Merge multiple hex conversions
[deliverable/binutils-gdb.git] / gdb / monitor.c
1 /* Remote debugging interface for boot monitors, for GDB.
2
3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by Rob Savoye for Cygnus.
6 Resurrected from the ashes by Stu Grossman.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* This file was derived from various remote-* modules. It is a collection
24 of generic support functions so GDB can talk directly to a ROM based
25 monitor. This saves use from having to hack an exception based handler
26 into existence, and makes for quick porting.
27
28 This module talks to a debug monitor called 'MONITOR', which
29 We communicate with MONITOR via either a direct serial line, or a TCP
30 (or possibly TELNET) stream to a terminal multiplexor,
31 which in turn talks to the target board. */
32
33 /* FIXME 32x64: This code assumes that registers and addresses are at
34 most 32 bits long. If they can be larger, you will need to declare
35 values as LONGEST and use %llx or some such to print values when
36 building commands to send to the monitor. Since we don't know of
37 any actual 64-bit targets with ROM monitors that use this code,
38 it's not an issue right now. -sts 4/18/96 */
39
40 #include "defs.h"
41 #include "gdbcore.h"
42 #include "target.h"
43 #include <signal.h>
44 #include <ctype.h>
45 #include <sys/types.h>
46 #include "command.h"
47 #include "serial.h"
48 #include "monitor.h"
49 #include "gdbcmd.h"
50 #include "inferior.h"
51 #include "infrun.h"
52 #include "gdb_regex.h"
53 #include "srec.h"
54 #include "regcache.h"
55 #include "gdbthread.h"
56 #include "readline/readline.h"
57 #include "rsp-low.h"
58
59 static char *dev_name;
60 static struct target_ops *targ_ops;
61
62 static void monitor_interrupt_query (void);
63 static void monitor_interrupt_twice (int);
64 static void monitor_stop (struct target_ops *self, ptid_t);
65 static void monitor_dump_regs (struct regcache *regcache);
66
67 #if 0
68 static int from_hex (int a);
69 #endif
70
71 static struct monitor_ops *current_monitor;
72
73 static int hashmark; /* flag set by "set hash". */
74
75 static int timeout = 30;
76
77 static int in_monitor_wait = 0; /* Non-zero means we are in monitor_wait(). */
78
79 static void (*ofunc) (); /* Old SIGINT signal handler. */
80
81 static CORE_ADDR *breakaddr;
82
83 /* Descriptor for I/O to remote machine. Initialize it to NULL so
84 that monitor_open knows that we don't have a file open when the
85 program starts. */
86
87 static struct serial *monitor_desc = NULL;
88
89 /* Pointer to regexp pattern matching data. */
90
91 static struct re_pattern_buffer register_pattern;
92 static char register_fastmap[256];
93
94 static struct re_pattern_buffer getmem_resp_delim_pattern;
95 static char getmem_resp_delim_fastmap[256];
96
97 static struct re_pattern_buffer setmem_resp_delim_pattern;
98 static char setmem_resp_delim_fastmap[256];
99
100 static struct re_pattern_buffer setreg_resp_delim_pattern;
101 static char setreg_resp_delim_fastmap[256];
102
103 static int dump_reg_flag; /* Non-zero means do a dump_registers cmd when
104 monitor_wait wakes up. */
105
106 static int first_time = 0; /* Is this the first time we're
107 executing after gaving created the
108 child proccess? */
109
110
111 /* This is the ptid we use while we're connected to a monitor. Its
112 value is arbitrary, as monitor targets don't have a notion of
113 processes or threads, but we need something non-null to place in
114 inferior_ptid. */
115 static ptid_t monitor_ptid;
116
117 #define TARGET_BUF_SIZE 2048
118
119 /* Monitor specific debugging information. Typically only useful to
120 the developer of a new monitor interface. */
121
122 static void monitor_debug (const char *fmt, ...) ATTRIBUTE_PRINTF (1, 2);
123
124 static unsigned int monitor_debug_p = 0;
125
126 /* NOTE: This file alternates between monitor_debug_p and remote_debug
127 when determining if debug information is printed. Perhaps this
128 could be simplified. */
129
130 static void
131 monitor_debug (const char *fmt, ...)
132 {
133 if (monitor_debug_p)
134 {
135 va_list args;
136
137 va_start (args, fmt);
138 vfprintf_filtered (gdb_stdlog, fmt, args);
139 va_end (args);
140 }
141 }
142
143
144 /* Convert a string into a printable representation, Return # byte in
145 the new string. When LEN is >0 it specifies the size of the
146 string. Otherwize strlen(oldstr) is used. */
147
148 static void
149 monitor_printable_string (char *newstr, char *oldstr, int len)
150 {
151 int ch;
152 int i;
153
154 if (len <= 0)
155 len = strlen (oldstr);
156
157 for (i = 0; i < len; i++)
158 {
159 ch = oldstr[i];
160 switch (ch)
161 {
162 default:
163 if (isprint (ch))
164 *newstr++ = ch;
165
166 else
167 {
168 sprintf (newstr, "\\x%02x", ch & 0xff);
169 newstr += 4;
170 }
171 break;
172
173 case '\\':
174 *newstr++ = '\\';
175 *newstr++ = '\\';
176 break;
177 case '\b':
178 *newstr++ = '\\';
179 *newstr++ = 'b';
180 break;
181 case '\f':
182 *newstr++ = '\\';
183 *newstr++ = 't';
184 break;
185 case '\n':
186 *newstr++ = '\\';
187 *newstr++ = 'n';
188 break;
189 case '\r':
190 *newstr++ = '\\';
191 *newstr++ = 'r';
192 break;
193 case '\t':
194 *newstr++ = '\\';
195 *newstr++ = 't';
196 break;
197 case '\v':
198 *newstr++ = '\\';
199 *newstr++ = 'v';
200 break;
201 }
202 }
203
204 *newstr++ = '\0';
205 }
206
207 /* Print monitor errors with a string, converting the string to printable
208 representation. */
209
210 static void
211 monitor_error (char *function, char *message,
212 CORE_ADDR memaddr, int len, char *string, int final_char)
213 {
214 int real_len = (len == 0 && string != (char *) 0) ? strlen (string) : len;
215 char *safe_string = alloca ((real_len * 4) + 1);
216
217 monitor_printable_string (safe_string, string, real_len);
218
219 if (final_char)
220 error (_("%s (%s): %s: %s%c"),
221 function, paddress (target_gdbarch (), memaddr),
222 message, safe_string, final_char);
223 else
224 error (_("%s (%s): %s: %s"),
225 function, paddress (target_gdbarch (), memaddr),
226 message, safe_string);
227 }
228
229 /* monitor_vsprintf - similar to vsprintf but handles 64-bit addresses
230
231 This function exists to get around the problem that many host platforms
232 don't have a printf that can print 64-bit addresses. The %A format
233 specification is recognized as a special case, and causes the argument
234 to be printed as a 64-bit hexadecimal address.
235
236 Only format specifiers of the form "[0-9]*[a-z]" are recognized.
237 If it is a '%s' format, the argument is a string; otherwise the
238 argument is assumed to be a long integer.
239
240 %% is also turned into a single %. */
241
242 static void
243 monitor_vsprintf (char *sndbuf, char *pattern, va_list args)
244 {
245 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
246 char format[10];
247 char fmt;
248 char *p;
249 int i;
250 long arg_int;
251 CORE_ADDR arg_addr;
252 char *arg_string;
253
254 for (p = pattern; *p; p++)
255 {
256 if (*p == '%')
257 {
258 /* Copy the format specifier to a separate buffer. */
259 format[0] = *p++;
260 for (i = 1; *p >= '0' && *p <= '9' && i < (int) sizeof (format) - 2;
261 i++, p++)
262 format[i] = *p;
263 format[i] = fmt = *p;
264 format[i + 1] = '\0';
265
266 /* Fetch the next argument and print it. */
267 switch (fmt)
268 {
269 case '%':
270 strcpy (sndbuf, "%");
271 break;
272 case 'A':
273 arg_addr = va_arg (args, CORE_ADDR);
274 strcpy (sndbuf, phex_nz (arg_addr, addr_bit / 8));
275 break;
276 case 's':
277 arg_string = va_arg (args, char *);
278 sprintf (sndbuf, format, arg_string);
279 break;
280 default:
281 arg_int = va_arg (args, long);
282 sprintf (sndbuf, format, arg_int);
283 break;
284 }
285 sndbuf += strlen (sndbuf);
286 }
287 else
288 *sndbuf++ = *p;
289 }
290 *sndbuf = '\0';
291 }
292
293
294 /* monitor_printf_noecho -- Send data to monitor, but don't expect an echo.
295 Works just like printf. */
296
297 void
298 monitor_printf_noecho (char *pattern,...)
299 {
300 va_list args;
301 char sndbuf[2000];
302 int len;
303
304 va_start (args, pattern);
305
306 monitor_vsprintf (sndbuf, pattern, args);
307
308 len = strlen (sndbuf);
309 if (len + 1 > sizeof sndbuf)
310 internal_error (__FILE__, __LINE__,
311 _("failed internal consistency check"));
312
313 if (monitor_debug_p)
314 {
315 char *safe_string = (char *) alloca ((strlen (sndbuf) * 4) + 1);
316
317 monitor_printable_string (safe_string, sndbuf, 0);
318 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
319 }
320
321 monitor_write (sndbuf, len);
322 }
323
324 /* monitor_printf -- Send data to monitor and check the echo. Works just like
325 printf. */
326
327 void
328 monitor_printf (char *pattern,...)
