Use XCNEW gdbarch_tdep
[deliverable/binutils-gdb.git] / gdb / msp430-tdep.c
1 /* Target-dependent code for the Texas Instruments MSP430 for GDB, the
2 GNU debugger.
3
4 Copyright (C) 2012-2017 Free Software Foundation, Inc.
5
6 Contributed by Red Hat, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "arch-utils.h"
25 #include "prologue-value.h"
26 #include "target.h"
27 #include "regcache.h"
28 #include "dis-asm.h"
29 #include "gdbtypes.h"
30 #include "frame.h"
31 #include "frame-unwind.h"
32 #include "frame-base.h"
33 #include "value.h"
34 #include "gdbcore.h"
35 #include "dwarf2-frame.h"
36 #include "reggroups.h"
37
38 #include "elf/msp430.h"
39 #include "opcode/msp430-decode.h"
40 #include "elf-bfd.h"
41
42 /* Register Numbers. */
43
44 enum
45 {
46 MSP430_PC_RAW_REGNUM,
47 MSP430_SP_RAW_REGNUM,
48 MSP430_SR_RAW_REGNUM,
49 MSP430_CG_RAW_REGNUM,
50 MSP430_R4_RAW_REGNUM,
51 MSP430_R5_RAW_REGNUM,
52 MSP430_R6_RAW_REGNUM,
53 MSP430_R7_RAW_REGNUM,
54 MSP430_R8_RAW_REGNUM,
55 MSP430_R9_RAW_REGNUM,
56 MSP430_R10_RAW_REGNUM,
57 MSP430_R11_RAW_REGNUM,
58 MSP430_R12_RAW_REGNUM,
59 MSP430_R13_RAW_REGNUM,
60 MSP430_R14_RAW_REGNUM,
61 MSP430_R15_RAW_REGNUM,
62
63 MSP430_NUM_REGS,
64
65 MSP430_PC_REGNUM = MSP430_NUM_REGS,
66 MSP430_SP_REGNUM,
67 MSP430_SR_REGNUM,
68 MSP430_CG_REGNUM,
69 MSP430_R4_REGNUM,
70 MSP430_R5_REGNUM,
71 MSP430_R6_REGNUM,
72 MSP430_R7_REGNUM,
73 MSP430_R8_REGNUM,
74 MSP430_R9_REGNUM,
75 MSP430_R10_REGNUM,
76 MSP430_R11_REGNUM,
77 MSP430_R12_REGNUM,
78 MSP430_R13_REGNUM,
79 MSP430_R14_REGNUM,
80 MSP430_R15_REGNUM,
81
82 MSP430_NUM_TOTAL_REGS,
83 MSP430_NUM_PSEUDO_REGS = MSP430_NUM_TOTAL_REGS - MSP430_NUM_REGS
84 };
85
86 enum
87 {
88 /* TI MSP430 Architecture. */
89 MSP_ISA_MSP430,
90
91 /* TI MSP430X Architecture. */
92 MSP_ISA_MSP430X
93 };
94
95 enum
96 {
97 /* The small code model limits code addresses to 16 bits. */
98 MSP_SMALL_CODE_MODEL,
99
100 /* The large code model uses 20 bit addresses for function
101 pointers. These are stored in memory using four bytes (32 bits). */
102 MSP_LARGE_CODE_MODEL
103 };
104
105 /* Architecture specific data. */
106
107 struct gdbarch_tdep
108 {
109 /* The ELF header flags specify the multilib used. */
110 int elf_flags;
111
112 /* One of MSP_ISA_MSP430 or MSP_ISA_MSP430X. */
113 int isa;
114
115 /* One of MSP_SMALL_CODE_MODEL or MSP_LARGE_CODE_MODEL. If, at
116 some point, we support different data models too, we'll probably
117 structure things so that we can combine values using logical
118 "or". */
119 int code_model;
120 };
121
122 /* This structure holds the results of a prologue analysis. */
123
124 struct msp430_prologue
125 {
126 /* The offset from the frame base to the stack pointer --- always
127 zero or negative.
