[ARC] Add checking for LP_COUNT reg usage, improve error reporting.
[deliverable/binutils-gdb.git] / gdb / msp430-tdep.c
1 /* Target-dependent code for the Texas Instruments MSP430 for GDB, the
2 GNU debugger.
3
4 Copyright (C) 2012-2016 Free Software Foundation, Inc.
5
6 Contributed by Red Hat, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "arch-utils.h"
25 #include "prologue-value.h"
26 #include "target.h"
27 #include "regcache.h"
28 #include "dis-asm.h"
29 #include "gdbtypes.h"
30 #include "frame.h"
31 #include "frame-unwind.h"
32 #include "frame-base.h"
33 #include "value.h"
34 #include "gdbcore.h"
35 #include "dwarf2-frame.h"
36 #include "reggroups.h"
37
38 #include "elf/msp430.h"
39 #include "opcode/msp430-decode.h"
40 #include "elf-bfd.h"
41
42 /* Register Numbers. */
43
44 enum
45 {
46 MSP430_PC_RAW_REGNUM,
47 MSP430_SP_RAW_REGNUM,
48 MSP430_SR_RAW_REGNUM,
49 MSP430_CG_RAW_REGNUM,
50 MSP430_R4_RAW_REGNUM,
51 MSP430_R5_RAW_REGNUM,
52 MSP430_R6_RAW_REGNUM,
53 MSP430_R7_RAW_REGNUM,
54 MSP430_R8_RAW_REGNUM,
55 MSP430_R9_RAW_REGNUM,
56 MSP430_R10_RAW_REGNUM,
57 MSP430_R11_RAW_REGNUM,
58 MSP430_R12_RAW_REGNUM,
59 MSP430_R13_RAW_REGNUM,
60 MSP430_R14_RAW_REGNUM,
61 MSP430_R15_RAW_REGNUM,
62
63 MSP430_NUM_REGS,
64
65 MSP430_PC_REGNUM = MSP430_NUM_REGS,
66 MSP430_SP_REGNUM,
67 MSP430_SR_REGNUM,
68 MSP430_CG_REGNUM,
69 MSP430_R4_REGNUM,
70 MSP430_R5_REGNUM,
71 MSP430_R6_REGNUM,
72 MSP430_R7_REGNUM,
73 MSP430_R8_REGNUM,
74 MSP430_R9_REGNUM,
75 MSP430_R10_REGNUM,
76 MSP430_R11_REGNUM,
77 MSP430_R12_REGNUM,
78 MSP430_R13_REGNUM,
79 MSP430_R14_REGNUM,
80 MSP430_R15_REGNUM,
81
82 MSP430_NUM_TOTAL_REGS,
83 MSP430_NUM_PSEUDO_REGS = MSP430_NUM_TOTAL_REGS - MSP430_NUM_REGS
84 };
85
86 enum
87 {
88 /* TI MSP430 Architecture. */
89 MSP_ISA_MSP430,
90
91 /* TI MSP430X Architecture. */
92 MSP_ISA_MSP430X
93 };
94
95 enum
96 {
97 /* The small code model limits code addresses to 16 bits. */
98 MSP_SMALL_CODE_MODEL,
99
100 /* The large code model uses 20 bit addresses for function
101 pointers. These are stored in memory using four bytes (32 bits). */
102 MSP_LARGE_CODE_MODEL
103 };
104
105 /* Architecture specific data. */
106
107 struct gdbarch_tdep
108 {
109 /* The ELF header flags specify the multilib used. */
110 int elf_flags;
111
112 /* One of MSP_ISA_MSP430 or MSP_ISA_MSP430X. */
113 int isa;
114
115 /* One of MSP_SMALL_CODE_MODEL or MSP_LARGE_CODE_MODEL. If, at
116 some point, we support different data models too, we'll probably
117 structure things so that we can combine values using logical
118 "or". */
119 int code_model;
120 };
121
122 /* This structure holds the results of a prologue analysis. */
123
124 struct msp430_prologue
125 {
126 /* The offset from the frame base to the stack pointer --- always
127 zero or negative.
