* i386-linux-tdep.c (I386_LINUX_RECORD_SIZE_*,
[deliverable/binutils-gdb.git] / gdb / monitor.c
1 /* Remote debugging interface for boot monitors, for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support. Written by Rob Savoye for Cygnus.
7 Resurrected from the ashes by Stu Grossman.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 /* This file was derived from various remote-* modules. It is a collection
25 of generic support functions so GDB can talk directly to a ROM based
26 monitor. This saves use from having to hack an exception based handler
27 into existence, and makes for quick porting.
28
29 This module talks to a debug monitor called 'MONITOR', which
30 We communicate with MONITOR via either a direct serial line, or a TCP
31 (or possibly TELNET) stream to a terminal multiplexor,
32 which in turn talks to the target board. */
33
34 /* FIXME 32x64: This code assumes that registers and addresses are at
35 most 32 bits long. If they can be larger, you will need to declare
36 values as LONGEST and use %llx or some such to print values when
37 building commands to send to the monitor. Since we don't know of
38 any actual 64-bit targets with ROM monitors that use this code,
39 it's not an issue right now. -sts 4/18/96 */
40
41 #include "defs.h"
42 #include "gdbcore.h"
43 #include "target.h"
44 #include "exceptions.h"
45 #include <signal.h>
46 #include <ctype.h>
47 #include "gdb_string.h"
48 #include <sys/types.h>
49 #include "command.h"
50 #include "serial.h"
51 #include "monitor.h"
52 #include "gdbcmd.h"
53 #include "inferior.h"
54 #include "gdb_regex.h"
55 #include "srec.h"
56 #include "regcache.h"
57 #include "gdbthread.h"
58
59 static char *dev_name;
60 static struct target_ops *targ_ops;
61
62 static void monitor_interrupt_query (void);
63 static void monitor_interrupt_twice (int);
64 static void monitor_stop (ptid_t);
65 static void monitor_dump_regs (struct regcache *regcache);
66
67 #if 0
68 static int from_hex (int a);
69 #endif
70
71 static struct monitor_ops *current_monitor;
72
73 static int hashmark; /* flag set by "set hash" */
74
75 static int timeout = 30;
76
77 static int in_monitor_wait = 0; /* Non-zero means we are in monitor_wait() */
78
79 static void (*ofunc) (); /* Old SIGINT signal handler */
80
81 static CORE_ADDR *breakaddr;
82
83 /* Descriptor for I/O to remote machine. Initialize it to NULL so
84 that monitor_open knows that we don't have a file open when the
85 program starts. */
86
87 static struct serial *monitor_desc = NULL;
88
89 /* Pointer to regexp pattern matching data */
90
91 static struct re_pattern_buffer register_pattern;
92 static char register_fastmap[256];
93
94 static struct re_pattern_buffer getmem_resp_delim_pattern;
95 static char getmem_resp_delim_fastmap[256];
96
97 static struct re_pattern_buffer setmem_resp_delim_pattern;
98 static char setmem_resp_delim_fastmap[256];
99
100 static struct re_pattern_buffer setreg_resp_delim_pattern;
101 static char setreg_resp_delim_fastmap[256];
102
103 static int dump_reg_flag; /* Non-zero means do a dump_registers cmd when
104 monitor_wait wakes up. */
105
106 static int first_time = 0; /* is this the first time we're executing after
107 gaving created the child proccess? */
108
109
110 /* This is the ptid we use while we're connected to a monitor. Its
111 value is arbitrary, as monitor targets don't have a notion of
112 processes or threads, but we need something non-null to place in
113 inferior_ptid. */
114 static ptid_t monitor_ptid;
115
116 #define TARGET_BUF_SIZE 2048
117
118 /* Monitor specific debugging information. Typically only useful to
119 the developer of a new monitor interface. */
120
121 static void monitor_debug (const char *fmt, ...) ATTR_FORMAT(printf, 1, 2);
122
123 static int monitor_debug_p = 0;
124
125 /* NOTE: This file alternates between monitor_debug_p and remote_debug
126 when determining if debug information is printed. Perhaps this
127 could be simplified. */
128
129 static void
130 monitor_debug (const char *fmt, ...)
131 {
132 if (monitor_debug_p)
133 {
134 va_list args;
135 va_start (args, fmt);
136 vfprintf_filtered (gdb_stdlog, fmt, args);
137 va_end (args);
138 }
139 }
140
141
142 /* Convert a string into a printable representation, Return # byte in
143 the new string. When LEN is >0 it specifies the size of the
144 string. Otherwize strlen(oldstr) is used. */
145
146 static void
147 monitor_printable_string (char *newstr, char *oldstr, int len)
148 {
149 int ch;
150 int i;
151
152 if (len <= 0)
153 len = strlen (oldstr);
154
155 for (i = 0; i < len; i++)
156 {
157 ch = oldstr[i];
158 switch (ch)
159 {
160 default:
161 if (isprint (ch))
162 *newstr++ = ch;
163
164 else
165 {
166 sprintf (newstr, "\\x%02x", ch & 0xff);
167 newstr += 4;
168 }
169 break;
170
171 case '\\':
172 *newstr++ = '\\';
173 *newstr++ = '\\';
174 break;
175 case '\b':
176 *newstr++ = '\\';
177 *newstr++ = 'b';
178 break;
179 case '\f':
180 *newstr++ = '\\';
181 *newstr++ = 't';
182 break;
183 case '\n':
184 *newstr++ = '\\';
185 *newstr++ = 'n';
186 break;
187 case '\r':
188 *newstr++ = '\\';
189 *newstr++ = 'r';
190 break;
191 case '\t':
192 *newstr++ = '\\';
193 *newstr++ = 't';
194 break;
195 case '\v':
196 *newstr++ = '\\';
197 *newstr++ = 'v';
198 break;
199 }
200 }
201
202 *newstr++ = '\0';
203 }
204
205 /* Print monitor errors with a string, converting the string to printable
206 representation. */
207
208 static void
209 monitor_error (char *function, char *message,
210 CORE_ADDR memaddr, int len, char *string, int final_char)
211 {
212 int real_len = (len == 0 && string != (char *) 0) ? strlen (string) : len;
213 char *safe_string = alloca ((real_len * 4) + 1);
214 monitor_printable_string (safe_string, string, real_len);
215
216 if (final_char)
217 error (_("%s (0x%s): %s: %s%c"), function, paddr_nz (memaddr), message, safe_string, final_char);
218 else
219 error (_("%s (0x%s): %s: %s"), function, paddr_nz (memaddr), message, safe_string);
220 }
221
222 /* Convert hex digit A to a number. */
223
224 static int
225 fromhex (int a)
226 {
227 if (a >= '0' && a <= '9')
228 return a - '0';
229 else if (a >= 'a' && a <= 'f')
230 return a - 'a' + 10;
231 else if (a >= 'A' && a <= 'F')
232 return a - 'A' + 10;
233 else
234 error (_("Invalid hex digit %d"), a);
235 }
236
237 /* monitor_vsprintf - similar to vsprintf but handles 64-bit addresses
238
239 This function exists to get around the problem that many host platforms
240 don't have a printf that can print 64-bit addresses. The %A format
241 specification is recognized as a special case, and causes the argument
242 to be printed as a 64-bit hexadecimal address.
243
244 Only format specifiers of the form "[0-9]*[a-z]" are recognized.
245 If it is a '%s' format, the argument is a string; otherwise the
246 argument is assumed to be a long integer.
247
248 %% is also turned into a single %.
249 */
250
251 static void
252 monitor_vsprintf (char *sndbuf, char *pattern, va_list args)
253 {
254 char format[10];
255 char fmt;
256 char *p;
257 int i;
258 long arg_int;
259 CORE_ADDR arg_addr;
260 char *arg_string;
261
262 for (p = pattern; *p; p++)
263 {
264 if (*p == '%')
265 {
266 /* Copy the format specifier to a separate buffer. */
267 format[0] = *p++;
268 for (i = 1; *p >= '0' && *p <= '9' && i < (int) sizeof (format) - 2;
269 i++, p++)
270 format[i] = *p;
271 format[i] = fmt = *p;
272 format[i + 1] = '\0';
273
274 /* Fetch the next argument and print it. */
275 switch (fmt)
276 {
277 case '%':
278 strcpy (sndbuf, "%");
279 break;
280 case 'A':
281 arg_addr = va_arg (args, CORE_ADDR);
282 strcpy (sndbuf, paddr_nz (arg_addr));
283 break;
284 case 's':
285 arg_string = va_arg (args, char *);
286 sprintf (sndbuf, format, arg_string);
287 break;
288 default:
289 arg_int = va_arg (args, long);
290 sprintf (sndbuf, format, arg_int);
291 break;
292 }
293 sndbuf += strlen (sndbuf);
294 }
295 else
296 *sndbuf++ = *p;
297 }
298 *sndbuf = '\0';
299 }
300
301
302 /* monitor_printf_noecho -- Send data to monitor, but don't expect an echo.
303 Works just like printf. */
304
305 void
306 monitor_printf_noecho (char *pattern,...)
