test suite fixlet for gdb.trace
[deliverable/binutils-gdb.git] / gdb / msp430-tdep.c
1 /* Target-dependent code for the Texas Instruments MSP430 for GDB, the
2 GNU debugger.
3
4 Copyright (C) 2012, 2013 Free Software Foundation, Inc.
5
6 Contributed by Red Hat, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "arch-utils.h"
25 #include "prologue-value.h"
26 #include "target.h"
27 #include "regcache.h"
28 #include "dis-asm.h"
29 #include "gdbtypes.h"
30 #include "frame.h"
31 #include "frame-unwind.h"
32 #include "frame-base.h"
33 #include "value.h"
34 #include "gdbcore.h"
35 #include "dwarf2-frame.h"
36 #include "reggroups.h"
37
38 #include "elf/msp430.h"
39 #include "opcode/msp430-decode.h"
40 #include "elf-bfd.h"
41
42 /* Register Numbers. */
43
44 enum
45 {
46 MSP430_PC_RAW_REGNUM,
47 MSP430_SP_RAW_REGNUM,
48 MSP430_SR_RAW_REGNUM,
49 MSP430_CG_RAW_REGNUM,
50 MSP430_R4_RAW_REGNUM,
51 MSP430_R5_RAW_REGNUM,
52 MSP430_R6_RAW_REGNUM,
53 MSP430_R7_RAW_REGNUM,
54 MSP430_R8_RAW_REGNUM,
55 MSP430_R9_RAW_REGNUM,
56 MSP430_R10_RAW_REGNUM,
57 MSP430_R11_RAW_REGNUM,
58 MSP430_R12_RAW_REGNUM,
59 MSP430_R13_RAW_REGNUM,
60 MSP430_R14_RAW_REGNUM,
61 MSP430_R15_RAW_REGNUM,
62
63 MSP430_NUM_REGS,
64
65 MSP430_PC_REGNUM = MSP430_NUM_REGS,
66 MSP430_SP_REGNUM,
67 MSP430_SR_REGNUM,
68 MSP430_CG_REGNUM,
69 MSP430_R4_REGNUM,
70 MSP430_R5_REGNUM,
71 MSP430_R6_REGNUM,
72 MSP430_R7_REGNUM,
73 MSP430_R8_REGNUM,
74 MSP430_R9_REGNUM,
75 MSP430_R10_REGNUM,
76 MSP430_R11_REGNUM,
77 MSP430_R12_REGNUM,
78 MSP430_R13_REGNUM,
79 MSP430_R14_REGNUM,
80 MSP430_R15_REGNUM,
81
82 MSP430_NUM_TOTAL_REGS,
83 MSP430_NUM_PSEUDO_REGS = MSP430_NUM_TOTAL_REGS - MSP430_NUM_REGS
84 };
85
86 enum
87 {
88 /* TI MSP430 Architecture. */
89 MSP_ISA_MSP430,
90
91 /* TI MSP430X Architecture. */
92 MSP_ISA_MSP430X
93 };
94
95 enum
96 {
97 /* The small code model limits code addresses to 16 bits. */
98 MSP_SMALL_CODE_MODEL,
99
100 /* The large code model uses 20 bit addresses for function
101 pointers. These are stored in memory using four bytes (32 bits). */
102 MSP_LARGE_CODE_MODEL
103 };
104
105 /* Architecture specific data. */
106
107 struct gdbarch_tdep
108 {
109 /* The ELF header flags specify the multilib used. */
110 int elf_flags;
111
112 /* One of MSP_ISA_MSP430 or MSP_ISA_MSP430X. */
113 int isa;
114
115 /* One of MSP_SMALL_CODE_MODEL or MSP_LARGE_CODE_MODEL. If, at
116 some point, we support different data models too, we'll probably
117 structure things so that we can combine values using logical
118 "or". */
119 int code_model;
120 };
121
122 /* This structure holds the results of a prologue analysis. */
123
124 struct msp430_prologue
125 {
126 /* The offset from the frame base to the stack pointer --- always
127 zero or negative.
