* utils.c (parse_escape): Initialize target_char to pacify GCC.
[deliverable/binutils-gdb.git] / gdb / mt-tdep.c
1 /* Target-dependent code for Morpho mt processor, for GDB.
2
3 Copyright (C) 2005, 2007, 2008, 2009 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Michael Snyder, msnyder@redhat.com. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "symtab.h"
27 #include "dis-asm.h"
28 #include "arch-utils.h"
29 #include "gdbtypes.h"
30 #include "gdb_string.h"
31 #include "regcache.h"
32 #include "reggroups.h"
33 #include "gdbcore.h"
34 #include "trad-frame.h"
35 #include "inferior.h"
36 #include "dwarf2-frame.h"
37 #include "infcall.h"
38 #include "gdb_assert.h"
39 #include "language.h"
40 #include "valprint.h"
41
42 enum mt_arch_constants
43 {
44 MT_MAX_STRUCT_SIZE = 16
45 };
46
47 enum mt_gdb_regnums
48 {
49 MT_R0_REGNUM, /* 32 bit regs. */
50 MT_R1_REGNUM,
51 MT_1ST_ARGREG = MT_R1_REGNUM,
52 MT_R2_REGNUM,
53 MT_R3_REGNUM,
54 MT_R4_REGNUM,
55 MT_LAST_ARGREG = MT_R4_REGNUM,
56 MT_R5_REGNUM,
57 MT_R6_REGNUM,
58 MT_R7_REGNUM,
59 MT_R8_REGNUM,
60 MT_R9_REGNUM,
61 MT_R10_REGNUM,
62 MT_R11_REGNUM,
63 MT_R12_REGNUM,
64 MT_FP_REGNUM = MT_R12_REGNUM,
65 MT_R13_REGNUM,
66 MT_SP_REGNUM = MT_R13_REGNUM,
67 MT_R14_REGNUM,
68 MT_RA_REGNUM = MT_R14_REGNUM,
69 MT_R15_REGNUM,
70 MT_IRA_REGNUM = MT_R15_REGNUM,
71 MT_PC_REGNUM,
72
73 /* Interrupt Enable pseudo-register, exported by SID. */
74 MT_INT_ENABLE_REGNUM,
75 /* End of CPU regs. */
76
77 MT_NUM_CPU_REGS,
78
79 /* Co-processor registers. */
80 MT_COPRO_REGNUM = MT_NUM_CPU_REGS, /* 16 bit regs. */
81 MT_CPR0_REGNUM,
82 MT_CPR1_REGNUM,
83 MT_CPR2_REGNUM,
84 MT_CPR3_REGNUM,
85 MT_CPR4_REGNUM,
86 MT_CPR5_REGNUM,
87 MT_CPR6_REGNUM,
88 MT_CPR7_REGNUM,
89 MT_CPR8_REGNUM,
90 MT_CPR9_REGNUM,
91 MT_CPR10_REGNUM,
92 MT_CPR11_REGNUM,
93 MT_CPR12_REGNUM,
94 MT_CPR13_REGNUM,
95 MT_CPR14_REGNUM,
96 MT_CPR15_REGNUM,
97 MT_BYPA_REGNUM, /* 32 bit regs. */
98 MT_BYPB_REGNUM,
99 MT_BYPC_REGNUM,
100 MT_FLAG_REGNUM,
101 MT_CONTEXT_REGNUM, /* 38 bits (treat as array of
102 six bytes). */
103 MT_MAC_REGNUM, /* 32 bits. */
104 MT_Z1_REGNUM, /* 16 bits. */
105 MT_Z2_REGNUM, /* 16 bits. */
106 MT_ICHANNEL_REGNUM, /* 32 bits. */
107 MT_ISCRAMB_REGNUM, /* 32 bits. */
108 MT_QSCRAMB_REGNUM, /* 32 bits. */
109 MT_OUT_REGNUM, /* 16 bits. */
110 MT_EXMAC_REGNUM, /* 32 bits (8 used). */
111 MT_QCHANNEL_REGNUM, /* 32 bits. */
112 MT_ZI2_REGNUM, /* 16 bits. */
113 MT_ZQ2_REGNUM, /* 16 bits. */
114 MT_CHANNEL2_REGNUM, /* 32 bits. */
115 MT_ISCRAMB2_REGNUM, /* 32 bits. */
116 MT_QSCRAMB2_REGNUM, /* 32 bits. */
117 MT_QCHANNEL2_REGNUM, /* 32 bits. */
118
119 /* Number of real registers. */
120 MT_NUM_REGS,
121
122 /* Pseudo-registers. */
123 MT_COPRO_PSEUDOREG_REGNUM = MT_NUM_REGS,
124 MT_MAC_PSEUDOREG_REGNUM,
125 MT_COPRO_PSEUDOREG_ARRAY,
126
127 MT_COPRO_PSEUDOREG_DIM_1 = 2,
128 MT_COPRO_PSEUDOREG_DIM_2 = 8,
129 /* The number of pseudo-registers for each coprocessor. These
130 include the real coprocessor registers, the pseudo-registe for
131 the coprocessor number, and the pseudo-register for the MAC. */
132 MT_COPRO_PSEUDOREG_REGS = MT_NUM_REGS - MT_NUM_CPU_REGS + 2,
133 /* The register number of the MAC, relative to a given coprocessor. */
134 MT_COPRO_PSEUDOREG_MAC_REGNUM = MT_COPRO_PSEUDOREG_REGS - 1,
135
136 /* Two pseudo-regs ('coprocessor' and 'mac'). */
137 MT_NUM_PSEUDO_REGS = 2 + (MT_COPRO_PSEUDOREG_REGS
138 * MT_COPRO_PSEUDOREG_DIM_1
139 * MT_COPRO_PSEUDOREG_DIM_2)
140 };
141
142 /* Return name of register number specified by REGNUM. */
143
144 static const char *
145 mt_register_name (struct gdbarch *gdbarch, int regnum)
146 {
147 static const char *const register_names[] = {
148 /* CPU regs. */
149 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
150 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
151 "pc", "IE",
152 /* Co-processor regs. */
153 "", /* copro register. */
154 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
155 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
156 "bypa", "bypb", "bypc", "flag", "context", "" /* mac. */ , "z1", "z2",
157 "Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac. */ , "Qchannel",
