load_offset;
2194 char buf[128];
2195
2196 /* enable user to specify address for downloading as 2nd arg to load */
2197 n = sscanf (file, "%s 0x%lx", buf, &load_offset);
2198 if (n > 1)
2199 file = buf;
2200 else
2201 load_offset = 0;
2202
2203 monitor_printf (current_monitor->load);
2204 if (current_monitor->loadresp)
2205 monitor_expect (current_monitor->loadresp, NULL, 0);
2206
2207 load_srec (monitor_desc, file, (bfd_vma) load_offset,
2208 32, SREC_ALL, hashmark,
2209 current_monitor->flags & MO_SREC_ACK ?
2210 monitor_wait_srec_ack : NULL);
2211
2212 monitor_expect_prompt (NULL, 0);
2213 }
2214
2215 /* Finally, make the PC point at the start address */
2216 if (exec_bfd)
2217 write_pc (bfd_get_start_address (exec_bfd));
2218
2219 /* There used to be code here which would clear inferior_ptid and
2220 call clear_symtab_users. None of that should be necessary:
2221 monitor targets should behave like remote protocol targets, and
2222 since generic_load does none of those things, this function
2223 shouldn't either.
2224
2225 Furthermore, clearing inferior_ptid is *incorrect*. After doing
2226 a load, we still have a valid connection to the monitor, with a
2227 live processor state to fiddle with. The user can type
2228 `continue' or `jump *start' and make the program run. If they do
2229 these things, however, GDB will be talking to a running program
2230 while inferior_ptid is null_ptid; this makes things like
2231 reinit_frame_cache very confused. */
2232 }
2233
2234 static void
2235 monitor_stop (void)
2236 {
2237 monitor_debug ("MON stop\n");
2238 if ((current_monitor->flags & MO_SEND_BREAK_ON_STOP) != 0)
2239 serial_send_break (monitor_desc);
2240 if (current_monitor->stop)
2241 monitor_printf_noecho (current_monitor->stop);
2242 }
2243
2244 /* Put a COMMAND string out to MONITOR. Output from MONITOR is placed
2245 in OUTPUT until the prompt is seen. FIXME: We read the characters
2246 ourseleves here cause of a nasty echo. */
2247
2248 static void
2249 monitor_rcmd (char *command,
2250 struct ui_file *outbuf)
2251 {
2252 char *p;
2253 int resp_len;
2254 char buf[1000];
2255
2256 if (monitor_desc == NULL)
2257 error ("monitor target not open.");
2258
2259 p = current_monitor->prompt;
2260
2261 /* Send the command. Note that if no args were supplied, then we're
2262 just sending the monitor a newline, which is sometimes useful. */
2263
2264 monitor_printf ("%s\r", (command ? command : ""));
2265
2266 resp_len = monitor_expect_prompt (buf, sizeof buf);
2267
2268 fputs_unfiltered (buf, outbuf); /* Output the response */
2269 }
2270
2271 /* Convert hex digit A to a number. */
2272
2273 #if 0
2274 static int
2275 from_hex (int a)
2276 {
2277 if (a >= '0' && a <= '9')
2278 return a - '0';
2279 if (a >= 'a' && a <= 'f')
2280 return a - 'a' + 10;
2281 if (a >= 'A' && a <= 'F')
2282 return a - 'A' + 10;
2283
2284 error ("Reply contains invalid hex digit 0x%x", a);
2285 }
2286 #endif
2287
2288 char *
2289 monitor_get_dev_name (void)
2290 {
2291 return dev_name;
2292 }
2293
2294 static struct target_ops monitor_ops;
2295
2296 static void
2297 init_base_monitor_ops (void)
2298 {
2299 monitor_ops.to_close = monitor_close;
2300 monitor_ops.to_detach = monitor_detach;
2301 monitor_ops.to_resume = monitor_resume;
2302 monitor_ops.to_wait = monitor_wait;
2303 monitor_ops.to_fetch_registers = monitor_fetch_registers;
2304 monitor_ops.to_store_registers = monitor_store_registers;
2305 monitor_ops.to_prepare_to_store = monitor_prepare_to_store;
2306 monitor_ops.to_xfer_memory = monitor_xfer_memory;
2307 monitor_ops.to_files_info = monitor_files_info;
2308 monitor_ops.to_insert_breakpoint = monitor_insert_breakpoint;
2309 monitor_ops.to_remove_breakpoint = monitor_remove_breakpoint;
2310 monitor_ops.to_kill = monitor_kill;
2311 monitor_ops.to_load = monitor_load;
2312 monitor_ops.to_create_inferior = monitor_create_inferior;
2313 monitor_ops.to_mourn_inferior = monitor_mourn_inferior;
2314 monitor_ops.to_stop = monitor_stop;
2315 monitor_ops.to_rcmd = monitor_rcmd;
2316 monitor_ops.to_stratum = process_stratum;
2317 monitor_ops.to_has_all_memory = 1;
2318 monitor_ops.to_has_memory = 1;
2319 monitor_ops.to_has_stack = 1;
2320 monitor_ops.to_has_registers = 1;
2321 monitor_ops.to_has_execution = 1;
2322 monitor_ops.to_magic = OPS_MAGIC;
2323 } /* init_base_monitor_ops */
2324
2325 /* Init the target_ops structure pointed at by OPS */
2326
2327 void
2328 init_monitor_ops (struct target_ops *ops)
2329 {
2330 if (monitor_ops.to_magic != OPS_MAGIC)
2331 init_base_monitor_ops ();
2332
2333 memcpy (ops, &monitor_ops, sizeof monitor_ops);
2334 }
2335
2336 /* Define additional commands that are usually only used by monitors. */
2337
2338 void
2339 _initialize_remote_monitors (void)
2340 {
2341 init_base_monitor_ops ();
2342 add_show_from_set (add_set_cmd ("hash", no_class, var_boolean,
2343 (char *) &hashmark,
2344 "Set display of activity while downloading a file.\n\
2345 When enabled, a hashmark \'#\' is displayed.",
2346 &setlist),
2347 &showlist);
2348
2349 add_show_from_set
2350 (add_set_cmd ("monitor", no_class, var_zinteger,
2351 (char *) &monitor_debug_p,
2352 "Set debugging of remote monitor communication.\n\
2353 When enabled, communication between GDB and the remote monitor\n\
2354 is displayed.", &setdebuglist),
2355 &showdebuglist);
2356 }
This page took 0.073355 seconds and 3 git commands to generate.