128
129 Calling this a "size" is a bit misleading, but given that the
130 stack grows downwards, using offsets for everything keeps one
131 from going completely sign-crazy: you never change anything's
132 sign for an ADD instruction; always change the second operand's
133 sign for a SUB instruction; and everything takes care of
134 itself. */
135 int frame_size;
136
137 /* Non-zero if this function has initialized the frame pointer from
138 the stack pointer, zero otherwise. */
139 int has_frame_ptr;
140
141 /* If has_frame_ptr is non-zero, this is the offset from the frame
142 base to where the frame pointer points. This is always zero or
143 negative. */
144 int frame_ptr_offset;
145
146 /* The address of the first instruction at which the frame has been
147 set up and the arguments are where the debug info says they are
148 --- as best as we can tell. */
149 CORE_ADDR prologue_end;
150
151 /* reg_offset[R] is the offset from the CFA at which register R is
152 saved, or 1 if register R has not been saved. (Real values are
153 always zero or negative.) */
154 int reg_offset[MSP430_NUM_TOTAL_REGS];
155 };
156
157 /* Implement the "register_type" gdbarch method. */
158
159 static struct type *
160 msp430_register_type (struct gdbarch *gdbarch, int reg_nr)
161 {
162 if (reg_nr < MSP430_NUM_REGS)
163 return builtin_type (gdbarch)->builtin_uint32;
164 else if (reg_nr == MSP430_PC_REGNUM)
165 return builtin_type (gdbarch)->builtin_func_ptr;
166 else
167 return builtin_type (gdbarch)->builtin_uint16;
168 }
169
170 /* Implement another version of the "register_type" gdbarch method
171 for msp430x. */
172
173 static struct type *
174 msp430x_register_type (struct gdbarch *gdbarch, int reg_nr)
175 {
176 if (reg_nr < MSP430_NUM_REGS)
177 return builtin_type (gdbarch)->builtin_uint32;
178 else if (reg_nr == MSP430_PC_REGNUM)
179 return builtin_type (gdbarch)->builtin_func_ptr;
180 else
181 return builtin_type (gdbarch)->builtin_uint32;
182 }
183
184 /* Implement the "register_name" gdbarch method. */
185
186 static const char *
187 msp430_register_name (struct gdbarch *gdbarch, int regnr)
188 {
189 static const char *const reg_names[] = {
190 /* Raw registers. */
191 "", "", "", "", "", "", "", "",
192 "", "", "", "", "", "", "", "",
193 /* Pseudo registers. */
194 "pc", "sp", "sr", "cg", "r4", "r5", "r6", "r7",
195 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
196 };
197
198 return reg_names[regnr];
199 }
200
201 /* Implement the "register_reggroup_p" gdbarch method. */
202
203 static int
204 msp430_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
205 struct reggroup *group)
206 {
207 if (group == all_reggroup)
208 return 1;
209
210 /* All other registers are saved and restored. */
211 if (group == save_reggroup || group == restore_reggroup)
212 return (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS);
213
214 return group == general_reggroup;
215 }
216
217 /* Implement the "pseudo_register_read" gdbarch method. */
218
219 static enum register_status
220 msp430_pseudo_register_read (struct gdbarch *gdbarch,
221 struct regcache *regcache,
222 int regnum, gdb_byte *buffer)
223 {
224 enum register_status status = REG_UNKNOWN;
225
226 if (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS)
227 {
228 ULONGEST val;
229 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
230 int regsize = register_size (gdbarch, regnum);
231 int raw_regnum = regnum - MSP430_NUM_REGS;
232
233 status = regcache_raw_read_unsigned (regcache, raw_regnum, &val);
234 if (status == REG_VALID)
235 store_unsigned_integer (buffer, regsize, byte_order, val);
236
237 }
238 else
239 gdb_assert_not_reached ("invalid pseudo register number");
240
241 return status;
242 }
243
244 /* Implement the "pseudo_register_write" gdbarch method. */
245
246 static void
247 msp430_pseudo_register_write (struct gdbarch *gdbarch,
248 struct regcache *regcache,
249 int regnum, const gdb_byte *buffer)
250 {
251 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
252 if (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS)
