1 /* Target-dependent code for the Texas Instruments MSP430 for GDB, the
4 Copyright (C) 2012-2016 Free Software Foundation, Inc.
6 Contributed by Red Hat, Inc.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "arch-utils.h"
25 #include "prologue-value.h"
31 #include "frame-unwind.h"
32 #include "frame-base.h"
35 #include "dwarf2-frame.h"
36 #include "reggroups.h"
38 #include "elf/msp430.h"
39 #include "opcode/msp430-decode.h"
42 /* Register Numbers. */
56 MSP430_R10_RAW_REGNUM
,
57 MSP430_R11_RAW_REGNUM
,
58 MSP430_R12_RAW_REGNUM
,
59 MSP430_R13_RAW_REGNUM
,
60 MSP430_R14_RAW_REGNUM
,
61 MSP430_R15_RAW_REGNUM
,
65 MSP430_PC_REGNUM
= MSP430_NUM_REGS
,
82 MSP430_NUM_TOTAL_REGS
,
83 MSP430_NUM_PSEUDO_REGS
= MSP430_NUM_TOTAL_REGS
- MSP430_NUM_REGS
88 /* TI MSP430 Architecture. */
91 /* TI MSP430X Architecture. */
97 /* The small code model limits code addresses to 16 bits. */
100 /* The large code model uses 20 bit addresses for function
101 pointers. These are stored in memory using four bytes (32 bits). */
105 /* Architecture specific data. */
109 /* The ELF header flags specify the multilib used. */
112 /* One of MSP_ISA_MSP430 or MSP_ISA_MSP430X. */
115 /* One of MSP_SMALL_CODE_MODEL or MSP_LARGE_CODE_MODEL. If, at
116 some point, we support different data models too, we'll probably
117 structure things so that we can combine values using logical
122 /* This structure holds the results of a prologue analysis. */
124 struct msp430_prologue
126 /* The offset from the frame base to the stack pointer --- always
129 Calling this a "size" is a bit misleading, but given that the
130 stack grows downwards, using offsets for everything keeps one
131 from going completely sign-crazy: you never change anything's
132 sign for an ADD instruction; always change the second operand's
133 sign for a SUB instruction; and everything takes care of
137 /* Non-zero if this function has initialized the frame pointer from
138 the stack pointer, zero otherwise. */
141 /* If has_frame_ptr is non-zero, this is the offset from the frame
142 base to where the frame pointer points. This is always zero or
144 int frame_ptr_offset
;
146 /* The address of the first instruction at which the frame has been
147 set up and the arguments are where the debug info says they are
148 --- as best as we can tell. */
149 CORE_ADDR prologue_end
;
151 /* reg_offset[R] is the offset from the CFA at which register R is
152 saved, or 1 if register R has not been saved. (Real values are
153 always zero or negative.) */
154 int reg_offset
[MSP430_NUM_TOTAL_REGS
];
157 /* Implement the "register_type" gdbarch method. */
160 msp430_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
162 if (reg_nr
< MSP430_NUM_REGS
)
163 return builtin_type (gdbarch
)->builtin_uint32
;
164 else if (reg_nr
== MSP430_PC_REGNUM
)
165 return builtin_type (gdbarch
)->builtin_func_ptr
;
167 return builtin_type (gdbarch
)->builtin_uint16
;
170 /* Implement another version of the "register_type" gdbarch method
174 msp430x_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
176 if (reg_nr
< MSP430_NUM_REGS
)
177 return builtin_type (gdbarch
)->builtin_uint32
;
178 else if (reg_nr
== MSP430_PC_REGNUM
)
179 return builtin_type (gdbarch
)->builtin_func_ptr
;
181 return builtin_type (gdbarch
)->builtin_uint32
;