128
129 Calling this a "size" is a bit misleading, but given that the
130 stack grows downwards, using offsets for everything keeps one
131 from going completely sign-crazy: you never change anything's
132 sign for an ADD instruction; always change the second operand's
133 sign for a SUB instruction; and everything takes care of
134 itself. */
135 int frame_size;
136
137 /* Non-zero if this function has initialized the frame pointer from
138 the stack pointer, zero otherwise. */
139 int has_frame_ptr;
140
141 /* If has_frame_ptr is non-zero, this is the offset from the frame
142 base to where the frame pointer points. This is always zero or
143 negative. */
144 int frame_ptr_offset;
145
146 /* The address of the first instruction at which the frame has been
147 set up and the arguments are where the debug info says they are
148 --- as best as we can tell. */
149 CORE_ADDR prologue_end;
150
151 /* reg_offset[R] is the offset from the CFA at which register R is
152 saved, or 1 if register R has not been saved. (Real values are
153 always zero or negative.) */
154 int reg_offset[MSP430_NUM_TOTAL_REGS];
155 };
156
157 /* Implement the "register_type" gdbarch method. */
158
159 static struct type *
160 msp430_register_type (struct gdbarch *gdbarch, int reg_nr)
161 {
162 if (reg_nr < MSP430_NUM_REGS)
163 return builtin_type (gdbarch)->builtin_uint32;
164 else if (reg_nr == MSP430_PC_REGNUM)
165 return builtin_type (gdbarch)->builtin_func_ptr;
166 else
167 return builtin_type (gdbarch)->builtin_uint16;
168 }
169
170 /* Implement another version of the "register_type" gdbarch method
171 for msp430x. */
172
173 static struct type *
174 msp430x_register_type (struct gdbarch *gdbarch, int reg_nr)
175 {
176 if (reg_nr < MSP430_NUM_REGS)
177 return builtin_type (gdbarch)->builtin_uint32;
178 else if (reg_nr == MSP430_PC_REGNUM)
179 return builtin_type (gdbarch)->builtin_func_ptr;
180 else
181 return builtin_type (gdbarch)->builtin_uint32;
182 }
183
184 /* Implement the "register_name" gdbarch method. */
185
186 static const char *
187 msp430_register_name (struct gdbarch *gdbarch, int regnr)
188 {
189 static const char *const reg_names[] = {
190 /* Raw registers. */
191 "", "", "", "", "", "", "", "",
192 "", "", "", "", "", "", "", "",
193 /* Pseudo registers. */
194 "pc", "sp", "sr", "cg", "r4", "r5", "r6", "r7",
195 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
196 };
197
198 return reg_names[regnr];
199 }
200
201 /* Implement the "register_reggroup_p" gdbarch method. */
202
203 static int
204 msp430_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
205 struct reggroup *group)
206 {
207 if (group == all_reggroup)
208 return 1;
209
210 /* All other registers are saved and restored. */
211 if (group == save_reggroup || group == restore_reggroup)
212 return (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS);
213
214 return group == general_reggroup;
215 }
216
217 /* Implement the "pseudo_register_read" gdbarch method. */
218
219 static enum register_status
220 msp430_pseudo_register_read (struct gdbarch *gdbarch,
221 struct regcache *regcache,
222 int regnum, gdb_byte *buffer)
223 {
224 enum register_status status = REG_UNKNOWN;
225
226 if (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS)
227 {
228 ULONGEST val;
229 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
230 int regsize = register_size (gdbarch, regnum);
231 int raw_regnum = regnum - MSP430_NUM_REGS;
232
233 status = regcache_raw_read_unsigned (regcache, raw_regnum, &val);
234 if (status == REG_VALID)
235 store_unsigned_integer (buffer, regsize, byte_order, val);
236
237 }
238 else
239 gdb_assert_not_reached ("invalid pseudo register number");
240
241 return status;
242 }
243
244 /* Implement the "pseudo_register_write" gdbarch method. */
245
246 static void
247 msp430_pseudo_register_write (struct gdbarch *gdbarch,
248 struct regcache *regcache,
249 int regnum, const gdb_byte *buffer)
250 {
251 if (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS)
252
253 {
254 ULONGEST val;
255 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
