* symtab.h (enum address_class): Remove LOC_INDIRECT and
[deliverable/binutils-gdb.git] / gdb / mt-tdep.c
1 /* Target-dependent code for Morpho mt processor, for GDB.
2
3 Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Michael Snyder, msnyder@redhat.com. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "symtab.h"
27 #include "dis-asm.h"
28 #include "arch-utils.h"
29 #include "gdbtypes.h"
30 #include "gdb_string.h"
31 #include "regcache.h"
32 #include "reggroups.h"
33 #include "gdbcore.h"
34 #include "trad-frame.h"
35 #include "inferior.h"
36 #include "dwarf2-frame.h"
37 #include "infcall.h"
38 #include "gdb_assert.h"
39 #include "language.h"
40
41 enum mt_arch_constants
42 {
43 MT_MAX_STRUCT_SIZE = 16
44 };
45
46 enum mt_gdb_regnums
47 {
48 MT_R0_REGNUM, /* 32 bit regs. */
49 MT_R1_REGNUM,
50 MT_1ST_ARGREG = MT_R1_REGNUM,
51 MT_R2_REGNUM,
52 MT_R3_REGNUM,
53 MT_R4_REGNUM,
54 MT_LAST_ARGREG = MT_R4_REGNUM,
55 MT_R5_REGNUM,
56 MT_R6_REGNUM,
57 MT_R7_REGNUM,
58 MT_R8_REGNUM,
59 MT_R9_REGNUM,
60 MT_R10_REGNUM,
61 MT_R11_REGNUM,
62 MT_R12_REGNUM,
63 MT_FP_REGNUM = MT_R12_REGNUM,
64 MT_R13_REGNUM,
65 MT_SP_REGNUM = MT_R13_REGNUM,
66 MT_R14_REGNUM,
67 MT_RA_REGNUM = MT_R14_REGNUM,
68 MT_R15_REGNUM,
69 MT_IRA_REGNUM = MT_R15_REGNUM,
70 MT_PC_REGNUM,
71
72 /* Interrupt Enable pseudo-register, exported by SID. */
73 MT_INT_ENABLE_REGNUM,
74 /* End of CPU regs. */
75
76 MT_NUM_CPU_REGS,
77
78 /* Co-processor registers. */
79 MT_COPRO_REGNUM = MT_NUM_CPU_REGS, /* 16 bit regs. */
80 MT_CPR0_REGNUM,
81 MT_CPR1_REGNUM,
82 MT_CPR2_REGNUM,
83 MT_CPR3_REGNUM,
84 MT_CPR4_REGNUM,
85 MT_CPR5_REGNUM,
86 MT_CPR6_REGNUM,
87 MT_CPR7_REGNUM,
88 MT_CPR8_REGNUM,
89 MT_CPR9_REGNUM,
90 MT_CPR10_REGNUM,
91 MT_CPR11_REGNUM,
92 MT_CPR12_REGNUM,
93 MT_CPR13_REGNUM,
94 MT_CPR14_REGNUM,
95 MT_CPR15_REGNUM,
96 MT_BYPA_REGNUM, /* 32 bit regs. */
97 MT_BYPB_REGNUM,
98 MT_BYPC_REGNUM,
99 MT_FLAG_REGNUM,
100 MT_CONTEXT_REGNUM, /* 38 bits (treat as array of
101 six bytes). */
102 MT_MAC_REGNUM, /* 32 bits. */
103 MT_Z1_REGNUM, /* 16 bits. */
104 MT_Z2_REGNUM, /* 16 bits. */
105 MT_ICHANNEL_REGNUM, /* 32 bits. */
106 MT_ISCRAMB_REGNUM, /* 32 bits. */
107 MT_QSCRAMB_REGNUM, /* 32 bits. */
108 MT_OUT_REGNUM, /* 16 bits. */
109 MT_EXMAC_REGNUM, /* 32 bits (8 used). */
110 MT_QCHANNEL_REGNUM, /* 32 bits. */
111 MT_ZI2_REGNUM, /* 16 bits. */
112 MT_ZQ2_REGNUM, /* 16 bits. */
113 MT_CHANNEL2_REGNUM, /* 32 bits. */
114 MT_ISCRAMB2_REGNUM, /* 32 bits. */
115 MT_QSCRAMB2_REGNUM, /* 32 bits. */
116 MT_QCHANNEL2_REGNUM, /* 32 bits. */
117
118 /* Number of real registers. */
119 MT_NUM_REGS,
120
121 /* Pseudo-registers. */
122 MT_COPRO_PSEUDOREG_REGNUM = MT_NUM_REGS,
123 MT_MAC_PSEUDOREG_REGNUM,
124 MT_COPRO_PSEUDOREG_ARRAY,
125
126 MT_COPRO_PSEUDOREG_DIM_1 = 2,
127 MT_COPRO_PSEUDOREG_DIM_2 = 8,
128 /* The number of pseudo-registers for each coprocessor. These
129 include the real coprocessor registers, the pseudo-registe for
130 the coprocessor number, and the pseudo-register for the MAC. */
131 MT_COPRO_PSEUDOREG_REGS = MT_NUM_REGS - MT_NUM_CPU_REGS + 2,