184 /* Implement the "register_name" gdbarch method. */
187 msp430_register_name (struct gdbarch
*gdbarch
, int regnr
)
189 static const char *const reg_names
[] = {
191 "", "", "", "", "", "", "", "",
192 "", "", "", "", "", "", "", "",
193 /* Pseudo registers. */
194 "pc", "sp", "sr", "cg", "r4", "r5", "r6", "r7",
195 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
198 return reg_names
[regnr
];
201 /* Implement the "register_reggroup_p" gdbarch method. */
204 msp430_register_reggroup_p (struct gdbarch
*gdbarch
, int regnum
,
205 struct reggroup
*group
)
207 if (group
== all_reggroup
)
210 /* All other registers are saved and restored. */
211 if (group
== save_reggroup
|| group
== restore_reggroup
)
212 return (MSP430_NUM_REGS
<= regnum
&& regnum
< MSP430_NUM_TOTAL_REGS
);
214 return group
== general_reggroup
;
217 /* Implement the "pseudo_register_read" gdbarch method. */
219 static enum register_status
220 msp430_pseudo_register_read (struct gdbarch
*gdbarch
,
221 struct regcache
*regcache
,
222 int regnum
, gdb_byte
*buffer
)
224 enum register_status status
= REG_UNKNOWN
;
226 if (MSP430_NUM_REGS
<= regnum
&& regnum
< MSP430_NUM_TOTAL_REGS
)
229 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
230 int regsize
= register_size (gdbarch
, regnum
);
231 int raw_regnum
= regnum
- MSP430_NUM_REGS
;
233 status
= regcache_raw_read_unsigned (regcache
, raw_regnum
, &val
);
234 if (status
== REG_VALID
)
235 store_unsigned_integer (buffer
, regsize
, byte_order
, val
);
239 gdb_assert_not_reached ("invalid pseudo register number");
244 /* Implement the "pseudo_register_write" gdbarch method. */
247 msp430_pseudo_register_write (struct gdbarch
*gdbarch
,
248 struct regcache
*regcache
,
249 int regnum
, const gdb_byte
*buffer
)
251 if (MSP430_NUM_REGS
<= regnum
&& regnum
< MSP430_NUM_TOTAL_REGS
)
255 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
256 int regsize
= register_size (gdbarch
, regnum
);
257 int raw_regnum
= regnum
- MSP430_NUM_REGS
;
259 val
= extract_unsigned_integer (buffer
, regsize
, byte_order
);
260 regcache_raw_write_unsigned (regcache
, raw_regnum
, val
);
264 gdb_assert_not_reached ("invalid pseudo register number");
267 /* Implement the `register_sim_regno' gdbarch method. */
270 msp430_register_sim_regno (struct gdbarch
*gdbarch
, int regnum
)
272 gdb_assert (regnum
< MSP430_NUM_REGS
);
274 /* So long as regnum is in [0, RL78_NUM_REGS), it's valid. We
275 just want to override the default here which disallows register
276 numbers which have no names. */
280 constexpr gdb_byte msp430_break_insn
[] = { 0x43, 0x43 };
282 typedef BP_MANIPULATION (msp430_break_insn
) msp430_breakpoint
;
284 /* Define a "handle" struct for fetching the next opcode. */
286 struct msp430_get_opcode_byte_handle
291 /* Fetch a byte on behalf of the opcode decoder. HANDLE contains
292 the memory address of the next byte to fetch. If successful,
293 the address in the handle is updated and the byte fetched is
294 returned as the value of the function. If not successful, -1
298 msp430_get_opcode_byte (void *handle
)
300 struct msp430_get_opcode_byte_handle
*opcdata
301 = (struct msp430_get_opcode_byte_handle
*) handle
;
305 status
= target_read_memory (opcdata
->pc
, &byte
, 1);
315 /* Function for finding saved registers in a 'struct pv_area'; this
316 function is passed to pv_area_scan.