158 "zi2", "zq2", "Ichannel2", "Iscramb2", "Qscramb2", "Qchannel2",
159 /* Pseudo-registers. */
160 "coprocessor", "MAC"
161 };
162 static const char *array_names[MT_COPRO_PSEUDOREG_REGS
163 * MT_COPRO_PSEUDOREG_DIM_1
164 * MT_COPRO_PSEUDOREG_DIM_2];
165
166 if (regnum < 0)
167 return "";
168 if (regnum < ARRAY_SIZE (register_names))
169 return register_names[regnum];
170 if (array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY])
171 return array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY];
172
173 {
174 char *name;
175 const char *stub;
176 unsigned dim_1;
177 unsigned dim_2;
178 unsigned index;
179
180 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
181 index = regnum % MT_COPRO_PSEUDOREG_REGS;
182 dim_2 = (regnum / MT_COPRO_PSEUDOREG_REGS) % MT_COPRO_PSEUDOREG_DIM_2;
183 dim_1 = ((regnum / MT_COPRO_PSEUDOREG_REGS / MT_COPRO_PSEUDOREG_DIM_2)
184 % MT_COPRO_PSEUDOREG_DIM_1);
185
186 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
187 stub = register_names[MT_MAC_PSEUDOREG_REGNUM];
188 else if (index >= MT_NUM_REGS - MT_CPR0_REGNUM)
189 stub = "";
190 else
191 stub = register_names[index + MT_CPR0_REGNUM];
192 if (!*stub)
193 {
194 array_names[regnum] = stub;
195 return stub;
196 }
197 name = xmalloc (30);
198 sprintf (name, "copro_%d_%d_%s", dim_1, dim_2, stub);
199 array_names[regnum] = name;
200 return name;
201 }
202 }
203
204 /* Return the type of a coprocessor register. */
205
206 static struct type *
207 mt_copro_register_type (struct gdbarch *arch, int regnum)
208 {
209 switch (regnum)
210 {
211 case MT_INT_ENABLE_REGNUM:
212 case MT_ICHANNEL_REGNUM:
213 case MT_QCHANNEL_REGNUM:
214 case MT_ISCRAMB_REGNUM:
215 case MT_QSCRAMB_REGNUM:
216 return builtin_type_int32;
217 case MT_BYPA_REGNUM:
218 case MT_BYPB_REGNUM:
219 case MT_BYPC_REGNUM:
220 case MT_Z1_REGNUM:
221 case MT_Z2_REGNUM:
222 case MT_OUT_REGNUM:
223 case MT_ZI2_REGNUM:
224 case MT_ZQ2_REGNUM:
225 return builtin_type_int16;
226 case MT_EXMAC_REGNUM:
227 case MT_MAC_REGNUM:
228 return builtin_type_uint32;
229 case MT_CONTEXT_REGNUM:
230 return builtin_type (arch)->builtin_long_long;
231 case MT_FLAG_REGNUM:
232 return builtin_type (arch)->builtin_unsigned_char;
233 default:
234 if (regnum >= MT_CPR0_REGNUM && regnum <= MT_CPR15_REGNUM)
235 return builtin_type_int16;
236 else if (regnum == MT_CPR0_REGNUM + MT_COPRO_PSEUDOREG_MAC_REGNUM)
237 {
238 if (gdbarch_bfd_arch_info (arch)->mach == bfd_mach_mrisc2
239 || gdbarch_bfd_arch_info (arch)->mach == bfd_mach_ms2)
240 return builtin_type_uint64;
241 else
242 return builtin_type_uint32;
243 }
244 else
245 return builtin_type_uint32;
246 }
247 }
248
249 /* Given ARCH and a register number specified by REGNUM, return the
250 type of that register. */
251
252 static struct type *
253 mt_register_type (struct gdbarch *arch, int regnum)
254 {
255 static struct type *copro_type = NULL;
256
257 if (regnum >= 0 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS)
258 {
259 if (copro_type == NULL)
260 {
261 struct type *temp;
262 temp = create_range_type (NULL, builtin_type_int32, 0, 1);
263 copro_type = create_array_type (NULL, builtin_type_int16, temp);
264 }
265 switch (regnum)
266 {
267 case MT_PC_REGNUM:
268 case MT_RA_REGNUM:
269 case MT_IRA_REGNUM:
270 return builtin_type (arch)->builtin_func_ptr;
271 case MT_SP_REGNUM:
272 case MT_FP_REGNUM:
273 return builtin_type (arch)->builtin_data_ptr;
274 case MT_COPRO_REGNUM:
275 case MT_COPRO_PSEUDOREG_REGNUM:
276 return copro_type;
277 case MT_MAC_PSEUDOREG_REGNUM:
278 return mt_copro_register_type (arch,
279 MT_CPR0_REGNUM
280 + MT_COPRO_PSEUDOREG_MAC_REGNUM);
281 default:
282 if (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM)
283 return builtin_type_int32;
284 else if (regnum < MT_COPRO_PSEUDOREG_ARRAY)
285 return mt_copro_register_type (arch, regnum);
286 else
287 {
288 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
289 regnum %= MT_COPRO_PSEUDOREG_REGS;
290 regnum += MT_CPR0_REGNUM;
291 return mt_copro_register_type (arch, regnum);
292 }
293 }
294 }
295 internal_error (__FILE__, __LINE__,
296 _("mt_register_type: illegal register number %d"), regnum);
297 }
298
299 /* Return true if register REGNUM is a member of the register group