256 int regsize = register_size (gdbarch, regnum);
257 int raw_regnum = regnum - MSP430_NUM_REGS;
258
259 val = extract_unsigned_integer (buffer, regsize, byte_order);
260 regcache_raw_write_unsigned (regcache, raw_regnum, val);
261
262 }
263 else
264 gdb_assert_not_reached ("invalid pseudo register number");
265 }
266
267 /* Implement the `register_sim_regno' gdbarch method. */
268
269 static int
270 msp430_register_sim_regno (struct gdbarch *gdbarch, int regnum)
271 {
272 gdb_assert (regnum < MSP430_NUM_REGS);
273
274 /* So long as regnum is in [0, RL78_NUM_REGS), it's valid. We
275 just want to override the default here which disallows register
276 numbers which have no names. */
277 return regnum;
278 }
279
280 constexpr gdb_byte msp430_break_insn[] = { 0x43, 0x43 };
281
282 typedef BP_MANIPULATION (msp430_break_insn) msp430_breakpoint;
283
284 /* Define a "handle" struct for fetching the next opcode. */
285
286 struct msp430_get_opcode_byte_handle
287 {
288 CORE_ADDR pc;
289 };
290
291 /* Fetch a byte on behalf of the opcode decoder. HANDLE contains
292 the memory address of the next byte to fetch. If successful,
293 the address in the handle is updated and the byte fetched is
294 returned as the value of the function. If not successful, -1
295 is returned. */
296
297 static int
298 msp430_get_opcode_byte (void *handle)
299 {
300 struct msp430_get_opcode_byte_handle *opcdata
301 = (struct msp430_get_opcode_byte_handle *) handle;
302 int status;
303 gdb_byte byte;
304
305 status = target_read_memory (opcdata->pc, &byte, 1);
306 if (status == 0)
307 {
308 opcdata->pc += 1;
309 return byte;
310 }
311 else
312 return -1;
313 }
314
315 /* Function for finding saved registers in a 'struct pv_area'; this
316 function is passed to pv_area_scan.
317
318 If VALUE is a saved register, ADDR says it was saved at a constant
319 offset from the frame base, and SIZE indicates that the whole
320 register was saved, record its offset. */
321
322 static void
323 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
324 {
325 struct msp430_prologue *result = (struct msp430_prologue *) result_untyped;
326
327 if (value.kind == pvk_register
328 && value.k == 0
329 && pv_is_register (addr, MSP430_SP_REGNUM)
330 && size == register_size (target_gdbarch (), value.reg))
331 result->reg_offset[value.reg] = addr.k;
332 }
333
334 /* Analyze a prologue starting at START_PC, going no further than
335 LIMIT_PC. Fill in RESULT as appropriate. */
336
337 static void
338 msp430_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc,
339 CORE_ADDR limit_pc, struct msp430_prologue *result)
340 {
341 CORE_ADDR pc, next_pc;
342 int rn;
343 pv_t reg[MSP430_NUM_TOTAL_REGS];
344 struct pv_area *stack;
345 struct cleanup *back_to;
346 CORE_ADDR after_last_frame_setup_insn = start_pc;
347 int code_model = gdbarch_tdep (gdbarch)->code_model;
348 int sz;
349
350 memset (result, 0, sizeof (*result));
351
352 for (rn = 0; rn < MSP430_NUM_TOTAL_REGS; rn++)
353 {
354 reg[rn] = pv_register (rn, 0);
355 result->reg_offset[rn] = 1;
356 }
357
358 stack = make_pv_area (MSP430_SP_REGNUM, gdbarch_addr_bit (gdbarch));
359 back_to = make_cleanup_free_pv_area (stack);
360
361 /* The call instruction has saved the return address on the stack. */
362 sz = code_model == MSP_LARGE_CODE_MODEL ? 4 : 2;
363 reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], -sz);
364 pv_area_store (stack, reg[MSP430_SP_REGNUM], sz, reg[MSP430_PC_REGNUM]);
365
366 pc = start_pc;
367 while (pc < limit_pc)
368 {
369 int bytes_read;
370 struct msp430_get_opcode_byte_handle opcode_handle;
371 MSP430_Opcode_Decoded opc;
372
373 opcode_handle.pc = pc;
374 bytes_read = msp430_decode_opcode (pc, &opc, msp430_get_opcode_byte,
375 &opcode_handle);
376 next_pc = pc + bytes_read;
377
378 if (opc.id == MSO_push && opc.op[0].type == MSP430_Operand_Register)
379 {
380 int rsrc = opc.op[0].reg;
381
382 reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], -2);
383 pv_area_store (stack, reg[MSP430_SP_REGNUM], 2, reg[rsrc]);
384 after_last_frame_setup_insn = next_pc;