307 {
308 va_list args;
309 char sndbuf[2000];
310 int len;
311
312 va_start (args, pattern);
313
314 monitor_vsprintf (sndbuf, pattern, args);
315
316 len = strlen (sndbuf);
317 if (len + 1 > sizeof sndbuf)
318 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
319
320 if (monitor_debug_p)
321 {
322 char *safe_string = (char *) alloca ((strlen (sndbuf) * 4) + 1);
323 monitor_printable_string (safe_string, sndbuf, 0);
324 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
325 }
326
327 monitor_write (sndbuf, len);
328 }
329
330 /* monitor_printf -- Send data to monitor and check the echo. Works just like
331 printf. */
332
333 void
334 monitor_printf (char *pattern,...)
335 {
336 va_list args;
337 char sndbuf[2000];
338 int len;
339
340 va_start (args, pattern);
341
342 monitor_vsprintf (sndbuf, pattern, args);
343
344 len = strlen (sndbuf);
345 if (len + 1 > sizeof sndbuf)
346 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
347
348 if (monitor_debug_p)
349 {
350 char *safe_string = (char *) alloca ((len * 4) + 1);
351 monitor_printable_string (safe_string, sndbuf, 0);
352 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
353 }
354
355 monitor_write (sndbuf, len);
356
357 /* We used to expect that the next immediate output was the characters we
358 just output, but sometimes some extra junk appeared before the characters
359 we expected, like an extra prompt, or a portmaster sending telnet negotiations.
360 So, just start searching for what we sent, and skip anything unknown. */
361 monitor_debug ("ExpectEcho\n");
362 monitor_expect (sndbuf, (char *) 0, 0);
363 }
364
365
366 /* Write characters to the remote system. */
367
368 void
369 monitor_write (char *buf, int buflen)
370 {
371 if (serial_write (monitor_desc, buf, buflen))
372 fprintf_unfiltered (gdb_stderr, "serial_write failed: %s\n",
373 safe_strerror (errno));
374 }
375
376
377 /* Read a binary character from the remote system, doing all the fancy
378 timeout stuff, but without interpreting the character in any way,
379 and without printing remote debug information. */
380
381 int
382 monitor_readchar (void)
383 {
384 int c;
385 int looping;
386
387 do
388 {
389 looping = 0;
390 c = serial_readchar (monitor_desc, timeout);
391
392 if (c >= 0)
393 c &= 0xff; /* don't lose bit 7 */
394 }
395 while (looping);
396
397 if (c >= 0)
398 return c;
399
400 if (c == SERIAL_TIMEOUT)
401 error (_("Timeout reading from remote system."));
402
403 perror_with_name (_("remote-monitor"));
404 }
405
406
407 /* Read a character from the remote system, doing all the fancy
408 timeout stuff. */
409
410 static int
411 readchar (int timeout)
412 {
413 int c;
414 static enum
415 {
416 last_random, last_nl, last_cr, last_crnl
417 }
418 state = last_random;
419 int looping;
420
421 do
422 {
423 looping = 0;
424 c = serial_readchar (monitor_desc, timeout);
425
426 if (c >= 0)
427 {
428 c &= 0x7f;
429 /* This seems to interfere with proper function of the
430 input stream */
431 if (monitor_debug_p || remote_debug)
432 {
433 char buf[2];
434 buf[0] = c;
435 buf[1] = '\0';
436 puts_debug ("read -->", buf, "<--");
437 }
438
439 }
440
441 /* Canonicialize \n\r combinations into one \r */
442 if ((current_monitor->flags & MO_HANDLE_NL) != 0)
443 {
444 if ((c == '\r' && state == last_nl)
445 || (c == '\n' && state == last_cr))
446 {
447 state = last_crnl;
448 looping = 1;
449 }
450 else if (c == '\r')
451 state = last_cr;
452 else if (c != '\n')
453 state = last_random;
454 else
455 {
456 state = last_nl;
457 c = '\r';
458 }
459 }
460 }
461 while (looping);
462
463 if (c >= 0)
464 return c;
465
466 if (c == SERIAL_TIMEOUT)
467 #if 0
468 /* I fail to see how detaching here can be useful */
469 if (in_monitor_wait) /* Watchdog went off */
470 {
471 target_mourn_inferior ();
472 error (_("GDB serial timeout has expired. Target detached."));
473 }
474 else
475 #endif
476 error (_("Timeout reading from remote system."));
477
478 perror_with_name (_("remote-monitor"));
479 }
480
481 /* Scan input from the remote system, until STRING is found. If BUF is non-
482 zero, then collect input until we have collected either STRING or BUFLEN-1
483 chars. In either case we terminate BUF with a 0. If input overflows BUF
484 because STRING can't be found, return -1, else return number of chars in BUF
485 (minus the terminating NUL). Note that in the non-overflow case, STRING
486 will be at the end of BUF. */
487
488 int
489 monitor_expect (char *string, char *buf, int buflen)
490 {
491 char *p = string;
492 int obuflen = buflen;
493 int c;
494
495 if (monitor_debug_p)
496 {
497 char *safe_string = (char *) alloca ((strlen (string) * 4) + 1);
498 monitor_printable_string (safe_string, string, 0);
499 fprintf_unfiltered (gdb_stdlog, "MON Expecting '%s'\n", safe_string);
500 }
501
502 immediate_quit++;
503 while (1)
504 {
505 if (buf)
506 {
507 if (buflen < 2)
508 {
509 *buf = '\000';
510 immediate_quit--;
511 return -1;
512 }
513
514 c = readchar (timeout);
515 if (c == '\000')
516 continue;
517 *buf++ = c;
518 buflen--;
519 }
520 else
521 c = readchar (timeout);
522
523 /* Don't expect any ^C sent to be echoed */
524
525 if (*p == '\003' || c == *p)
526 {
527 p++;
528 if (*p == '\0')
529 {
530 immediate_quit--;
531
532 if (buf)
533 {
534 *buf++ = '\000';
535 return obuflen - buflen;
536 }
537 else
538 return 0;
539 }
540 }
541 else
542 {
543 /* We got a character that doesn't match the string. We need to
544 back up p, but how far? If we're looking for "..howdy" and the
545 monitor sends "...howdy"? There's certainly a match in there,
546 but when we receive the third ".", we won't find it if we just
547 restart the matching at the beginning of the string.
548
549 This is a Boyer-Moore kind of situation. We want to reset P to
550 the end of the longest prefix of STRING that is a suffix of
551 what we've read so far. In the example above, that would be
552 ".." --- the longest prefix of "..howdy" that is a suffix of
553 "...". This longest prefix could be the empty string, if C
554 is nowhere to be found in STRING.
555
556 If this longest prefix is not the empty string, it must contain
557 C, so let's search from the end of STRING for instances of C,
558 and see if the portion of STRING before that is a suffix of
559 what we read before C. Actually, we can search backwards from
560 p, since we know no prefix can be longer than that.
561
562 Note that we can use STRING itself, along with C, as a record
563 of what we've received so far. :) */
564 int i;
565
566 for (i = (p - string) - 1; i >= 0; i--)
567 if (string[i] == c)
568 {
569 /* Is this prefix a suffix of what we've read so far?
570 In other words, does
571 string[0 .. i-1] == string[p - i, p - 1]? */
572 if (! memcmp (string, p - i, i))
573 {
574 p = string + i + 1;
575 break;
576 }
577 }
578 if (i < 0)
579 p = string;
580 }
581 }
582 }
583
584 /* Search for a regexp. */
585
586 static int
587 monitor_expect_regexp (struct re_pattern_buffer *pat, char *buf, int buflen)
588 {
589 char *mybuf;
590 char *p;
591 monitor_debug ("MON Expecting regexp\n");
592 if (buf)
593 mybuf = buf;
594 else
595 {
596 mybuf = alloca (TARGET_BUF_SIZE);
597 buflen = TARGET_BUF_SIZE;
598 }
599
600 p = mybuf;
601 while (1)
602 {
603 int retval;
604
605 if (p - mybuf >= buflen)
606 { /* Buffer about to overflow */
607
608 /* On overflow, we copy the upper half of the buffer to the lower half. Not
609 great, but it usually works... */
610
611 memcpy (mybuf, mybuf + buflen / 2, buflen / 2);
612 p = mybuf + buflen / 2;
613 }
614
615 *p++ = readchar (timeout);
616
617 retval = re_search (pat, mybuf, p - mybuf, 0, p - mybuf, NULL);
618 if (retval >= 0)
619 return 1;
620 }
621 }
622
623 /* Keep discarding input until we see the MONITOR prompt.
624
625 The convention for dealing with the prompt is that you
626 o give your command
627 o *then* wait for the prompt.