253
254 {
255 ULONGEST val;
256 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
257 int regsize = register_size (gdbarch, regnum);
258 int raw_regnum = regnum - MSP430_NUM_REGS;
259
260 val = extract_unsigned_integer (buffer, regsize, byte_order);
261 regcache_raw_write_unsigned (regcache, raw_regnum, val);
262
263 }
264 else
265 gdb_assert_not_reached ("invalid pseudo register number");
266 }
267
268 /* Implement the `register_sim_regno' gdbarch method. */
269
270 static int
271 msp430_register_sim_regno (struct gdbarch *gdbarch, int regnum)
272 {
273 gdb_assert (regnum < MSP430_NUM_REGS);
274
275 /* So long as regnum is in [0, RL78_NUM_REGS), it's valid. We
276 just want to override the default here which disallows register
277 numbers which have no names. */
278 return regnum;
279 }
280
281 /* Implement the "breakpoint_from_pc" gdbarch method. */
282
283 static const gdb_byte *
284 msp430_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
285 int *lenptr)
286 {
287 static gdb_byte breakpoint[] = { 0x43, 0x43 };
288
289 *lenptr = sizeof breakpoint;
290 return breakpoint;
291 }
292
293 /* Define a "handle" struct for fetching the next opcode. */
294
295 struct msp430_get_opcode_byte_handle
296 {
297 CORE_ADDR pc;
298 };
299
300 /* Fetch a byte on behalf of the opcode decoder. HANDLE contains
301 the memory address of the next byte to fetch. If successful,
302 the address in the handle is updated and the byte fetched is
303 returned as the value of the function. If not successful, -1
304 is returned. */
305
306 static int
307 msp430_get_opcode_byte (void *handle)
308 {
309 struct msp430_get_opcode_byte_handle *opcdata = handle;
310 int status;
311 gdb_byte byte;
312
313 status = target_read_memory (opcdata->pc, &byte, 1);
314 if (status == 0)
315 {
316 opcdata->pc += 1;
317 return byte;
318 }
319 else
320 return -1;
321 }
322
323 /* Function for finding saved registers in a 'struct pv_area'; this
324 function is passed to pv_area_scan.
325
326 If VALUE is a saved register, ADDR says it was saved at a constant
327 offset from the frame base, and SIZE indicates that the whole
328 register was saved, record its offset. */
329
330 static void
331 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
332 {
333 struct msp430_prologue *result = (struct msp430_prologue *) result_untyped;
334
335 if (value.kind == pvk_register
336 && value.k == 0
337 && pv_is_register (addr, MSP430_SP_REGNUM)
338 && size == register_size (target_gdbarch (), value.reg))
339 result->reg_offset[value.reg] = addr.k;
340 }
341
342 /* Analyze a prologue starting at START_PC, going no further than
343 LIMIT_PC. Fill in RESULT as appropriate. */
344
345 static void
346 msp430_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc,
347 CORE_ADDR limit_pc, struct msp430_prologue *result)
348 {
349 CORE_ADDR pc, next_pc;
350 int rn;
351 pv_t reg[MSP430_NUM_TOTAL_REGS];
352 struct pv_area *stack;
353 struct cleanup *back_to;
354 CORE_ADDR after_last_frame_setup_insn = start_pc;
355 int code_model = gdbarch_tdep (gdbarch)->code_model;
356 int sz;
357
358 memset (result, 0, sizeof (*result));
359
360 for (rn = 0; rn < MSP430_NUM_TOTAL_REGS; rn++)
361 {
362 reg[rn] = pv_register (rn, 0);
363 result->reg_offset[rn] = 1;
364 }
365
366 stack = make_pv_area (MSP430_SP_REGNUM, gdbarch_addr_bit (gdbarch));
367 back_to = make_cleanup_free_pv_area (stack);
368
369 /* The call instruction has saved the return address on the stack. */
370 sz = code_model == MSP_LARGE_CODE_MODEL ? 4 : 2;
371 reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], -sz);
372 pv_area_store (stack, reg[MSP430_SP_REGNUM], sz, reg[MSP430_PC_REGNUM]);
373
374 pc = start_pc;
375 while (pc < limit_pc)
376 {
377 int bytes_read;
378 struct msp430_get_opcode_byte_handle opcode_handle;
379 MSP430_Opcode_Decoded opc;
380
381 opcode_handle.pc = pc;
382 bytes_read = msp430_decode_opcode (pc, &opc, msp430_get_opcode_byte,
383 &opcode_handle);
384 next_pc = pc + bytes_read;
385
386 if (opc.id == MSO_push && opc.op[0].type == MSP430_Operand_Register)