329 {
330 va_list args;
331 char sndbuf[2000];
332 int len;
333
334 va_start (args, pattern);
335
336 monitor_vsprintf (sndbuf, pattern, args);
337
338 len = strlen (sndbuf);
339 if (len + 1 > sizeof sndbuf)
340 internal_error (__FILE__, __LINE__,
341 _("failed internal consistency check"));
342
343 if (monitor_debug_p)
344 {
345 char *safe_string = (char *) alloca ((len * 4) + 1);
346
347 monitor_printable_string (safe_string, sndbuf, 0);
348 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
349 }
350
351 monitor_write (sndbuf, len);
352
353 /* We used to expect that the next immediate output was the
354 characters we just output, but sometimes some extra junk appeared
355 before the characters we expected, like an extra prompt, or a
356 portmaster sending telnet negotiations. So, just start searching
357 for what we sent, and skip anything unknown. */
358 monitor_debug ("ExpectEcho\n");
359 monitor_expect (sndbuf, (char *) 0, 0);
360 }
361
362
363 /* Write characters to the remote system. */
364
365 void
366 monitor_write (char *buf, int buflen)
367 {
368 if (serial_write (monitor_desc, buf, buflen))
369 fprintf_unfiltered (gdb_stderr, "serial_write failed: %s\n",
370 safe_strerror (errno));
371 }
372
373
374 /* Read a binary character from the remote system, doing all the fancy
375 timeout stuff, but without interpreting the character in any way,
376 and without printing remote debug information. */
377
378 int
379 monitor_readchar (void)
380 {
381 int c;
382 int looping;
383
384 do
385 {
386 looping = 0;
387 c = serial_readchar (monitor_desc, timeout);
388
389 if (c >= 0)
390 c &= 0xff; /* don't lose bit 7 */
391 }
392 while (looping);
393
394 if (c >= 0)
395 return c;
396
397 if (c == SERIAL_TIMEOUT)
398 error (_("Timeout reading from remote system."));
399
400 perror_with_name (_("remote-monitor"));
401 }
402
403
404 /* Read a character from the remote system, doing all the fancy
405 timeout stuff. */
406
407 static int
408 readchar (int timeout)
409 {
410 int c;
411 static enum
412 {
413 last_random, last_nl, last_cr, last_crnl
414 }
415 state = last_random;
416 int looping;
417
418 do
419 {
420 looping = 0;
421 c = serial_readchar (monitor_desc, timeout);
422
423 if (c >= 0)
424 {
425 c &= 0x7f;
426 /* This seems to interfere with proper function of the
427 input stream. */
428 if (monitor_debug_p || remote_debug)
429 {
430 char buf[2];
431
432 buf[0] = c;
433 buf[1] = '\0';
434 puts_debug ("read -->", buf, "<--");
435 }
436
437 }
438
439 /* Canonicialize \n\r combinations into one \r. */
440 if ((current_monitor->flags & MO_HANDLE_NL) != 0)
441 {
442 if ((c == '\r' && state == last_nl)
443 || (c == '\n' && state == last_cr))
444 {
445 state = last_crnl;
446 looping = 1;
447 }
448 else if (c == '\r')
449 state = last_cr;
450 else if (c != '\n')
451 state = last_random;
452 else
453 {
454 state = last_nl;
455 c = '\r';
456 }
457 }
458 }
459 while (looping);
460
461 if (c >= 0)
462 return c;
463
464 if (c == SERIAL_TIMEOUT)
465 #if 0
466 /* I fail to see how detaching here can be useful. */
467 if (in_monitor_wait) /* Watchdog went off. */
468 {
469 target_mourn_inferior ();
470 error (_("GDB serial timeout has expired. Target detached."));
471 }
472 else
473 #endif
474 error (_("Timeout reading from remote system."));
475
476 perror_with_name (_("remote-monitor"));
477 }
478
479 /* Scan input from the remote system, until STRING is found. If BUF is non-
480 zero, then collect input until we have collected either STRING or BUFLEN-1
481 chars. In either case we terminate BUF with a 0. If input overflows BUF
482 because STRING can't be found, return -1, else return number of chars in BUF
483 (minus the terminating NUL). Note that in the non-overflow case, STRING
484 will be at the end of BUF. */
485
486 int
487 monitor_expect (char *string, char *buf, int buflen)
488 {
489 char *p = string;
490 int obuflen = buflen;
491 int c;
492
493 if (monitor_debug_p)
494 {
495 char *safe_string = (char *) alloca ((strlen (string) * 4) + 1);
496 monitor_printable_string (safe_string, string, 0);
497 fprintf_unfiltered (gdb_stdlog, "MON Expecting '%s'\n", safe_string);
498 }
499
500 immediate_quit++;
501 QUIT;
502 while (1)
503 {
504 if (buf)
505 {
506 if (buflen < 2)
507 {
508 *buf = '\000';
509 immediate_quit--;
510 return -1;
511 }
512
513 c = readchar (timeout);
514 if (c == '\000')
515 continue;
516 *buf++ = c;
517 buflen--;
518 }
519 else
520 c = readchar (timeout);
521
522 /* Don't expect any ^C sent to be echoed. */
523
524 if (*p == '\003' || c == *p)
525 {
526 p++;
527 if (*p == '\0')
528 {
529 immediate_quit--;
530
531 if (buf)
532 {
533 *buf++ = '\000';
534 return obuflen - buflen;
535 }
536 else
537 return 0;
538 }
539 }
540 else
541 {
542 /* We got a character that doesn't match the string. We need to
543 back up p, but how far? If we're looking for "..howdy" and the
544 monitor sends "...howdy"? There's certainly a match in there,
545 but when we receive the third ".", we won't find it if we just
546 restart the matching at the beginning of the string.
547
548 This is a Boyer-Moore kind of situation. We want to reset P to
549 the end of the longest prefix of STRING that is a suffix of
550 what we've read so far. In the example above, that would be
551 ".." --- the longest prefix of "..howdy" that is a suffix of
552 "...". This longest prefix could be the empty string, if C
553 is nowhere to be found in STRING.
554
555 If this longest prefix is not the empty string, it must contain
556 C, so let's search from the end of STRING for instances of C,
557 and see if the portion of STRING before that is a suffix of
558 what we read before C. Actually, we can search backwards from
559 p, since we know no prefix can be longer than that.
560
561 Note that we can use STRING itself, along with C, as a record
562 of what we've received so far. :) */
563 int i;
564
565 for (i = (p - string) - 1; i >= 0; i--)
566 if (string[i] == c)
567 {
568 /* Is this prefix a suffix of what we've read so far?
569 In other words, does
570 string[0 .. i-1] == string[p - i, p - 1]? */
571 if (! memcmp (string, p - i, i))
572 {
573 p = string + i + 1;
574 break;
575 }
576 }
577 if (i < 0)
578 p = string;
579 }
580 }
581 }
582
583 /* Search for a regexp. */
584
585 static int
586 monitor_expect_regexp (struct re_pattern_buffer *pat, char *buf, int buflen)
587 {
588 char *mybuf;
589 char *p;
590
591 monitor_debug ("MON Expecting regexp\n");
592 if (buf)
593 mybuf = buf;
594 else
595 {
596 mybuf = alloca (TARGET_BUF_SIZE);
597 buflen = TARGET_BUF_SIZE;
598 }
599
600 p = mybuf;
601 while (1)
602 {
603 int retval;
604
605 if (p - mybuf >= buflen)
606 { /* Buffer about to overflow. */
607
608 /* On overflow, we copy the upper half of the buffer to the lower half. Not
609 great, but it usually works... */
610
611 memcpy (mybuf, mybuf + buflen / 2, buflen / 2);
612 p = mybuf + buflen / 2;
613 }
614
615 *p++ = readchar (timeout);
616
617 retval = re_search (pat, mybuf, p - mybuf, 0, p - mybuf, NULL);
618 if (retval >= 0)
619 return 1;
620 }
621 }
622
623 /* Keep discarding input until we see the MONITOR prompt.
624
625 The convention for dealing with the prompt is that you
626 o give your command
627 o *then* wait for the prompt.