300 specified by GROUP. */
301
302 static int
303 mt_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
304 struct reggroup *group)
305 {
306 /* Groups of registers that can be displayed via "info reg". */
307 if (group == all_reggroup)
308 return (regnum >= 0
309 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS
310 && mt_register_name (gdbarch, regnum)[0] != '\0');
311
312 if (group == general_reggroup)
313 return (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM);
314
315 if (group == float_reggroup)
316 return 0; /* No float regs. */
317
318 if (group == vector_reggroup)
319 return 0; /* No vector regs. */
320
321 /* For any that are not handled above. */
322 return default_register_reggroup_p (gdbarch, regnum, group);
323 }
324
325 /* Return the return value convention used for a given type TYPE.
326 Optionally, fetch or set the return value via READBUF or
327 WRITEBUF respectively using REGCACHE for the register
328 values. */
329
330 static enum return_value_convention
331 mt_return_value (struct gdbarch *gdbarch, struct type *func_type,
332 struct type *type, struct regcache *regcache,
333 gdb_byte *readbuf, const gdb_byte *writebuf)
334 {
335 if (TYPE_LENGTH (type) > 4)
336 {
337 /* Return values > 4 bytes are returned in memory,
338 pointed to by R11. */
339 if (readbuf)
340 {
341 ULONGEST addr;
342
343 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
344 read_memory (addr, readbuf, TYPE_LENGTH (type));
345 }
346
347 if (writebuf)
348 {
349 ULONGEST addr;
350
351 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
352 write_memory (addr, writebuf, TYPE_LENGTH (type));
353 }
354
355 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
356 }
357 else
358 {
359 if (readbuf)
360 {
361 ULONGEST temp;
362
363 /* Return values of <= 4 bytes are returned in R11. */
364 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &temp);
365 store_unsigned_integer (readbuf, TYPE_LENGTH (type), temp);
366 }
367
368 if (writebuf)
369 {
370 if (TYPE_LENGTH (type) < 4)
371 {
372 gdb_byte buf[4];
373 /* Add leading zeros to the value. */
374 memset (buf, 0, sizeof (buf));
375 memcpy (buf + sizeof (buf) - TYPE_LENGTH (type),
376 writebuf, TYPE_LENGTH (type));
377 regcache_cooked_write (regcache, MT_R11_REGNUM, buf);
378 }
379 else /* (TYPE_LENGTH (type) == 4 */
380 regcache_cooked_write (regcache, MT_R11_REGNUM, writebuf);
381 }
382
383 return RETURN_VALUE_REGISTER_CONVENTION;
384 }
385 }
386
387 /* If the input address, PC, is in a function prologue, return the
388 address of the end of the prologue, otherwise return the input
389 address.
390
391 Note: PC is likely to be the function start, since this function
392 is mainly used for advancing a breakpoint to the first line, or
393 stepping to the first line when we have stepped into a function
394 call. */
395
396 static CORE_ADDR
397 mt_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
398 {
399 CORE_ADDR func_addr = 0, func_end = 0;
400 char *func_name;
401 unsigned long instr;
402
403 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
404 {
405 struct symtab_and_line sal;
406 struct symbol *sym;
407
408 /* Found a function. */
409 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL);
410 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
411 {
412 /* Don't use this trick for assembly source files. */
413 sal = find_pc_line (func_addr, 0);
414
415 if (sal.end && sal.end < func_end)
416 {
417 /* Found a line number, use it as end of prologue. */
418 return sal.end;
419 }
420 }
421 }
422
423 /* No function symbol, or no line symbol. Use prologue scanning method. */
424 for (;; pc += 4)
425 {
426 instr = read_memory_unsigned_integer (pc, 4);
427 if (instr == 0x12000000) /* nop */
428 continue;
429 if (instr == 0x12ddc000) /* copy sp into fp */
430 continue;
431 instr >>= 16;
432 if (instr == 0x05dd) /* subi sp, sp, imm */
433 continue;
434 if (instr >= 0x43c0 && instr <= 0x43df) /* push */
435 continue;
436 /* Not an obvious prologue instruction. */
437 break;
438 }
439
440 return pc;
441 }
442
443 /* The breakpoint instruction must be the same size as the smallest
444 instruction in the instruction set.