628
629 Thus the last thing that a procedure does with the serial line will
630 be an monitor_expect_prompt(). Exception: monitor_resume does not
631 wait for the prompt, because the terminal is being handed over to
632 the inferior. However, the next thing which happens after that is
633 a monitor_wait which does wait for the prompt. Note that this
634 includes abnormal exit, e.g. error(). This is necessary to prevent
635 getting into states from which we can't recover. */
636
637 int
638 monitor_expect_prompt (char *buf, int buflen)
639 {
640 monitor_debug ("MON Expecting prompt\n");
641 return monitor_expect (current_monitor->prompt, buf, buflen);
642 }
643
644 /* Get N 32-bit words from remote, each preceded by a space, and put
645 them in registers starting at REGNO. */
646
647 #if 0
648 static unsigned long
649 get_hex_word (void)
650 {
651 unsigned long val;
652 int i;
653 int ch;
654
655 do
656 ch = readchar (timeout);
657 while (isspace (ch));
658
659 val = from_hex (ch);
660
661 for (i = 7; i >= 1; i--)
662 {
663 ch = readchar (timeout);
664 if (!isxdigit (ch))
665 break;
666 val = (val << 4) | from_hex (ch);
667 }
668
669 return val;
670 }
671 #endif
672
673 static void
674 compile_pattern (char *pattern, struct re_pattern_buffer *compiled_pattern,
675 char *fastmap)
676 {
677 int tmp;
678 const char *val;
679
680 compiled_pattern->fastmap = fastmap;
681
682 tmp = re_set_syntax (RE_SYNTAX_EMACS);
683 val = re_compile_pattern (pattern,
684 strlen (pattern),
685 compiled_pattern);
686 re_set_syntax (tmp);
687
688 if (val)
689 error (_("compile_pattern: Can't compile pattern string `%s': %s!"), pattern, val);
690
691 if (fastmap)
692 re_compile_fastmap (compiled_pattern);
693 }
694
695 /* Open a connection to a remote debugger. NAME is the filename used
696 for communication. */
697
698 void
699 monitor_open (char *args, struct monitor_ops *mon_ops, int from_tty)
700 {
701 char *name;
702 char **p;
703
704 if (mon_ops->magic != MONITOR_OPS_MAGIC)
705 error (_("Magic number of monitor_ops struct wrong."));
706
707 targ_ops = mon_ops->target;
708 name = targ_ops->to_shortname;
709
710 if (!args)
711 error (_("Use `target %s DEVICE-NAME' to use a serial port, or \n\
712 `target %s HOST-NAME:PORT-NUMBER' to use a network connection."), name, name);
713
714 target_preopen (from_tty);
715
716 /* Setup pattern for register dump */
717
718 if (mon_ops->register_pattern)
719 compile_pattern (mon_ops->register_pattern, &register_pattern,
720 register_fastmap);
721
722 if (mon_ops->getmem.resp_delim)
723 compile_pattern (mon_ops->getmem.resp_delim, &getmem_resp_delim_pattern,
724 getmem_resp_delim_fastmap);
725
726 if (mon_ops->setmem.resp_delim)
727 compile_pattern (mon_ops->setmem.resp_delim, &setmem_resp_delim_pattern,
728 setmem_resp_delim_fastmap);
729
730 if (mon_ops->setreg.resp_delim)
731 compile_pattern (mon_ops->setreg.resp_delim, &setreg_resp_delim_pattern,
732 setreg_resp_delim_fastmap);
733
734 unpush_target (targ_ops);
735
736 if (dev_name)
737 xfree (dev_name);
738 dev_name = xstrdup (args);
739
740 monitor_desc = serial_open (dev_name);
741
742 if (!monitor_desc)
743 perror_with_name (dev_name);
744
745 if (baud_rate != -1)
746 {
747 if (serial_setbaudrate (monitor_desc, baud_rate))
748 {
749 serial_close (monitor_desc);
750 perror_with_name (dev_name);
751 }
752 }
753
754 serial_raw (monitor_desc);
755
756 serial_flush_input (monitor_desc);
757
758 /* some systems only work with 2 stop bits */
759
760 serial_setstopbits (monitor_desc, mon_ops->stopbits);
761
762 current_monitor = mon_ops;
763
764 /* See if we can wake up the monitor. First, try sending a stop sequence,
765 then send the init strings. Last, remove all breakpoints. */
766
767 if (current_monitor->stop)
768 {
769 monitor_stop (inferior_ptid);
770 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
771 {
772 monitor_debug ("EXP Open echo\n");
773 monitor_expect_prompt (NULL, 0);
774 }
775 }
776
777 /* wake up the monitor and see if it's alive */
778 for (p = mon_ops->init; *p != NULL; p++)
779 {
780 /* Some of the characters we send may not be echoed,
781 but we hope to get a prompt at the end of it all. */
782
783 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
784 monitor_printf (*p);
785 else
786 monitor_printf_noecho (*p);
787 monitor_expect_prompt (NULL, 0);
788 }
789
790 serial_flush_input (monitor_desc);
791
792 /* Alloc breakpoints */
793 if (mon_ops->set_break != NULL)
794 {
795 if (mon_ops->num_breakpoints == 0)
796 mon_ops->num_breakpoints = 8;
797
798 breakaddr = (CORE_ADDR *) xmalloc (mon_ops->num_breakpoints * sizeof (CORE_ADDR));
799 memset (breakaddr, 0, mon_ops->num_breakpoints * sizeof (CORE_ADDR));
800 }
801
802 /* Remove all breakpoints */
803
804 if (mon_ops->clr_all_break)
805 {
806 monitor_printf (mon_ops->clr_all_break);
807 monitor_expect_prompt (NULL, 0);
808 }
809
810 if (from_tty)
811 printf_unfiltered (_("Remote target %s connected to %s\n"), name, dev_name);
812
813 push_target (targ_ops);
814
815 /* Start afresh. */
816 init_thread_list ();
817
818 /* Make run command think we are busy... */
819 inferior_ptid = monitor_ptid;
820 add_inferior_silent (ptid_get_pid (inferior_ptid));
821 add_thread_silent (inferior_ptid);
822
823 /* Give monitor_wait something to read */
824
825 monitor_printf (current_monitor->line_term);
826
827 start_remote (from_tty);
828 }
829
830 /* Close out all files and local state before this target loses
831 control. */
832
833 void
834 monitor_close (int quitting)
835 {
836 if (monitor_desc)
837 serial_close (monitor_desc);
838
839 /* Free breakpoint memory */
840 if (breakaddr != NULL)
841 {
842 xfree (breakaddr);
843 breakaddr = NULL;
844 }
845
846 monitor_desc = NULL;
847
848 delete_thread_silent (monitor_ptid);
849 delete_inferior_silent (ptid_get_pid (monitor_ptid));
850 }
851
852 /* Terminate the open connection to the remote debugger. Use this
853 when you want to detach and do something else with your gdb. */
854
855 static void
856 monitor_detach (struct target_ops *ops, char *args, int from_tty)
857 {
858 pop_target (); /* calls monitor_close to do the real work */
859 if (from_tty)
860 printf_unfiltered (_("Ending remote %s debugging\n"), target_shortname);
861 }
862
863 /* Convert VALSTR into the target byte-ordered value of REGNO and store it. */
864
865 char *
866 monitor_supply_register (struct regcache *regcache, int regno, char *valstr)
867 {
868 ULONGEST val;
869 unsigned char regbuf[MAX_REGISTER_SIZE];
870 char *p;
871
872 val = 0;
873 p = valstr;
874 while (p && *p != '\0')
875 {
876 if (*p == '\r' || *p == '\n')
877 {
878 while (*p != '\0')
879 p++;
880 break;
881 }
882 if (isspace (*p))
883 {
884 p++;
885 continue;
886 }
887 if (!isxdigit (*p) && *p != 'x')
888 {
889 break;
890 }
891
892 val <<= 4;
893 val += fromhex (*p++);
894 }
895 monitor_debug ("Supplying Register %d %s\n", regno, valstr);
896
897 if (val == 0 && valstr == p)
898 error (_("monitor_supply_register (%d): bad value from monitor: %s."),
899 regno, valstr);
900
901 /* supply register stores in target byte order, so swap here */
902
903 store_unsigned_integer (regbuf,
904 register_size (get_regcache_arch (regcache), regno),
905 val);
906
907 regcache_raw_supply (regcache, regno, regbuf);
908
909 return p;
910 }
911
912 /* Tell the remote machine to resume. */
913
914 static void
915 monitor_resume (struct target_ops *ops,
916 ptid_t ptid, int step, enum target_signal sig)
917 {
918 /* Some monitors require a different command when starting a program */
919 monitor_debug ("MON resume\n");
920 if (current_monitor->flags & MO_RUN_FIRST_TIME && first_time == 1)
921 {
922 first_time = 0;
923 monitor_printf ("run\r");
924 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
925 dump_reg_flag = 1;
926 return;
927 }
928 if (step)
929 monitor_printf (current_monitor->step);
930 else
931 {
932 if (current_monitor->continue_hook)
933 (*current_monitor->continue_hook) ();
934 else
935 monitor_printf (current_monitor->cont);
936 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
937 dump_reg_flag = 1;
938 }
939 }
940
941 /* Parse the output of a register dump command. A monitor specific
942 regexp is used to extract individual register descriptions of the
943 form REG=VAL. Each description is split up into a name and a value
944 string which are passed down to monitor specific code. */
945
946 static void
947 parse_register_dump (struct regcache *regcache, char *buf, int len)
948 {
949 monitor_debug ("MON Parsing register dump\n");
950 while (1)
951 {
952 int regnamelen, vallen;
953 char *regname, *val;
954 /* Element 0 points to start of register name, and element 1
955 points to the start of the register value. */