318 If VALUE is a saved register, ADDR says it was saved at a constant
319 offset from the frame base, and SIZE indicates that the whole
320 register was saved, record its offset. */
323 check_for_saved (void *result_untyped
, pv_t addr
, CORE_ADDR size
, pv_t value
)
325 struct msp430_prologue
*result
= (struct msp430_prologue
*) result_untyped
;
327 if (value
.kind
== pvk_register
329 && pv_is_register (addr
, MSP430_SP_REGNUM
)
330 && size
== register_size (target_gdbarch (), value
.reg
))
331 result
->reg_offset
[value
.reg
] = addr
.k
;
334 /* Analyze a prologue starting at START_PC, going no further than
335 LIMIT_PC. Fill in RESULT as appropriate. */
338 msp430_analyze_prologue (struct gdbarch
*gdbarch
, CORE_ADDR start_pc
,
339 CORE_ADDR limit_pc
, struct msp430_prologue
*result
)
341 CORE_ADDR pc
, next_pc
;
343 pv_t reg
[MSP430_NUM_TOTAL_REGS
];
344 struct pv_area
*stack
;
345 struct cleanup
*back_to
;
346 CORE_ADDR after_last_frame_setup_insn
= start_pc
;
347 int code_model
= gdbarch_tdep (gdbarch
)->code_model
;
350 memset (result
, 0, sizeof (*result
));
352 for (rn
= 0; rn
< MSP430_NUM_TOTAL_REGS
; rn
++)
354 reg
[rn
] = pv_register (rn
, 0);
355 result
->reg_offset
[rn
] = 1;
358 stack
= make_pv_area (MSP430_SP_REGNUM
, gdbarch_addr_bit (gdbarch
));
359 back_to
= make_cleanup_free_pv_area (stack
);
361 /* The call instruction has saved the return address on the stack. */
362 sz
= code_model
== MSP_LARGE_CODE_MODEL
? 4 : 2;
363 reg
[MSP430_SP_REGNUM
] = pv_add_constant (reg
[MSP430_SP_REGNUM
], -sz
);
364 pv_area_store (stack
, reg
[MSP430_SP_REGNUM
], sz
, reg
[MSP430_PC_REGNUM
]);
367 while (pc
< limit_pc
)
370 struct msp430_get_opcode_byte_handle opcode_handle
;
371 MSP430_Opcode_Decoded opc
;
373 opcode_handle
.pc
= pc
;
374 bytes_read
= msp430_decode_opcode (pc
, &opc
, msp430_get_opcode_byte
,
376 next_pc
= pc
+ bytes_read
;
378 if (opc
.id
== MSO_push
&& opc
.op
[0].type
== MSP430_Operand_Register
)
380 int rsrc
= opc
.op
[0].reg
;
382 reg
[MSP430_SP_REGNUM
] = pv_add_constant (reg
[MSP430_SP_REGNUM
], -2);
383 pv_area_store (stack
, reg
[MSP430_SP_REGNUM
], 2, reg
[rsrc
]);
384 after_last_frame_setup_insn
= next_pc
;
386 else if (opc
.id
== MSO_push
/* PUSHM */
387 && opc
.op
[0].type
== MSP430_Operand_None
388 && opc
.op
[1].type
== MSP430_Operand_Register
)
390 int rsrc
= opc
.op
[1].reg
;
391 int count
= opc
.repeats
+ 1;
392 int size
= opc
.size
== 16 ? 2 : 4;
396 reg
[MSP430_SP_REGNUM
]
397 = pv_add_constant (reg
[MSP430_SP_REGNUM
], -size
);
398 pv_area_store (stack
, reg
[MSP430_SP_REGNUM
], size
, reg
[rsrc
]);
402 after_last_frame_setup_insn
= next_pc
;
404 else if (opc
.id
== MSO_sub
405 && opc
.op
[0].type
== MSP430_Operand_Register
406 && opc
.op
[0].reg
== MSR_SP
407 && opc
.op
[1].type
== MSP430_Operand_Immediate
)
409 int addend
= opc
.op
[1].addend
;
411 reg
[MSP430_SP_REGNUM
] = pv_add_constant (reg
[MSP430_SP_REGNUM
],
413 after_last_frame_setup_insn
= next_pc
;
415 else if (opc
.id
== MSO_mov
416 && opc
.op
[0].type
== MSP430_Operand_Immediate
417 && 12 <= opc
.op
[0].reg
&& opc
.op
[0].reg
<= 15)
418 after_last_frame_setup_insn
= next_pc
;
421 /* Terminate the prologue scan. */