387 {
388 int rsrc = opc.op[0].reg;
389
390 reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], -2);
391 pv_area_store (stack, reg[MSP430_SP_REGNUM], 2, reg[rsrc]);
392 after_last_frame_setup_insn = next_pc;
393 }
394 else if (opc.id == MSO_push /* PUSHM */
395 && opc.op[0].type == MSP430_Operand_None
396 && opc.op[1].type == MSP430_Operand_Register)
397 {
398 int rsrc = opc.op[1].reg;
399 int count = opc.repeats + 1;
400 int size = opc.size == 16 ? 2 : 4;
401
402 while (count > 0)
403 {
404 reg[MSP430_SP_REGNUM]
405 = pv_add_constant (reg[MSP430_SP_REGNUM], -size);
406 pv_area_store (stack, reg[MSP430_SP_REGNUM], size, reg[rsrc]);
407 rsrc--;
408 count--;
409 }
410 after_last_frame_setup_insn = next_pc;
411 }
412 else if (opc.id == MSO_sub
413 && opc.op[0].type == MSP430_Operand_Register
414 && opc.op[0].reg == MSR_SP
415 && opc.op[1].type == MSP430_Operand_Immediate)
416 {
417 int addend = opc.op[1].addend;
418
419 reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM],
420 -addend);
421 after_last_frame_setup_insn = next_pc;
422 }
423 else if (opc.id == MSO_mov
424 && opc.op[0].type == MSP430_Operand_Immediate
425 && 12 <= opc.op[0].reg && opc.op[0].reg <= 15)
426 after_last_frame_setup_insn = next_pc;
427 else
428 {
429 /* Terminate the prologue scan. */
430 break;
431 }
432
433 pc = next_pc;
434 }
435
436 /* Is the frame size (offset, really) a known constant? */
437 if (pv_is_register (reg[MSP430_SP_REGNUM], MSP430_SP_REGNUM))
438 result->frame_size = reg[MSP430_SP_REGNUM].k;
439
440 /* Record where all the registers were saved. */
441 pv_area_scan (stack, check_for_saved, result);
442
443 result->prologue_end = after_last_frame_setup_insn;
444
445 do_cleanups (back_to);
446 }
447
448 /* Implement the "skip_prologue" gdbarch method. */
449
450 static CORE_ADDR
451 msp430_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
452 {
453 const char *name;
454 CORE_ADDR func_addr, func_end;
455 struct msp430_prologue p;
456
457 /* Try to find the extent of the function that contains PC. */
458 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
459 return pc;
460
461 msp430_analyze_prologue (gdbarch, pc, func_end, &p);
462 return p.prologue_end;
463 }
464
465 /* Implement the "unwind_pc" gdbarch method. */
466
467 static CORE_ADDR
468 msp430_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
469 {
470 return frame_unwind_register_unsigned (next_frame, MSP430_PC_REGNUM);
471 }
472
473 /* Implement the "unwind_sp" gdbarch method. */
474
475 static CORE_ADDR
476 msp430_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
477 {
478 return frame_unwind_register_unsigned (next_frame, MSP430_SP_REGNUM);
479 }
480
481 /* Given a frame described by THIS_FRAME, decode the prologue of its
482 associated function if there is not cache entry as specified by
483 THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
484 return that struct as the value of this function. */
485
486 static struct msp430_prologue *
487 msp430_analyze_frame_prologue (struct frame_info *this_frame,
488 void **this_prologue_cache)
489 {
490 if (!*this_prologue_cache)
491 {
492 CORE_ADDR func_start, stop_addr;
493
494 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct msp430_prologue);
495
496 func_start = get_frame_func (this_frame);
497 stop_addr = get_frame_pc (this_frame);
498
499 /* If we couldn't find any function containing the PC, then
500 just initialize the prologue cache, but don't do anything. */
501 if (!func_start)
502 stop_addr = func_start;
503
504 msp430_analyze_prologue (get_frame_arch (this_frame), func_start,
505 stop_addr, *this_prologue_cache);
506 }
507
508 return *this_prologue_cache;
509 }
510
511 /* Given a frame and a prologue cache, return this frame's base. */
512
513 static CORE_ADDR
514 msp430_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
515 {
516 struct msp430_prologue *p
517 = msp430_analyze_frame_prologue (this_frame, this_prologue_cache);
518 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MSP430_SP_REGNUM);
519
520 return sp - p->frame_size;