956 struct re_registers register_strings;
957
958 memset (&register_strings, 0, sizeof (struct re_registers));
959
960 if (re_search (&register_pattern, buf, len, 0, len,
961 &register_strings) == -1)
962 break;
963
964 regnamelen = register_strings.end[1] - register_strings.start[1];
965 regname = buf + register_strings.start[1];
966 vallen = register_strings.end[2] - register_strings.start[2];
967 val = buf + register_strings.start[2];
968
969 current_monitor->supply_register (regcache, regname, regnamelen,
970 val, vallen);
971
972 buf += register_strings.end[0];
973 len -= register_strings.end[0];
974 }
975 }
976
977 /* Send ^C to target to halt it. Target will respond, and send us a
978 packet. */
979
980 static void
981 monitor_interrupt (int signo)
982 {
983 /* If this doesn't work, try more severe steps. */
984 signal (signo, monitor_interrupt_twice);
985
986 if (monitor_debug_p || remote_debug)
987 fprintf_unfiltered (gdb_stdlog, "monitor_interrupt called\n");
988
989 target_stop (inferior_ptid);
990 }
991
992 /* The user typed ^C twice. */
993
994 static void
995 monitor_interrupt_twice (int signo)
996 {
997 signal (signo, ofunc);
998
999 monitor_interrupt_query ();
1000
1001 signal (signo, monitor_interrupt);
1002 }
1003
1004 /* Ask the user what to do when an interrupt is received. */
1005
1006 static void
1007 monitor_interrupt_query (void)
1008 {
1009 target_terminal_ours ();
1010
1011 if (query (_("Interrupted while waiting for the program.\n\
1012 Give up (and stop debugging it)? ")))
1013 {
1014 target_mourn_inferior ();
1015 deprecated_throw_reason (RETURN_QUIT);
1016 }
1017
1018 target_terminal_inferior ();
1019 }
1020
1021 static void
1022 monitor_wait_cleanup (void *old_timeout)
1023 {
1024 timeout = *(int *) old_timeout;
1025 signal (SIGINT, ofunc);
1026 in_monitor_wait = 0;
1027 }
1028
1029
1030
1031 static void
1032 monitor_wait_filter (char *buf,
1033 int bufmax,
1034 int *ext_resp_len,
1035 struct target_waitstatus *status)
1036 {
1037 int resp_len;
1038 do
1039 {
1040 resp_len = monitor_expect_prompt (buf, bufmax);
1041 *ext_resp_len = resp_len;
1042
1043 if (resp_len <= 0)
1044 fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive response from monitor: %s.", buf);
1045 }
1046 while (resp_len < 0);
1047
1048 /* Print any output characters that were preceded by ^O. */
1049 /* FIXME - This would be great as a user settabgle flag */
1050 if (monitor_debug_p || remote_debug
1051 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1052 {
1053 int i;
1054
1055 for (i = 0; i < resp_len - 1; i++)
1056 if (buf[i] == 0x0f)
1057 putchar_unfiltered (buf[++i]);
1058 }
1059 }
1060
1061
1062
1063 /* Wait until the remote machine stops, then return, storing status in
1064 status just as `wait' would. */
1065
1066 static ptid_t
1067 monitor_wait (struct target_ops *ops,
1068 ptid_t ptid, struct target_waitstatus *status, int options)
1069 {
1070 int old_timeout = timeout;
1071 char buf[TARGET_BUF_SIZE];
1072 int resp_len;
1073 struct cleanup *old_chain;
1074
1075 status->kind = TARGET_WAITKIND_EXITED;
1076 status->value.integer = 0;
1077
1078 old_chain = make_cleanup (monitor_wait_cleanup, &old_timeout);
1079 monitor_debug ("MON wait\n");
1080
1081 #if 0
1082 /* This is somthing other than a maintenance command */
1083 in_monitor_wait = 1;
1084 timeout = watchdog > 0 ? watchdog : -1;
1085 #else
1086 timeout = -1; /* Don't time out -- user program is running. */
1087 #endif
1088
1089 ofunc = (void (*)()) signal (SIGINT, monitor_interrupt);
1090
1091 if (current_monitor->wait_filter)
1092 (*current_monitor->wait_filter) (buf, sizeof (buf), &resp_len, status);
1093 else
1094 monitor_wait_filter (buf, sizeof (buf), &resp_len, status);
1095
1096 #if 0 /* Transferred to monitor wait filter */
1097 do
1098 {
1099 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1100
1101 if (resp_len <= 0)
1102 fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive response from monitor: %s.", buf);
1103 }
1104 while (resp_len < 0);
1105
1106 /* Print any output characters that were preceded by ^O. */
1107 /* FIXME - This would be great as a user settabgle flag */
1108 if (monitor_debug_p || remote_debug
1109 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1110 {
1111 int i;
1112
1113 for (i = 0; i < resp_len - 1; i++)
1114 if (buf[i] == 0x0f)
1115 putchar_unfiltered (buf[++i]);
1116 }
1117 #endif
1118
1119 signal (SIGINT, ofunc);
1120
1121 timeout = old_timeout;
1122 #if 0
1123 if (dump_reg_flag && current_monitor->dump_registers)
1124 {
1125 dump_reg_flag = 0;
1126 monitor_printf (current_monitor->dump_registers);
1127 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1128 }
1129
1130 if (current_monitor->register_pattern)
1131 parse_register_dump (get_current_regcache (), buf, resp_len);
1132 #else
1133 monitor_debug ("Wait fetching registers after stop\n");
1134 monitor_dump_regs (get_current_regcache ());
1135 #endif
1136
1137 status->kind = TARGET_WAITKIND_STOPPED;
1138 status->value.sig = TARGET_SIGNAL_TRAP;
1139
1140 discard_cleanups (old_chain);
1141
1142 in_monitor_wait = 0;
1143
1144 return inferior_ptid;
1145 }
1146
1147 /* Fetch register REGNO, or all registers if REGNO is -1. Returns
1148 errno value. */
1149
1150 static void
1151 monitor_fetch_register (struct regcache *regcache, int regno)
1152 {
1153 const char *name;
1154 char *zerobuf;
1155 char *regbuf;
1156 int i;
1157
1158 regbuf = alloca (MAX_REGISTER_SIZE * 2 + 1);
1159 zerobuf = alloca (MAX_REGISTER_SIZE);
1160 memset (zerobuf, 0, MAX_REGISTER_SIZE);
1161
1162 if (current_monitor->regname != NULL)
1163 name = current_monitor->regname (regno);
1164 else
1165 name = current_monitor->regnames[regno];
1166 monitor_debug ("MON fetchreg %d '%s'\n", regno, name ? name : "(null name)");
1167
1168 if (!name || (*name == '\0'))
1169 {
1170 monitor_debug ("No register known for %d\n", regno);
1171 regcache_raw_supply (regcache, regno, zerobuf);
1172 return;
1173 }
1174
1175 /* send the register examine command */
1176
1177 monitor_printf (current_monitor->getreg.cmd, name);
1178
1179 /* If RESP_DELIM is specified, we search for that as a leading
1180 delimiter for the register value. Otherwise, we just start
1181 searching from the start of the buf. */
1182
1183 if (current_monitor->getreg.resp_delim)
1184 {
1185 monitor_debug ("EXP getreg.resp_delim\n");
1186 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1187 /* Handle case of first 32 registers listed in pairs. */
1188 if (current_monitor->flags & MO_32_REGS_PAIRED
1189 && (regno & 1) != 0 && regno < 32)
1190 {
1191 monitor_debug ("EXP getreg.resp_delim\n");
1192 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1193 }
1194 }
1195
1196 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set */
1197 if (current_monitor->flags & MO_HEX_PREFIX)
1198 {
1199 int c;
1200 c = readchar (timeout);
1201 while (c == ' ')
1202 c = readchar (timeout);
1203 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1204 ;
1205 else
1206 error (_("Bad value returned from monitor while fetching register %x."),
1207 regno);
1208 }
1209
1210 /* Read upto the maximum number of hex digits for this register, skipping
1211 spaces, but stop reading if something else is seen. Some monitors
1212 like to drop leading zeros. */
1213
1214 for (i = 0; i < register_size (get_regcache_arch (regcache), regno) * 2; i++)
1215 {
1216 int c;
1217 c = readchar (timeout);
1218 while (c == ' ')
1219 c = readchar (timeout);
1220
1221 if (!isxdigit (c))
1222 break;
1223
1224 regbuf[i] = c;
1225 }
1226
1227 regbuf[i] = '\000'; /* terminate the number */
1228 monitor_debug ("REGVAL '%s'\n", regbuf);
1229
1230 /* If TERM is present, we wait for that to show up. Also, (if TERM
1231 is present), we will send TERM_CMD if that is present. In any
1232 case, we collect all of the output into buf, and then wait for
1233 the normal prompt. */
1234
1235 if (current_monitor->getreg.term)
1236 {
1237 monitor_debug ("EXP getreg.term\n");
1238 monitor_expect (current_monitor->getreg.term, NULL, 0); /* get response */
1239 }
1240
1241 if (current_monitor->getreg.term_cmd)
1242 {
1243 monitor_debug ("EMIT getreg.term.cmd\n");
1244 monitor_printf (current_monitor->getreg.term_cmd);
1245 }
1246 if (!current_monitor->getreg.term || /* Already expected or */
1247 current_monitor->getreg.term_cmd) /* ack expected */
1248 monitor_expect_prompt (NULL, 0); /* get response */
1249
1250 monitor_supply_register (regcache, regno, regbuf);
1251 }
1252
1253 /* Sometimes, it takes several commands to dump the registers */
1254 /* This is a primitive for use by variations of monitor interfaces in
1255 case they need to compose the operation.