132 /* The register number of the MAC, relative to a given coprocessor. */
133 MT_COPRO_PSEUDOREG_MAC_REGNUM = MT_COPRO_PSEUDOREG_REGS - 1,
134
135 /* Two pseudo-regs ('coprocessor' and 'mac'). */
136 MT_NUM_PSEUDO_REGS = 2 + (MT_COPRO_PSEUDOREG_REGS
137 * MT_COPRO_PSEUDOREG_DIM_1
138 * MT_COPRO_PSEUDOREG_DIM_2)
139 };
140
141 /* Return name of register number specified by REGNUM. */
142
143 static const char *
144 mt_register_name (struct gdbarch *gdbarch, int regnum)
145 {
146 static const char *const register_names[] = {
147 /* CPU regs. */
148 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
149 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
150 "pc", "IE",
151 /* Co-processor regs. */
152 "", /* copro register. */
153 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
154 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
155 "bypa", "bypb", "bypc", "flag", "context", "" /* mac. */ , "z1", "z2",
156 "Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac. */ , "Qchannel",
157 "zi2", "zq2", "Ichannel2", "Iscramb2", "Qscramb2", "Qchannel2",
158 /* Pseudo-registers. */
159 "coprocessor", "MAC"
160 };
161 static const char *array_names[MT_COPRO_PSEUDOREG_REGS
162 * MT_COPRO_PSEUDOREG_DIM_1
163 * MT_COPRO_PSEUDOREG_DIM_2];
164
165 if (regnum < 0)
166 return "";
167 if (regnum < ARRAY_SIZE (register_names))
168 return register_names[regnum];
169 if (array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY])
170 return array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY];
171
172 {
173 char *name;
174 const char *stub;
175 unsigned dim_1;
176 unsigned dim_2;
177 unsigned index;
178
179 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
180 index = regnum % MT_COPRO_PSEUDOREG_REGS;
181 dim_2 = (regnum / MT_COPRO_PSEUDOREG_REGS) % MT_COPRO_PSEUDOREG_DIM_2;
182 dim_1 = ((regnum / MT_COPRO_PSEUDOREG_REGS / MT_COPRO_PSEUDOREG_DIM_2)
183 % MT_COPRO_PSEUDOREG_DIM_1);
184
185 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
186 stub = register_names[MT_MAC_PSEUDOREG_REGNUM];
187 else if (index >= MT_NUM_REGS - MT_CPR0_REGNUM)
188 stub = "";
189 else
190 stub = register_names[index + MT_CPR0_REGNUM];
191 if (!*stub)
192 {
193 array_names[regnum] = stub;
194 return stub;
195 }
196 name = xmalloc (30);
197 sprintf (name, "copro_%d_%d_%s", dim_1, dim_2, stub);
198 array_names[regnum] = name;
199 return name;
200 }
201 }
202
203 /* Return the type of a coprocessor register. */
204
205 static struct type *
206 mt_copro_register_type (struct gdbarch *arch, int regnum)
207 {
208 switch (regnum)
209 {
210 case MT_INT_ENABLE_REGNUM:
211 case MT_ICHANNEL_REGNUM:
212 case MT_QCHANNEL_REGNUM:
213 case MT_ISCRAMB_REGNUM:
214 case MT_QSCRAMB_REGNUM:
215 return builtin_type_int32;
216 case MT_BYPA_REGNUM:
217 case MT_BYPB_REGNUM:
218 case MT_BYPC_REGNUM:
219 case MT_Z1_REGNUM:
220 case MT_Z2_REGNUM:
221 case MT_OUT_REGNUM:
222 case MT_ZI2_REGNUM:
223 case MT_ZQ2_REGNUM:
224 return builtin_type_int16;
225 case MT_EXMAC_REGNUM:
226 case MT_MAC_REGNUM:
227 return builtin_type_uint32;
228 case MT_CONTEXT_REGNUM:
229 return builtin_type_long_long;