445
446 The BP for ms1 is defined as 0x68000000 (BREAK).
447 The BP for ms2 is defined as 0x69000000 (illegal) */
448
449 static const gdb_byte *
450 mt_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
451 int *bp_size)
452 {
453 static gdb_byte ms1_breakpoint[] = { 0x68, 0, 0, 0 };
454 static gdb_byte ms2_breakpoint[] = { 0x69, 0, 0, 0 };
455
456 *bp_size = 4;
457 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
458 return ms2_breakpoint;
459
460 return ms1_breakpoint;
461 }
462
463 /* Select the correct coprocessor register bank. Return the pseudo
464 regnum we really want to read. */
465
466 static int
467 mt_select_coprocessor (struct gdbarch *gdbarch,
468 struct regcache *regcache, int regno)
469 {
470 unsigned index, base;
471 gdb_byte copro[4];
472
473 /* Get the copro pseudo regnum. */
474 regcache_raw_read (regcache, MT_COPRO_REGNUM, copro);
475 base = (extract_signed_integer (&copro[0], 2) * MT_COPRO_PSEUDOREG_DIM_2
476 + extract_signed_integer (&copro[2], 2));
477
478 regno -= MT_COPRO_PSEUDOREG_ARRAY;
479 index = regno % MT_COPRO_PSEUDOREG_REGS;
480 regno /= MT_COPRO_PSEUDOREG_REGS;
481 if (base != regno)
482 {
483 /* Select the correct coprocessor register bank. Invalidate the
484 coprocessor register cache. */
485 unsigned ix;
486
487 store_signed_integer (&copro[0], 2, regno / MT_COPRO_PSEUDOREG_DIM_2);
488 store_signed_integer (&copro[2], 2, regno % MT_COPRO_PSEUDOREG_DIM_2);
489 regcache_raw_write (regcache, MT_COPRO_REGNUM, copro);
490
491 /* We must flush the cache, as it is now invalid. */
492 for (ix = MT_NUM_CPU_REGS; ix != MT_NUM_REGS; ix++)
493 regcache_invalidate (regcache, ix);
494 }
495
496 return index;
497 }
498
499 /* Fetch the pseudo registers:
500
501 There are two regular pseudo-registers:
502 1) The 'coprocessor' pseudo-register (which mirrors the
503 "real" coprocessor register sent by the target), and
504 2) The 'MAC' pseudo-register (which represents the union
505 of the original 32 bit target MAC register and the new
506 8-bit extended-MAC register).
507
508 Additionally there is an array of coprocessor registers which track
509 the coprocessor registers for each coprocessor. */
510
511 static void
512 mt_pseudo_register_read (struct gdbarch *gdbarch,
513 struct regcache *regcache, int regno, gdb_byte *buf)
514 {
515 switch (regno)
516 {
517 case MT_COPRO_REGNUM:
518 case MT_COPRO_PSEUDOREG_REGNUM:
519 regcache_raw_read (regcache, MT_COPRO_REGNUM, buf);
520 break;
521 case MT_MAC_REGNUM:
522 case MT_MAC_PSEUDOREG_REGNUM:
523 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
524 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
525 {
526 ULONGEST oldmac = 0, ext_mac = 0;
527 ULONGEST newmac;
528
529 regcache_cooked_read_unsigned (regcache, MT_MAC_REGNUM, &oldmac);
530 regcache_cooked_read_unsigned (regcache, MT_EXMAC_REGNUM, &ext_mac);
531 newmac =
532 (oldmac & 0xffffffff) | ((long long) (ext_mac & 0xff) << 32);
533 store_signed_integer (buf, 8, newmac);
534 }
535 else
536 regcache_raw_read (regcache, MT_MAC_REGNUM, buf);
537 break;
538 default:
539 {
540 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
541
542 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
543 mt_pseudo_register_read (gdbarch, regcache,
544 MT_MAC_PSEUDOREG_REGNUM, buf);
545 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
546 regcache_raw_read (regcache, index + MT_CPR0_REGNUM, buf);
547 }
548 break;
549 }
550 }
551
552 /* Write the pseudo registers:
553
554 Mt pseudo-registers are stored directly to the target. The
555 'coprocessor' register is special, because when it is modified, all
556 the other coprocessor regs must be flushed from the reg cache. */
557
558 static void
559 mt_pseudo_register_write (struct gdbarch *gdbarch,
560 struct regcache *regcache,
561 int regno, const gdb_byte *buf)
562 {
563 int i;
564
565 switch (regno)
566 {
567 case MT_COPRO_REGNUM:
568 case MT_COPRO_PSEUDOREG_REGNUM:
569 regcache_raw_write (regcache, MT_COPRO_REGNUM, buf);
570 for (i = MT_NUM_CPU_REGS; i < MT_NUM_REGS; i++)
571 regcache_invalidate (regcache, i);
572 break;
573 case MT_MAC_REGNUM:
574 case MT_MAC_PSEUDOREG_REGNUM:
575 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
576 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
577 {
578 /* The 8-byte MAC pseudo-register must be broken down into two
579 32-byte registers. */
580 unsigned int oldmac, ext_mac;
581 ULONGEST newmac;
582
583 newmac = extract_unsigned_integer (buf, 8);
584 oldmac = newmac & 0xffffffff;
585 ext_mac = (newmac >> 32) & 0xff;
586 regcache_cooked_write_unsigned (regcache, MT_MAC_REGNUM, oldmac);
587 regcache_cooked_write_unsigned (regcache, MT_EXMAC_REGNUM, ext_mac);
588 }