1256 */
1257 int
1258 monitor_dump_reg_block (struct regcache *regcache, char *block_cmd)
1259 {
1260 char buf[TARGET_BUF_SIZE];
1261 int resp_len;
1262 monitor_printf (block_cmd);
1263 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1264 parse_register_dump (regcache, buf, resp_len);
1265 return 1;
1266 }
1267
1268
1269 /* Read the remote registers into the block regs. */
1270 /* Call the specific function if it has been provided */
1271
1272 static void
1273 monitor_dump_regs (struct regcache *regcache)
1274 {
1275 char buf[TARGET_BUF_SIZE];
1276 int resp_len;
1277 if (current_monitor->dumpregs)
1278 (*(current_monitor->dumpregs)) (regcache); /* call supplied function */
1279 else if (current_monitor->dump_registers) /* default version */
1280 {
1281 monitor_printf (current_monitor->dump_registers);
1282 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1283 parse_register_dump (regcache, buf, resp_len);
1284 }
1285 else
1286 internal_error (__FILE__, __LINE__, _("failed internal consistency check")); /* Need some way to read registers */
1287 }
1288
1289 static void
1290 monitor_fetch_registers (struct target_ops *ops,
1291 struct regcache *regcache, int regno)
1292 {
1293 monitor_debug ("MON fetchregs\n");
1294 if (current_monitor->getreg.cmd)
1295 {
1296 if (regno >= 0)
1297 {
1298 monitor_fetch_register (regcache, regno);
1299 return;
1300 }
1301
1302 for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache));
1303 regno++)
1304 monitor_fetch_register (regcache, regno);
1305 }
1306 else
1307 {
1308 monitor_dump_regs (regcache);
1309 }
1310 }
1311
1312 /* Store register REGNO, or all if REGNO == 0. Return errno value. */
1313
1314 static void
1315 monitor_store_register (struct regcache *regcache, int regno)
1316 {
1317 const char *name;
1318 ULONGEST val;
1319
1320 if (current_monitor->regname != NULL)
1321 name = current_monitor->regname (regno);
1322 else
1323 name = current_monitor->regnames[regno];
1324
1325 if (!name || (*name == '\0'))
1326 {
1327 monitor_debug ("MON Cannot store unknown register\n");
1328 return;
1329 }
1330
1331 regcache_cooked_read_unsigned (regcache, regno, &val);
1332 monitor_debug ("MON storeg %d %s\n", regno,
1333 phex (val,
1334 register_size (get_regcache_arch (regcache), regno)));
1335
1336 /* send the register deposit command */
1337
1338 if (current_monitor->flags & MO_REGISTER_VALUE_FIRST)
1339 monitor_printf (current_monitor->setreg.cmd, val, name);
1340 else if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1341 monitor_printf (current_monitor->setreg.cmd, name);
1342 else
1343 monitor_printf (current_monitor->setreg.cmd, name, val);
1344
1345 if (current_monitor->setreg.resp_delim)
1346 {
1347 monitor_debug ("EXP setreg.resp_delim\n");
1348 monitor_expect_regexp (&setreg_resp_delim_pattern, NULL, 0);
1349 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1350 monitor_printf ("%s\r", paddr_nz (val));
1351 }
1352 if (current_monitor->setreg.term)
1353 {
1354 monitor_debug ("EXP setreg.term\n");
1355 monitor_expect (current_monitor->setreg.term, NULL, 0);
1356 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1357 monitor_printf ("%s\r", paddr_nz (val));
1358 monitor_expect_prompt (NULL, 0);
1359 }
1360 else
1361 monitor_expect_prompt (NULL, 0);
1362 if (current_monitor->setreg.term_cmd) /* Mode exit required */
1363 {
1364 monitor_debug ("EXP setreg_termcmd\n");
1365 monitor_printf ("%s", current_monitor->setreg.term_cmd);
1366 monitor_expect_prompt (NULL, 0);
1367 }
1368 } /* monitor_store_register */
1369
1370 /* Store the remote registers. */
1371
1372 static void
1373 monitor_store_registers (struct target_ops *ops,
1374 struct regcache *regcache, int regno)
1375 {
1376 if (regno >= 0)
1377 {
1378 monitor_store_register (regcache, regno);
1379 return;
1380 }
1381
1382 for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache));
1383 regno++)
1384 monitor_store_register (regcache, regno);
1385 }
1386
1387 /* Get ready to modify the registers array. On machines which store
1388 individual registers, this doesn't need to do anything. On machines
1389 which store all the registers in one fell swoop, this makes sure
1390 that registers contains all the registers from the program being
1391 debugged. */
1392
1393 static void
1394 monitor_prepare_to_store (struct regcache *regcache)
1395 {
1396 /* Do nothing, since we can store individual regs */
1397 }
1398
1399 static void
1400 monitor_files_info (struct target_ops *ops)
1401 {
1402 printf_unfiltered (_("\tAttached to %s at %d baud.\n"), dev_name, baud_rate);
1403 }
1404
1405 static int
1406 monitor_write_memory (CORE_ADDR memaddr, char *myaddr, int len)
1407 {
1408 unsigned int val, hostval;
1409 char *cmd;
1410 int i;
1411
1412 monitor_debug ("MON write %d %s\n", len, paddr (memaddr));
1413
1414 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1415 memaddr = gdbarch_addr_bits_remove (current_gdbarch, memaddr);
1416
1417 /* Use memory fill command for leading 0 bytes. */
1418
1419 if (current_monitor->fill)
1420 {
1421 for (i = 0; i < len; i++)
1422 if (myaddr[i] != 0)
1423 break;
1424
1425 if (i > 4) /* More than 4 zeros is worth doing */
1426 {
1427 monitor_debug ("MON FILL %d\n", i);
1428 if (current_monitor->flags & MO_FILL_USES_ADDR)
1429 monitor_printf (current_monitor->fill, memaddr, (memaddr + i) - 1, 0);
1430 else
1431 monitor_printf (current_monitor->fill, memaddr, i, 0);
1432
1433 monitor_expect_prompt (NULL, 0);
1434
1435 return i;
1436 }
1437 }
1438
1439 #if 0
1440 /* Can't actually use long longs if VAL is an int (nice idea, though). */
1441 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->setmem.cmdll)
1442 {
1443 len = 8;
1444 cmd = current_monitor->setmem.cmdll;
1445 }
1446 else
1447 #endif
1448 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->setmem.cmdl)
1449 {
1450 len = 4;
1451 cmd = current_monitor->setmem.cmdl;
1452 }
1453 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->setmem.cmdw)
1454 {
1455 len = 2;
1456 cmd = current_monitor->setmem.cmdw;
1457 }
1458 else
1459 {
1460 len = 1;
1461 cmd = current_monitor->setmem.cmdb;
1462 }
1463
1464 val = extract_unsigned_integer (myaddr, len);
1465
1466 if (len == 4)
1467 {
1468 hostval = *(unsigned int *) myaddr;
1469 monitor_debug ("Hostval(%08x) val(%08x)\n", hostval, val);
1470 }
1471
1472
1473 if (current_monitor->flags & MO_NO_ECHO_ON_SETMEM)
1474 monitor_printf_noecho (cmd, memaddr, val);
1475 else if (current_monitor->flags & MO_SETMEM_INTERACTIVE)
1476 {
1477
1478 monitor_printf_noecho (cmd, memaddr);
1479
1480 if (current_monitor->setmem.resp_delim)
1481 {
1482 monitor_debug ("EXP setmem.resp_delim");
1483 monitor_expect_regexp (&setmem_resp_delim_pattern, NULL, 0);
1484 monitor_printf ("%x\r", val);
1485 }
1486 if (current_monitor->setmem.term)
1487 {
1488 monitor_debug ("EXP setmem.term");
1489 monitor_expect (current_monitor->setmem.term, NULL, 0);
1490 monitor_printf ("%x\r", val);
1491 }
1492 if (current_monitor->setmem.term_cmd)
1493 { /* Emit this to get out of the memory editing state */
1494 monitor_printf ("%s", current_monitor->setmem.term_cmd);
1495 /* Drop through to expecting a prompt */
1496 }
1497 }
1498 else
1499 monitor_printf (cmd, memaddr, val);
1500
1501 monitor_expect_prompt (NULL, 0);
1502
1503 return len;
1504 }
1505
1506
1507 static int
1508 monitor_write_memory_bytes (CORE_ADDR memaddr, char *myaddr, int len)
1509 {
1510 unsigned char val;
1511 int written = 0;
1512 if (len == 0)
1513 return 0;
1514 /* Enter the sub mode */
1515 monitor_printf (current_monitor->setmem.cmdb, memaddr);
1516 monitor_expect_prompt (NULL, 0);
1517 while (len)
1518 {
1519 val = *myaddr;
1520 monitor_printf ("%x\r", val);
1521 myaddr++;
1522 memaddr++;
1523 written++;
1524 /* If we wanted to, here we could validate the address */
1525 monitor_expect_prompt (NULL, 0);
1526 len--;
1527 }
1528 /* Now exit the sub mode */
1529 monitor_printf (current_monitor->getreg.term_cmd);
1530 monitor_expect_prompt (NULL, 0);
1531 return written;
1532 }
1533
1534
1535 static void
1536 longlongendswap (unsigned char *a)
1537 {
1538 int i, j;
1539 unsigned char x;
1540 i = 0;
1541 j = 7;
1542 while (i < 4)
1543 {
1544 x = *(a + i);
1545 *(a + i) = *(a + j);
1546 *(a + j) = x;
1547 i++, j--;
1548 }
1549 }
1550 /* Format 32 chars of long long value, advance the pointer */
1551 static char *hexlate = "0123456789abcdef";
1552 static char *
1553 longlong_hexchars (unsigned long long value,
1554 char *outbuff)
1555 {
1556 if (value == 0)
1557 {
1558 *outbuff++ = '0';
1559 return outbuff;
1560 }
1561 else
1562 {
1563 static unsigned char disbuf[8]; /* disassembly buffer */
1564 unsigned char *scan, *limit; /* loop controls */
1565 unsigned char c, nib;
1566 int leadzero = 1;
1567 scan = disbuf;
1568 limit = scan + 8;
1569 {
1570 unsigned long long *dp;
1571 dp = (unsigned long long *) scan;
1572 *dp = value;
1573 }
1574 longlongendswap (disbuf); /* FIXME: ONly on big endian hosts */
1575 while (scan < limit)
1576 {
1577 c = *scan++; /* a byte of our long long value */
1578 if (leadzero)
1579 {
1580 if (c == 0)
1581 continue;
1582 else
1583 leadzero = 0; /* henceforth we print even zeroes */
1584 }
1585 nib = c >> 4; /* high nibble bits */
1586 *outbuff++ = hexlate[nib];
1587 nib = c & 0x0f; /* low nibble bits */
1588 *outbuff++ = hexlate[nib];
1589 }
1590 return outbuff;
1591 }
1592 } /* longlong_hexchars */
1593
1594
1595
1596 /* I am only going to call this when writing virtual byte streams.