128
129 Calling this a "size" is a bit misleading, but given that the
130 stack grows downwards, using offsets for everything keeps one
131 from going completely sign-crazy: you never change anything's
132 sign for an ADD instruction; always change the second operand's
133 sign for a SUB instruction; and everything takes care of
134 itself. */
135 int frame_size;
136
137 /* Non-zero if this function has initialized the frame pointer from
138 the stack pointer, zero otherwise. */
139 int has_frame_ptr;
140
141 /* If has_frame_ptr is non-zero, this is the offset from the frame
142 base to where the frame pointer points. This is always zero or
143 negative. */
144 int frame_ptr_offset;
145
146 /* The address of the first instruction at which the frame has been
147 set up and the arguments are where the debug info says they are
148 --- as best as we can tell. */
149 CORE_ADDR prologue_end;
150
151 /* reg_offset[R] is the offset from the CFA at which register R is
152 saved, or 1 if register R has not been saved. (Real values are
153 always zero or negative.) */
154 int reg_offset[MSP430_NUM_TOTAL_REGS];
155 };
156
157 /* Implement the "register_type" gdbarch method. */
158
159 static struct type *
160 msp430_register_type (struct gdbarch *gdbarch, int reg_nr)
161 {
162 if (reg_nr < MSP430_NUM_REGS)
163 return builtin_type (gdbarch)->builtin_uint32;
164 else if (reg_nr == MSP430_PC_REGNUM)
165 return builtin_type (gdbarch)->builtin_func_ptr;
166 else
167 return builtin_type (gdbarch)->builtin_uint16;
168 }
169
170 /* Implement another version of the "register_type" gdbarch method
171 for msp430x. */
172
173 static struct type *
174 msp430x_register_type (struct gdbarch *gdbarch, int reg_nr)
175 {
176 if (reg_nr < MSP430_NUM_REGS)
177 return builtin_type (gdbarch)->builtin_uint32;
178 else if (reg_nr == MSP430_PC_REGNUM)
179 return builtin_type (gdbarch)->builtin_func_ptr;
180 else
181 return builtin_type (gdbarch)->builtin_uint32;
182 }
183
184 /* Implement the "register_name" gdbarch method. */
185
186 static const char *
187 msp430_register_name (struct gdbarch *gdbarch, int regnr)
188 {
189 static const char *const reg_names[] = {
190 /* Raw registers. */
191 "", "", "", "", "", "", "", "",
192 "", "", "", "", "", "", "", "",
193 /* Pseudo registers. */
194 "pc", "sp", "sr", "cg", "r4", "r5", "r6", "r7",
195 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
196 };
197
198 return reg_names[regnr];
199 }
200
201 /* Implement the "register_reggroup_p" gdbarch method. */
202
203 static int
204 msp430_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
205 struct reggroup *group)
206 {
207 if (group == all_reggroup)
208 return 1;
209
210 /* All other registers are saved and restored. */
211 if (group == save_reggroup || group == restore_reggroup)
212 return (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS);
213
214 return group == general_reggroup;
215 }
216
217 /* Implement the "pseudo_register_read" gdbarch method. */
218
219 static enum register_status
220 msp430_pseudo_register_read (struct gdbarch *gdbarch,
221 struct regcache *regcache,
222 int regnum, gdb_byte *buffer)
223 {
224 if (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS)
225 {
226 enum register_status status;
227 ULONGEST val;
228 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
229 int regsize = register_size (gdbarch, regnum);
230 int raw_regnum = regnum - MSP430_NUM_REGS;
231
232 status = regcache_raw_read_unsigned (regcache, raw_regnum, &val);
233 if (status == REG_VALID)
234 store_unsigned_integer (buffer, regsize, byte_order, val);
235
236 return status;
237 }
238 else
239 gdb_assert_not_reached ("invalid pseudo register number");
240 }
241
242 /* Implement the "pseudo_register_write" gdbarch method. */
243
244 static void
245 msp430_pseudo_register_write (struct gdbarch *gdbarch,
246 struct regcache *regcache,
247 int regnum, const gdb_byte *buffer)
248 {
249 if (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS)
250
251 {
252 ULONGEST val;
253 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