385 }
386 else if (opc.id == MSO_push /* PUSHM */
387 && opc.op[0].type == MSP430_Operand_None
388 && opc.op[1].type == MSP430_Operand_Register)
389 {
390 int rsrc = opc.op[1].reg;
391 int count = opc.repeats + 1;
392 int size = opc.size == 16 ? 2 : 4;
393
394 while (count > 0)
395 {
396 reg[MSP430_SP_REGNUM]
397 = pv_add_constant (reg[MSP430_SP_REGNUM], -size);
398 pv_area_store (stack, reg[MSP430_SP_REGNUM], size, reg[rsrc]);
399 rsrc--;
400 count--;
401 }
402 after_last_frame_setup_insn = next_pc;
403 }
404 else if (opc.id == MSO_sub
405 && opc.op[0].type == MSP430_Operand_Register
406 && opc.op[0].reg == MSR_SP
407 && opc.op[1].type == MSP430_Operand_Immediate)
408 {
409 int addend = opc.op[1].addend;
410
411 reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM],
412 -addend);
413 after_last_frame_setup_insn = next_pc;
414 }
415 else if (opc.id == MSO_mov
416 && opc.op[0].type == MSP430_Operand_Immediate
417 && 12 <= opc.op[0].reg && opc.op[0].reg <= 15)
418 after_last_frame_setup_insn = next_pc;
419 else
420 {
421 /* Terminate the prologue scan. */
422 break;
423 }
424
425 pc = next_pc;
426 }
427
428 /* Is the frame size (offset, really) a known constant? */
429 if (pv_is_register (reg[MSP430_SP_REGNUM], MSP430_SP_REGNUM))
430 result->frame_size = reg[MSP430_SP_REGNUM].k;
431
432 /* Record where all the registers were saved. */
433 pv_area_scan (stack, check_for_saved, result);
434
435 result->prologue_end = after_last_frame_setup_insn;
436
437 do_cleanups (back_to);
438 }
439
440 /* Implement the "skip_prologue" gdbarch method. */
441
442 static CORE_ADDR
443 msp430_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
444 {
445 const char *name;
446 CORE_ADDR func_addr, func_end;
447 struct msp430_prologue p;
448
449 /* Try to find the extent of the function that contains PC. */
450 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
451 return pc;
452
453 msp430_analyze_prologue (gdbarch, pc, func_end, &p);
454 return p.prologue_end;
455 }
456
457 /* Implement the "unwind_pc" gdbarch method. */
458
459 static CORE_ADDR
460 msp430_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
461 {
462 return frame_unwind_register_unsigned (next_frame, MSP430_PC_REGNUM);
463 }
464
465 /* Implement the "unwind_sp" gdbarch method. */
466
467 static CORE_ADDR
468 msp430_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
469 {
470 return frame_unwind_register_unsigned (next_frame, MSP430_SP_REGNUM);
471 }
472
473 /* Given a frame described by THIS_FRAME, decode the prologue of its
474 associated function if there is not cache entry as specified by
475 THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
476 return that struct as the value of this function. */
477
478 static struct msp430_prologue *
479 msp430_analyze_frame_prologue (struct frame_info *this_frame,
480 void **this_prologue_cache)
481 {
482 if (!*this_prologue_cache)
483 {
484 CORE_ADDR func_start, stop_addr;
485
486 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct msp430_prologue);
487
488 func_start = get_frame_func (this_frame);
489 stop_addr = get_frame_pc (this_frame);
490
491 /* If we couldn't find any function containing the PC, then
492 just initialize the prologue cache, but don't do anything. */
493 if (!func_start)
494 stop_addr = func_start;
495
496 msp430_analyze_prologue (get_frame_arch (this_frame), func_start,
497 stop_addr,
498 (struct msp430_prologue *) *this_prologue_cache);
499 }
500
501 return (struct msp430_prologue *) *this_prologue_cache;
502 }
503
504 /* Given a frame and a prologue cache, return this frame's base. */
505
506 static CORE_ADDR
507 msp430_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
508 {
509 struct msp430_prologue *p
510 = msp430_analyze_frame_prologue (this_frame, this_prologue_cache);
511 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MSP430_SP_REGNUM);
512
513 return sp - p->frame_size;
514 }
515
516 /* Implement the "frame_this_id" method for unwinding frames. */
517
518 static void
519 msp430_this_id (struct frame_info *this_frame,