1597 Which possably entails endian conversions
1598 */
1599 static int
1600 monitor_write_memory_longlongs (CORE_ADDR memaddr, char *myaddr, int len)
1601 {
1602 static char hexstage[20]; /* At least 16 digits required, plus null */
1603 char *endstring;
1604 long long *llptr;
1605 long long value;
1606 int written = 0;
1607 llptr = (unsigned long long *) myaddr;
1608 if (len == 0)
1609 return 0;
1610 monitor_printf (current_monitor->setmem.cmdll, memaddr);
1611 monitor_expect_prompt (NULL, 0);
1612 while (len >= 8)
1613 {
1614 value = *llptr;
1615 endstring = longlong_hexchars (*llptr, hexstage);
1616 *endstring = '\0'; /* NUll terminate for printf */
1617 monitor_printf ("%s\r", hexstage);
1618 llptr++;
1619 memaddr += 8;
1620 written += 8;
1621 /* If we wanted to, here we could validate the address */
1622 monitor_expect_prompt (NULL, 0);
1623 len -= 8;
1624 }
1625 /* Now exit the sub mode */
1626 monitor_printf (current_monitor->getreg.term_cmd);
1627 monitor_expect_prompt (NULL, 0);
1628 return written;
1629 } /* */
1630
1631
1632
1633 /* ----- MONITOR_WRITE_MEMORY_BLOCK ---------------------------- */
1634 /* This is for the large blocks of memory which may occur in downloading.
1635 And for monitors which use interactive entry,
1636 And for monitors which do not have other downloading methods.
1637 Without this, we will end up calling monitor_write_memory many times
1638 and do the entry and exit of the sub mode many times
1639 This currently assumes...
1640 MO_SETMEM_INTERACTIVE
1641 ! MO_NO_ECHO_ON_SETMEM
1642 To use this, the you have to patch the monitor_cmds block with
1643 this function. Otherwise, its not tuned up for use by all
1644 monitor variations.
1645 */
1646
1647 static int
1648 monitor_write_memory_block (CORE_ADDR memaddr, char *myaddr, int len)
1649 {
1650 int written;
1651 written = 0;
1652 /* FIXME: This would be a good place to put the zero test */
1653 #if 1
1654 if ((len > 8) && (((len & 0x07)) == 0) && current_monitor->setmem.cmdll)
1655 {
1656 return monitor_write_memory_longlongs (memaddr, myaddr, len);
1657 }
1658 #endif
1659 written = monitor_write_memory_bytes (memaddr, myaddr, len);
1660 return written;
1661 }
1662
1663 /* This is an alternate form of monitor_read_memory which is used for monitors
1664 which can only read a single byte/word/etc. at a time. */
1665
1666 static int
1667 monitor_read_memory_single (CORE_ADDR memaddr, char *myaddr, int len)
1668 {
1669 unsigned int val;
1670 char membuf[sizeof (int) * 2 + 1];
1671 char *p;
1672 char *cmd;
1673
1674 monitor_debug ("MON read single\n");
1675 #if 0
1676 /* Can't actually use long longs (nice idea, though). In fact, the
1677 call to strtoul below will fail if it tries to convert a value
1678 that's too big to fit in a long. */
1679 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->getmem.cmdll)
1680 {
1681 len = 8;
1682 cmd = current_monitor->getmem.cmdll;
1683 }
1684 else
1685 #endif
1686 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->getmem.cmdl)
1687 {
1688 len = 4;
1689 cmd = current_monitor->getmem.cmdl;
1690 }
1691 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->getmem.cmdw)
1692 {
1693 len = 2;
1694 cmd = current_monitor->getmem.cmdw;
1695 }
1696 else
1697 {
1698 len = 1;
1699 cmd = current_monitor->getmem.cmdb;
1700 }
1701
1702 /* Send the examine command. */
1703
1704 monitor_printf (cmd, memaddr);
1705
1706 /* If RESP_DELIM is specified, we search for that as a leading
1707 delimiter for the memory value. Otherwise, we just start
1708 searching from the start of the buf. */
1709
1710 if (current_monitor->getmem.resp_delim)
1711 {
1712 monitor_debug ("EXP getmem.resp_delim\n");
1713 monitor_expect_regexp (&getmem_resp_delim_pattern, NULL, 0);
1714 }
1715
1716 /* Now, read the appropriate number of hex digits for this loc,
1717 skipping spaces. */
1718
1719 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */
1720 if (current_monitor->flags & MO_HEX_PREFIX)
1721 {
1722 int c;
1723
1724 c = readchar (timeout);
1725 while (c == ' ')
1726 c = readchar (timeout);
1727 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1728 ;
1729 else
1730 monitor_error ("monitor_read_memory_single",
1731 "bad response from monitor",
1732 memaddr, 0, NULL, 0);
1733 }
1734
1735 {
1736 int i;
1737 for (i = 0; i < len * 2; i++)
1738 {
1739 int c;
1740
1741 while (1)
1742 {
1743 c = readchar (timeout);
1744 if (isxdigit (c))
1745 break;
1746 if (c == ' ')
1747 continue;
1748
1749 monitor_error ("monitor_read_memory_single",
1750 "bad response from monitor",
1751 memaddr, i, membuf, 0);
1752 }
1753 membuf[i] = c;
1754 }
1755 membuf[i] = '\000'; /* terminate the number */
1756 }
1757
1758 /* If TERM is present, we wait for that to show up. Also, (if TERM is
1759 present), we will send TERM_CMD if that is present. In any case, we collect
1760 all of the output into buf, and then wait for the normal prompt. */
1761
1762 if (current_monitor->getmem.term)
1763 {
1764 monitor_expect (current_monitor->getmem.term, NULL, 0); /* get response */
1765
1766 if (current_monitor->getmem.term_cmd)
1767 {
1768 monitor_printf (current_monitor->getmem.term_cmd);
1769 monitor_expect_prompt (NULL, 0);
1770 }
1771 }
1772 else
1773 monitor_expect_prompt (NULL, 0); /* get response */
1774
1775 p = membuf;
1776 val = strtoul (membuf, &p, 16);
1777
1778 if (val == 0 && membuf == p)
1779 monitor_error ("monitor_read_memory_single",
1780 "bad value from monitor",
1781 memaddr, 0, membuf, 0);
1782
1783 /* supply register stores in target byte order, so swap here */
1784
1785 store_unsigned_integer (myaddr, len, val);
1786
1787 return len;
1788 }
1789
1790 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
1791 memory at MEMADDR. Returns length moved. Currently, we do no more
1792 than 16 bytes at a time. */
1793
1794 static int
1795 monitor_read_memory (CORE_ADDR memaddr, char *myaddr, int len)
1796 {
1797 unsigned int val;
1798 char buf[512];
1799 char *p, *p1;
1800 int resp_len;
1801 int i;
1802 CORE_ADDR dumpaddr;
1803
1804 if (len <= 0)
1805 {
1806 monitor_debug ("Zero length call to monitor_read_memory\n");
1807 return 0;
1808 }
1809
1810 monitor_debug ("MON read block ta(%s) ha(%lx) %d\n",
1811 paddr_nz (memaddr), (long) myaddr, len);
1812
1813 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1814 memaddr = gdbarch_addr_bits_remove (current_gdbarch, memaddr);
1815
1816 if (current_monitor->flags & MO_GETMEM_READ_SINGLE)
1817 return monitor_read_memory_single (memaddr, myaddr, len);
1818
1819 len = min (len, 16);
1820
1821 /* Some dumpers align the first data with the preceeding 16
1822 byte boundary. Some print blanks and start at the
1823 requested boundary. EXACT_DUMPADDR
1824 */
1825
1826 dumpaddr = (current_monitor->flags & MO_EXACT_DUMPADDR)
1827 ? memaddr : memaddr & ~0x0f;
1828
1829 /* See if xfer would cross a 16 byte boundary. If so, clip it. */
1830 if (((memaddr ^ (memaddr + len - 1)) & ~0xf) != 0)
1831 len = ((memaddr + len) & ~0xf) - memaddr;
1832
1833 /* send the memory examine command */
1834
1835 if (current_monitor->flags & MO_GETMEM_NEEDS_RANGE)
1836 monitor_printf (current_monitor->getmem.cmdb, memaddr, memaddr + len);
1837 else if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1838 monitor_printf (current_monitor->getmem.cmdb, dumpaddr);
1839 else
1840 monitor_printf (current_monitor->getmem.cmdb, memaddr, len);
1841
1842 /* If TERM is present, we wait for that to show up. Also, (if TERM
1843 is present), we will send TERM_CMD if that is present. In any
1844 case, we collect all of the output into buf, and then wait for
1845 the normal prompt. */
1846
1847 if (current_monitor->getmem.term)
1848 {
1849 resp_len = monitor_expect (current_monitor->getmem.term, buf, sizeof buf); /* get response */
1850
1851 if (resp_len <= 0)
1852 monitor_error ("monitor_read_memory",
1853 "excessive response from monitor",
1854 memaddr, resp_len, buf, 0);
1855
1856 if (current_monitor->getmem.term_cmd)
1857 {
1858 serial_write (monitor_desc, current_monitor->getmem.term_cmd,
1859 strlen (current_monitor->getmem.term_cmd));
1860 monitor_expect_prompt (NULL, 0);
1861 }
1862 }
1863 else