589 else
590 regcache_raw_write (regcache, MT_MAC_REGNUM, buf);
591 break;
592 default:
593 {
594 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
595
596 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
597 mt_pseudo_register_write (gdbarch, regcache,
598 MT_MAC_PSEUDOREG_REGNUM, buf);
599 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
600 regcache_raw_write (regcache, index + MT_CPR0_REGNUM, buf);
601 }
602 break;
603 }
604 }
605
606 static CORE_ADDR
607 mt_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
608 {
609 /* Register size is 4 bytes. */
610 return align_down (sp, 4);
611 }
612
613 /* Implements the "info registers" command. When ``all'' is non-zero,
614 the coprocessor registers will be printed in addition to the rest
615 of the registers. */
616
617 static void
618 mt_registers_info (struct gdbarch *gdbarch,
619 struct ui_file *file,
620 struct frame_info *frame, int regnum, int all)
621 {
622 if (regnum == -1)
623 {
624 int lim;
625
626 lim = all ? MT_NUM_REGS : MT_NUM_CPU_REGS;
627
628 for (regnum = 0; regnum < lim; regnum++)
629 {
630 /* Don't display the Qchannel register since it will be displayed
631 along with Ichannel. (See below.) */
632 if (regnum == MT_QCHANNEL_REGNUM)
633 continue;
634
635 mt_registers_info (gdbarch, file, frame, regnum, all);
636
637 /* Display the Qchannel register immediately after Ichannel. */
638 if (regnum == MT_ICHANNEL_REGNUM)
639 mt_registers_info (gdbarch, file, frame, MT_QCHANNEL_REGNUM, all);
640 }
641 }
642 else
643 {
644 if (regnum == MT_EXMAC_REGNUM)
645 return;
646 else if (regnum == MT_CONTEXT_REGNUM)
647 {
648 /* Special output handling for 38-bit context register. */
649 unsigned char *buff;
650 unsigned int *bytes, i, regsize;
651
652 regsize = register_size (gdbarch, regnum);
653
654 buff = alloca (regsize);
655 bytes = alloca (regsize * sizeof (*bytes));
656
657 frame_register_read (frame, regnum, buff);
658
659 fputs_filtered (gdbarch_register_name
660 (gdbarch, regnum), file);
661 print_spaces_filtered (15 - strlen (gdbarch_register_name
662 (gdbarch, regnum)),
663 file);
664 fputs_filtered ("0x", file);
665
666 for (i = 0; i < regsize; i++)
667 fprintf_filtered (file, "%02x", (unsigned int)
668 extract_unsigned_integer (buff + i, 1));
669 fputs_filtered ("\t", file);
670 print_longest (file, 'd', 0,
671 extract_unsigned_integer (buff, regsize));
672 fputs_filtered ("\n", file);
673 }
674 else if (regnum == MT_COPRO_REGNUM
675 || regnum == MT_COPRO_PSEUDOREG_REGNUM)
676 {
677 /* Special output handling for the 'coprocessor' register. */
678 gdb_byte *buf;
679 struct value_print_options opts;
680
681 buf = alloca (register_size (gdbarch, MT_COPRO_REGNUM));
682 frame_register_read (frame, MT_COPRO_REGNUM, buf);
683 /* And print. */
684 regnum = MT_COPRO_PSEUDOREG_REGNUM;
685 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
686 file);
687 print_spaces_filtered (15 - strlen (gdbarch_register_name
688 (gdbarch, regnum)),
689 file);
690 get_raw_print_options (&opts);
691 opts.deref_ref = 1;
692 val_print (register_type (gdbarch, regnum), buf,
693 0, 0, file, 0, &opts,
694 current_language);
695 fputs_filtered ("\n", file);
696 }
697 else if (regnum == MT_MAC_REGNUM || regnum == MT_MAC_PSEUDOREG_REGNUM)
698 {
699 ULONGEST oldmac, ext_mac, newmac;
700 gdb_byte buf[3 * sizeof (LONGEST)];
701
702 /* Get the two "real" mac registers. */
703 frame_register_read (frame, MT_MAC_REGNUM, buf);
704 oldmac = extract_unsigned_integer
705 (buf, register_size (gdbarch, MT_MAC_REGNUM));
706 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
707 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
708 {
709 frame_register_read (frame, MT_EXMAC_REGNUM, buf);
710 ext_mac = extract_unsigned_integer
711 (buf, register_size (gdbarch, MT_EXMAC_REGNUM));
712 }
713 else
714 ext_mac = 0;
715
716 /* Add them together. */
717 newmac = (oldmac & 0xffffffff) + ((ext_mac & 0xff) << 32);
718
719 /* And print. */
720 regnum = MT_MAC_PSEUDOREG_REGNUM;
721 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
722 file);
723 print_spaces_filtered (15 - strlen (gdbarch_register_name
724 (gdbarch, regnum)),
725 file);
726 fputs_filtered ("0x", file);
727 print_longest (file, 'x', 0, newmac);
728 fputs_filtered ("\t", file);
729 print_longest (file, 'u', 0, newmac);
730 fputs_filtered ("\n", file);
731 }
732 else
733 default_print_registers_info (gdbarch, file, frame, regnum, all);
734 }
735 }
736
737 /* Set up the callee's arguments for an inferior function call. The
738 arguments are pushed on the stack or are placed in registers as
739 appropriate. It also sets up the return address (which points to
740 the call dummy breakpoint).