628
629 Thus the last thing that a procedure does with the serial line will
630 be an monitor_expect_prompt(). Exception: monitor_resume does not
631 wait for the prompt, because the terminal is being handed over to
632 the inferior. However, the next thing which happens after that is
633 a monitor_wait which does wait for the prompt. Note that this
634 includes abnormal exit, e.g. error(). This is necessary to prevent
635 getting into states from which we can't recover. */
636
637 int
638 monitor_expect_prompt (char *buf, int buflen)
639 {
640 monitor_debug ("MON Expecting prompt\n");
641 return monitor_expect (current_monitor->prompt, buf, buflen);
642 }
643
644 /* Get N 32-bit words from remote, each preceded by a space, and put
645 them in registers starting at REGNO. */
646
647 #if 0
648 static unsigned long
649 get_hex_word (void)
650 {
651 unsigned long val;
652 int i;
653 int ch;
654
655 do
656 ch = readchar (timeout);
657 while (isspace (ch));
658
659 val = from_hex (ch);
660
661 for (i = 7; i >= 1; i--)
662 {
663 ch = readchar (timeout);
664 if (!isxdigit (ch))
665 break;
666 val = (val << 4) | from_hex (ch);
667 }
668
669 return val;
670 }
671 #endif
672
673 static void
674 compile_pattern (char *pattern, struct re_pattern_buffer *compiled_pattern,
675 char *fastmap)
676 {
677 int tmp;
678 const char *val;
679
680 compiled_pattern->fastmap = fastmap;
681
682 tmp = re_set_syntax (RE_SYNTAX_EMACS);
683 val = re_compile_pattern (pattern,
684 strlen (pattern),
685 compiled_pattern);
686 re_set_syntax (tmp);
687
688 if (val)
689 error (_("compile_pattern: Can't compile pattern string `%s': %s!"),
690 pattern, val);
691
692 if (fastmap)
693 re_compile_fastmap (compiled_pattern);
694 }
695
696 /* Open a connection to a remote debugger. NAME is the filename used
697 for communication. */
698
699 void
700 monitor_open (const char *args, struct monitor_ops *mon_ops, int from_tty)
701 {
702 const char *name;
703 char **p;
704 struct inferior *inf;
705
706 if (mon_ops->magic != MONITOR_OPS_MAGIC)
707 error (_("Magic number of monitor_ops struct wrong."));
708
709 targ_ops = mon_ops->target;
710 name = targ_ops->to_shortname;
711
712 if (!args)
713 error (_("Use `target %s DEVICE-NAME' to use a serial port, or\n\
714 `target %s HOST-NAME:PORT-NUMBER' to use a network connection."), name, name);
715
716 target_preopen (from_tty);
717
718 /* Setup pattern for register dump. */
719
720 if (mon_ops->register_pattern)
721 compile_pattern (mon_ops->register_pattern, &register_pattern,
722 register_fastmap);
723
724 if (mon_ops->getmem.resp_delim)
725 compile_pattern (mon_ops->getmem.resp_delim, &getmem_resp_delim_pattern,
726 getmem_resp_delim_fastmap);
727
728 if (mon_ops->setmem.resp_delim)
729 compile_pattern (mon_ops->setmem.resp_delim, &setmem_resp_delim_pattern,
730 setmem_resp_delim_fastmap);
731
732 if (mon_ops->setreg.resp_delim)
733 compile_pattern (mon_ops->setreg.resp_delim, &setreg_resp_delim_pattern,
734 setreg_resp_delim_fastmap);
735
736 unpush_target (targ_ops);
737
738 if (dev_name)
739 xfree (dev_name);
740 dev_name = xstrdup (args);
741
742 monitor_desc = serial_open (dev_name);
743
744 if (!monitor_desc)
745 perror_with_name (dev_name);
746
747 if (baud_rate != -1)
748 {
749 if (serial_setbaudrate (monitor_desc, baud_rate))
750 {
751 serial_close (monitor_desc);
752 perror_with_name (dev_name);
753 }
754 }
755
756 serial_setparity (monitor_desc, serial_parity);
757 serial_raw (monitor_desc);
758
759 serial_flush_input (monitor_desc);
760
761 /* some systems only work with 2 stop bits. */
762
763 serial_setstopbits (monitor_desc, mon_ops->stopbits);
764
765 current_monitor = mon_ops;
766
767 /* See if we can wake up the monitor. First, try sending a stop sequence,
768 then send the init strings. Last, remove all breakpoints. */
769
770 if (current_monitor->stop)
771 {
772 monitor_stop (targ_ops, inferior_ptid);
773 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
774 {
775 monitor_debug ("EXP Open echo\n");
776 monitor_expect_prompt (NULL, 0);
777 }
778 }
779
780 /* wake up the monitor and see if it's alive. */
781 for (p = mon_ops->init; *p != NULL; p++)
782 {
783 /* Some of the characters we send may not be echoed,
784 but we hope to get a prompt at the end of it all. */
785
786 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
787 monitor_printf (*p);
788 else
789 monitor_printf_noecho (*p);
790 monitor_expect_prompt (NULL, 0);
791 }
792
793 serial_flush_input (monitor_desc);
794
795 /* Alloc breakpoints */
796 if (mon_ops->set_break != NULL)
797 {
798 if (mon_ops->num_breakpoints == 0)
799 mon_ops->num_breakpoints = 8;
800
801 breakaddr = (CORE_ADDR *)
802 xmalloc (mon_ops->num_breakpoints * sizeof (CORE_ADDR));
803 memset (breakaddr, 0, mon_ops->num_breakpoints * sizeof (CORE_ADDR));
804 }
805
806 /* Remove all breakpoints. */
807
808 if (mon_ops->clr_all_break)
809 {
810 monitor_printf (mon_ops->clr_all_break);
811 monitor_expect_prompt (NULL, 0);
812 }
813
814 if (from_tty)
815 printf_unfiltered (_("Remote target %s connected to %s\n"),
816 name, dev_name);
817
818 push_target (targ_ops);
819
820 /* Start afresh. */
821 init_thread_list ();
822
823 /* Make run command think we are busy... */
824 inferior_ptid = monitor_ptid;
825 inf = current_inferior ();
826 inferior_appeared (inf, ptid_get_pid (inferior_ptid));
827 add_thread_silent (inferior_ptid);
828
829 /* Give monitor_wait something to read. */
830
831 monitor_printf (current_monitor->line_term);
832
833 init_wait_for_inferior ();
834
835 start_remote (from_tty);
836 }
837
838 /* Close out all files and local state before this target loses
839 control. */
840
841 void
842 monitor_close (struct target_ops *self)
843 {
844 if (monitor_desc)
845 serial_close (monitor_desc);
846
847 /* Free breakpoint memory. */
848 if (breakaddr != NULL)
849 {
850 xfree (breakaddr);
851 breakaddr = NULL;
852 }
853
854 monitor_desc = NULL;
855
856 delete_thread_silent (monitor_ptid);
857 delete_inferior_silent (ptid_get_pid (monitor_ptid));
858 }
859
860 /* Terminate the open connection to the remote debugger. Use this
861 when you want to detach and do something else with your gdb. */
862
863 static void
864 monitor_detach (struct target_ops *ops, const char *args, int from_tty)
865 {
866 unpush_target (ops); /* calls monitor_close to do the real work. */
867 if (from_tty)
868 printf_unfiltered (_("Ending remote %s debugging\n"), target_shortname);
869 }
870
871 /* Convert VALSTR into the target byte-ordered value of REGNO and store it. */
872
873 char *
874 monitor_supply_register (struct regcache *regcache, int regno, char *valstr)
875 {
876 struct gdbarch *gdbarch = get_regcache_arch (regcache);
877 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
878 ULONGEST val;
879 unsigned char regbuf[MAX_REGISTER_SIZE];
880 char *p;
881
882 val = 0;
883 p = valstr;
884 while (p && *p != '\0')
885 {
886 if (*p == '\r' || *p == '\n')
887 {
888 while (*p != '\0')
889 p++;
890 break;
891 }
892 if (isspace (*p))
893 {
894 p++;
895 continue;
896 }
897 if (!isxdigit (*p) && *p != 'x')
898 {
899 break;
900 }
901
902 val <<= 4;
903 val += fromhex (*p++);
904 }
905 monitor_debug ("Supplying Register %d %s\n", regno, valstr);
906
907 if (val == 0 && valstr == p)
908 error (_("monitor_supply_register (%d): bad value from monitor: %s."),
909 regno, valstr);
910
911 /* supply register stores in target byte order, so swap here. */
912
913 store_unsigned_integer (regbuf, register_size (gdbarch, regno), byte_order,
914 val);
915
916 regcache_raw_supply (regcache, regno, regbuf);
917
918 return p;
919 }
920
921 /* Tell the remote machine to resume. */
922
923 static void
924 monitor_resume (struct target_ops *ops,
925 ptid_t ptid, int step, enum gdb_signal sig)
926 {
927 /* Some monitors require a different command when starting a program. */
928 monitor_debug ("MON resume\n");
929 if (current_monitor->flags & MO_RUN_FIRST_TIME && first_time == 1)
930 {
931 first_time = 0;
932 monitor_printf ("run\r");
933 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
934 dump_reg_flag = 1;
935 return;
936 }
937 if (step)
938 monitor_printf (current_monitor->step);
939 else
940 {
941 if (current_monitor->continue_hook)
942 (*current_monitor->continue_hook) ();
943 else
944 monitor_printf (current_monitor->cont);
945 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
946 dump_reg_flag = 1;
947 }
948 }
949
950 /* Parse the output of a register dump command. A monitor specific
951 regexp is used to extract individual register descriptions of the
952 form REG=VAL. Each description is split up into a name and a value
953 string which are passed down to monitor specific code. */
954
955 static void
956 parse_register_dump (struct regcache *regcache, char *buf, int len)
957 {
958 monitor_debug ("MON Parsing register dump\n");
959 while (1)
960 {
961 int regnamelen, vallen;
962 char *regname, *val;
963
964 /* Element 0 points to start of register name, and element 1
965 points to the start of the register value. */
966 struct re_registers register_strings;
967
968 memset (&register_strings, 0, sizeof (struct re_registers));