428 /* Is the frame size (offset, really) a known constant? */
429 if (pv_is_register (reg
[MSP430_SP_REGNUM
], MSP430_SP_REGNUM
))
430 result
->frame_size
= reg
[MSP430_SP_REGNUM
].k
;
432 /* Record where all the registers were saved. */
433 pv_area_scan (stack
, check_for_saved
, result
);
435 result
->prologue_end
= after_last_frame_setup_insn
;
437 do_cleanups (back_to
);
440 /* Implement the "skip_prologue" gdbarch method. */
443 msp430_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
446 CORE_ADDR func_addr
, func_end
;
447 struct msp430_prologue p
;
449 /* Try to find the extent of the function that contains PC. */
450 if (!find_pc_partial_function (pc
, &name
, &func_addr
, &func_end
))
453 msp430_analyze_prologue (gdbarch
, pc
, func_end
, &p
);
454 return p
.prologue_end
;
457 /* Implement the "unwind_pc" gdbarch method. */
460 msp430_unwind_pc (struct gdbarch
*arch
, struct frame_info
*next_frame
)
462 return frame_unwind_register_unsigned (next_frame
, MSP430_PC_REGNUM
);
465 /* Implement the "unwind_sp" gdbarch method. */
468 msp430_unwind_sp (struct gdbarch
*arch
, struct frame_info
*next_frame
)
470 return frame_unwind_register_unsigned (next_frame
, MSP430_SP_REGNUM
);
473 /* Given a frame described by THIS_FRAME, decode the prologue of its
474 associated function if there is not cache entry as specified by
475 THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
476 return that struct as the value of this function. */
478 static struct msp430_prologue
*
479 msp430_analyze_frame_prologue (struct frame_info
*this_frame
,
480 void **this_prologue_cache
)
482 if (!*this_prologue_cache
)
484 CORE_ADDR func_start
, stop_addr
;
486 *this_prologue_cache
= FRAME_OBSTACK_ZALLOC (struct msp430_prologue
);
488 func_start
= get_frame_func (this_frame
);
489 stop_addr
= get_frame_pc (this_frame
);
491 /* If we couldn't find any function containing the PC, then
492 just initialize the prologue cache, but don't do anything. */
494 stop_addr
= func_start
;
496 msp430_analyze_prologue (get_frame_arch (this_frame
), func_start
,
498 (struct msp430_prologue
*) *this_prologue_cache
);
501 return (struct msp430_prologue
*) *this_prologue_cache
;
504 /* Given a frame and a prologue cache, return this frame's base. */
507 msp430_frame_base (struct frame_info
*this_frame
, void **this_prologue_cache
)
509 struct msp430_prologue
*p
510 = msp430_analyze_frame_prologue (this_frame
, this_prologue_cache
);
511 CORE_ADDR sp
= get_frame_register_unsigned (this_frame
, MSP430_SP_REGNUM
);
513 return sp
- p
->frame_size
;
516 /* Implement the "frame_this_id" method for unwinding frames. */
519 msp430_this_id (struct frame_info
*this_frame
,
520 void **this_prologue_cache
, struct frame_id
*this_id
)
522 *this_id
= frame_id_build (msp430_frame_base (this_frame
,
523 this_prologue_cache
),
524 get_frame_func (this_frame
));
527 /* Implement the "frame_prev_register" method for unwinding frames. */
529 static struct value
*
530 msp430_prev_register (struct frame_info
*this_frame
,
531 void **this_prologue_cache
, int regnum
)
533 struct msp430_prologue
*p
534 = msp430_analyze_frame_prologue (this_frame