254 int regsize = register_size (gdbarch, regnum);
255 int raw_regnum = regnum - MSP430_NUM_REGS;
256
257 val = extract_unsigned_integer (buffer, regsize, byte_order);
258 regcache_raw_write_unsigned (regcache, raw_regnum, val);
259
260 }
261 else
262 gdb_assert_not_reached ("invalid pseudo register number");
263 }
264
265 /* Implement the `register_sim_regno' gdbarch method. */
266
267 static int
268 msp430_register_sim_regno (struct gdbarch *gdbarch, int regnum)
269 {
270 gdb_assert (regnum < MSP430_NUM_REGS);
271
272 /* So long as regnum is in [0, RL78_NUM_REGS), it's valid. We
273 just want to override the default here which disallows register
274 numbers which have no names. */
275 return regnum;
276 }
277
278 constexpr gdb_byte msp430_break_insn[] = { 0x43, 0x43 };
279
280 typedef BP_MANIPULATION (msp430_break_insn) msp430_breakpoint;
281
282 /* Define a "handle" struct for fetching the next opcode. */
283
284 struct msp430_get_opcode_byte_handle
285 {
286 CORE_ADDR pc;
287 };
288
289 /* Fetch a byte on behalf of the opcode decoder. HANDLE contains
290 the memory address of the next byte to fetch. If successful,
291 the address in the handle is updated and the byte fetched is
292 returned as the value of the function. If not successful, -1
293 is returned. */
294
295 static int
296 msp430_get_opcode_byte (void *handle)
297 {
298 struct msp430_get_opcode_byte_handle *opcdata
299 = (struct msp430_get_opcode_byte_handle *) handle;
300 int status;
301 gdb_byte byte;
302
303 status = target_read_memory (opcdata->pc, &byte, 1);
304 if (status == 0)
305 {
306 opcdata->pc += 1;
307 return byte;
308 }
309 else
310 return -1;
311 }
312
313 /* Function for finding saved registers in a 'struct pv_area'; this
314 function is passed to pv_area_scan.
315
316 If VALUE is a saved register, ADDR says it was saved at a constant
317 offset from the frame base, and SIZE indicates that the whole
318 register was saved, record its offset. */
319
320 static void
321 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
322 {
323 struct msp430_prologue *result = (struct msp430_prologue *) result_untyped;
324
325 if (value.kind == pvk_register
326 && value.k == 0
327 && pv_is_register (addr, MSP430_SP_REGNUM)
328 && size == register_size (target_gdbarch (), value.reg))
329 result->reg_offset[value.reg] = addr.k;
330 }
331
332 /* Analyze a prologue starting at START_PC, going no further than
333 LIMIT_PC. Fill in RESULT as appropriate. */
334
335 static void
336 msp430_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc,
337 CORE_ADDR limit_pc, struct msp430_prologue *result)
338 {
339 CORE_ADDR pc, next_pc;
340 int rn;
341 pv_t reg[MSP430_NUM_TOTAL_REGS];
342 struct pv_area *stack;
343 struct cleanup *back_to;
344 CORE_ADDR after_last_frame_setup_insn = start_pc;
345 int code_model = gdbarch_tdep (gdbarch)->code_model;
346 int sz;
347
348 memset (result, 0, sizeof (*result));
349
350 for (rn = 0; rn < MSP430_NUM_TOTAL_REGS; rn++)
351 {
352 reg[rn] = pv_register (rn, 0);
353 result->reg_offset[rn] = 1;
354 }
355
356 stack = make_pv_area (MSP430_SP_REGNUM, gdbarch_addr_bit (gdbarch));
357 back_to = make_cleanup_free_pv_area (stack);
358
359 /* The call instruction has saved the return address on the stack. */
360 sz = code_model == MSP_LARGE_CODE_MODEL ? 4 : 2;
361 reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], -sz);
362 pv_area_store (stack, reg[MSP430_SP_REGNUM], sz, reg[MSP430_PC_REGNUM]);
363
364 pc = start_pc;
365 while (pc < limit_pc)
366 {
367 int bytes_read;
368 struct msp430_get_opcode_byte_handle opcode_handle;
369 MSP430_Opcode_Decoded opc;
370
371 opcode_handle.pc = pc;
372 bytes_read = msp430_decode_opcode (pc, &opc, msp430_get_opcode_byte,
373 &opcode_handle);
374 next_pc = pc + bytes_read;
375
376 if (opc.id == MSO_push && opc.op[0].type == MSP430_Operand_Register)
377 {
378 int rsrc = opc.op[0].reg;
379
380 reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], -2);
381 pv_area_store (stack, reg[MSP430_SP_REGNUM], 2, reg[rsrc]);
382 after_last_frame_setup_insn = next_pc;