521 }
522
523 /* Implement the "frame_this_id" method for unwinding frames. */
524
525 static void
526 msp430_this_id (struct frame_info *this_frame,
527 void **this_prologue_cache, struct frame_id *this_id)
528 {
529 *this_id = frame_id_build (msp430_frame_base (this_frame,
530 this_prologue_cache),
531 get_frame_func (this_frame));
532 }
533
534 /* Implement the "frame_prev_register" method for unwinding frames. */
535
536 static struct value *
537 msp430_prev_register (struct frame_info *this_frame,
538 void **this_prologue_cache, int regnum)
539 {
540 struct msp430_prologue *p
541 = msp430_analyze_frame_prologue (this_frame, this_prologue_cache);
542 CORE_ADDR frame_base = msp430_frame_base (this_frame, this_prologue_cache);
543
544 if (regnum == MSP430_SP_REGNUM)
545 return frame_unwind_got_constant (this_frame, regnum, frame_base);
546
547 /* If prologue analysis says we saved this register somewhere,
548 return a description of the stack slot holding it. */
549 else if (p->reg_offset[regnum] != 1)
550 {
551 struct value *rv = frame_unwind_got_memory (this_frame, regnum,
552 frame_base +
553 p->reg_offset[regnum]);
554
555 if (regnum == MSP430_PC_REGNUM)
556 {
557 ULONGEST pc = value_as_long (rv);
558
559 return frame_unwind_got_constant (this_frame, regnum, pc);
560 }
561 return rv;
562 }
563
564 /* Otherwise, presume we haven't changed the value of this
565 register, and get it from the next frame. */
566 else
567 return frame_unwind_got_register (this_frame, regnum, regnum);
568 }
569
570 static const struct frame_unwind msp430_unwind = {
571 NORMAL_FRAME,
572 default_frame_unwind_stop_reason,
573 msp430_this_id,
574 msp430_prev_register,
575 NULL,
576 default_frame_sniffer
577 };
578
579 /* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
580
581 static int
582 msp430_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
583 {
584 if (reg < MSP430_NUM_REGS)
585 return reg + MSP430_NUM_REGS;
586 else
587 {
588 warning (_("Unmapped DWARF Register #%d encountered."), reg);
589 return -1;
590 }
591 }
592
593 /* Implement the "return_value" gdbarch method. */
594
595 static enum return_value_convention
596 msp430_return_value (struct gdbarch *gdbarch,
597 struct value *function,
598 struct type *valtype,
599 struct regcache *regcache,
600 gdb_byte *readbuf, const gdb_byte *writebuf)
601 {
602 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
603 LONGEST valtype_len = TYPE_LENGTH (valtype);
604 int code_model = gdbarch_tdep (gdbarch)->code_model;
605
606 if (TYPE_LENGTH (valtype) > 8
607 || TYPE_CODE (valtype) == TYPE_CODE_STRUCT
608 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
609 return RETURN_VALUE_STRUCT_CONVENTION;
610
611 if (readbuf)
612 {
613 ULONGEST u;
614 int argreg = MSP430_R12_REGNUM;
615 int offset = 0;
616
617 while (valtype_len > 0)
618 {
619 int size = 2;
620
621 if (code_model == MSP_LARGE_CODE_MODEL
622 && TYPE_CODE (valtype) == TYPE_CODE_PTR)
623 {
624 size = 4;
625 }
626
627 regcache_cooked_read_unsigned (regcache, argreg, &u);
628 store_unsigned_integer (readbuf + offset, size, byte_order, u);
629 valtype_len -= size;
630 offset += size;
631 argreg++;
632 }
633 }
634
635 if (writebuf)
636 {
637 ULONGEST u;
638 int argreg = MSP430_R12_REGNUM;
639 int offset = 0;
640
641 while (valtype_len > 0)
642 {
643 int size = 2;
644
645 if (code_model == MSP_LARGE_CODE_MODEL
646 && TYPE_CODE (valtype) == TYPE_CODE_PTR)
647 {
648 size = 4;
649 }
650
651 u = extract_unsigned_integer (writebuf + offset, size, byte_order);
652 regcache_cooked_write_unsigned (regcache, argreg, u);
653 valtype_len -= size;
654 offset += size;
655 argreg++;
656 }
657 }
658
659 return RETURN_VALUE_REGISTER_CONVENTION;
660 }
661
662
663 /* Implement the "frame_align" gdbarch method. */
664
665 static CORE_ADDR
666 msp430_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
667 {
668 return align_down (sp, 2);
669 }
670
671
672 /* Implement the "dummy_id" gdbarch method. */
673
674 static struct frame_id
675 msp430_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
676 {