, this_prologue_cache
);
535 CORE_ADDR frame_base
= msp430_frame_base (this_frame
, this_prologue_cache
);
537 if (regnum
== MSP430_SP_REGNUM
)
538 return frame_unwind_got_constant (this_frame
, regnum
, frame_base
);
540 /* If prologue analysis says we saved this register somewhere,
541 return a description of the stack slot holding it. */
542 else if (p
->reg_offset
[regnum
] != 1)
544 struct value
*rv
= frame_unwind_got_memory (this_frame
, regnum
,
546 p
->reg_offset
[regnum
]);
548 if (regnum
== MSP430_PC_REGNUM
)
550 ULONGEST pc
= value_as_long (rv
);
552 return frame_unwind_got_constant (this_frame
, regnum
, pc
);
557 /* Otherwise, presume we haven't changed the value of this
558 register, and get it from the next frame. */
560 return frame_unwind_got_register (this_frame
, regnum
, regnum
);
563 static const struct frame_unwind msp430_unwind
= {
565 default_frame_unwind_stop_reason
,
567 msp430_prev_register
,
569 default_frame_sniffer
572 /* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
575 msp430_dwarf2_reg_to_regnum (struct gdbarch
*gdbarch
, int reg
)
577 if (reg
>= 0 && reg
< MSP430_NUM_REGS
)
578 return reg
+ MSP430_NUM_REGS
;
582 /* Implement the "return_value" gdbarch method. */
584 static enum return_value_convention
585 msp430_return_value (struct gdbarch
*gdbarch
,
586 struct value
*function
,
587 struct type
*valtype
,
588 struct regcache
*regcache
,
589 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
591 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
592 LONGEST valtype_len
= TYPE_LENGTH (valtype
);
593 int code_model
= gdbarch_tdep (gdbarch
)->code_model
;
595 if (TYPE_LENGTH (valtype
) > 8
596 || TYPE_CODE (valtype
) == TYPE_CODE_STRUCT
597 || TYPE_CODE (valtype
) == TYPE_CODE_UNION
)
598 return RETURN_VALUE_STRUCT_CONVENTION
;
603 int argreg
= MSP430_R12_REGNUM
;
606 while (valtype_len
> 0)
610 if (code_model
== MSP_LARGE_CODE_MODEL
611 && TYPE_CODE (valtype
) == TYPE_CODE_PTR
)
616 regcache_cooked_read_unsigned (regcache
, argreg
, &u
);
617 store_unsigned_integer (readbuf
+ offset
, size
, byte_order
, u
);
627 int argreg
= MSP430_R12_REGNUM
;
630 while (valtype_len
> 0)
634 if (code_model
== MSP_LARGE_CODE_MODEL
635 && TYPE_CODE (valtype
) == TYPE_CODE_PTR
)
640 u
= extract_unsigned_integer (writebuf
+ offset
, size
, byte_order
);
641 regcache_cooked_write_unsigned (regcache
, argreg
, u
);
648 return RETURN_VALUE_REGISTER_CONVENTION
;
652 /* Implement the "frame_align" gdbarch method. */
655 msp430_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR sp
)
657 return align_down (sp
, 2);
661 /* Implement the "dummy_id" gdbarch method. */
663 static struct frame_id
664 msp430_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
667 frame_id_build (get_frame_register_unsigned
668 (this_frame
, MSP430_SP_REGNUM
),
669 get_frame_pc (this_frame
));
673 /* Implement the "push_dummy_call" gdbarch method. */
676 msp430_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
677 struct regcache
*regcache
, CORE_ADDR bp_addr
,
678 int nargs
, struct value
**args
, CORE_ADDR sp
,
679 int struct_return
, CORE_ADDR struct_addr
)
681 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