1864 resp_len = monitor_expect_prompt (buf, sizeof buf); /* get response */
1865
1866 p = buf;
1867
1868 /* If RESP_DELIM is specified, we search for that as a leading
1869 delimiter for the values. Otherwise, we just start searching
1870 from the start of the buf. */
1871
1872 if (current_monitor->getmem.resp_delim)
1873 {
1874 int retval, tmp;
1875 struct re_registers resp_strings;
1876 monitor_debug ("MON getmem.resp_delim %s\n", current_monitor->getmem.resp_delim);
1877
1878 memset (&resp_strings, 0, sizeof (struct re_registers));
1879 tmp = strlen (p);
1880 retval = re_search (&getmem_resp_delim_pattern, p, tmp, 0, tmp,
1881 &resp_strings);
1882
1883 if (retval < 0)
1884 monitor_error ("monitor_read_memory",
1885 "bad response from monitor",
1886 memaddr, resp_len, buf, 0);
1887
1888 p += resp_strings.end[0];
1889 #if 0
1890 p = strstr (p, current_monitor->getmem.resp_delim);
1891 if (!p)
1892 monitor_error ("monitor_read_memory",
1893 "bad response from monitor",
1894 memaddr, resp_len, buf, 0);
1895 p += strlen (current_monitor->getmem.resp_delim);
1896 #endif
1897 }
1898 monitor_debug ("MON scanning %d ,%lx '%s'\n", len, (long) p, p);
1899 if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1900 {
1901 char c;
1902 int fetched = 0;
1903 i = len;
1904 c = *p;
1905
1906
1907 while (!(c == '\000' || c == '\n' || c == '\r') && i > 0)
1908 {
1909 if (isxdigit (c))
1910 {
1911 if ((dumpaddr >= memaddr) && (i > 0))
1912 {
1913 val = fromhex (c) * 16 + fromhex (*(p + 1));
1914 *myaddr++ = val;
1915 if (monitor_debug_p || remote_debug)
1916 fprintf_unfiltered (gdb_stdlog, "[%02x]", val);
1917 --i;
1918 fetched++;
1919 }
1920 ++dumpaddr;
1921 ++p;
1922 }
1923 ++p; /* skip a blank or other non hex char */
1924 c = *p;
1925 }
1926 if (fetched == 0)
1927 error (_("Failed to read via monitor"));
1928 if (monitor_debug_p || remote_debug)
1929 fprintf_unfiltered (gdb_stdlog, "\n");
1930 return fetched; /* Return the number of bytes actually read */
1931 }
1932 monitor_debug ("MON scanning bytes\n");
1933
1934 for (i = len; i > 0; i--)
1935 {
1936 /* Skip non-hex chars, but bomb on end of string and newlines */
1937
1938 while (1)
1939 {
1940 if (isxdigit (*p))
1941 break;
1942
1943 if (*p == '\000' || *p == '\n' || *p == '\r')
1944 monitor_error ("monitor_read_memory",
1945 "badly terminated response from monitor",
1946 memaddr, resp_len, buf, 0);
1947 p++;
1948 }
1949
1950 val = strtoul (p, &p1, 16);
1951
1952 if (val == 0 && p == p1)
1953 monitor_error ("monitor_read_memory",
1954 "bad value from monitor",
1955 memaddr, resp_len, buf, 0);
1956
1957 *myaddr++ = val;
1958
1959 if (i == 1)
1960 break;
1961
1962 p = p1;
1963 }
1964
1965 return len;
1966 }
1967
1968 /* Transfer LEN bytes between target address MEMADDR and GDB address
1969 MYADDR. Returns 0 for success, errno code for failure. TARGET is
1970 unused. */
1971
1972 static int
1973 monitor_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int write,
1974 struct mem_attrib *attrib, struct target_ops *target)
1975 {
1976 int res;
1977
1978 if (write)
1979 {
1980 if (current_monitor->flags & MO_HAS_BLOCKWRITES)
1981 res = monitor_write_memory_block(memaddr, myaddr, len);
1982 else
1983 res = monitor_write_memory(memaddr, myaddr, len);
1984 }
1985 else
1986 {
1987 res = monitor_read_memory(memaddr, myaddr, len);
1988 }
1989
1990 return res;
1991 }
1992
1993 static void
1994 monitor_kill (struct target_ops *ops)
1995 {
1996 return; /* ignore attempts to kill target system */
1997 }
1998
1999 /* All we actually do is set the PC to the start address of exec_bfd. */
2000
2001 static void
2002 monitor_create_inferior (struct target_ops *ops, char *exec_file,
2003 char *args, char **env, int from_tty)
2004 {
2005 if (args && (*args != '\000'))
2006 error (_("Args are not supported by the monitor."));
2007
2008 first_time = 1;
2009 clear_proceed_status ();
2010 regcache_write_pc (get_current_regcache (),
2011 bfd_get_start_address (exec_bfd));
2012 }
2013
2014 /* Clean up when a program exits.
2015 The program actually lives on in the remote processor's RAM, and may be
2016 run again without a download. Don't leave it full of breakpoint
2017 instructions. */
2018
2019 static void
2020 monitor_mourn_inferior (struct target_ops *ops)
2021 {
2022 unpush_target (targ_ops);
2023 generic_mourn_inferior (); /* Do all the proper things now */
2024 delete_thread_silent (monitor_ptid);
2025 }
2026
2027 /* Tell the monitor to add a breakpoint. */
2028
2029 static int
2030 monitor_insert_breakpoint (struct bp_target_info *bp_tgt)
2031 {
2032 CORE_ADDR addr = bp_tgt->placed_address;
2033 int i;
2034 int bplen;
2035
2036 monitor_debug ("MON inst bkpt %s\n", paddr (addr));
2037 if (current_monitor->set_break == NULL)
2038 error (_("No set_break defined for this monitor"));
2039
2040 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
2041 addr = gdbarch_addr_bits_remove (current_gdbarch, addr);
2042
2043 /* Determine appropriate breakpoint size for this address. */
2044 gdbarch_breakpoint_from_pc (current_gdbarch, &addr, &bplen);
2045 bp_tgt->placed_address = addr;
2046 bp_tgt->placed_size = bplen;
2047
2048 for (i = 0; i < current_monitor->num_breakpoints; i++)
2049 {
2050 if (breakaddr[i] == 0)
2051 {
2052 breakaddr[i] = addr;
2053 monitor_printf (current_monitor->set_break, addr);
2054 monitor_expect_prompt (NULL, 0);
2055 return 0;
2056 }
2057 }
2058
2059 error (_("Too many breakpoints (> %d) for monitor."), current_monitor->num_breakpoints);
2060 }
2061
2062 /* Tell the monitor to remove a breakpoint. */
2063
2064 static int
2065 monitor_remove_breakpoint (struct bp_target_info *bp_tgt)
2066 {
2067 CORE_ADDR addr = bp_tgt->placed_address;
2068 int i;
2069
2070 monitor_debug ("MON rmbkpt %s\n", paddr (addr));
2071 if (current_monitor->clr_break == NULL)
2072 error (_("No clr_break defined for this monitor"));
2073
2074 for (i = 0; i < current_monitor->num_breakpoints; i++)
2075 {
2076 if (breakaddr[i] == addr)
2077 {
2078 breakaddr[i] = 0;
2079 /* some monitors remove breakpoints based on the address */
2080 if (current_monitor->flags & MO_CLR_BREAK_USES_ADDR)
2081 monitor_printf (current_monitor->clr_break, addr);
2082 else if (current_monitor->flags & MO_CLR_BREAK_1_BASED)
2083 monitor_printf (current_monitor->clr_break, i + 1);
2084 else
2085 monitor_printf (current_monitor->clr_break, i);
2086 monitor_expect_prompt (NULL, 0);
2087 return 0;
2088 }
2089 }
2090 fprintf_unfiltered (gdb_stderr,
2091 "Can't find breakpoint associated with 0x%s\n",
2092 paddr_nz (addr));
2093 return 1;
2094 }
2095
2096 /* monitor_wait_srec_ack -- wait for the target to send an acknowledgement for
2097 an S-record. Return non-zero if the ACK is received properly. */
2098
2099 static int
2100 monitor_wait_srec_ack (void)
2101 {
2102 int ch;
2103
2104 if (current_monitor->flags & MO_SREC_ACK_PLUS)
2105 {
2106 return (readchar (timeout) == '+');
2107 }
2108 else if (current_monitor->flags & MO_SREC_ACK_ROTATE)
2109 {
2110 /* Eat two backspaces, a "rotating" char (|/-\), and a space. */
2111 if ((ch = readchar (1)) < 0)
2112 return 0;
2113 if ((ch = readchar (1)) < 0)
2114 return 0;
2115 if ((ch = readchar (1)) < 0)
2116 return 0;
2117 if ((ch = readchar (1)) < 0)
2118 return 0;
2119 }
2120 return 1;
2121 }
2122
2123 /* monitor_load -- download a file. */
2124
2125 static void
2126 monitor_load (char *file, int from_tty)
2127 {
2128 monitor_debug ("MON load\n");
2129
2130 if (current_monitor->load_routine)
2131 current_monitor->load_routine (monitor_desc, file, hashmark);
2132 else
2133 { /* The default is ascii S-records */
2134 int n;
2135 unsigned long load_offset;
2136 char buf[128];
2137
2138 /* enable user to specify address for downloading as 2nd arg to load */
2139 n = sscanf (file, "%s 0x%lx", buf, &load_offset);
2140 if (n > 1)
2141 file = buf;
2142 else
2143 load_offset = 0;
2144
2145 monitor_printf (current_monitor->load);
2146 if (current_monitor->loadresp)
2147 monitor_expect (current_monitor->loadresp, NULL, 0);
2148
2149 load_srec (monitor_desc, file, (bfd_vma) load_offset,
2150 32, SREC_ALL, hashmark,
2151 current_monitor->flags & MO_SREC_ACK ?