383 }
384 else if (opc.id == MSO_push /* PUSHM */
385 && opc.op[0].type == MSP430_Operand_None
386 && opc.op[1].type == MSP430_Operand_Register)
387 {
388 int rsrc = opc.op[1].reg;
389 int count = opc.repeats + 1;
390 int size = opc.size == 16 ? 2 : 4;
391
392 while (count > 0)
393 {
394 reg[MSP430_SP_REGNUM]
395 = pv_add_constant (reg[MSP430_SP_REGNUM], -size);
396 pv_area_store (stack, reg[MSP430_SP_REGNUM], size, reg[rsrc]);
397 rsrc--;
398 count--;
399 }
400 after_last_frame_setup_insn = next_pc;
401 }
402 else if (opc.id == MSO_sub
403 && opc.op[0].type == MSP430_Operand_Register
404 && opc.op[0].reg == MSR_SP
405 && opc.op[1].type == MSP430_Operand_Immediate)
406 {
407 int addend = opc.op[1].addend;
408
409 reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM],
410 -addend);
411 after_last_frame_setup_insn = next_pc;
412 }
413 else if (opc.id == MSO_mov
414 && opc.op[0].type == MSP430_Operand_Immediate
415 && 12 <= opc.op[0].reg && opc.op[0].reg <= 15)
416 after_last_frame_setup_insn = next_pc;
417 else
418 {
419 /* Terminate the prologue scan. */
420 break;
421 }
422
423 pc = next_pc;
424 }
425
426 /* Is the frame size (offset, really) a known constant? */
427 if (pv_is_register (reg[MSP430_SP_REGNUM], MSP430_SP_REGNUM))
428 result->frame_size = reg[MSP430_SP_REGNUM].k;
429
430 /* Record where all the registers were saved. */
431 pv_area_scan (stack, check_for_saved, result);
432
433 result->prologue_end = after_last_frame_setup_insn;
434
435 do_cleanups (back_to);
436 }
437
438 /* Implement the "skip_prologue" gdbarch method. */
439
440 static CORE_ADDR
441 msp430_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
442 {
443 const char *name;
444 CORE_ADDR func_addr, func_end;
445 struct msp430_prologue p;
446
447 /* Try to find the extent of the function that contains PC. */
448 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
449 return pc;
450
451 msp430_analyze_prologue (gdbarch, pc, func_end, &p);
452 return p.prologue_end;
453 }
454
455 /* Implement the "unwind_pc" gdbarch method. */
456
457 static CORE_ADDR
458 msp430_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
459 {
460 return frame_unwind_register_unsigned (next_frame, MSP430_PC_REGNUM);
461 }
462
463 /* Implement the "unwind_sp" gdbarch method. */
464
465 static CORE_ADDR
466 msp430_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
467 {
468 return frame_unwind_register_unsigned (next_frame, MSP430_SP_REGNUM);
469 }
470
471 /* Given a frame described by THIS_FRAME, decode the prologue of its
472 associated function if there is not cache entry as specified by
473 THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
474 return that struct as the value of this function. */
475
476 static struct msp430_prologue *
477 msp430_analyze_frame_prologue (struct frame_info *this_frame,
478 void **this_prologue_cache)
479 {
480 if (!*this_prologue_cache)
481 {
482 CORE_ADDR func_start, stop_addr;
483
484 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct msp430_prologue);
485
486 func_start = get_frame_func (this_frame);
487 stop_addr = get_frame_pc (this_frame);
488
489 /* If we couldn't find any function containing the PC, then
490 just initialize the prologue cache, but don't do anything. */
491 if (!func_start)
492 stop_addr = func_start;
493
494 msp430_analyze_prologue (get_frame_arch (this_frame), func_start,
495 stop_addr,
496 (struct msp430_prologue *) *this_prologue_cache);
497 }
498
499 return (struct msp430_prologue *) *this_prologue_cache;
500 }
501
502 /* Given a frame and a prologue cache, return this frame's base. */
503
504 static CORE_ADDR
505 msp430_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
506 {
507 struct msp430_prologue *p
508 = msp430_analyze_frame_prologue (this_frame, this_prologue_cache);
509 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MSP430_SP_REGNUM);
510
511 return sp - p->frame_size;
512 }
513
514 /* Implement the "frame_this_id" method for unwinding frames. */
515
516 static void
517 msp430_this_id (struct frame_info *this_frame,