969
970 if (re_search (&register_pattern, buf, len, 0, len,
971 &register_strings) == -1)
972 break;
973
974 regnamelen = register_strings.end[1] - register_strings.start[1];
975 regname = buf + register_strings.start[1];
976 vallen = register_strings.end[2] - register_strings.start[2];
977 val = buf + register_strings.start[2];
978
979 current_monitor->supply_register (regcache, regname, regnamelen,
980 val, vallen);
981
982 buf += register_strings.end[0];
983 len -= register_strings.end[0];
984 }
985 }
986
987 /* Send ^C to target to halt it. Target will respond, and send us a
988 packet. */
989
990 static void
991 monitor_interrupt (int signo)
992 {
993 /* If this doesn't work, try more severe steps. */
994 signal (signo, monitor_interrupt_twice);
995
996 if (monitor_debug_p || remote_debug)
997 fprintf_unfiltered (gdb_stdlog, "monitor_interrupt called\n");
998
999 target_stop (inferior_ptid);
1000 }
1001
1002 /* The user typed ^C twice. */
1003
1004 static void
1005 monitor_interrupt_twice (int signo)
1006 {
1007 signal (signo, ofunc);
1008
1009 monitor_interrupt_query ();
1010
1011 signal (signo, monitor_interrupt);
1012 }
1013
1014 /* Ask the user what to do when an interrupt is received. */
1015
1016 static void
1017 monitor_interrupt_query (void)
1018 {
1019 target_terminal_ours ();
1020
1021 if (query (_("Interrupted while waiting for the program.\n\
1022 Give up (and stop debugging it)? ")))
1023 {
1024 target_mourn_inferior ();
1025 quit ();
1026 }
1027
1028 target_terminal_inferior ();
1029 }
1030
1031 static void
1032 monitor_wait_cleanup (void *old_timeout)
1033 {
1034 timeout = *(int *) old_timeout;
1035 signal (SIGINT, ofunc);
1036 in_monitor_wait = 0;
1037 }
1038
1039
1040
1041 static void
1042 monitor_wait_filter (char *buf,
1043 int bufmax,
1044 int *ext_resp_len,
1045 struct target_waitstatus *status)
1046 {
1047 int resp_len;
1048
1049 do
1050 {
1051 resp_len = monitor_expect_prompt (buf, bufmax);
1052 *ext_resp_len = resp_len;
1053
1054 if (resp_len <= 0)
1055 fprintf_unfiltered (gdb_stderr,
1056 "monitor_wait: excessive "
1057 "response from monitor: %s.", buf);
1058 }
1059 while (resp_len < 0);
1060
1061 /* Print any output characters that were preceded by ^O. */
1062 /* FIXME - This would be great as a user settabgle flag. */
1063 if (monitor_debug_p || remote_debug
1064 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1065 {
1066 int i;
1067
1068 for (i = 0; i < resp_len - 1; i++)
1069 if (buf[i] == 0x0f)
1070 putchar_unfiltered (buf[++i]);
1071 }
1072 }
1073
1074
1075
1076 /* Wait until the remote machine stops, then return, storing status in
1077 status just as `wait' would. */
1078
1079 static ptid_t
1080 monitor_wait (struct target_ops *ops,
1081 ptid_t ptid, struct target_waitstatus *status, int options)
1082 {
1083 int old_timeout = timeout;
1084 char buf[TARGET_BUF_SIZE];
1085 int resp_len;
1086 struct cleanup *old_chain;
1087
1088 status->kind = TARGET_WAITKIND_EXITED;
1089 status->value.integer = 0;
1090
1091 old_chain = make_cleanup (monitor_wait_cleanup, &old_timeout);
1092 monitor_debug ("MON wait\n");
1093
1094 #if 0
1095 /* This is somthing other than a maintenance command. */
1096 in_monitor_wait = 1;
1097 timeout = watchdog > 0 ? watchdog : -1;
1098 #else
1099 timeout = -1; /* Don't time out -- user program is running. */
1100 #endif
1101
1102 ofunc = (void (*)()) signal (SIGINT, monitor_interrupt);
1103
1104 if (current_monitor->wait_filter)
1105 (*current_monitor->wait_filter) (buf, sizeof (buf), &resp_len, status);
1106 else
1107 monitor_wait_filter (buf, sizeof (buf), &resp_len, status);
1108
1109 #if 0 /* Transferred to monitor wait filter. */
1110 do
1111 {
1112 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1113
1114 if (resp_len <= 0)
1115 fprintf_unfiltered (gdb_stderr,
1116 "monitor_wait: excessive "
1117 "response from monitor: %s.", buf);
1118 }
1119 while (resp_len < 0);
1120
1121 /* Print any output characters that were preceded by ^O. */
1122 /* FIXME - This would be great as a user settabgle flag. */
1123 if (monitor_debug_p || remote_debug
1124 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1125 {
1126 int i;
1127
1128 for (i = 0; i < resp_len - 1; i++)
1129 if (buf[i] == 0x0f)
1130 putchar_unfiltered (buf[++i]);
1131 }
1132 #endif
1133
1134 signal (SIGINT, ofunc);
1135
1136 timeout = old_timeout;
1137 #if 0
1138 if (dump_reg_flag && current_monitor->dump_registers)
1139 {
1140 dump_reg_flag = 0;
1141 monitor_printf (current_monitor->dump_registers);
1142 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1143 }
1144
1145 if (current_monitor->register_pattern)
1146 parse_register_dump (get_current_regcache (), buf, resp_len);
1147 #else
1148 monitor_debug ("Wait fetching registers after stop\n");
1149 monitor_dump_regs (get_current_regcache ());
1150 #endif
1151
1152 status->kind = TARGET_WAITKIND_STOPPED;
1153 status->value.sig = GDB_SIGNAL_TRAP;
1154
1155 discard_cleanups (old_chain);
1156
1157 in_monitor_wait = 0;
1158
1159 return inferior_ptid;
1160 }
1161
1162 /* Fetch register REGNO, or all registers if REGNO is -1. Returns
1163 errno value. */
1164
1165 static void
1166 monitor_fetch_register (struct regcache *regcache, int regno)
1167 {
1168 const char *name;
1169 char *zerobuf;
1170 char *regbuf;
1171 int i;
1172
1173 regbuf = alloca (MAX_REGISTER_SIZE * 2 + 1);
1174 zerobuf = alloca (MAX_REGISTER_SIZE);
1175 memset (zerobuf, 0, MAX_REGISTER_SIZE);
1176
1177 if (current_monitor->regname != NULL)
1178 name = current_monitor->regname (regno);
1179 else
1180 name = current_monitor->regnames[regno];
1181 monitor_debug ("MON fetchreg %d '%s'\n", regno, name ? name : "(null name)");
1182
1183 if (!name || (*name == '\0'))
1184 {
1185 monitor_debug ("No register known for %d\n", regno);
1186 regcache_raw_supply (regcache, regno, zerobuf);
1187 return;
1188 }
1189
1190 /* Send the register examine command. */
1191
1192 monitor_printf (current_monitor->getreg.cmd, name);
1193
1194 /* If RESP_DELIM is specified, we search for that as a leading
1195 delimiter for the register value. Otherwise, we just start
1196 searching from the start of the buf. */
1197
1198 if (current_monitor->getreg.resp_delim)
1199 {
1200 monitor_debug ("EXP getreg.resp_delim\n");
1201 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1202 /* Handle case of first 32 registers listed in pairs. */
1203 if (current_monitor->flags & MO_32_REGS_PAIRED
1204 && (regno & 1) != 0 && regno < 32)
1205 {
1206 monitor_debug ("EXP getreg.resp_delim\n");
1207 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1208 }
1209 }
1210
1211 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */
1212 if (current_monitor->flags & MO_HEX_PREFIX)
1213 {
1214 int c;
1215
1216 c = readchar (timeout);
1217 while (c == ' ')
1218 c = readchar (timeout);
1219 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1220 ;
1221 else
1222 error (_("Bad value returned from monitor "
1223 "while fetching register %x."),
1224 regno);
1225 }
1226
1227 /* Read upto the maximum number of hex digits for this register, skipping
1228 spaces, but stop reading if something else is seen. Some monitors
1229 like to drop leading zeros. */
1230
1231 for (i = 0; i < register_size (get_regcache_arch (regcache), regno) * 2; i++)
1232 {
1233 int c;
1234
1235 c = readchar (timeout);
1236 while (c == ' ')
1237 c = readchar (timeout);
1238
1239 if (!isxdigit (c))
1240 break;
1241
1242 regbuf[i] = c;
1243 }
1244
1245 regbuf[i] = '\000'; /* Terminate the number. */
1246 monitor_debug ("REGVAL '%s'\n", regbuf);
1247
1248 /* If TERM is present, we wait for that to show up. Also, (if TERM
1249 is present), we will send TERM_CMD if that is present. In any
1250 case, we collect all of the output into buf, and then wait for
1251 the normal prompt. */
1252
1253 if (current_monitor->getreg.term)
1254 {
1255 monitor_debug ("EXP getreg.term\n");
1256 monitor_expect (current_monitor->getreg.term, NULL, 0); /* Get
1257 response. */
1258 }
1259
1260 if (current_monitor->getreg.term_cmd)
1261 {
1262 monitor_debug ("EMIT getreg.term.cmd\n");
1263 monitor_printf (current_monitor->getreg.term_cmd);
1264 }
1265 if (!current_monitor->getreg.term || /* Already expected or */
1266 current_monitor->getreg.term_cmd) /* ack expected. */
1267 monitor_expect_prompt (NULL, 0); /* Get response. */
1268
1269 monitor_supply_register (regcache, regno, regbuf);
1270 }
1271
1272 /* Sometimes, it takes several commands to dump the registers. */
1273 /* This is a primitive for use by variations of monitor interfaces in
1274 case they need to compose the operation. */
1275
1276 int
1277 monitor_dump_reg_block (struct regcache *regcache, char *block_cmd)
1278 {
1279 char buf[TARGET_BUF_SIZE];
1280 int resp_len;
1281
1282 monitor_printf (block_cmd);
1283 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1284 parse_register_dump (regcache, buf, resp_len);
1285 return 1;
1286 }
1287
1288
1289 /* Read the remote registers into the block regs. */
1290 /* Call the specific function if it has been provided. */
1291
1292 static void
1293 monitor_dump_regs (struct regcache *regcache)
1294 {
1295 char buf[TARGET_BUF_SIZE];