2152 monitor_wait_srec_ack : NULL);
2153
2154 monitor_expect_prompt (NULL, 0);
2155 }
2156
2157 /* Finally, make the PC point at the start address */
2158 if (exec_bfd)
2159 regcache_write_pc (get_current_regcache (),
2160 bfd_get_start_address (exec_bfd));
2161
2162 /* There used to be code here which would clear inferior_ptid and
2163 call clear_symtab_users. None of that should be necessary:
2164 monitor targets should behave like remote protocol targets, and
2165 since generic_load does none of those things, this function
2166 shouldn't either.
2167
2168 Furthermore, clearing inferior_ptid is *incorrect*. After doing
2169 a load, we still have a valid connection to the monitor, with a
2170 live processor state to fiddle with. The user can type
2171 `continue' or `jump *start' and make the program run. If they do
2172 these things, however, GDB will be talking to a running program
2173 while inferior_ptid is null_ptid; this makes things like
2174 reinit_frame_cache very confused. */
2175 }
2176
2177 static void
2178 monitor_stop (ptid_t ptid)
2179 {
2180 monitor_debug ("MON stop\n");
2181 if ((current_monitor->flags & MO_SEND_BREAK_ON_STOP) != 0)
2182 serial_send_break (monitor_desc);
2183 if (current_monitor->stop)
2184 monitor_printf_noecho (current_monitor->stop);
2185 }
2186
2187 /* Put a COMMAND string out to MONITOR. Output from MONITOR is placed
2188 in OUTPUT until the prompt is seen. FIXME: We read the characters
2189 ourseleves here cause of a nasty echo. */
2190
2191 static void
2192 monitor_rcmd (char *command,
2193 struct ui_file *outbuf)
2194 {
2195 char *p;
2196 int resp_len;
2197 char buf[1000];
2198
2199 if (monitor_desc == NULL)
2200 error (_("monitor target not open."));
2201
2202 p = current_monitor->prompt;
2203
2204 /* Send the command. Note that if no args were supplied, then we're
2205 just sending the monitor a newline, which is sometimes useful. */
2206
2207 monitor_printf ("%s\r", (command ? command : ""));
2208
2209 resp_len = monitor_expect_prompt (buf, sizeof buf);
2210
2211 fputs_unfiltered (buf, outbuf); /* Output the response */
2212 }
2213
2214 /* Convert hex digit A to a number. */
2215
2216 #if 0
2217 static int
2218 from_hex (int a)
2219 {
2220 if (a >= '0' && a <= '9')
2221 return a - '0';
2222 if (a >= 'a' && a <= 'f')
2223 return a - 'a' + 10;
2224 if (a >= 'A' && a <= 'F')
2225 return a - 'A' + 10;
2226
2227 error (_("Reply contains invalid hex digit 0x%x"), a);
2228 }
2229 #endif
2230
2231 char *
2232 monitor_get_dev_name (void)
2233 {
2234 return dev_name;
2235 }
2236
2237 /* Check to see if a thread is still alive. */
2238
2239 static int
2240 monitor_thread_alive (struct target_ops *ops, ptid_t ptid)
2241 {
2242 if (ptid_equal (ptid, monitor_ptid))
2243 /* The monitor's task is always alive. */
2244 return 1;
2245
2246 return 0;
2247 }
2248
2249 /* Convert a thread ID to a string. Returns the string in a static
2250 buffer. */
2251
2252 static char *
2253 monitor_pid_to_str (struct target_ops *ops, ptid_t ptid)
2254 {
2255 static char buf[64];
2256
2257 if (ptid_equal (monitor_ptid, ptid))
2258 {
2259 xsnprintf (buf, sizeof buf, "Thread <main>");
2260 return buf;
2261 }
2262
2263 return normal_pid_to_str (ptid);
2264 }
2265
2266 static struct target_ops monitor_ops;
2267
2268 static void
2269 init_base_monitor_ops (void)
2270 {
2271 monitor_ops.to_close = monitor_close;
2272 monitor_ops.to_detach = monitor_detach;
2273 monitor_ops.to_resume = monitor_resume;
2274 monitor_ops.to_wait = monitor_wait;
2275 monitor_ops.to_fetch_registers = monitor_fetch_registers;
2276 monitor_ops.to_store_registers = monitor_store_registers;
2277 monitor_ops.to_prepare_to_store = monitor_prepare_to_store;
2278 monitor_ops.deprecated_xfer_memory = monitor_xfer_memory;
2279 monitor_ops.to_files_info = monitor_files_info;
2280 monitor_ops.to_insert_breakpoint = monitor_insert_breakpoint;
2281 monitor_ops.to_remove_breakpoint = monitor_remove_breakpoint;
2282 monitor_ops.to_kill = monitor_kill;
2283 monitor_ops.to_load = monitor_load;
2284 monitor_ops.to_create_inferior = monitor_create_inferior;
2285 monitor_ops.to_mourn_inferior = monitor_mourn_inferior;
2286 monitor_ops.to_stop = monitor_stop;
2287 monitor_ops.to_rcmd = monitor_rcmd;
2288 monitor_ops.to_log_command = serial_log_command;
2289 monitor_ops.to_thread_alive = monitor_thread_alive;
2290 monitor_ops.to_pid_to_str = monitor_pid_to_str;
2291 monitor_ops.to_stratum = process_stratum;
2292 monitor_ops.to_has_all_memory = 1;
2293 monitor_ops.to_has_memory = 1;
2294 monitor_ops.to_has_stack = 1;
2295 monitor_ops.to_has_registers = 1;
2296 monitor_ops.to_has_execution = 1;
2297 monitor_ops.to_magic = OPS_MAGIC;
2298 } /* init_base_monitor_ops */
2299
2300 /* Init the target_ops structure pointed at by OPS */
2301
2302 void
2303 init_monitor_ops (struct target_ops *ops)
2304 {
2305 if (monitor_ops.to_magic != OPS_MAGIC)
2306 init_base_monitor_ops ();
2307
2308 memcpy (ops, &monitor_ops, sizeof monitor_ops);
2309 }
2310
2311 /* Define additional commands that are usually only used by monitors. */
2312
2313 extern initialize_file_ftype _initialize_remote_monitors; /* -Wmissing-prototypes */
2314
2315 void
2316 _initialize_remote_monitors (void)
2317 {
2318 init_base_monitor_ops ();
2319 add_setshow_boolean_cmd ("hash", no_class, &hashmark, _("\
2320 Set display of activity while downloading a file."), _("\
2321 Show display of activity while downloading a file."), _("\
2322 When enabled, a hashmark \'#\' is displayed."),
2323 NULL,
2324 NULL, /* FIXME: i18n: */
2325 &setlist, &showlist);
2326
2327 add_setshow_zinteger_cmd ("monitor", no_class, &monitor_debug_p, _("\
2328 Set debugging of remote monitor communication."), _("\
2329 Show debugging of remote monitor communication."), _("\
2330 When enabled, communication between GDB and the remote monitor\n\
2331 is displayed."),
2332 NULL,
2333 NULL, /* FIXME: i18n: */
2334 &setdebuglist, &showdebuglist);
2335
2336 /* Yes, 42000 is arbitrary. The only sense out of it, is that it
2337 isn't 0. */
2338 monitor_ptid = ptid_build (42000, 0, 42000);
2339 }
This page took 0.078281 seconds and 4 git commands to generate.