520 void **this_prologue_cache, struct frame_id *this_id)
521 {
522 *this_id = frame_id_build (msp430_frame_base (this_frame,
523 this_prologue_cache),
524 get_frame_func (this_frame));
525 }
526
527 /* Implement the "frame_prev_register" method for unwinding frames. */
528
529 static struct value *
530 msp430_prev_register (struct frame_info *this_frame,
531 void **this_prologue_cache, int regnum)
532 {
533 struct msp430_prologue *p
534 = msp430_analyze_frame_prologue (this_frame, this_prologue_cache);
535 CORE_ADDR frame_base = msp430_frame_base (this_frame, this_prologue_cache);
536
537 if (regnum == MSP430_SP_REGNUM)
538 return frame_unwind_got_constant (this_frame, regnum, frame_base);
539
540 /* If prologue analysis says we saved this register somewhere,
541 return a description of the stack slot holding it. */
542 else if (p->reg_offset[regnum] != 1)
543 {
544 struct value *rv = frame_unwind_got_memory (this_frame, regnum,
545 frame_base +
546 p->reg_offset[regnum]);
547
548 if (regnum == MSP430_PC_REGNUM)
549 {
550 ULONGEST pc = value_as_long (rv);
551
552 return frame_unwind_got_constant (this_frame, regnum, pc);
553 }
554 return rv;
555 }
556
557 /* Otherwise, presume we haven't changed the value of this
558 register, and get it from the next frame. */
559 else
560 return frame_unwind_got_register (this_frame, regnum, regnum);
561 }
562
563 static const struct frame_unwind msp430_unwind = {
564 NORMAL_FRAME,
565 default_frame_unwind_stop_reason,
566 msp430_this_id,
567 msp430_prev_register,
568 NULL,
569 default_frame_sniffer
570 };
571
572 /* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
573
574 static int
575 msp430_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
576 {
577 if (reg >= 0 && reg < MSP430_NUM_REGS)
578 return reg + MSP430_NUM_REGS;
579 return -1;
580 }
581
582 /* Implement the "return_value" gdbarch method. */
583
584 static enum return_value_convention
585 msp430_return_value (struct gdbarch *gdbarch,
586 struct value *function,
587 struct type *valtype,
588 struct regcache *regcache,
589 gdb_byte *readbuf, const gdb_byte *writebuf)
590 {
591 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
592 LONGEST valtype_len = TYPE_LENGTH (valtype);
593 int code_model = gdbarch_tdep (gdbarch)->code_model;
594
595 if (TYPE_LENGTH (valtype) > 8
596 || TYPE_CODE (valtype) == TYPE_CODE_STRUCT
597 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
598 return RETURN_VALUE_STRUCT_CONVENTION;
599
600 if (readbuf)
601 {
602 ULONGEST u;
603 int argreg = MSP430_R12_REGNUM;
604 int offset = 0;
605
606 while (valtype_len > 0)
607 {
608 int size = 2;
609
610 if (code_model == MSP_LARGE_CODE_MODEL
611 && TYPE_CODE (valtype) == TYPE_CODE_PTR)
612 {
613 size = 4;
614 }
615
616 regcache_cooked_read_unsigned (regcache, argreg, &u);
617 store_unsigned_integer (readbuf + offset, size, byte_order, u);
618 valtype_len -= size;
619 offset += size;
620 argreg++;
621 }
622 }
623
624 if (writebuf)
625 {
626 ULONGEST u;
627 int argreg = MSP430_R12_REGNUM;
628 int offset = 0;
629
630 while (valtype_len > 0)
631 {
632 int size = 2;
633
634 if (code_model == MSP_LARGE_CODE_MODEL
635 && TYPE_CODE (valtype) == TYPE_CODE_PTR)
636 {
637 size = 4;
638 }
639
640 u = extract_unsigned_integer (writebuf + offset, size, byte_order);
641 regcache_cooked_write_unsigned (regcache, argreg, u);
642 valtype_len -= size;
643 offset += size;
644 argreg++;
645 }
646 }
647
648 return RETURN_VALUE_REGISTER_CONVENTION;
649 }
650
651
652 /* Implement the "frame_align" gdbarch method. */
653
654 static CORE_ADDR
655 msp430_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
656 {
657 return align_down (sp, 2);
658 }
659
660
661 /* Implement the "dummy_id" gdbarch method. */
662
663 static struct frame_id
664 msp430_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
665 {
666 return
667 frame_id_build (get_frame_register_unsigned
668 (this_frame, MSP430_SP_REGNUM),
669 get_frame_pc (this_frame));
670 }
671
672
673 /* Implement the "push_dummy_call" gdbarch method. */
674
675 static CORE_ADDR
676 msp430_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