518 void **this_prologue_cache, struct frame_id *this_id)
519 {
520 *this_id = frame_id_build (msp430_frame_base (this_frame,
521 this_prologue_cache),
522 get_frame_func (this_frame));
523 }
524
525 /* Implement the "frame_prev_register" method for unwinding frames. */
526
527 static struct value *
528 msp430_prev_register (struct frame_info *this_frame,
529 void **this_prologue_cache, int regnum)
530 {
531 struct msp430_prologue *p
532 = msp430_analyze_frame_prologue (this_frame, this_prologue_cache);
533 CORE_ADDR frame_base = msp430_frame_base (this_frame, this_prologue_cache);
534
535 if (regnum == MSP430_SP_REGNUM)
536 return frame_unwind_got_constant (this_frame, regnum, frame_base);
537
538 /* If prologue analysis says we saved this register somewhere,
539 return a description of the stack slot holding it. */
540 else if (p->reg_offset[regnum] != 1)
541 {
542 struct value *rv = frame_unwind_got_memory (this_frame, regnum,
543 frame_base +
544 p->reg_offset[regnum]);
545
546 if (regnum == MSP430_PC_REGNUM)
547 {
548 ULONGEST pc = value_as_long (rv);
549
550 return frame_unwind_got_constant (this_frame, regnum, pc);
551 }
552 return rv;
553 }
554
555 /* Otherwise, presume we haven't changed the value of this
556 register, and get it from the next frame. */
557 else
558 return frame_unwind_got_register (this_frame, regnum, regnum);
559 }
560
561 static const struct frame_unwind msp430_unwind = {
562 NORMAL_FRAME,
563 default_frame_unwind_stop_reason,
564 msp430_this_id,
565 msp430_prev_register,
566 NULL,
567 default_frame_sniffer
568 };
569
570 /* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
571
572 static int
573 msp430_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
574 {
575 if (reg >= 0 && reg < MSP430_NUM_REGS)
576 return reg + MSP430_NUM_REGS;
577 return -1;
578 }
579
580 /* Implement the "return_value" gdbarch method. */
581
582 static enum return_value_convention
583 msp430_return_value (struct gdbarch *gdbarch,
584 struct value *function,
585 struct type *valtype,
586 struct regcache *regcache,
587 gdb_byte *readbuf, const gdb_byte *writebuf)
588 {
589 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
590 LONGEST valtype_len = TYPE_LENGTH (valtype);
591 int code_model = gdbarch_tdep (gdbarch)->code_model;
592
593 if (TYPE_LENGTH (valtype) > 8
594 || TYPE_CODE (valtype) == TYPE_CODE_STRUCT
595 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
596 return RETURN_VALUE_STRUCT_CONVENTION;
597
598 if (readbuf)
599 {
600 ULONGEST u;
601 int argreg = MSP430_R12_REGNUM;
602 int offset = 0;
603
604 while (valtype_len > 0)
605 {
606 int size = 2;
607
608 if (code_model == MSP_LARGE_CODE_MODEL
609 && TYPE_CODE (valtype) == TYPE_CODE_PTR)
610 {
611 size = 4;
612 }
613
614 regcache_cooked_read_unsigned (regcache, argreg, &u);
615 store_unsigned_integer (readbuf + offset, size, byte_order, u);
616 valtype_len -= size;
617 offset += size;
618 argreg++;
619 }
620 }
621
622 if (writebuf)
623 {
624 ULONGEST u;
625 int argreg = MSP430_R12_REGNUM;
626 int offset = 0;
627
628 while (valtype_len > 0)
629 {
630 int size = 2;
631
632 if (code_model == MSP_LARGE_CODE_MODEL
633 && TYPE_CODE (valtype) == TYPE_CODE_PTR)
634 {
635 size = 4;
636 }
637
638 u = extract_unsigned_integer (writebuf + offset, size, byte_order);
639 regcache_cooked_write_unsigned (regcache, argreg, u);
640 valtype_len -= size;
641 offset += size;
642 argreg++;
643 }
644 }
645
646 return RETURN_VALUE_REGISTER_CONVENTION;
647 }
648
649
650 /* Implement the "frame_align" gdbarch method. */
651
652 static CORE_ADDR
653 msp430_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
654 {
655 return align_down (sp, 2);
656 }
657
658
659 /* Implement the "dummy_id" gdbarch method. */
660
661 static struct frame_id
662 msp430_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
663 {
664 return
665 frame_id_build (get_frame_register_unsigned
666 (this_frame, MSP430_SP_REGNUM),
667 get_frame_pc (this_frame));
668 }
669
670
671 /* Implement the "push_dummy_call" gdbarch method. */
672
673 static CORE_ADDR
674 msp430_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