741
742 Returns the updated (and aligned) stack pointer. */
743
744 static CORE_ADDR
745 mt_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
746 struct regcache *regcache, CORE_ADDR bp_addr,
747 int nargs, struct value **args, CORE_ADDR sp,
748 int struct_return, CORE_ADDR struct_addr)
749 {
750 #define wordsize 4
751 gdb_byte buf[MT_MAX_STRUCT_SIZE];
752 int argreg = MT_1ST_ARGREG;
753 int split_param_len = 0;
754 int stack_dest = sp;
755 int slacklen;
756 int typelen;
757 int i, j;
758
759 /* First handle however many args we can fit into MT_1ST_ARGREG thru
760 MT_LAST_ARGREG. */
761 for (i = 0; i < nargs && argreg <= MT_LAST_ARGREG; i++)
762 {
763 const gdb_byte *val;
764 typelen = TYPE_LENGTH (value_type (args[i]));
765 switch (typelen)
766 {
767 case 1:
768 case 2:
769 case 3:
770 case 4:
771 regcache_cooked_write_unsigned (regcache, argreg++,
772 extract_unsigned_integer
773 (value_contents (args[i]),
774 wordsize));
775 break;
776 case 8:
777 case 12:
778 case 16:
779 val = value_contents (args[i]);
780 while (typelen > 0)
781 {
782 if (argreg <= MT_LAST_ARGREG)
783 {
784 /* This word of the argument is passed in a register. */
785 regcache_cooked_write_unsigned (regcache, argreg++,
786 extract_unsigned_integer
787 (val, wordsize));
788 typelen -= wordsize;
789 val += wordsize;
790 }
791 else
792 {
793 /* Remainder of this arg must be passed on the stack
794 (deferred to do later). */
795 split_param_len = typelen;
796 memcpy (buf, val, typelen);
797 break; /* No more args can be handled in regs. */
798 }
799 }
800 break;
801 default:
802 /* By reverse engineering of gcc output, args bigger than
803 16 bytes go on the stack, and their address is passed
804 in the argreg. */
805 stack_dest -= typelen;
806 write_memory (stack_dest, value_contents (args[i]), typelen);
807 regcache_cooked_write_unsigned (regcache, argreg++, stack_dest);
808 break;
809 }
810 }
811
812 /* Next, the rest of the arguments go onto the stack, in reverse order. */
813 for (j = nargs - 1; j >= i; j--)
814 {
815 gdb_byte *val;
816
817 /* Right-justify the value in an aligned-length buffer. */
818 typelen = TYPE_LENGTH (value_type (args[j]));
819 slacklen = (wordsize - (typelen % wordsize)) % wordsize;
820 val = alloca (typelen + slacklen);
821 memcpy (val, value_contents (args[j]), typelen);
822 memset (val + typelen, 0, slacklen);
823 /* Now write this data to the stack. */
824 stack_dest -= typelen + slacklen;
825 write_memory (stack_dest, val, typelen + slacklen);
826 }
827
828 /* Finally, if a param needs to be split between registers and stack,
829 write the second half to the stack now. */
830 if (split_param_len != 0)
831 {
832 stack_dest -= split_param_len;
833 write_memory (stack_dest, buf, split_param_len);
834 }
835
836 /* Set up return address (provided to us as bp_addr). */
837 regcache_cooked_write_unsigned (regcache, MT_RA_REGNUM, bp_addr);
838
839 /* Store struct return address, if given. */
840 if (struct_return && struct_addr != 0)
841 regcache_cooked_write_unsigned (regcache, MT_R11_REGNUM, struct_addr);
842
843 /* Set aside 16 bytes for the callee to save regs 1-4. */
844 stack_dest -= 16;
845
846 /* Update the stack pointer. */
847 regcache_cooked_write_unsigned (regcache, MT_SP_REGNUM, stack_dest);
848
849 /* And that should do it. Return the new stack pointer. */
850 return stack_dest;
851 }
852
853
854 /* The 'unwind_cache' data structure. */
855
856 struct mt_unwind_cache
857 {
858 /* The previous frame's inner most stack address.
859 Used as this frame ID's stack_addr. */
860 CORE_ADDR prev_sp;
861 CORE_ADDR frame_base;
862 int framesize;
863 int frameless_p;
864
865 /* Table indicating the location of each and every register. */
866 struct trad_frame_saved_reg *saved_regs;
867 };
868
869 /* Initialize an unwind_cache. Build up the saved_regs table etc. for
870 the frame. */
871
872 static struct mt_unwind_cache *
873 mt_frame_unwind_cache (struct frame_info *this_frame,
874 void **this_prologue_cache)
875 {
876 struct gdbarch *gdbarch;
877 struct mt_unwind_cache *info;
878 CORE_ADDR next_addr, start_addr, end_addr, prologue_end_addr;
879 unsigned long instr, upper_half, delayed_store = 0;
880 int regnum, offset;
881 ULONGEST sp, fp;
882
883 if ((*this_prologue_cache))
884 return (*this_prologue_cache);
885
886 gdbarch = get_frame_arch (this_frame);
887 info = FRAME_OBSTACK_ZALLOC (struct mt_unwind_cache);
888 (*this_prologue_cache) = info;
889
890 info->prev_sp = 0;
891 info->framesize = 0;
892 info->frame_base = 0;
893 info->frameless_p = 1;
894 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
895
896 /* Grab the frame-relative values of SP and FP, needed below.