677 return
678 frame_id_build (get_frame_register_unsigned
679 (this_frame, MSP430_SP_REGNUM),
680 get_frame_pc (this_frame));
681 }
682
683
684 /* Implement the "push_dummy_call" gdbarch method. */
685
686 static CORE_ADDR
687 msp430_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
688 struct regcache *regcache, CORE_ADDR bp_addr,
689 int nargs, struct value **args, CORE_ADDR sp,
690 int struct_return, CORE_ADDR struct_addr)
691 {
692 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
693 int write_pass;
694 int sp_off = 0;
695 CORE_ADDR cfa;
696 int code_model = gdbarch_tdep (gdbarch)->code_model;
697
698 struct type *func_type = value_type (function);
699
700 /* Dereference function pointer types. */
701 while (TYPE_CODE (func_type) == TYPE_CODE_PTR)
702 func_type = TYPE_TARGET_TYPE (func_type);
703
704 /* The end result had better be a function or a method. */
705 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
706 || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
707
708 /* We make two passes; the first does the stack allocation,
709 the second actually stores the arguments. */
710 for (write_pass = 0; write_pass <= 1; write_pass++)
711 {
712 int i;
713 int arg_reg = MSP430_R12_REGNUM;
714 int args_on_stack = 0;
715
716 if (write_pass)
717 sp = align_down (sp - sp_off, 4);
718 sp_off = 0;
719
720 if (struct_return)
721 {
722 if (write_pass)
723 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
724 arg_reg++;
725 }
726
727 /* Push the arguments. */
728 for (i = 0; i < nargs; i++)
729 {
730 struct value *arg = args[i];
731 const gdb_byte *arg_bits = value_contents_all (arg);
732 struct type *arg_type = check_typedef (value_type (arg));
733 ULONGEST arg_size = TYPE_LENGTH (arg_type);
734 int offset;
735 int current_arg_on_stack;
736
737 current_arg_on_stack = 0;
738
739 if (TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
740 || TYPE_CODE (arg_type) == TYPE_CODE_UNION)
741 {
742 /* Aggregates of any size are passed by reference. */
743 gdb_byte struct_addr[4];
744
745 store_unsigned_integer (struct_addr, 4, byte_order,
746 value_address (arg));
747 arg_bits = struct_addr;
748 arg_size = (code_model == MSP_LARGE_CODE_MODEL) ? 4 : 2;
749 }
750 else
751 {
752 /* Scalars bigger than 8 bytes such as complex doubles are passed
753 on the stack. */
754 if (arg_size > 8)
755 current_arg_on_stack = 1;
756 }
757
758
759 for (offset = 0; offset < arg_size; offset += 2)
760 {
761 /* The condition below prevents 8 byte scalars from being split
762 between registers and memory (stack). It also prevents other
763 splits once the stack has been written to. */
764 if (!current_arg_on_stack
765 && (arg_reg
766 + ((arg_size == 8 || args_on_stack)
767 ? ((arg_size - offset) / 2 - 1)
768 : 0) <= MSP430_R15_REGNUM))
769 {
770 int size = 2;
771
772 if (code_model == MSP_LARGE_CODE_MODEL
773 && TYPE_CODE (arg_type) == TYPE_CODE_PTR)
774 {
775 /* Pointer arguments using large memory model are passed
776 using entire register. */
777 if (offset != 0)
778 continue;
779 size = 4;
780 }
781
782 if (write_pass)
783 regcache_cooked_write_unsigned (regcache, arg_reg,
784 extract_unsigned_integer
785 (arg_bits + offset, size,
786 byte_order));
787
788 arg_reg++;
789 }
790 else
791 {
792 if (write_pass)
793 write_memory (sp + sp_off, arg_bits + offset, 2);
794
795 sp_off += 2;
796 args_on_stack = 1;
797 current_arg_on_stack = 1;
798 }
799 }
800 }
801 }
802
803 /* Keep track of the stack address prior to pushing the return address.
804 This is the value that we'll return. */
805 cfa = sp;
806
807 /* Push the return address. */
808 {
809 int sz = (gdbarch_tdep (gdbarch)->code_model == MSP_SMALL_CODE_MODEL)
810 ? 2 : 4;
811 sp = sp - sz;
812 write_memory_unsigned_integer (sp, sz, byte_order, bp_addr);
813 }
814
815 /* Update the stack pointer. */
816 regcache_cooked_write_unsigned (regcache, MSP430_SP_REGNUM, sp);
817
818 return cfa;
819 }
820
821 /* In order to keep code size small, the compiler may create epilogue
822 code through which more than one function epilogue is routed. I.e.