1296 int resp_len;
1297
1298 if (current_monitor->dumpregs)
1299 (*(current_monitor->dumpregs)) (regcache); /* Call supplied function. */
1300 else if (current_monitor->dump_registers) /* Default version. */
1301 {
1302 monitor_printf (current_monitor->dump_registers);
1303 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1304 parse_register_dump (regcache, buf, resp_len);
1305 }
1306 else
1307 /* Need some way to read registers. */
1308 internal_error (__FILE__, __LINE__,
1309 _("failed internal consistency check"));
1310 }
1311
1312 static void
1313 monitor_fetch_registers (struct target_ops *ops,
1314 struct regcache *regcache, int regno)
1315 {
1316 monitor_debug ("MON fetchregs\n");
1317 if (current_monitor->getreg.cmd)
1318 {
1319 if (regno >= 0)
1320 {
1321 monitor_fetch_register (regcache, regno);
1322 return;
1323 }
1324
1325 for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache));
1326 regno++)
1327 monitor_fetch_register (regcache, regno);
1328 }
1329 else
1330 {
1331 monitor_dump_regs (regcache);
1332 }
1333 }
1334
1335 /* Store register REGNO, or all if REGNO == 0. Return errno value. */
1336
1337 static void
1338 monitor_store_register (struct regcache *regcache, int regno)
1339 {
1340 int reg_size = register_size (get_regcache_arch (regcache), regno);
1341 const char *name;
1342 ULONGEST val;
1343
1344 if (current_monitor->regname != NULL)
1345 name = current_monitor->regname (regno);
1346 else
1347 name = current_monitor->regnames[regno];
1348
1349 if (!name || (*name == '\0'))
1350 {
1351 monitor_debug ("MON Cannot store unknown register\n");
1352 return;
1353 }
1354
1355 regcache_cooked_read_unsigned (regcache, regno, &val);
1356 monitor_debug ("MON storeg %d %s\n", regno, phex (val, reg_size));
1357
1358 /* Send the register deposit command. */
1359
1360 if (current_monitor->flags & MO_REGISTER_VALUE_FIRST)
1361 monitor_printf (current_monitor->setreg.cmd, val, name);
1362 else if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1363 monitor_printf (current_monitor->setreg.cmd, name);
1364 else
1365 monitor_printf (current_monitor->setreg.cmd, name, val);
1366
1367 if (current_monitor->setreg.resp_delim)
1368 {
1369 monitor_debug ("EXP setreg.resp_delim\n");
1370 monitor_expect_regexp (&setreg_resp_delim_pattern, NULL, 0);
1371 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1372 monitor_printf ("%s\r", phex_nz (val, reg_size));
1373 }
1374 if (current_monitor->setreg.term)
1375 {
1376 monitor_debug ("EXP setreg.term\n");
1377 monitor_expect (current_monitor->setreg.term, NULL, 0);
1378 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1379 monitor_printf ("%s\r", phex_nz (val, reg_size));
1380 monitor_expect_prompt (NULL, 0);
1381 }
1382 else
1383 monitor_expect_prompt (NULL, 0);
1384 if (current_monitor->setreg.term_cmd) /* Mode exit required. */
1385 {
1386 monitor_debug ("EXP setreg_termcmd\n");
1387 monitor_printf ("%s", current_monitor->setreg.term_cmd);
1388 monitor_expect_prompt (NULL, 0);
1389 }
1390 } /* monitor_store_register */
1391
1392 /* Store the remote registers. */
1393
1394 static void
1395 monitor_store_registers (struct target_ops *ops,
1396 struct regcache *regcache, int regno)
1397 {
1398 if (regno >= 0)
1399 {
1400 monitor_store_register (regcache, regno);
1401 return;
1402 }
1403
1404 for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache));
1405 regno++)
1406 monitor_store_register (regcache, regno);
1407 }
1408
1409 /* Get ready to modify the registers array. On machines which store
1410 individual registers, this doesn't need to do anything. On machines
1411 which store all the registers in one fell swoop, this makes sure
1412 that registers contains all the registers from the program being
1413 debugged. */
1414
1415 static void
1416 monitor_prepare_to_store (struct target_ops *self, struct regcache *regcache)
1417 {
1418 /* Do nothing, since we can store individual regs. */
1419 }
1420
1421 static void
1422 monitor_files_info (struct target_ops *ops)
1423 {
1424 printf_unfiltered (_("\tAttached to %s at %d baud.\n"), dev_name, baud_rate);
1425 }
1426
1427 static int
1428 monitor_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1429 {
1430 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1431 unsigned int val, hostval;
1432 char *cmd;
1433 int i;
1434
1435 monitor_debug ("MON write %d %s\n", len, paddress (target_gdbarch (), memaddr));
1436
1437 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1438 memaddr = gdbarch_addr_bits_remove (target_gdbarch (), memaddr);
1439
1440 /* Use memory fill command for leading 0 bytes. */
1441
1442 if (current_monitor->fill)
1443 {
1444 for (i = 0; i < len; i++)
1445 if (myaddr[i] != 0)
1446 break;
1447
1448 if (i > 4) /* More than 4 zeros is worth doing. */
1449 {
1450 monitor_debug ("MON FILL %d\n", i);
1451 if (current_monitor->flags & MO_FILL_USES_ADDR)
1452 monitor_printf (current_monitor->fill, memaddr,
1453 (memaddr + i) - 1, 0);
1454 else
1455 monitor_printf (current_monitor->fill, memaddr, i, 0);
1456
1457 monitor_expect_prompt (NULL, 0);
1458
1459 return i;
1460 }
1461 }
1462
1463 #if 0
1464 /* Can't actually use long longs if VAL is an int (nice idea, though). */
1465 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->setmem.cmdll)
1466 {
1467 len = 8;
1468 cmd = current_monitor->setmem.cmdll;
1469 }
1470 else
1471 #endif
1472 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->setmem.cmdl)
1473 {
1474 len = 4;
1475 cmd = current_monitor->setmem.cmdl;
1476 }
1477 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->setmem.cmdw)
1478 {
1479 len = 2;
1480 cmd = current_monitor->setmem.cmdw;
1481 }
1482 else
1483 {
1484 len = 1;
1485 cmd = current_monitor->setmem.cmdb;
1486 }
1487
1488 val = extract_unsigned_integer (myaddr, len, byte_order);
1489
1490 if (len == 4)
1491 {
1492 hostval = *(unsigned int *) myaddr;
1493 monitor_debug ("Hostval(%08x) val(%08x)\n", hostval, val);
1494 }
1495
1496
1497 if (current_monitor->flags & MO_NO_ECHO_ON_SETMEM)
1498 monitor_printf_noecho (cmd, memaddr, val);
1499 else if (current_monitor->flags & MO_SETMEM_INTERACTIVE)
1500 {
1501 monitor_printf_noecho (cmd, memaddr);
1502
1503 if (current_monitor->setmem.resp_delim)
1504 {
1505 monitor_debug ("EXP setmem.resp_delim");
1506 monitor_expect_regexp (&setmem_resp_delim_pattern, NULL, 0);
1507 monitor_printf ("%x\r", val);
1508 }
1509 if (current_monitor->setmem.term)
1510 {
1511 monitor_debug ("EXP setmem.term");
1512 monitor_expect (current_monitor->setmem.term, NULL, 0);
1513 monitor_printf ("%x\r", val);
1514 }
1515 if (current_monitor->setmem.term_cmd)
1516 { /* Emit this to get out of the memory editing state. */
1517 monitor_printf ("%s", current_monitor->setmem.term_cmd);
1518 /* Drop through to expecting a prompt. */
1519 }
1520 }
1521 else
1522 monitor_printf (cmd, memaddr, val);
1523
1524 monitor_expect_prompt (NULL, 0);
1525
1526 return len;
1527 }
1528
1529
1530 static int
1531 monitor_write_memory_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1532 {
1533 unsigned char val;
1534 int written = 0;
1535
1536 if (len == 0)
1537 return 0;
1538 /* Enter the sub mode. */
1539 monitor_printf (current_monitor->setmem.cmdb, memaddr);
1540 monitor_expect_prompt (NULL, 0);
1541 while (len)
1542 {
1543 val = *myaddr;
1544 monitor_printf ("%x\r", val);
1545 myaddr++;
1546 memaddr++;
1547 written++;
1548 /* If we wanted to, here we could validate the address. */
1549 monitor_expect_prompt (NULL, 0);
1550 len--;
1551 }
1552 /* Now exit the sub mode. */
1553 monitor_printf (current_monitor->getreg.term_cmd);
1554 monitor_expect_prompt (NULL, 0);
1555 return written;
1556 }
1557
1558
1559 static void
1560 longlongendswap (unsigned char *a)
1561 {
1562 int i, j;
1563 unsigned char x;
1564
1565 i = 0;
1566 j = 7;
1567 while (i < 4)
1568 {
1569 x = *(a + i);
1570 *(a + i) = *(a + j);
1571 *(a + j) = x;
1572 i++, j--;
1573 }
1574 }
1575 /* Format 32 chars of long long value, advance the pointer. */
1576 static char *hexlate = "0123456789abcdef";
1577 static char *
1578 longlong_hexchars (unsigned long long value,
1579 char *outbuff)
1580 {
1581 if (value == 0)
1582 {
1583 *outbuff++ = '0';
1584 return outbuff;
1585 }
1586 else
1587 {
1588 static unsigned char disbuf[8]; /* disassembly buffer */
1589 unsigned char *scan, *limit; /* loop controls */
1590 unsigned char c, nib;
1591 int leadzero = 1;
1592
1593 scan = disbuf;
1594 limit = scan + 8;
1595 {
1596 unsigned long long *dp;
1597
1598 dp = (unsigned long long *) scan;
1599 *dp = value;
1600 }
1601 longlongendswap (disbuf); /* FIXME: ONly on big endian hosts. */
1602 while (scan < limit)
1603 {
1604 c = *scan++; /* A byte of our long long value. */
1605 if (leadzero)
1606 {
1607 if (c == 0)
1608 continue;
1609 else
1610 leadzero = 0; /* Henceforth we print even zeroes. */
1611 }
1612 nib = c >> 4; /* high nibble bits */
1613 *outbuff++ = hexlate[nib];
1614 nib = c & 0x0f; /* low nibble bits */
1615 *outbuff++ = hexlate[nib];
1616 }
1617 return outbuff;
1618 }
1619 } /* longlong_hexchars */
1620
1621
1622
1623 /* I am only going to call this when writing virtual byte streams.