685 int code_model
= gdbarch_tdep (gdbarch
)->code_model
;
687 struct type
*func_type
= value_type (function
);
689 /* Dereference function pointer types. */
690 while (TYPE_CODE (func_type
) == TYPE_CODE_PTR
)
691 func_type
= TYPE_TARGET_TYPE (func_type
);
693 /* The end result had better be a function or a method. */
694 gdb_assert (TYPE_CODE (func_type
) == TYPE_CODE_FUNC
695 || TYPE_CODE (func_type
) == TYPE_CODE_METHOD
);
697 /* We make two passes; the first does the stack allocation,
698 the second actually stores the arguments. */
699 for (write_pass
= 0; write_pass
<= 1; write_pass
++)
702 int arg_reg
= MSP430_R12_REGNUM
;
703 int args_on_stack
= 0;
706 sp
= align_down (sp
- sp_off
, 4);
712 regcache_cooked_write_unsigned (regcache
, arg_reg
, struct_addr
);
716 /* Push the arguments. */
717 for (i
= 0; i
< nargs
; i
++)
719 struct value
*arg
= args
[i
];
720 const gdb_byte
*arg_bits
= value_contents_all (arg
);
721 struct type
*arg_type
= check_typedef (value_type (arg
));
722 ULONGEST arg_size
= TYPE_LENGTH (arg_type
);
724 int current_arg_on_stack
;
726 current_arg_on_stack
= 0;
728 if (TYPE_CODE (arg_type
) == TYPE_CODE_STRUCT
729 || TYPE_CODE (arg_type
) == TYPE_CODE_UNION
)
731 /* Aggregates of any size are passed by reference. */
732 gdb_byte struct_addr
[4];
734 store_unsigned_integer (struct_addr
, 4, byte_order
,
735 value_address (arg
));
736 arg_bits
= struct_addr
;
737 arg_size
= (code_model
== MSP_LARGE_CODE_MODEL
) ? 4 : 2;
741 /* Scalars bigger than 8 bytes such as complex doubles are passed
744 current_arg_on_stack
= 1;
748 for (offset
= 0; offset
< arg_size
; offset
+= 2)
750 /* The condition below prevents 8 byte scalars from being split
751 between registers and memory (stack). It also prevents other
752 splits once the stack has been written to. */
753 if (!current_arg_on_stack
755 + ((arg_size
== 8 || args_on_stack
)
756 ? ((arg_size
- offset
) / 2 - 1)
757 : 0) <= MSP430_R15_REGNUM
))
761 if (code_model
== MSP_LARGE_CODE_MODEL
762 && (TYPE_CODE (arg_type
) == TYPE_CODE_PTR
763 || TYPE_CODE (arg_type
) == TYPE_CODE_REF
764 || TYPE_CODE (arg_type
) == TYPE_CODE_STRUCT
765 || TYPE_CODE (arg_type
) == TYPE_CODE_UNION
))
767 /* When using the large memory model, pointer,
768 reference, struct, and union arguments are
769 passed using the entire register. (As noted
770 earlier, aggregates are always passed by
778 regcache_cooked_write_unsigned (regcache
, arg_reg
,
779 extract_unsigned_integer
780 (arg_bits
+ offset
, size
,
788 write_memory (sp
+ sp_off
, arg_bits
+ offset
, 2);
792 current_arg_on_stack
= 1;
798 /* Keep track of the stack address prior to pushing the return address.
799 This is the value that we'll return. */
802 /* Push the return address. */
804 int sz
= (gdbarch_tdep (gdbarch
)->code_model
== MSP_SMALL_CODE_MODEL
)
807 write_memory_unsigned_integer (sp
, sz
, byte_order
, bp_addr
);
810 /* Update the stack pointer. */
811 regcache_cooked_write_unsigned (regcache
, MSP430_SP_REGNUM
, sp
);
816 /* In order to keep code size small, the compiler may create epilogue
817 code through which more than one function epilogue is routed. I.e.