675 struct regcache *regcache, CORE_ADDR bp_addr,
676 int nargs, struct value **args, CORE_ADDR sp,
677 int struct_return, CORE_ADDR struct_addr)
678 {
679 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
680 int write_pass;
681 int sp_off = 0;
682 CORE_ADDR cfa;
683 int code_model = gdbarch_tdep (gdbarch)->code_model;
684
685 struct type *func_type = value_type (function);
686
687 /* Dereference function pointer types. */
688 while (TYPE_CODE (func_type) == TYPE_CODE_PTR)
689 func_type = TYPE_TARGET_TYPE (func_type);
690
691 /* The end result had better be a function or a method. */
692 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
693 || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
694
695 /* We make two passes; the first does the stack allocation,
696 the second actually stores the arguments. */
697 for (write_pass = 0; write_pass <= 1; write_pass++)
698 {
699 int i;
700 int arg_reg = MSP430_R12_REGNUM;
701 int args_on_stack = 0;
702
703 if (write_pass)
704 sp = align_down (sp - sp_off, 4);
705 sp_off = 0;
706
707 if (struct_return)
708 {
709 if (write_pass)
710 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
711 arg_reg++;
712 }
713
714 /* Push the arguments. */
715 for (i = 0; i < nargs; i++)
716 {
717 struct value *arg = args[i];
718 const gdb_byte *arg_bits = value_contents_all (arg);
719 struct type *arg_type = check_typedef (value_type (arg));
720 ULONGEST arg_size = TYPE_LENGTH (arg_type);
721 int offset;
722 int current_arg_on_stack;
723
724 current_arg_on_stack = 0;
725
726 if (TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
727 || TYPE_CODE (arg_type) == TYPE_CODE_UNION)
728 {
729 /* Aggregates of any size are passed by reference. */
730 gdb_byte struct_addr[4];
731
732 store_unsigned_integer (struct_addr, 4, byte_order,
733 value_address (arg));
734 arg_bits = struct_addr;
735 arg_size = (code_model == MSP_LARGE_CODE_MODEL) ? 4 : 2;
736 }
737 else
738 {
739 /* Scalars bigger than 8 bytes such as complex doubles are passed
740 on the stack. */
741 if (arg_size > 8)
742 current_arg_on_stack = 1;
743 }
744
745
746 for (offset = 0; offset < arg_size; offset += 2)
747 {
748 /* The condition below prevents 8 byte scalars from being split
749 between registers and memory (stack). It also prevents other
750 splits once the stack has been written to. */
751 if (!current_arg_on_stack
752 && (arg_reg
753 + ((arg_size == 8 || args_on_stack)
754 ? ((arg_size - offset) / 2 - 1)
755 : 0) <= MSP430_R15_REGNUM))
756 {
757 int size = 2;
758
759 if (code_model == MSP_LARGE_CODE_MODEL
760 && (TYPE_CODE (arg_type) == TYPE_CODE_PTR
761 || TYPE_IS_REFERENCE (arg_type)
762 || TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
763 || TYPE_CODE (arg_type) == TYPE_CODE_UNION))
764 {
765 /* When using the large memory model, pointer,
766 reference, struct, and union arguments are
767 passed using the entire register. (As noted
768 earlier, aggregates are always passed by
769 reference.) */
770 if (offset != 0)
771 continue;
772 size = 4;
773 }
774
775 if (write_pass)
776 regcache_cooked_write_unsigned (regcache, arg_reg,
777 extract_unsigned_integer
778 (arg_bits + offset, size,
779 byte_order));
780
781 arg_reg++;
782 }
783 else
784 {
785 if (write_pass)
786 write_memory (sp + sp_off, arg_bits + offset, 2);
787
788 sp_off += 2;
789 args_on_stack = 1;
790 current_arg_on_stack = 1;
791 }
792 }
793 }
794 }
795
796 /* Keep track of the stack address prior to pushing the return address.
797 This is the value that we'll return. */
798 cfa = sp;
799
800 /* Push the return address. */
801 {
802 int sz = (gdbarch_tdep (gdbarch)->code_model == MSP_SMALL_CODE_MODEL)
803 ? 2 : 4;
804 sp = sp - sz;
805 write_memory_unsigned_integer (sp, sz, byte_order, bp_addr);
806 }
807
808 /* Update the stack pointer. */
809 regcache_cooked_write_unsigned (regcache, MSP430_SP_REGNUM, sp);
810
811 return cfa;
812 }
813
814 /* In order to keep code size small, the compiler may create epilogue
815 code through which more than one function epilogue is routed. I.e.