1624 Which possably entails endian conversions. */
1625
1626 static int
1627 monitor_write_memory_longlongs (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1628 {
1629 static char hexstage[20]; /* At least 16 digits required, plus null. */
1630 char *endstring;
1631 long long *llptr;
1632 long long value;
1633 int written = 0;
1634
1635 llptr = (long long *) myaddr;
1636 if (len == 0)
1637 return 0;
1638 monitor_printf (current_monitor->setmem.cmdll, memaddr);
1639 monitor_expect_prompt (NULL, 0);
1640 while (len >= 8)
1641 {
1642 value = *llptr;
1643 endstring = longlong_hexchars (*llptr, hexstage);
1644 *endstring = '\0'; /* NUll terminate for printf. */
1645 monitor_printf ("%s\r", hexstage);
1646 llptr++;
1647 memaddr += 8;
1648 written += 8;
1649 /* If we wanted to, here we could validate the address. */
1650 monitor_expect_prompt (NULL, 0);
1651 len -= 8;
1652 }
1653 /* Now exit the sub mode. */
1654 monitor_printf (current_monitor->getreg.term_cmd);
1655 monitor_expect_prompt (NULL, 0);
1656 return written;
1657 } /* */
1658
1659
1660
1661 /* ----- MONITOR_WRITE_MEMORY_BLOCK ---------------------------- */
1662 /* This is for the large blocks of memory which may occur in downloading.
1663 And for monitors which use interactive entry,
1664 And for monitors which do not have other downloading methods.
1665 Without this, we will end up calling monitor_write_memory many times
1666 and do the entry and exit of the sub mode many times
1667 This currently assumes...
1668 MO_SETMEM_INTERACTIVE
1669 ! MO_NO_ECHO_ON_SETMEM
1670 To use this, the you have to patch the monitor_cmds block with
1671 this function. Otherwise, its not tuned up for use by all
1672 monitor variations. */
1673
1674 static int
1675 monitor_write_memory_block (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1676 {
1677 int written;
1678
1679 written = 0;
1680 /* FIXME: This would be a good place to put the zero test. */
1681 #if 1
1682 if ((len > 8) && (((len & 0x07)) == 0) && current_monitor->setmem.cmdll)
1683 {
1684 return monitor_write_memory_longlongs (memaddr, myaddr, len);
1685 }
1686 #endif
1687 written = monitor_write_memory_bytes (memaddr, myaddr, len);
1688 return written;
1689 }
1690
1691 /* This is an alternate form of monitor_read_memory which is used for monitors
1692 which can only read a single byte/word/etc. at a time. */
1693
1694 static int
1695 monitor_read_memory_single (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1696 {
1697 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1698 unsigned int val;
1699 char membuf[sizeof (int) * 2 + 1];
1700 char *p;
1701 char *cmd;
1702
1703 monitor_debug ("MON read single\n");
1704 #if 0
1705 /* Can't actually use long longs (nice idea, though). In fact, the
1706 call to strtoul below will fail if it tries to convert a value
1707 that's too big to fit in a long. */
1708 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->getmem.cmdll)
1709 {
1710 len = 8;
1711 cmd = current_monitor->getmem.cmdll;
1712 }
1713 else
1714 #endif
1715 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->getmem.cmdl)
1716 {
1717 len = 4;
1718 cmd = current_monitor->getmem.cmdl;
1719 }
1720 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->getmem.cmdw)
1721 {
1722 len = 2;
1723 cmd = current_monitor->getmem.cmdw;
1724 }
1725 else
1726 {
1727 len = 1;
1728 cmd = current_monitor->getmem.cmdb;
1729 }
1730
1731 /* Send the examine command. */
1732
1733 monitor_printf (cmd, memaddr);
1734
1735 /* If RESP_DELIM is specified, we search for that as a leading
1736 delimiter for the memory value. Otherwise, we just start
1737 searching from the start of the buf. */
1738
1739 if (current_monitor->getmem.resp_delim)
1740 {
1741 monitor_debug ("EXP getmem.resp_delim\n");
1742 monitor_expect_regexp (&getmem_resp_delim_pattern, NULL, 0);
1743 }
1744
1745 /* Now, read the appropriate number of hex digits for this loc,
1746 skipping spaces. */
1747
1748 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */
1749 if (current_monitor->flags & MO_HEX_PREFIX)
1750 {
1751 int c;
1752
1753 c = readchar (timeout);
1754 while (c == ' ')
1755 c = readchar (timeout);
1756 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1757 ;
1758 else
1759 monitor_error ("monitor_read_memory_single",
1760 "bad response from monitor",
1761 memaddr, 0, NULL, 0);
1762 }
1763
1764 {
1765 int i;
1766
1767 for (i = 0; i < len * 2; i++)
1768 {
1769 int c;
1770
1771 while (1)
1772 {
1773 c = readchar (timeout);
1774 if (isxdigit (c))
1775 break;
1776 if (c == ' ')
1777 continue;
1778
1779 monitor_error ("monitor_read_memory_single",
1780 "bad response from monitor",
1781 memaddr, i, membuf, 0);
1782 }
1783 membuf[i] = c;
1784 }
1785 membuf[i] = '\000'; /* Terminate the number. */
1786 }
1787
1788 /* If TERM is present, we wait for that to show up. Also, (if TERM is
1789 present), we will send TERM_CMD if that is present. In any case, we collect
1790 all of the output into buf, and then wait for the normal prompt. */
1791
1792 if (current_monitor->getmem.term)
1793 {
1794 monitor_expect (current_monitor->getmem.term, NULL, 0); /* Get
1795 response. */
1796
1797 if (current_monitor->getmem.term_cmd)
1798 {
1799 monitor_printf (current_monitor->getmem.term_cmd);
1800 monitor_expect_prompt (NULL, 0);
1801 }
1802 }
1803 else
1804 monitor_expect_prompt (NULL, 0); /* Get response. */
1805
1806 p = membuf;
1807 val = strtoul (membuf, &p, 16);
1808
1809 if (val == 0 && membuf == p)
1810 monitor_error ("monitor_read_memory_single",
1811 "bad value from monitor",
1812 memaddr, 0, membuf, 0);
1813
1814 /* supply register stores in target byte order, so swap here. */
1815
1816 store_unsigned_integer (myaddr, len, byte_order, val);
1817
1818 return len;
1819 }
1820
1821 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
1822 memory at MEMADDR. Returns length moved. Currently, we do no more
1823 than 16 bytes at a time. */
1824
1825 static int
1826 monitor_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1827 {
1828 unsigned int val;
1829 char buf[512];
1830 char *p, *p1;
1831 int resp_len;
1832 int i;
1833 CORE_ADDR dumpaddr;
1834
1835 if (len <= 0)
1836 {
1837 monitor_debug ("Zero length call to monitor_read_memory\n");
1838 return 0;
1839 }
1840
1841 monitor_debug ("MON read block ta(%s) ha(%s) %d\n",
1842 paddress (target_gdbarch (), memaddr),
1843 host_address_to_string (myaddr), len);
1844
1845 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1846 memaddr = gdbarch_addr_bits_remove (target_gdbarch (), memaddr);
1847
1848 if (current_monitor->flags & MO_GETMEM_READ_SINGLE)
1849 return monitor_read_memory_single (memaddr, myaddr, len);
1850
1851 len = min (len, 16);
1852
1853 /* Some dumpers align the first data with the preceding 16
1854 byte boundary. Some print blanks and start at the
1855 requested boundary. EXACT_DUMPADDR */
1856
1857 dumpaddr = (current_monitor->flags & MO_EXACT_DUMPADDR)
1858 ? memaddr : memaddr & ~0x0f;
1859
1860 /* See if xfer would cross a 16 byte boundary. If so, clip it. */
1861 if (((memaddr ^ (memaddr + len - 1)) & ~0xf) != 0)
1862 len = ((memaddr + len) & ~0xf) - memaddr;
1863
1864 /* Send the memory examine command. */
1865
1866 if (current_monitor->flags & MO_GETMEM_NEEDS_RANGE)
1867 monitor_printf (current_monitor->getmem.cmdb, memaddr, memaddr + len);
1868 else if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1869 monitor_printf (current_monitor->getmem.cmdb, dumpaddr);
1870 else
1871 monitor_printf (current_monitor->getmem.cmdb, memaddr, len);
1872
1873 /* If TERM is present, we wait for that to show up. Also, (if TERM
1874 is present), we will send TERM_CMD if that is present. In any
1875 case, we collect all of the output into buf, and then wait for
1876 the normal prompt. */
1877
1878 if (current_monitor->getmem.term)
1879 {
1880 resp_len = monitor_expect (current_monitor->getmem.term,
1881 buf, sizeof buf); /* Get response. */
1882
1883 if (resp_len <= 0)
1884 monitor_error ("monitor_read_memory",
1885 "excessive response from monitor",
1886 memaddr, resp_len, buf, 0);
1887
1888 if (current_monitor->getmem.term_cmd)
1889 {
1890 serial_write (monitor_desc, current_monitor->getmem.term_cmd,
1891 strlen (current_monitor->getmem.term_cmd));
1892 monitor_expect_prompt (NULL, 0);
1893 }
1894 }
1895 else
1896 resp_len = monitor_expect_prompt (buf, sizeof buf); /* Get response. */
1897
1898 p = buf;
1899
1900 /* If RESP_DELIM is specified, we search for that as a leading
1901 delimiter for the values. Otherwise, we just start searching
1902 from the start of the buf. */
1903
1904 if (current_monitor->getmem.resp_delim)
1905 {
1906 int retval, tmp;
1907 struct re_registers resp_strings;
1908
1909 monitor_debug ("MON getmem.resp_delim %s\n",
1910 current_monitor->getmem.resp_delim);
1911