230 case MT_FLAG_REGNUM:
231 return builtin_type_unsigned_char;
232 default:
233 if (regnum >= MT_CPR0_REGNUM && regnum <= MT_CPR15_REGNUM)
234 return builtin_type_int16;
235 else if (regnum == MT_CPR0_REGNUM + MT_COPRO_PSEUDOREG_MAC_REGNUM)
236 {
237 if (gdbarch_bfd_arch_info (arch)->mach == bfd_mach_mrisc2
238 || gdbarch_bfd_arch_info (arch)->mach == bfd_mach_ms2)
239 return builtin_type_uint64;
240 else
241 return builtin_type_uint32;
242 }
243 else
244 return builtin_type_uint32;
245 }
246 }
247
248 /* Given ARCH and a register number specified by REGNUM, return the
249 type of that register. */
250
251 static struct type *
252 mt_register_type (struct gdbarch *arch, int regnum)
253 {
254 static struct type *void_func_ptr = NULL;
255 static struct type *void_ptr = NULL;
256 static struct type *copro_type;
257
258 if (regnum >= 0 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS)
259 {
260 if (void_func_ptr == NULL)
261 {
262 struct type *temp;
263
264 void_ptr = lookup_pointer_type (builtin_type_void);
265 void_func_ptr =
266 lookup_pointer_type (lookup_function_type (builtin_type_void));
267 temp = create_range_type (NULL, builtin_type_unsigned_int, 0, 1);
268 copro_type = create_array_type (NULL, builtin_type_int16, temp);
269 }
270 switch (regnum)
271 {
272 case MT_PC_REGNUM:
273 case MT_RA_REGNUM:
274 case MT_IRA_REGNUM:
275 return void_func_ptr;
276 case MT_SP_REGNUM:
277 case MT_FP_REGNUM:
278 return void_ptr;
279 case MT_COPRO_REGNUM:
280 case MT_COPRO_PSEUDOREG_REGNUM:
281 return copro_type;
282 case MT_MAC_PSEUDOREG_REGNUM:
283 return mt_copro_register_type (arch,
284 MT_CPR0_REGNUM
285 + MT_COPRO_PSEUDOREG_MAC_REGNUM);
286 default:
287 if (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM)
288 return builtin_type_int32;
289 else if (regnum < MT_COPRO_PSEUDOREG_ARRAY)
290 return mt_copro_register_type (arch, regnum);
291 else
292 {
293 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
294 regnum %= MT_COPRO_PSEUDOREG_REGS;
295 regnum += MT_CPR0_REGNUM;
296 return mt_copro_register_type (arch, regnum);
297 }
298 }
299 }
300 internal_error (__FILE__, __LINE__,
301 _("mt_register_type: illegal register number %d"), regnum);
302 }
303
304 /* Return true if register REGNUM is a member of the register group
305 specified by GROUP. */
306
307 static int
308 mt_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
309 struct reggroup *group)
310 {
311 /* Groups of registers that can be displayed via "info reg". */
312 if (group == all_reggroup)
313 return (regnum >= 0
314 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS
315 && mt_register_name (gdbarch, regnum)[0] != '\0');
316
317 if (group == general_reggroup)
318 return (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM);
319
320 if (group == float_reggroup)
321 return 0; /* No float regs. */
322
323 if (group == vector_reggroup)
324 return 0; /* No vector regs. */
325
326 /* For any that are not handled above. */
327 return default_register_reggroup_p (gdbarch, regnum, group);
328 }
329
330 /* Return the return value convention used for a given type TYPE.