816 the epilogue and return may just be a branch to some common piece of
817 code which is responsible for tearing down the frame and performing
818 the return. These epilog (label) names will have the common prefix
819 defined here. */
820
821 static const char msp430_epilog_name_prefix[] = "__mspabi_func_epilog_";
822
823 /* Implement the "in_return_stub" gdbarch method. */
824
825 static int
826 msp430_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc,
827 const char *name)
828 {
829 return (name != NULL
830 && startswith (name, msp430_epilog_name_prefix));
831 }
832
833 /* Implement the "skip_trampoline_code" gdbarch method. */
834 static CORE_ADDR
835 msp430_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
836 {
837 struct bound_minimal_symbol bms;
838 const char *stub_name;
839 struct gdbarch *gdbarch = get_frame_arch (frame);
840
841 bms = lookup_minimal_symbol_by_pc (pc);
842 if (!bms.minsym)
843 return pc;
844
845 stub_name = MSYMBOL_LINKAGE_NAME (bms.minsym);
846
847 if (gdbarch_tdep (gdbarch)->code_model == MSP_SMALL_CODE_MODEL
848 && msp430_in_return_stub (gdbarch, pc, stub_name))
849 {
850 CORE_ADDR sp = get_frame_register_unsigned (frame, MSP430_SP_REGNUM);
851
852 return read_memory_integer
853 (sp + 2 * (stub_name[strlen (msp430_epilog_name_prefix)] - '0'),
854 2, gdbarch_byte_order (gdbarch));
855 }
856
857 return pc;
858 }
859
860 /* Allocate and initialize a gdbarch object. */
861
862 static struct gdbarch *
863 msp430_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
864 {
865 struct gdbarch *gdbarch;
866 struct gdbarch_tdep *tdep;
867 int elf_flags, isa, code_model;
868
869 /* Extract the elf_flags if available. */
870 if (info.abfd != NULL
871 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
872 elf_flags = elf_elfheader (info.abfd)->e_flags;
873 else
874 elf_flags = 0;
875
876 if (info.abfd != NULL)
877 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
878 OFBA_MSPABI_Tag_ISA))
879 {
880 case 1:
881 isa = MSP_ISA_MSP430;
882 code_model = MSP_SMALL_CODE_MODEL;
883 break;
884 case 2:
885 isa = MSP_ISA_MSP430X;
886 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
887 OFBA_MSPABI_Tag_Code_Model))
888 {
889 case 1:
890 code_model = MSP_SMALL_CODE_MODEL;
891 break;
892 case 2:
893 code_model = MSP_LARGE_CODE_MODEL;
894 break;
895 default:
896 internal_error (__FILE__, __LINE__,
897 _("Unknown msp430x code memory model"));
898 break;
899 }
900 break;
901 case 0:
902 /* This can happen when loading a previously dumped data structure.
903 Use the ISA and code model from the current architecture, provided
904 it's compatible. */
905 {
906 struct gdbarch *ca = get_current_arch ();
907 if (ca && gdbarch_bfd_arch_info (ca)->arch == bfd_arch_msp430)
908 {
909 struct gdbarch_tdep *ca_tdep = gdbarch_tdep (ca);
910
911 elf_flags = ca_tdep->elf_flags;
912 isa = ca_tdep->isa;
913 code_model = ca_tdep->code_model;
914 break;
915 }
916 /* Otherwise, fall through... */
917 }
918 default:
919 error (_("Unknown msp430 isa"));
920 break;
921 }
922 else
923 {
924 isa = MSP_ISA_MSP430;
925 code_model = MSP_SMALL_CODE_MODEL;
926 }
927
928
929 /* Try to find the architecture in the list of already defined
930 architectures. */
931 for (arches = gdbarch_list_lookup_by_info (arches, &info);
932 arches != NULL;
933 arches = gdbarch_list_lookup_by_info (arches->next, &info))
934 {
935 struct gdbarch_tdep *candidate_tdep = gdbarch_tdep (arches->gdbarch);
936
937 if (candidate_tdep->elf_flags != elf_flags
938 || candidate_tdep->isa != isa
939 || candidate_tdep->code_model != code_model)
940 continue;
941