823 the epilogue and return may just be a branch to some common piece of
824 code which is responsible for tearing down the frame and performing
825 the return. These epilog (label) names will have the common prefix
826 defined here. */
827
828 static const char msp430_epilog_name_prefix[] = "__mspabi_func_epilog_";
829
830 /* Implement the "in_return_stub" gdbarch method. */
831
832 static int
833 msp430_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc,
834 const char *name)
835 {
836 return (name != NULL
837 && strncmp (msp430_epilog_name_prefix, name,
838 strlen (msp430_epilog_name_prefix)) == 0);
839 }
840
841 /* Implement the "skip_trampoline_code" gdbarch method. */
842 static CORE_ADDR
843 msp430_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
844 {
845 struct bound_minimal_symbol bms;
846 const char *stub_name;
847 struct gdbarch *gdbarch = get_frame_arch (frame);
848
849 bms = lookup_minimal_symbol_by_pc (pc);
850 if (!bms.minsym)
851 return pc;
852
853 stub_name = SYMBOL_LINKAGE_NAME (bms.minsym);
854
855 if (gdbarch_tdep (gdbarch)->code_model == MSP_SMALL_CODE_MODEL
856 && msp430_in_return_stub (gdbarch, pc, stub_name))
857 {
858 CORE_ADDR sp = get_frame_register_unsigned (frame, MSP430_SP_REGNUM);
859
860 return read_memory_integer
861 (sp + 2 * (stub_name[strlen (msp430_epilog_name_prefix)] - '0'),
862 2, gdbarch_byte_order (gdbarch));
863 }
864
865 return pc;
866 }
867
868 /* Allocate and initialize a gdbarch object. */
869
870 static struct gdbarch *
871 msp430_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
872 {
873 struct gdbarch *gdbarch;
874 struct gdbarch_tdep *tdep;
875 int elf_flags, isa, code_model;
876
877 /* Extract the elf_flags if available. */
878 if (info.abfd != NULL
879 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
880 elf_flags = elf_elfheader (info.abfd)->e_flags;
881 else
882 elf_flags = 0;
883
884 if (info.abfd != NULL)
885 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
886 OFBA_MSPABI_Tag_ISA))
887 {
888 case 1:
889 isa = MSP_ISA_MSP430;
890 code_model = MSP_SMALL_CODE_MODEL;
891 break;
892 case 2:
893 isa = MSP_ISA_MSP430X;
894 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
895 OFBA_MSPABI_Tag_Code_Model))
896 {
897 case 1:
898 code_model = MSP_SMALL_CODE_MODEL;
899 break;
900 case 2:
901 code_model = MSP_LARGE_CODE_MODEL;
902 break;
903 default:
904 internal_error (__FILE__, __LINE__,
905 _("Unknown msp430x code memory model"));
906 break;
907 }
908 break;
909 case 0:
910 /* This can happen when loading a previously dumped data structure.
911 Use the ISA and code model from the current architecture, provided
912 it's compatible. */
913 {
914 struct gdbarch *ca = get_current_arch ();
915 if (ca && gdbarch_bfd_arch_info (ca)->arch == bfd_arch_msp430)
916 {
917 struct gdbarch_tdep *ca_tdep = gdbarch_tdep (ca);
918
919 elf_flags = ca_tdep->elf_flags;
920 isa = ca_tdep->isa;
921 code_model = ca_tdep->code_model;
922 break;
923 }
924 /* Otherwise, fall through... */
925 }
926 default:
927 error (_("Unknown msp430 isa"));
928 break;
929 }
930 else
931 {
932 isa = MSP_ISA_MSP430;
933 code_model = MSP_SMALL_CODE_MODEL;
934 }
935
936
937 /* Try to find the architecture in the list of already defined
938 architectures. */
939 for (arches = gdbarch_list_lookup_by_info (arches, &info);
940 arches != NULL;
941 arches = gdbarch_list_lookup_by_info (arches->next, &info))
942 {
943 struct gdbarch_tdep *candidate_tdep = gdbarch_tdep (arches->gdbarch);
944
945 if (candidate_tdep->elf_flags != elf_flags
946 || candidate_tdep->isa != isa
947 || candidate_tdep->code_model != code_model)