1912 memset (&resp_strings, 0, sizeof (struct re_registers));
1913 tmp = strlen (p);
1914 retval = re_search (&getmem_resp_delim_pattern, p, tmp, 0, tmp,
1915 &resp_strings);
1916
1917 if (retval < 0)
1918 monitor_error ("monitor_read_memory",
1919 "bad response from monitor",
1920 memaddr, resp_len, buf, 0);
1921
1922 p += resp_strings.end[0];
1923 #if 0
1924 p = strstr (p, current_monitor->getmem.resp_delim);
1925 if (!p)
1926 monitor_error ("monitor_read_memory",
1927 "bad response from monitor",
1928 memaddr, resp_len, buf, 0);
1929 p += strlen (current_monitor->getmem.resp_delim);
1930 #endif
1931 }
1932 monitor_debug ("MON scanning %d ,%s '%s'\n", len,
1933 host_address_to_string (p), p);
1934 if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1935 {
1936 char c;
1937 int fetched = 0;
1938 i = len;
1939 c = *p;
1940
1941
1942 while (!(c == '\000' || c == '\n' || c == '\r') && i > 0)
1943 {
1944 if (isxdigit (c))
1945 {
1946 if ((dumpaddr >= memaddr) && (i > 0))
1947 {
1948 val = fromhex (c) * 16 + fromhex (*(p + 1));
1949 *myaddr++ = val;
1950 if (monitor_debug_p || remote_debug)
1951 fprintf_unfiltered (gdb_stdlog, "[%02x]", val);
1952 --i;
1953 fetched++;
1954 }
1955 ++dumpaddr;
1956 ++p;
1957 }
1958 ++p; /* Skip a blank or other non hex char. */
1959 c = *p;
1960 }
1961 if (fetched == 0)
1962 error (_("Failed to read via monitor"));
1963 if (monitor_debug_p || remote_debug)
1964 fprintf_unfiltered (gdb_stdlog, "\n");
1965 return fetched; /* Return the number of bytes actually
1966 read. */
1967 }
1968 monitor_debug ("MON scanning bytes\n");
1969
1970 for (i = len; i > 0; i--)
1971 {
1972 /* Skip non-hex chars, but bomb on end of string and newlines. */
1973
1974 while (1)
1975 {
1976 if (isxdigit (*p))
1977 break;
1978
1979 if (*p == '\000' || *p == '\n' || *p == '\r')
1980 monitor_error ("monitor_read_memory",
1981 "badly terminated response from monitor",
1982 memaddr, resp_len, buf, 0);
1983 p++;
1984 }
1985
1986 val = strtoul (p, &p1, 16);
1987
1988 if (val == 0 && p == p1)
1989 monitor_error ("monitor_read_memory",
1990 "bad value from monitor",
1991 memaddr, resp_len, buf, 0);
1992
1993 *myaddr++ = val;
1994
1995 if (i == 1)
1996 break;
1997
1998 p = p1;
1999 }
2000
2001 return len;
2002 }
2003
2004 /* Helper for monitor_xfer_partial that handles memory transfers.
2005 Arguments are like target_xfer_partial. */
2006
2007 static enum target_xfer_status
2008 monitor_xfer_memory (gdb_byte *readbuf, const gdb_byte *writebuf,
2009 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
2010 {
2011 int res;
2012
2013 if (writebuf != NULL)
2014 {
2015 if (current_monitor->flags & MO_HAS_BLOCKWRITES)
2016 res = monitor_write_memory_block (memaddr, writebuf, len);
2017 else
2018 res = monitor_write_memory (memaddr, writebuf, len);
2019 }
2020 else
2021 {
2022 res = monitor_read_memory (memaddr, readbuf, len);
2023 }
2024
2025 if (res <= 0)
2026 return TARGET_XFER_E_IO;
2027 else
2028 {
2029 *xfered_len = (ULONGEST) res;
2030 return TARGET_XFER_OK;
2031 }
2032 }
2033
2034 /* Target to_xfer_partial implementation. */
2035
2036 static enum target_xfer_status
2037 monitor_xfer_partial (struct target_ops *ops, enum target_object object,
2038 const char *annex, gdb_byte *readbuf,
2039 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
2040 ULONGEST *xfered_len)
2041 {
2042 switch (object)
2043 {
2044 case TARGET_OBJECT_MEMORY:
2045 return monitor_xfer_memory (readbuf, writebuf, offset, len, xfered_len);
2046
2047 default:
2048 return TARGET_XFER_E_IO;
2049 }
2050 }
2051
2052 static void
2053 monitor_kill (struct target_ops *ops)
2054 {
2055 return; /* Ignore attempts to kill target system. */
2056 }
2057
2058 /* All we actually do is set the PC to the start address of exec_bfd. */
2059
2060 static void
2061 monitor_create_inferior (struct target_ops *ops, char *exec_file,
2062 char *args, char **env, int from_tty)
2063 {
2064 if (args && (*args != '\000'))
2065 error (_("Args are not supported by the monitor."));
2066
2067 first_time = 1;
2068 clear_proceed_status (0);
2069 regcache_write_pc (get_current_regcache (),
2070 bfd_get_start_address (exec_bfd));
2071 }
2072
2073 /* Clean up when a program exits.
2074 The program actually lives on in the remote processor's RAM, and may be
2075 run again without a download. Don't leave it full of breakpoint
2076 instructions. */
2077
2078 static void
2079 monitor_mourn_inferior (struct target_ops *ops)
2080 {
2081 unpush_target (targ_ops);
2082 generic_mourn_inferior (); /* Do all the proper things now. */
2083 delete_thread_silent (monitor_ptid);
2084 }
2085
2086 /* Tell the monitor to add a breakpoint. */
2087
2088 static int
2089 monitor_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
2090 struct bp_target_info *bp_tgt)
2091 {
2092 CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address;
2093 int i;
2094 int bplen;
2095
2096 monitor_debug ("MON inst bkpt %s\n", paddress (gdbarch, addr));
2097 if (current_monitor->set_break == NULL)
2098 error (_("No set_break defined for this monitor"));
2099
2100 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
2101 addr = gdbarch_addr_bits_remove (gdbarch, addr);
2102
2103 /* Determine appropriate breakpoint size for this address. */
2104 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
2105 bp_tgt->placed_address = addr;
2106 bp_tgt->placed_size = bplen;
2107
2108 for (i = 0; i < current_monitor->num_breakpoints; i++)
2109 {
2110 if (breakaddr[i] == 0)
2111 {
2112 breakaddr[i] = addr;
2113 monitor_printf (current_monitor->set_break, addr);
2114 monitor_expect_prompt (NULL, 0);
2115 return 0;
2116 }
2117 }
2118
2119 error (_("Too many breakpoints (> %d) for monitor."),
2120 current_monitor->num_breakpoints);
2121 }
2122
2123 /* Tell the monitor to remove a breakpoint. */
2124
2125 static int
2126 monitor_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
2127 struct bp_target_info *bp_tgt)
2128 {
2129 CORE_ADDR addr = bp_tgt->placed_address;
2130 int i;
2131
2132 monitor_debug ("MON rmbkpt %s\n", paddress (gdbarch, addr));
2133 if (current_monitor->clr_break == NULL)
2134 error (_("No clr_break defined for this monitor"));
2135
2136 for (i = 0; i < current_monitor->num_breakpoints; i++)
2137 {
2138 if (breakaddr[i] == addr)
2139 {
2140 breakaddr[i] = 0;
2141 /* Some monitors remove breakpoints based on the address. */
2142 if (current_monitor->flags & MO_CLR_BREAK_USES_ADDR)
2143 monitor_printf (current_monitor->clr_break, addr);
2144 else if (current_monitor->flags & MO_CLR_BREAK_1_BASED)
2145 monitor_printf (current_monitor->clr_break, i + 1);
2146 else
2147 monitor_printf (current_monitor->clr_break, i);
2148 monitor_expect_prompt (NULL, 0);
2149 return 0;
2150 }
2151 }
2152 fprintf_unfiltered (gdb_stderr,
2153 "Can't find breakpoint associated with %s\n",
2154 paddress (gdbarch, addr));
2155 return 1;
2156 }
2157
2158 /* monitor_wait_srec_ack -- wait for the target to send an acknowledgement for
2159 an S-record. Return non-zero if the ACK is received properly. */
2160
2161 static int
2162 monitor_wait_srec_ack (void)
2163 {
2164 int ch;
2165
2166 if (current_monitor->flags & MO_SREC_ACK_PLUS)
2167 {
2168 return (readchar (timeout) == '+');
2169 }
2170 else if (current_monitor->flags & MO_SREC_ACK_ROTATE)
2171 {
2172 /* Eat two backspaces, a "rotating" char (|/-\), and a space. */
2173 if ((ch = readchar (1)) < 0)
2174 return 0;
2175 if ((ch = readchar (1)) < 0)
2176 return 0;
2177 if ((ch = readchar (1)) < 0)
2178 return 0;
2179 if ((ch = readchar (1)) < 0)
2180 return 0;
2181 }
2182 return 1;
2183 }
2184
2185 /* monitor_load -- download a file. */
2186
2187 static void
2188 monitor_load (struct target_ops *self, const char *args, int from_tty)
2189 {
2190 CORE_ADDR load_offset = 0;
2191 char **argv;
2192 struct cleanup *old_cleanups;
2193 char *filename;
2194
2195 monitor_debug ("MON load\n");
2196
2197 if (args == NULL)
2198 error_no_arg (_("file to load"));
2199
2200 argv = gdb_buildargv (args);
2201 old_cleanups = make_cleanup_freeargv (argv);
2202
2203 filename = tilde_expand (argv[0]);
2204 make_cleanup (xfree, filename);
2205
2206 /* Enable user to specify address for downloading as 2nd arg to load. */
2207 if (argv[1] != NULL)
2208 {
2209 const char *endptr;
2210
2211 load_offset = strtoulst (argv[1], &endptr, 0);
2212
2213 /* If the last word was not a valid number then
2214 treat it as a file name with spaces in. */
2215 if (argv[1] == endptr)
2216 error (_("Invalid download offset:%s."), argv[1]);
2217
2218 if (argv[2] != NULL)
2219 error (_("Too many parameters."));
2220 }
2221
2222 monitor_printf (current_monitor->load);
2223 if (current_monitor->loadresp)
2224 monitor_expect (current_monitor->loadresp, NULL, 0);
2225
2226 load_srec (monitor_desc, filename, load_offset,
2227 32, SREC_ALL, hashmark,
2228 current_monitor->flags & MO_SREC_ACK ?