331 Optionally, fetch or set the return value via READBUF or
332 WRITEBUF respectively using REGCACHE for the register
333 values. */
334
335 static enum return_value_convention
336 mt_return_value (struct gdbarch *gdbarch, struct type *func_type,
337 struct type *type, struct regcache *regcache,
338 gdb_byte *readbuf, const gdb_byte *writebuf)
339 {
340 if (TYPE_LENGTH (type) > 4)
341 {
342 /* Return values > 4 bytes are returned in memory,
343 pointed to by R11. */
344 if (readbuf)
345 {
346 ULONGEST addr;
347
348 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
349 read_memory (addr, readbuf, TYPE_LENGTH (type));
350 }
351
352 if (writebuf)
353 {
354 ULONGEST addr;
355
356 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
357 write_memory (addr, writebuf, TYPE_LENGTH (type));
358 }
359
360 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
361 }
362 else
363 {
364 if (readbuf)
365 {
366 ULONGEST temp;
367
368 /* Return values of <= 4 bytes are returned in R11. */
369 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &temp);
370 store_unsigned_integer (readbuf, TYPE_LENGTH (type), temp);
371 }
372
373 if (writebuf)
374 {
375 if (TYPE_LENGTH (type) < 4)
376 {
377 gdb_byte buf[4];
378 /* Add leading zeros to the value. */
379 memset (buf, 0, sizeof (buf));
380 memcpy (buf + sizeof (buf) - TYPE_LENGTH (type),
381 writebuf, TYPE_LENGTH (type));
382 regcache_cooked_write (regcache, MT_R11_REGNUM, buf);
383 }
384 else /* (TYPE_LENGTH (type) == 4 */
385 regcache_cooked_write (regcache, MT_R11_REGNUM, writebuf);
386 }
387
388 return RETURN_VALUE_REGISTER_CONVENTION;
389 }
390 }
391
392 /* If the input address, PC, is in a function prologue, return the
393 address of the end of the prologue, otherwise return the input
394 address.
395
396 Note: PC is likely to be the function start, since this function
397 is mainly used for advancing a breakpoint to the first line, or
398 stepping to the first line when we have stepped into a function
399 call. */
400
401 static CORE_ADDR
402 mt_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
403 {
404 CORE_ADDR func_addr = 0, func_end = 0;
405 char *func_name;
406 unsigned long instr;
407
408 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
409 {
410 struct symtab_and_line sal;
411 struct symbol *sym;
412
413 /* Found a function. */
414 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL);
415 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
416 {
417 /* Don't use this trick for assembly source files. */
418 sal = find_pc_line (func_addr, 0);
419
420 if (sal.end && sal.end < func_end)
421 {
422 /* Found a line number, use it as end of prologue. */
423 return sal.end;
424 }
425 }
426 }
427
428 /* No function symbol, or no line symbol. Use prologue scanning method. */
429 for (;; pc += 4)
430 {
431 instr = read_memory_unsigned_integer (pc, 4);
432 if (instr == 0x12000000) /* nop */
433 continue;
434 if (instr == 0x12ddc000) /* copy sp into fp */
435 continue;
436 instr >>= 16;
437 if (instr == 0x05dd) /* subi sp, sp, imm */
438 continue;
439 if (instr >= 0x43c0 && instr <= 0x43df) /* push */
440 continue;
441 /* Not an obvious prologue instruction. */
442 break;
443 }
444
445 return pc;
446 }
447
448 /* The breakpoint instruction must be the same size as the smallest
449 instruction in the instruction set.