677 struct regcache *regcache, CORE_ADDR bp_addr,
678 int nargs, struct value **args, CORE_ADDR sp,
679 int struct_return, CORE_ADDR struct_addr)
680 {
681 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
682 int write_pass;
683 int sp_off = 0;
684 CORE_ADDR cfa;
685 int code_model = gdbarch_tdep (gdbarch)->code_model;
686
687 struct type *func_type = value_type (function);
688
689 /* Dereference function pointer types. */
690 while (TYPE_CODE (func_type) == TYPE_CODE_PTR)
691 func_type = TYPE_TARGET_TYPE (func_type);
692
693 /* The end result had better be a function or a method. */
694 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
695 || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
696
697 /* We make two passes; the first does the stack allocation,
698 the second actually stores the arguments. */
699 for (write_pass = 0; write_pass <= 1; write_pass++)
700 {
701 int i;
702 int arg_reg = MSP430_R12_REGNUM;
703 int args_on_stack = 0;
704
705 if (write_pass)
706 sp = align_down (sp - sp_off, 4);
707 sp_off = 0;
708
709 if (struct_return)
710 {
711 if (write_pass)
712 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
713 arg_reg++;
714 }
715
716 /* Push the arguments. */
717 for (i = 0; i < nargs; i++)
718 {
719 struct value *arg = args[i];
720 const gdb_byte *arg_bits = value_contents_all (arg);
721 struct type *arg_type = check_typedef (value_type (arg));
722 ULONGEST arg_size = TYPE_LENGTH (arg_type);
723 int offset;
724 int current_arg_on_stack;
725
726 current_arg_on_stack = 0;
727
728 if (TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
729 || TYPE_CODE (arg_type) == TYPE_CODE_UNION)
730 {
731 /* Aggregates of any size are passed by reference. */
732 gdb_byte struct_addr[4];
733
734 store_unsigned_integer (struct_addr, 4, byte_order,
735 value_address (arg));
736 arg_bits = struct_addr;
737 arg_size = (code_model == MSP_LARGE_CODE_MODEL) ? 4 : 2;
738 }
739 else
740 {
741 /* Scalars bigger than 8 bytes such as complex doubles are passed
742 on the stack. */
743 if (arg_size > 8)
744 current_arg_on_stack = 1;
745 }
746
747
748 for (offset = 0; offset < arg_size; offset += 2)
749 {
750 /* The condition below prevents 8 byte scalars from being split
751 between registers and memory (stack). It also prevents other
752 splits once the stack has been written to. */
753 if (!current_arg_on_stack
754 && (arg_reg
755 + ((arg_size == 8 || args_on_stack)
756 ? ((arg_size - offset) / 2 - 1)
757 : 0) <= MSP430_R15_REGNUM))
758 {
759 int size = 2;
760
761 if (code_model == MSP_LARGE_CODE_MODEL
762 && (TYPE_CODE (arg_type) == TYPE_CODE_PTR
763 || TYPE_CODE (arg_type) == TYPE_CODE_REF
764 || TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
765 || TYPE_CODE (arg_type) == TYPE_CODE_UNION))
766 {
767 /* When using the large memory model, pointer,
768 reference, struct, and union arguments are
769 passed using the entire register. (As noted
770 earlier, aggregates are always passed by
771 reference.) */
772 if (offset != 0)
773 continue;
774 size = 4;
775 }
776
777 if (write_pass)
778 regcache_cooked_write_unsigned (regcache, arg_reg,
779 extract_unsigned_integer
780 (arg_bits + offset, size,
781 byte_order));
782
783 arg_reg++;
784 }
785 else
786 {
787 if (write_pass)
788 write_memory (sp + sp_off, arg_bits + offset, 2);
789
790 sp_off += 2;
791 args_on_stack = 1;
792 current_arg_on_stack = 1;
793 }
794 }
795 }
796 }
797
798 /* Keep track of the stack address prior to pushing the return address.
799 This is the value that we'll return. */
800 cfa = sp;
801
802 /* Push the return address. */
803 {
804 int sz = (gdbarch_tdep (gdbarch)->code_model == MSP_SMALL_CODE_MODEL)
805 ? 2 : 4;
806 sp = sp - sz;
807 write_memory_unsigned_integer (sp, sz, byte_order, bp_addr);
808 }
809
810 /* Update the stack pointer. */
811 regcache_cooked_write_unsigned (regcache, MSP430_SP_REGNUM, sp);
812
813 return cfa;
814 }
815
816 /* In order to keep code size small, the compiler may create epilogue
817 code through which more than one function epilogue is routed. I.e.