818 the epilogue and return may just be a branch to some common piece of
819 code which is responsible for tearing down the frame and performing
820 the return. These epilog (label) names will have the common prefix
823 static const char msp430_epilog_name_prefix
[] = "__mspabi_func_epilog_";
825 /* Implement the "in_return_stub" gdbarch method. */
828 msp430_in_return_stub (struct gdbarch
*gdbarch
, CORE_ADDR pc
,
832 && startswith (name
, msp430_epilog_name_prefix
));
835 /* Implement the "skip_trampoline_code" gdbarch method. */
837 msp430_skip_trampoline_code (struct frame_info
*frame
, CORE_ADDR pc
)
839 struct bound_minimal_symbol bms
;
840 const char *stub_name
;
841 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
843 bms
= lookup_minimal_symbol_by_pc (pc
);
847 stub_name
= MSYMBOL_LINKAGE_NAME (bms
.minsym
);
849 if (gdbarch_tdep (gdbarch
)->code_model
== MSP_SMALL_CODE_MODEL
850 && msp430_in_return_stub (gdbarch
, pc
, stub_name
))
852 CORE_ADDR sp
= get_frame_register_unsigned (frame
, MSP430_SP_REGNUM
);
854 return read_memory_integer
855 (sp
+ 2 * (stub_name
[strlen (msp430_epilog_name_prefix
)] - '0'),
856 2, gdbarch_byte_order (gdbarch
));
862 /* Allocate and initialize a gdbarch object. */
864 static struct gdbarch
*
865 msp430_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
867 struct gdbarch
*gdbarch
;
868 struct gdbarch_tdep
*tdep
;
869 int elf_flags
, isa
, code_model
;
871 /* Extract the elf_flags if available. */
872 if (info
.abfd
!= NULL
873 && bfd_get_flavour (info
.abfd
) == bfd_target_elf_flavour
)
874 elf_flags
= elf_elfheader (info
.abfd
)->e_flags
;
878 if (info
.abfd
!= NULL
)
879 switch (bfd_elf_get_obj_attr_int (info
.abfd
, OBJ_ATTR_PROC
,
880 OFBA_MSPABI_Tag_ISA
))
883 isa
= MSP_ISA_MSP430
;
884 code_model
= MSP_SMALL_CODE_MODEL
;
887 isa
= MSP_ISA_MSP430X
;
888 switch (bfd_elf_get_obj_attr_int (info
.abfd
, OBJ_ATTR_PROC
,
889 OFBA_MSPABI_Tag_Code_Model
))
892 code_model
= MSP_SMALL_CODE_MODEL
;
895 code_model
= MSP_LARGE_CODE_MODEL
;
898 internal_error (__FILE__
, __LINE__
,
899 _("Unknown msp430x code memory model"));
904 /* This can happen when loading a previously dumped data structure.
905 Use the ISA and code model from the current architecture, provided
908 struct gdbarch
*ca
= get_current_arch ();
909 if (ca
&& gdbarch_bfd_arch_info (ca
)->arch
== bfd_arch_msp430
)
911 struct gdbarch_tdep
*ca_tdep
= gdbarch_tdep (ca
);
913 elf_flags
= ca_tdep
->elf_flags
;
915 code_model
= ca_tdep
->code_model
;
918 /* Otherwise, fall through... */
921 error (_("Unknown msp430 isa"));
926 isa
= MSP_ISA_MSP430
;
927 code_model
= MSP_SMALL_CODE_MODEL
;
931 /* Try to find the architecture in the list of already defined
933 for (arches
= gdbarch_list_lookup_by_info (arches
, &info
);
935 arches
= gdbarch_list_lookup_by_info (arches
->next
, &info
))
937 struct gdbarch_tdep
*candidate_tdep
= gdbarch_tdep (arches
->gdbarch
);
939 if (candidate_tdep
->elf_flags
!= elf_flags
940 || candidate_tdep
->isa
!= isa
941 || candidate_tdep
->code_model
!= code_model
)
944 return arches
->gdbarch
;
947 /* None found, create a new architecture from the information
949 tdep
= XNEW (struct gdbarch_tdep
);
950 gdbarch
= gdbarch_alloc (&info
, tdep