897 The frame_saved_register function will find them on the
898 stack or in the registers as appropriate. */
899 sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
900 fp = get_frame_register_unsigned (this_frame, MT_FP_REGNUM);
901
902 start_addr = get_frame_func (this_frame);
903
904 /* Return early if GDB couldn't find the function. */
905 if (start_addr == 0)
906 return info;
907
908 end_addr = get_frame_pc (this_frame);
909 prologue_end_addr = skip_prologue_using_sal (start_addr);
910 if (end_addr == 0)
911 for (next_addr = start_addr; next_addr < end_addr; next_addr += 4)
912 {
913 instr = get_frame_memory_unsigned (this_frame, next_addr, 4);
914 if (delayed_store) /* previous instr was a push */
915 {
916 upper_half = delayed_store >> 16;
917 regnum = upper_half & 0xf;
918 offset = delayed_store & 0xffff;
919 switch (upper_half & 0xfff0)
920 {
921 case 0x43c0: /* push using frame pointer */
922 info->saved_regs[regnum].addr = offset;
923 break;
924 case 0x43d0: /* push using stack pointer */
925 info->saved_regs[regnum].addr = offset;
926 break;
927 default: /* lint */
928 break;
929 }
930 delayed_store = 0;
931 }
932
933 switch (instr)
934 {
935 case 0x12000000: /* NO-OP */
936 continue;
937 case 0x12ddc000: /* copy sp into fp */
938 info->frameless_p = 0; /* Record that the frame pointer is in use. */
939 continue;
940 default:
941 upper_half = instr >> 16;
942 if (upper_half == 0x05dd || /* subi sp, sp, imm */
943 upper_half == 0x07dd) /* subui sp, sp, imm */
944 {
945 /* Record the frame size. */
946 info->framesize = instr & 0xffff;
947 continue;
948 }
949 if ((upper_half & 0xfff0) == 0x43c0 || /* frame push */
950 (upper_half & 0xfff0) == 0x43d0) /* stack push */
951 {
952 /* Save this instruction, but don't record the
953 pushed register as 'saved' until we see the
954 next instruction. That's because of deferred stores
955 on this target -- GDB won't be able to read the register
956 from the stack until one instruction later. */
957 delayed_store = instr;
958 continue;
959 }
960 /* Not a prologue instruction. Is this the end of the prologue?
961 This is the most difficult decision; when to stop scanning.
962
963 If we have no line symbol, then the best thing we can do
964 is to stop scanning when we encounter an instruction that
965 is not likely to be a part of the prologue.
966
967 But if we do have a line symbol, then we should
968 keep scanning until we reach it (or we reach end_addr). */
969
970 if (prologue_end_addr && (prologue_end_addr > (next_addr + 4)))
971 continue; /* Keep scanning, recording saved_regs etc. */
972 else
973 break; /* Quit scanning: breakpoint can be set here. */
974 }
975 }
976
977 /* Special handling for the "saved" address of the SP:
978 The SP is of course never saved on the stack at all, so
979 by convention what we put here is simply the previous
980 _value_ of the SP (as opposed to an address where the
981 previous value would have been pushed). This will also
982 give us the frame base address. */
983
984 if (info->frameless_p)
985 {
986 info->frame_base = sp + info->framesize;
987 info->prev_sp = sp + info->framesize;
988 }
989 else
990 {
991 info->frame_base = fp + info->framesize;
992 info->prev_sp = fp + info->framesize;
993 }
994 /* Save prev_sp in saved_regs as a value, not as an address. */
995 trad_frame_set_value (info->saved_regs, MT_SP_REGNUM, info->prev_sp);
996
997 /* Now convert frame offsets to actual addresses (not offsets). */
998 for (regnum = 0; regnum < MT_NUM_REGS; regnum++)
999 if (trad_frame_addr_p (info->saved_regs, regnum))
1000 info->saved_regs[regnum].addr += info->frame_base - info->framesize;
1001
1002 /* The call instruction moves the caller's PC in the callee's RA reg.
1003 Since this is an unwind, do the reverse. Copy the location of RA
1004 into PC (the address / regnum) so that a request for PC will be
1005 converted into a request for the RA. */
1006 info->saved_regs[MT_PC_REGNUM] = info->saved_regs[MT_RA_REGNUM];
1007
1008 return info;
1009 }
1010
1011 static CORE_ADDR
1012 mt_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1013 {
1014 ULONGEST pc;
1015
1016 pc = frame_unwind_register_unsigned (next_frame, MT_PC_REGNUM);
1017 return pc;
1018 }
1019
1020 static CORE_ADDR
1021 mt_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1022 {
1023 ULONGEST sp;
1024
1025 sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM);
1026 return sp;
1027 }
1028
1029 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1030 frame. The frame ID's base needs to match the TOS value saved by
1031 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1032
1033 static struct frame_id
1034 mt_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1035 {
1036 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
1037 return frame_id_build (sp, get_frame_pc (this_frame));
1038 }
1039
1040 /* Given a GDB frame, determine the address of the calling function's
1041 frame. This will be used to create a new GDB frame struct. */
1042
1043 static void
1044 mt_frame_this_id (struct frame_info *this_frame,
1045 void **this_prologue_cache, struct frame_id *this_id)
1046 {
1047 struct mt_unwind_cache *info =
1048 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1049
1050 if (!(info == NULL || info->prev_sp == 0))
1051 (*this_id) = frame_id_build (info->prev_sp, get_frame_func (this_frame));
1052
1053 return;
1054 }
1055
1056 static struct value *
1057 mt_frame_prev_register (struct frame_info *this_frame,
1058 void **this_prologue_cache, int regnum)
1059 {
1060 struct mt_unwind_cache *info =
1061 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1062
1063 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1064 }
1065
1066 static CORE_ADDR
1067 mt_frame_base_address (struct frame_info *this_frame,
1068 void **this_prologue_cache)
1069 {
1070 struct mt_unwind_cache *info =
1071 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1072
1073 return info->frame_base;
1074 }
1075
1076 /* This is a shared interface: the 'frame_unwind' object is what's
1077 returned by the 'sniffer' function, and in turn specifies how to
1078 get a frame's ID and prev_regs.