2229 monitor_wait_srec_ack : NULL);
2230
2231 monitor_expect_prompt (NULL, 0);
2232
2233 do_cleanups (old_cleanups);
2234
2235 /* Finally, make the PC point at the start address. */
2236 if (exec_bfd)
2237 regcache_write_pc (get_current_regcache (),
2238 bfd_get_start_address (exec_bfd));
2239
2240 /* There used to be code here which would clear inferior_ptid and
2241 call clear_symtab_users. None of that should be necessary:
2242 monitor targets should behave like remote protocol targets, and
2243 since generic_load does none of those things, this function
2244 shouldn't either.
2245
2246 Furthermore, clearing inferior_ptid is *incorrect*. After doing
2247 a load, we still have a valid connection to the monitor, with a
2248 live processor state to fiddle with. The user can type
2249 `continue' or `jump *start' and make the program run. If they do
2250 these things, however, GDB will be talking to a running program
2251 while inferior_ptid is null_ptid; this makes things like
2252 reinit_frame_cache very confused. */
2253 }
2254
2255 static void
2256 monitor_stop (struct target_ops *self, ptid_t ptid)
2257 {
2258 monitor_debug ("MON stop\n");
2259 if ((current_monitor->flags & MO_SEND_BREAK_ON_STOP) != 0)
2260 serial_send_break (monitor_desc);
2261 if (current_monitor->stop)
2262 monitor_printf_noecho (current_monitor->stop);
2263 }
2264
2265 /* Put a COMMAND string out to MONITOR. Output from MONITOR is placed
2266 in OUTPUT until the prompt is seen. FIXME: We read the characters
2267 ourseleves here cause of a nasty echo. */
2268
2269 static void
2270 monitor_rcmd (struct target_ops *self, const char *command,
2271 struct ui_file *outbuf)
2272 {
2273 char *p;
2274 int resp_len;
2275 char buf[1000];
2276
2277 if (monitor_desc == NULL)
2278 error (_("monitor target not open."));
2279
2280 p = current_monitor->prompt;
2281
2282 /* Send the command. Note that if no args were supplied, then we're
2283 just sending the monitor a newline, which is sometimes useful. */
2284
2285 monitor_printf ("%s\r", (command ? command : ""));
2286
2287 resp_len = monitor_expect_prompt (buf, sizeof buf);
2288
2289 fputs_unfiltered (buf, outbuf); /* Output the response. */
2290 }
2291
2292 /* Convert hex digit A to a number. */
2293
2294 #if 0
2295 static int
2296 from_hex (int a)
2297 {
2298 if (a >= '0' && a <= '9')
2299 return a - '0';
2300 if (a >= 'a' && a <= 'f')
2301 return a - 'a' + 10;
2302 if (a >= 'A' && a <= 'F')
2303 return a - 'A' + 10;
2304
2305 error (_("Reply contains invalid hex digit 0x%x"), a);
2306 }
2307 #endif
2308
2309 char *
2310 monitor_get_dev_name (void)
2311 {
2312 return dev_name;
2313 }
2314
2315 /* Check to see if a thread is still alive. */
2316
2317 static int
2318 monitor_thread_alive (struct target_ops *ops, ptid_t ptid)
2319 {
2320 if (ptid_equal (ptid, monitor_ptid))
2321 /* The monitor's task is always alive. */
2322 return 1;
2323
2324 return 0;
2325 }
2326
2327 /* Convert a thread ID to a string. Returns the string in a static
2328 buffer. */
2329
2330 static char *
2331 monitor_pid_to_str (struct target_ops *ops, ptid_t ptid)
2332 {
2333 static char buf[64];
2334
2335 if (ptid_equal (monitor_ptid, ptid))
2336 {
2337 xsnprintf (buf, sizeof buf, "Thread <main>");
2338 return buf;
2339 }
2340
2341 return normal_pid_to_str (ptid);
2342 }
2343
2344 static struct target_ops monitor_ops;
2345
2346 static void
2347 init_base_monitor_ops (void)
2348 {
2349 monitor_ops.to_close = monitor_close;
2350 monitor_ops.to_detach = monitor_detach;
2351 monitor_ops.to_resume = monitor_resume;
2352 monitor_ops.to_wait = monitor_wait;
2353 monitor_ops.to_fetch_registers = monitor_fetch_registers;
2354 monitor_ops.to_store_registers = monitor_store_registers;
2355 monitor_ops.to_prepare_to_store = monitor_prepare_to_store;
2356 monitor_ops.to_xfer_partial = monitor_xfer_partial;
2357 monitor_ops.to_files_info = monitor_files_info;
2358 monitor_ops.to_insert_breakpoint = monitor_insert_breakpoint;
2359 monitor_ops.to_remove_breakpoint = monitor_remove_breakpoint;
2360 monitor_ops.to_kill = monitor_kill;
2361 monitor_ops.to_load = monitor_load;
2362 monitor_ops.to_create_inferior = monitor_create_inferior;
2363 monitor_ops.to_mourn_inferior = monitor_mourn_inferior;
2364 monitor_ops.to_stop = monitor_stop;
2365 monitor_ops.to_rcmd = monitor_rcmd;
2366 monitor_ops.to_log_command = serial_log_command;
2367 monitor_ops.to_thread_alive = monitor_thread_alive;
2368 monitor_ops.to_pid_to_str = monitor_pid_to_str;
2369 monitor_ops.to_stratum = process_stratum;
2370 monitor_ops.to_has_all_memory = default_child_has_all_memory;
2371 monitor_ops.to_has_memory = default_child_has_memory;
2372 monitor_ops.to_has_stack = default_child_has_stack;
2373 monitor_ops.to_has_registers = default_child_has_registers;
2374 monitor_ops.to_has_execution = default_child_has_execution;
2375 monitor_ops.to_magic = OPS_MAGIC;
2376 } /* init_base_monitor_ops */
2377
2378 /* Init the target_ops structure pointed at by OPS. */
2379
2380 void
2381 init_monitor_ops (struct target_ops *ops)
2382 {
2383 if (monitor_ops.to_magic != OPS_MAGIC)
2384 init_base_monitor_ops ();
2385
2386 memcpy (ops, &monitor_ops, sizeof monitor_ops);
2387 }
2388
2389 /* Define additional commands that are usually only used by monitors. */
2390
2391 /* -Wmissing-prototypes */
2392 extern initialize_file_ftype _initialize_remote_monitors;
2393
2394 void
2395 _initialize_remote_monitors (void)
2396 {
2397 init_base_monitor_ops ();
2398 add_setshow_boolean_cmd ("hash", no_class, &hashmark, _("\
2399 Set display of activity while downloading a file."), _("\
2400 Show display of activity while downloading a file."), _("\
2401 When enabled, a hashmark \'#\' is displayed."),
2402 NULL,
2403 NULL, /* FIXME: i18n: */
2404 &setlist, &showlist);
2405
2406 add_setshow_zuinteger_cmd ("monitor", no_class, &monitor_debug_p, _("\
2407 Set debugging of remote monitor communication."), _("\
2408 Show debugging of remote monitor communication."), _("\
2409 When enabled, communication between GDB and the remote monitor\n\
2410 is displayed."),
2411 NULL,
2412 NULL, /* FIXME: i18n: */
2413 &setdebuglist, &showdebuglist);
2414
2415 /* Yes, 42000 is arbitrary. The only sense out of it, is that it
2416 isn't 0. */
2417 monitor_ptid = ptid_build (42000, 0, 42000);
2418 }
This page took 0.074987 seconds and 5 git commands to generate.