818 the epilogue and return may just be a branch to some common piece of
819 code which is responsible for tearing down the frame and performing
820 the return. These epilog (label) names will have the common prefix
821 defined here. */
822
823 static const char msp430_epilog_name_prefix[] = "__mspabi_func_epilog_";
824
825 /* Implement the "in_return_stub" gdbarch method. */
826
827 static int
828 msp430_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc,
829 const char *name)
830 {
831 return (name != NULL
832 && startswith (name, msp430_epilog_name_prefix));
833 }
834
835 /* Implement the "skip_trampoline_code" gdbarch method. */
836 static CORE_ADDR
837 msp430_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
838 {
839 struct bound_minimal_symbol bms;
840 const char *stub_name;
841 struct gdbarch *gdbarch = get_frame_arch (frame);
842
843 bms = lookup_minimal_symbol_by_pc (pc);
844 if (!bms.minsym)
845 return pc;
846
847 stub_name = MSYMBOL_LINKAGE_NAME (bms.minsym);
848
849 if (gdbarch_tdep (gdbarch)->code_model == MSP_SMALL_CODE_MODEL
850 && msp430_in_return_stub (gdbarch, pc, stub_name))
851 {
852 CORE_ADDR sp = get_frame_register_unsigned (frame, MSP430_SP_REGNUM);
853
854 return read_memory_integer
855 (sp + 2 * (stub_name[strlen (msp430_epilog_name_prefix)] - '0'),
856 2, gdbarch_byte_order (gdbarch));
857 }
858
859 return pc;
860 }
861
862 /* Allocate and initialize a gdbarch object. */
863
864 static struct gdbarch *
865 msp430_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
866 {
867 struct gdbarch *gdbarch;
868 struct gdbarch_tdep *tdep;
869 int elf_flags, isa, code_model;
870
871 /* Extract the elf_flags if available. */
872 if (info.abfd != NULL
873 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
874 elf_flags = elf_elfheader (info.abfd)->e_flags;
875 else
876 elf_flags = 0;
877
878 if (info.abfd != NULL)
879 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
880 OFBA_MSPABI_Tag_ISA))
881 {
882 case 1:
883 isa = MSP_ISA_MSP430;
884 code_model = MSP_SMALL_CODE_MODEL;
885 break;
886 case 2:
887 isa = MSP_ISA_MSP430X;
888 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
889 OFBA_MSPABI_Tag_Code_Model))
890 {
891 case 1:
892 code_model = MSP_SMALL_CODE_MODEL;
893 break;
894 case 2:
895 code_model = MSP_LARGE_CODE_MODEL;
896 break;
897 default:
898 internal_error (__FILE__, __LINE__,
899 _("Unknown msp430x code memory model"));
900 break;
901 }
902 break;
903 case 0:
904 /* This can happen when loading a previously dumped data structure.
905 Use the ISA and code model from the current architecture, provided
906 it's compatible. */
907 {
908 struct gdbarch *ca = get_current_arch ();
909 if (ca && gdbarch_bfd_arch_info (ca)->arch == bfd_arch_msp430)
910 {
911 struct gdbarch_tdep *ca_tdep = gdbarch_tdep (ca);
912
913 elf_flags = ca_tdep->elf_flags;
914 isa = ca_tdep->isa;
915 code_model = ca_tdep->code_model;
916 break;
917 }
918 /* Otherwise, fall through... */
919 }
920 default:
921 error (_("Unknown msp430 isa"));
922 break;
923 }
924 else
925 {
926 isa = MSP_ISA_MSP430;
927 code_model = MSP_SMALL_CODE_MODEL;
928 }
929
930
931 /* Try to find the architecture in the list of already defined
932 architectures. */
933 for (arches = gdbarch_list_lookup_by_info (arches, &info);
934 arches != NULL;
935 arches = gdbarch_list_lookup_by_info (arches->next, &info))
936 {
937 struct gdbarch_tdep *candidate_tdep = gdbarch_tdep (arches->gdbarch);
938
939 if (candidate_tdep->elf_flags != elf_flags
940 || candidate_tdep->isa != isa
941 || candidate_tdep->code_model != code_model)
942 continue;
943
944 return arches->gdbarch;
945 }
946