948 continue;
949
950 return arches->gdbarch;
951 }
952
953 /* None found, create a new architecture from the information
954 provided. */
955 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
956 gdbarch = gdbarch_alloc (&info, tdep);
957 tdep->elf_flags = elf_flags;
958 tdep->isa = isa;
959 tdep->code_model = code_model;
960
961 /* Registers. */
962 set_gdbarch_num_regs (gdbarch, MSP430_NUM_REGS);
963 set_gdbarch_num_pseudo_regs (gdbarch, MSP430_NUM_PSEUDO_REGS);
964 set_gdbarch_register_name (gdbarch, msp430_register_name);
965 if (isa == MSP_ISA_MSP430)
966 set_gdbarch_register_type (gdbarch, msp430_register_type);
967 else
968 set_gdbarch_register_type (gdbarch, msp430x_register_type);
969 set_gdbarch_pc_regnum (gdbarch, MSP430_PC_REGNUM);
970 set_gdbarch_sp_regnum (gdbarch, MSP430_SP_REGNUM);
971 set_gdbarch_register_reggroup_p (gdbarch, msp430_register_reggroup_p);
972 set_gdbarch_pseudo_register_read (gdbarch, msp430_pseudo_register_read);
973 set_gdbarch_pseudo_register_write (gdbarch, msp430_pseudo_register_write);
974 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, msp430_dwarf2_reg_to_regnum);
975 set_gdbarch_register_sim_regno (gdbarch, msp430_register_sim_regno);
976
977 /* Data types. */
978 set_gdbarch_char_signed (gdbarch, 0);
979 set_gdbarch_short_bit (gdbarch, 16);
980 set_gdbarch_int_bit (gdbarch, 16);
981 set_gdbarch_long_bit (gdbarch, 32);
982 set_gdbarch_long_long_bit (gdbarch, 64);
983 if (code_model == MSP_SMALL_CODE_MODEL)
984 {
985 set_gdbarch_ptr_bit (gdbarch, 16);
986 set_gdbarch_addr_bit (gdbarch, 16);
987 }
988 else /* MSP_LARGE_CODE_MODEL */
989 {
990 set_gdbarch_ptr_bit (gdbarch, 32);
991 set_gdbarch_addr_bit (gdbarch, 32);
992 }
993 set_gdbarch_dwarf2_addr_size (gdbarch, 4);
994 set_gdbarch_float_bit (gdbarch, 32);
995 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
996 set_gdbarch_double_bit (gdbarch, 64);
997 set_gdbarch_long_double_bit (gdbarch, 64);
998 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
999 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1000
1001 /* Breakpoints. */
1002 set_gdbarch_breakpoint_from_pc (gdbarch, msp430_breakpoint_from_pc);
1003 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1004
1005 /* Disassembly. */
1006 set_gdbarch_print_insn (gdbarch, print_insn_msp430);
1007
1008 /* Frames, prologues, etc. */
1009 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1010 set_gdbarch_skip_prologue (gdbarch, msp430_skip_prologue);
1011 set_gdbarch_unwind_pc (gdbarch, msp430_unwind_pc);
1012 set_gdbarch_unwind_sp (gdbarch, msp430_unwind_sp);
1013 set_gdbarch_frame_align (gdbarch, msp430_frame_align);
1014 dwarf2_append_unwinders (gdbarch);
1015 frame_unwind_append_unwinder (gdbarch, &msp430_unwind);
1016
1017 /* Dummy frames, return values. */
1018 set_gdbarch_dummy_id (gdbarch, msp430_dummy_id);
1019 set_gdbarch_push_dummy_call (gdbarch, msp430_push_dummy_call);
1020 set_gdbarch_return_value (gdbarch, msp430_return_value);
1021
1022 /* Trampolines. */
1023 set_gdbarch_in_solib_return_trampoline (gdbarch, msp430_in_return_stub);
1024 set_gdbarch_skip_trampoline_code (gdbarch, msp430_skip_trampoline_code);
1025
1026 /* Virtual tables. */
1027 set_gdbarch_vbit_in_delta (gdbarch, 0);
1028
1029 return gdbarch;
1030 }
1031
1032 /* -Wmissing-prototypes */
1033 extern initialize_file_ftype _initialize_msp430_tdep;
1034
1035 /* Register the initialization routine. */
1036
1037 void
1038 _initialize_msp430_tdep (void)
1039 {
1040 register_gdbarch_init (bfd_arch_msp430, msp430_gdbarch_init);
1041 }
This page took 0.051416 seconds and 4 git commands to generate.