);
951 tdep
->elf_flags
= elf_flags
;
953 tdep
->code_model
= code_model
;
956 set_gdbarch_num_regs (gdbarch
, MSP430_NUM_REGS
);
957 set_gdbarch_num_pseudo_regs (gdbarch
, MSP430_NUM_PSEUDO_REGS
);
958 set_gdbarch_register_name (gdbarch
, msp430_register_name
);
959 if (isa
== MSP_ISA_MSP430
)
960 set_gdbarch_register_type (gdbarch
, msp430_register_type
);
962 set_gdbarch_register_type (gdbarch
, msp430x_register_type
);
963 set_gdbarch_pc_regnum (gdbarch
, MSP430_PC_REGNUM
);
964 set_gdbarch_sp_regnum (gdbarch
, MSP430_SP_REGNUM
);
965 set_gdbarch_register_reggroup_p (gdbarch
, msp430_register_reggroup_p
);
966 set_gdbarch_pseudo_register_read (gdbarch
, msp430_pseudo_register_read
);
967 set_gdbarch_pseudo_register_write (gdbarch
, msp430_pseudo_register_write
);
968 set_gdbarch_dwarf2_reg_to_regnum (gdbarch
, msp430_dwarf2_reg_to_regnum
);
969 set_gdbarch_register_sim_regno (gdbarch
, msp430_register_sim_regno
);
972 set_gdbarch_char_signed (gdbarch
, 0);
973 set_gdbarch_short_bit (gdbarch
, 16);
974 set_gdbarch_int_bit (gdbarch
, 16);
975 set_gdbarch_long_bit (gdbarch
, 32);
976 set_gdbarch_long_long_bit (gdbarch
, 64);
977 if (code_model
== MSP_SMALL_CODE_MODEL
)
979 set_gdbarch_ptr_bit (gdbarch
, 16);
980 set_gdbarch_addr_bit (gdbarch
, 16);
982 else /* MSP_LARGE_CODE_MODEL */
984 set_gdbarch_ptr_bit (gdbarch
, 32);
985 set_gdbarch_addr_bit (gdbarch
, 32);
987 set_gdbarch_dwarf2_addr_size (gdbarch
, 4);
988 set_gdbarch_float_bit (gdbarch
, 32);
989 set_gdbarch_float_format (gdbarch
, floatformats_ieee_single
);
990 set_gdbarch_double_bit (gdbarch
, 64);
991 set_gdbarch_long_double_bit (gdbarch
, 64);
992 set_gdbarch_double_format (gdbarch
, floatformats_ieee_double
);
993 set_gdbarch_long_double_format (gdbarch
, floatformats_ieee_double
);
996 set_gdbarch_breakpoint_kind_from_pc (gdbarch
,
997 msp430_breakpoint::kind_from_pc
);
998 set_gdbarch_sw_breakpoint_from_kind (gdbarch
,
999 msp430_breakpoint::bp_from_kind
);
1000 set_gdbarch_decr_pc_after_break (gdbarch
, 1);
1003 set_gdbarch_print_insn (gdbarch
, print_insn_msp430
);
1005 /* Frames, prologues, etc. */
1006 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
1007 set_gdbarch_skip_prologue (gdbarch
, msp430_skip_prologue
);
1008 set_gdbarch_unwind_pc (gdbarch
, msp430_unwind_pc
);
1009 set_gdbarch_unwind_sp (gdbarch
, msp430_unwind_sp
);
1010 set_gdbarch_frame_align (gdbarch
, msp430_frame_align
);
1011 dwarf2_append_unwinders (gdbarch
);
1012 frame_unwind_append_unwinder (gdbarch
, &msp430_unwind
);
1014 /* Dummy frames, return values. */
1015 set_gdbarch_dummy_id (gdbarch
, msp430_dummy_id
);
1016 set_gdbarch_push_dummy_call (gdbarch
, msp430_push_dummy_call
);
1017 set_gdbarch_return_value (gdbarch
, msp430_return_value
);
1020 set_gdbarch_in_solib_return_trampoline (gdbarch
, msp430_in_return_stub
);
1021 set_gdbarch_skip_trampoline_code (gdbarch
, msp430_skip_trampoline_code
);
1023 /* Virtual tables. */
1024 set_gdbarch_vbit_in_delta (gdbarch
, 0);
1029 /* -Wmissing-prototypes */
1030 extern initialize_file_ftype _initialize_msp430_tdep
;
1032 /* Register the initialization routine. */
1035 _initialize_msp430_tdep (void)
1037 register_gdbarch_init (bfd_arch_msp430
, msp430_gdbarch_init
);