947 /* None found, create a new architecture from the information
948 provided. */
949 tdep = XNEW (struct gdbarch_tdep);
950 gdbarch = gdbarch_alloc (&info, tdep);
951 tdep->elf_flags = elf_flags;
952 tdep->isa = isa;
953 tdep->code_model = code_model;
954
955 /* Registers. */
956 set_gdbarch_num_regs (gdbarch, MSP430_NUM_REGS);
957 set_gdbarch_num_pseudo_regs (gdbarch, MSP430_NUM_PSEUDO_REGS);
958 set_gdbarch_register_name (gdbarch, msp430_register_name);
959 if (isa == MSP_ISA_MSP430)
960 set_gdbarch_register_type (gdbarch, msp430_register_type);
961 else
962 set_gdbarch_register_type (gdbarch, msp430x_register_type);
963 set_gdbarch_pc_regnum (gdbarch, MSP430_PC_REGNUM);
964 set_gdbarch_sp_regnum (gdbarch, MSP430_SP_REGNUM);
965 set_gdbarch_register_reggroup_p (gdbarch, msp430_register_reggroup_p);
966 set_gdbarch_pseudo_register_read (gdbarch, msp430_pseudo_register_read);
967 set_gdbarch_pseudo_register_write (gdbarch, msp430_pseudo_register_write);
968 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, msp430_dwarf2_reg_to_regnum);
969 set_gdbarch_register_sim_regno (gdbarch, msp430_register_sim_regno);
970
971 /* Data types. */
972 set_gdbarch_char_signed (gdbarch, 0);
973 set_gdbarch_short_bit (gdbarch, 16);
974 set_gdbarch_int_bit (gdbarch, 16);
975 set_gdbarch_long_bit (gdbarch, 32);
976 set_gdbarch_long_long_bit (gdbarch, 64);
977 if (code_model == MSP_SMALL_CODE_MODEL)
978 {
979 set_gdbarch_ptr_bit (gdbarch, 16);
980 set_gdbarch_addr_bit (gdbarch, 16);
981 }
982 else /* MSP_LARGE_CODE_MODEL */
983 {
984 set_gdbarch_ptr_bit (gdbarch, 32);
985 set_gdbarch_addr_bit (gdbarch, 32);
986 }
987 set_gdbarch_dwarf2_addr_size (gdbarch, 4);
988 set_gdbarch_float_bit (gdbarch, 32);
989 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
990 set_gdbarch_double_bit (gdbarch, 64);
991 set_gdbarch_long_double_bit (gdbarch, 64);
992 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
993 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
994
995 /* Breakpoints. */
996 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
997 msp430_breakpoint::kind_from_pc);
998 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
999 msp430_breakpoint::bp_from_kind);
1000 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1001
1002 /* Disassembly. */
1003 set_gdbarch_print_insn (gdbarch, print_insn_msp430);
1004
1005 /* Frames, prologues, etc. */
1006 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1007 set_gdbarch_skip_prologue (gdbarch, msp430_skip_prologue);
1008 set_gdbarch_unwind_pc (gdbarch, msp430_unwind_pc);
1009 set_gdbarch_unwind_sp (gdbarch, msp430_unwind_sp);
1010 set_gdbarch_frame_align (gdbarch, msp430_frame_align);
1011 dwarf2_append_unwinders (gdbarch);
1012 frame_unwind_append_unwinder (gdbarch, &msp430_unwind);
1013
1014 /* Dummy frames, return values. */
1015 set_gdbarch_dummy_id (gdbarch, msp430_dummy_id);
1016 set_gdbarch_push_dummy_call (gdbarch, msp430_push_dummy_call);
1017 set_gdbarch_return_value (gdbarch, msp430_return_value);
1018
1019 /* Trampolines. */
1020 set_gdbarch_in_solib_return_trampoline (gdbarch, msp430_in_return_stub);
1021 set_gdbarch_skip_trampoline_code (gdbarch, msp430_skip_trampoline_code);
1022
1023 /* Virtual tables. */
1024 set_gdbarch_vbit_in_delta (gdbarch, 0);
1025
1026 return gdbarch;
1027 }
1028
1029 /* -Wmissing-prototypes */
1030 extern initialize_file_ftype _initialize_msp430_tdep;
1031
1032 /* Register the initialization routine. */
1033
1034 void
1035 _initialize_msp430_tdep (void)
1036 {
1037 register_gdbarch_init (bfd_arch_msp430, msp430_gdbarch_init);
1038 }
This page took 0.054735 seconds and 4 git commands to generate.