450
451 The BP for ms1 is defined as 0x68000000 (BREAK).
452 The BP for ms2 is defined as 0x69000000 (illegal) */
453
454 static const gdb_byte *
455 mt_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
456 int *bp_size)
457 {
458 static gdb_byte ms1_breakpoint[] = { 0x68, 0, 0, 0 };
459 static gdb_byte ms2_breakpoint[] = { 0x69, 0, 0, 0 };
460
461 *bp_size = 4;
462 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
463 return ms2_breakpoint;
464
465 return ms1_breakpoint;
466 }
467
468 /* Select the correct coprocessor register bank. Return the pseudo
469 regnum we really want to read. */
470
471 static int
472 mt_select_coprocessor (struct gdbarch *gdbarch,
473 struct regcache *regcache, int regno)
474 {
475 unsigned index, base;
476 gdb_byte copro[4];
477
478 /* Get the copro pseudo regnum. */
479 regcache_raw_read (regcache, MT_COPRO_REGNUM, copro);
480 base = (extract_signed_integer (&copro[0], 2) * MT_COPRO_PSEUDOREG_DIM_2
481 + extract_signed_integer (&copro[2], 2));
482
483 regno -= MT_COPRO_PSEUDOREG_ARRAY;
484 index = regno % MT_COPRO_PSEUDOREG_REGS;
485 regno /= MT_COPRO_PSEUDOREG_REGS;
486 if (base != regno)
487 {
488 /* Select the correct coprocessor register bank. Invalidate the
489 coprocessor register cache. */
490 unsigned ix;
491
492 store_signed_integer (&copro[0], 2, regno / MT_COPRO_PSEUDOREG_DIM_2);
493 store_signed_integer (&copro[2], 2, regno % MT_COPRO_PSEUDOREG_DIM_2);
494 regcache_raw_write (regcache, MT_COPRO_REGNUM, copro);
495
496 /* We must flush the cache, as it is now invalid. */
497 for (ix = MT_NUM_CPU_REGS; ix != MT_NUM_REGS; ix++)
498 regcache_invalidate (regcache, ix);
499 }
500
501 return index;
502 }
503
504 /* Fetch the pseudo registers:
505
506 There are two regular pseudo-registers:
507 1) The 'coprocessor' pseudo-register (which mirrors the
508 "real" coprocessor register sent by the target), and
509 2) The 'MAC' pseudo-register (which represents the union
510 of the original 32 bit target MAC register and the new
511 8-bit extended-MAC register).
512
513 Additionally there is an array of coprocessor registers which track
514 the coprocessor registers for each coprocessor. */
515
516 static void
517 mt_pseudo_register_read (struct gdbarch *gdbarch,
518 struct regcache *regcache, int regno, gdb_byte *buf)
519 {
520 switch (regno)
521 {
522 case MT_COPRO_REGNUM:
523 case MT_COPRO_PSEUDOREG_REGNUM:
524 regcache_raw_read (regcache, MT_COPRO_REGNUM, buf);
525 break;
526 case MT_MAC_REGNUM:
527 case MT_MAC_PSEUDOREG_REGNUM:
528 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
529 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
530 {
531 ULONGEST oldmac = 0, ext_mac = 0;
532 ULONGEST newmac;
533
534 regcache_cooked_read_unsigned (regcache, MT_MAC_REGNUM, &oldmac);
535 regcache_cooked_read_unsigned (regcache, MT_EXMAC_REGNUM, &ext_mac);
536 newmac =
537 (oldmac & 0xffffffff) | ((long long) (ext_mac & 0xff) << 32);
538 store_signed_integer (buf, 8, newmac);
539 }
540 else
541 regcache_raw_read (regcache, MT_MAC_REGNUM, buf);
542 break;
543 default:
544 {
545 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
546
547 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
548 mt_pseudo_register_read (gdbarch, regcache,
549 MT_MAC_PSEUDOREG_REGNUM, buf);
550 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
551 regcache_raw_read (regcache, index + MT_CPR0_REGNUM, buf);
552 }
553 break;
554 }