1079
1080 This exports the 'prev_register' and 'this_id' methods. */
1081
1082 static const struct frame_unwind mt_frame_unwind = {
1083 NORMAL_FRAME,
1084 mt_frame_this_id,
1085 mt_frame_prev_register,
1086 NULL,
1087 default_frame_sniffer
1088 };
1089
1090 /* Another shared interface: the 'frame_base' object specifies how to
1091 unwind a frame and secure the base addresses for frame objects
1092 (locals, args). */
1093
1094 static struct frame_base mt_frame_base = {
1095 &mt_frame_unwind,
1096 mt_frame_base_address,
1097 mt_frame_base_address,
1098 mt_frame_base_address
1099 };
1100
1101 static struct gdbarch *
1102 mt_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1103 {
1104 struct gdbarch *gdbarch;
1105
1106 /* Find a candidate among the list of pre-declared architectures. */
1107 arches = gdbarch_list_lookup_by_info (arches, &info);
1108 if (arches != NULL)
1109 return arches->gdbarch;
1110
1111 /* None found, create a new architecture from the information
1112 provided. */
1113 gdbarch = gdbarch_alloc (&info, NULL);
1114
1115 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1116 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1117 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1118
1119 set_gdbarch_register_name (gdbarch, mt_register_name);
1120 set_gdbarch_num_regs (gdbarch, MT_NUM_REGS);
1121 set_gdbarch_num_pseudo_regs (gdbarch, MT_NUM_PSEUDO_REGS);
1122 set_gdbarch_pc_regnum (gdbarch, MT_PC_REGNUM);
1123 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1124 set_gdbarch_pseudo_register_read (gdbarch, mt_pseudo_register_read);
1125 set_gdbarch_pseudo_register_write (gdbarch, mt_pseudo_register_write);
1126 set_gdbarch_skip_prologue (gdbarch, mt_skip_prologue);
1127 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1128 set_gdbarch_breakpoint_from_pc (gdbarch, mt_breakpoint_from_pc);
1129 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1130 set_gdbarch_frame_args_skip (gdbarch, 0);
1131 set_gdbarch_print_insn (gdbarch, print_insn_mt);
1132 set_gdbarch_register_type (gdbarch, mt_register_type);
1133 set_gdbarch_register_reggroup_p (gdbarch, mt_register_reggroup_p);
1134
1135 set_gdbarch_return_value (gdbarch, mt_return_value);
1136 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1137
1138 set_gdbarch_frame_align (gdbarch, mt_frame_align);
1139
1140 set_gdbarch_print_registers_info (gdbarch, mt_registers_info);
1141
1142 set_gdbarch_push_dummy_call (gdbarch, mt_push_dummy_call);
1143
1144 /* Target builtin data types. */
1145 set_gdbarch_short_bit (gdbarch, 16);
1146 set_gdbarch_int_bit (gdbarch, 32);
1147 set_gdbarch_long_bit (gdbarch, 32);
1148 set_gdbarch_long_long_bit (gdbarch, 64);
1149 set_gdbarch_float_bit (gdbarch, 32);
1150 set_gdbarch_double_bit (gdbarch, 64);
1151 set_gdbarch_long_double_bit (gdbarch, 64);
1152 set_gdbarch_ptr_bit (gdbarch, 32);
1153
1154 /* Register the DWARF 2 sniffer first, and then the traditional prologue
1155 based sniffer. */
1156 dwarf2_append_unwinders (gdbarch);
1157 frame_unwind_append_unwinder (gdbarch, &mt_frame_unwind);
1158 frame_base_set_default (gdbarch, &mt_frame_base);
1159
1160 /* Register the 'unwind_pc' method. */
1161 set_gdbarch_unwind_pc (gdbarch, mt_unwind_pc);
1162 set_gdbarch_unwind_sp (gdbarch, mt_unwind_sp);
1163
1164 /* Methods for saving / extracting a dummy frame's ID.
1165 The ID's stack address must match the SP value returned by
1166 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1167 set_gdbarch_dummy_id (gdbarch, mt_dummy_id);
1168
1169 return gdbarch;
1170 }
1171
1172 /* Provide a prototype to silence -Wmissing-prototypes. */
1173 extern initialize_file_ftype _initialize_mt_tdep;
1174
1175 void
1176 _initialize_mt_tdep (void)
1177 {
1178 register_gdbarch_init (bfd_arch_mt, mt_gdbarch_init);
1179 }
This page took 0.075533 seconds and 4 git commands to generate.