942 return arches->gdbarch;
943 }
944
945 /* None found, create a new architecture from the information
946 provided. */
947 tdep = XCNEW (struct gdbarch_tdep);
948 gdbarch = gdbarch_alloc (&info, tdep);
949 tdep->elf_flags = elf_flags;
950 tdep->isa = isa;
951 tdep->code_model = code_model;
952
953 /* Registers. */
954 set_gdbarch_num_regs (gdbarch, MSP430_NUM_REGS);
955 set_gdbarch_num_pseudo_regs (gdbarch, MSP430_NUM_PSEUDO_REGS);
956 set_gdbarch_register_name (gdbarch, msp430_register_name);
957 if (isa == MSP_ISA_MSP430)
958 set_gdbarch_register_type (gdbarch, msp430_register_type);
959 else
960 set_gdbarch_register_type (gdbarch, msp430x_register_type);
961 set_gdbarch_pc_regnum (gdbarch, MSP430_PC_REGNUM);
962 set_gdbarch_sp_regnum (gdbarch, MSP430_SP_REGNUM);
963 set_gdbarch_register_reggroup_p (gdbarch, msp430_register_reggroup_p);
964 set_gdbarch_pseudo_register_read (gdbarch, msp430_pseudo_register_read);
965 set_gdbarch_pseudo_register_write (gdbarch, msp430_pseudo_register_write);
966 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, msp430_dwarf2_reg_to_regnum);
967 set_gdbarch_register_sim_regno (gdbarch, msp430_register_sim_regno);
968
969 /* Data types. */
970 set_gdbarch_char_signed (gdbarch, 0);
971 set_gdbarch_short_bit (gdbarch, 16);
972 set_gdbarch_int_bit (gdbarch, 16);
973 set_gdbarch_long_bit (gdbarch, 32);
974 set_gdbarch_long_long_bit (gdbarch, 64);
975 if (code_model == MSP_SMALL_CODE_MODEL)
976 {
977 set_gdbarch_ptr_bit (gdbarch, 16);
978 set_gdbarch_addr_bit (gdbarch, 16);
979 }
980 else /* MSP_LARGE_CODE_MODEL */
981 {
982 set_gdbarch_ptr_bit (gdbarch, 32);
983 set_gdbarch_addr_bit (gdbarch, 32);
984 }
985 set_gdbarch_dwarf2_addr_size (gdbarch, 4);
986 set_gdbarch_float_bit (gdbarch, 32);
987 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
988 set_gdbarch_double_bit (gdbarch, 64);
989 set_gdbarch_long_double_bit (gdbarch, 64);
990 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
991 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
992
993 /* Breakpoints. */
994 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
995 msp430_breakpoint::kind_from_pc);
996 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
997 msp430_breakpoint::bp_from_kind);
998 set_gdbarch_decr_pc_after_break (gdbarch, 1);
999
1000 /* Frames, prologues, etc. */
1001 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1002 set_gdbarch_skip_prologue (gdbarch, msp430_skip_prologue);
1003 set_gdbarch_unwind_pc (gdbarch, msp430_unwind_pc);
1004 set_gdbarch_unwind_sp (gdbarch, msp430_unwind_sp);
1005 set_gdbarch_frame_align (gdbarch, msp430_frame_align);
1006 dwarf2_append_unwinders (gdbarch);
1007 frame_unwind_append_unwinder (gdbarch, &msp430_unwind);
1008
1009 /* Dummy frames, return values. */
1010 set_gdbarch_dummy_id (gdbarch, msp430_dummy_id);
1011 set_gdbarch_push_dummy_call (gdbarch, msp430_push_dummy_call);
1012 set_gdbarch_return_value (gdbarch, msp430_return_value);
1013
1014 /* Trampolines. */
1015 set_gdbarch_in_solib_return_trampoline (gdbarch, msp430_in_return_stub);
1016 set_gdbarch_skip_trampoline_code (gdbarch, msp430_skip_trampoline_code);
1017
1018 /* Virtual tables. */
1019 set_gdbarch_vbit_in_delta (gdbarch, 0);
1020
1021 return gdbarch;
1022 }
1023
1024 /* -Wmissing-prototypes */
1025 extern initialize_file_ftype _initialize_msp430_tdep;
1026
1027 /* Register the initialization routine. */
1028
1029 void
1030 _initialize_msp430_tdep (void)
1031 {
1032 register_gdbarch_init (bfd_arch_msp430, msp430_gdbarch_init);
1033 }
This page took 0.058565 seconds and 4 git commands to generate.