555 }
556
557 /* Write the pseudo registers:
558
559 Mt pseudo-registers are stored directly to the target. The
560 'coprocessor' register is special, because when it is modified, all
561 the other coprocessor regs must be flushed from the reg cache. */
562
563 static void
564 mt_pseudo_register_write (struct gdbarch *gdbarch,
565 struct regcache *regcache,
566 int regno, const gdb_byte *buf)
567 {
568 int i;
569
570 switch (regno)
571 {
572 case MT_COPRO_REGNUM:
573 case MT_COPRO_PSEUDOREG_REGNUM:
574 regcache_raw_write (regcache, MT_COPRO_REGNUM, buf);
575 for (i = MT_NUM_CPU_REGS; i < MT_NUM_REGS; i++)
576 regcache_invalidate (regcache, i);
577 break;
578 case MT_MAC_REGNUM:
579 case MT_MAC_PSEUDOREG_REGNUM:
580 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
581 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
582 {
583 /* The 8-byte MAC pseudo-register must be broken down into two
584 32-byte registers. */
585 unsigned int oldmac, ext_mac;
586 ULONGEST newmac;
587
588 newmac = extract_unsigned_integer (buf, 8);
589 oldmac = newmac & 0xffffffff;
590 ext_mac = (newmac >> 32) & 0xff;
591 regcache_cooked_write_unsigned (regcache, MT_MAC_REGNUM, oldmac);
592 regcache_cooked_write_unsigned (regcache, MT_EXMAC_REGNUM, ext_mac);
593 }
594 else
595 regcache_raw_write (regcache, MT_MAC_REGNUM, buf);
596 break;
597 default:
598 {
599 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
600
601 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
602 mt_pseudo_register_write (gdbarch, regcache,
603 MT_MAC_PSEUDOREG_REGNUM, buf);
604 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
605 regcache_raw_write (regcache, index + MT_CPR0_REGNUM, buf);
606 }
607 break;
608 }
609 }
610
611 static CORE_ADDR
612 mt_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
613 {
614 /* Register size is 4 bytes. */
615 return align_down (sp, 4);
616 }
617
618 /* Implements the "info registers" command. When ``all'' is non-zero,
619 the coprocessor registers will be printed in addition to the rest
620 of the registers. */
621
622 static void
623 mt_registers_info (struct gdbarch *gdbarch,
624 struct ui_file *file,
625 struct frame_info *frame, int regnum, int all)
626 {
627 if (regnum == -1)
628 {
629 int lim;
630
631 lim = all ? MT_NUM_REGS : MT_NUM_CPU_REGS;
632
633 for (regnum = 0; regnum < lim; regnum++)
634 {
635 /* Don't display the Qchannel register since it will be displayed
636 along with Ichannel. (See below.) */
637 if (regnum == MT_QCHANNEL_REGNUM)
638 continue;
639
640 mt_registers_info (gdbarch, file, frame, regnum, all);
641
642 /* Display the Qchannel register immediately after Ichannel. */
643 if (regnum == MT_ICHANNEL_REGNUM)
644 mt_registers_info (gdbarch, file, frame, MT_QCHANNEL_REGNUM, all);
645 }
646 }
647 else
648 {
649 if (regnum == MT_EXMAC_REGNUM)
650 return;
651 else if (regnum == MT_CONTEXT_REGNUM)
652 {
653 /* Special output handling for 38-bit context register. */
654 unsigned char *buff;
655 unsigned int *bytes, i, regsize;
656
657 regsize = register_size (gdbarch, regnum);
658
659 buff = alloca (regsize);
660 bytes = alloca (regsize * sizeof (*bytes));
661
662 frame_register_read (frame, regnum, buff);
663
664 fputs_filtered (gdbarch_register_name
665 (gdbarch, regnum), file);
666 print_spaces_filtered (15 - strlen (gdbarch_register_name
667 (gdbarch, regnum)),
668 file);
669 fputs_filtered ("0x", file);
670
671 for (i = 0; i < regsize; i++)
672 fprintf_filtered (file, "%02x", (unsigned int)
673 extract_unsigned_integer (buff + i, 1));
674 fputs_filtered ("\t", file);
675 print_longest (file, 'd', 0,
676 extract_unsigned_integer (buff, regsize));
677 fputs_filtered ("\n", file);
678 }
679 else if (regnum == MT_COPRO_REGNUM
680 || regnum == MT_COPRO_PSEUDOREG_REGNUM)
681 {
682 /* Special output handling for the 'coprocessor' register. */
683 gdb_byte *buf;
684
685 buf = alloca (register_size (gdbarch, MT_COPRO_REGNUM));
686 frame_register_read (frame, MT_COPRO_REGNUM, buf);
687 /* And print. */
688 regnum = MT_COPRO_PSEUDOREG_REGNUM;
689 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
690 file);
691 print_spaces_filtered (15 - strlen (gdbarch_register_name
692 (gdbarch, regnum)),
693 file);
694 val_print (register_type (gdbarch, regnum), buf,
695 0, 0, file, 0, 1, 0, Val_no_prettyprint,
696 current_language);
697 fputs_filtered ("\n", file);
698 }
699 else if (regnum == MT_MAC_REGNUM || regnum == MT_MAC_PSEUDOREG_REGNUM)
700 {
701 ULONGEST oldmac, ext_mac, newmac;
702 gdb_byte buf[3 * sizeof (LONGEST)];
703
704 /* Get the two "real" mac registers. */
705 frame_register_read (frame, MT_MAC_REGNUM, buf);
706 oldmac = extract_unsigned_integer
707 (buf, register_size (gdbarch, MT_MAC_REGNUM));
708 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
709 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
710 {
711 frame_register_read (frame, MT_EXMAC_REGNUM, buf);
712 ext_mac = extract_unsigned_integer
713 (buf, register_size (gdbarch, MT_EXMAC_REGNUM));
714 }
715 else
716 ext_mac = 0;
717
718 /* Add them together. */
719 newmac = (oldmac & 0xffffffff) + ((ext_mac & 0xff) << 32);
720
721 /* And print. */
722 regnum = MT_MAC_PSEUDOREG_REGNUM;
723 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
724 file);
725 print_spaces_filtered (15 - strlen (gdbarch_register_name
726 (gdbarch, regnum)),
727 file);
728 fputs_filtered ("0x", file);
729 print_longest (file, 'x', 0, newmac);
730 fputs_filtered ("\t", file);
731 print_longest (file, 'u', 0, newmac);
732 fputs_filtered ("\n", file);
733 }
734 else
735 default_print_registers_info (gdbarch, file, frame, regnum, all);
736 }
737 }
738
739 /* Set up the callee's arguments for an inferior function call. The
740 arguments are pushed on the stack or are placed in registers as
741 appropriate. It also sets up the return address (which points to
742 the call dummy breakpoint).
743
744 Returns the updated (and aligned) stack pointer. */
745
746 static CORE_ADDR
747 mt_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
748 struct regcache *regcache, CORE_ADDR bp_addr,
749 int nargs, struct value **args, CORE_ADDR sp,
750 int struct_return, CORE_ADDR struct_addr)
751 {
752 #define wordsize 4
753 gdb_byte buf[MT_MAX_STRUCT_SIZE];
754 int argreg = MT_1ST_ARGREG;
755 int split_param_len = 0;
756 int stack_dest = sp;
757 int slacklen;
758 int typelen;
759 int i, j;
760
761 /* First handle however many args we can fit into MT_1ST_ARGREG thru
762 MT_LAST_ARGREG. */
763 for (i = 0; i < nargs && argreg <= MT_LAST_ARGREG; i++)
764 {
765 const gdb_byte *val;
766 typelen = TYPE_LENGTH (value_type (args[i]));
767 switch (typelen)
768 {
769 case 1:
770 case 2:
771 case 3:
772 case 4:
773 regcache_cooked_write_unsigned (regcache, argreg++,
774 extract_unsigned_integer
775 (value_contents (args[i]),
776 wordsize));
777 break;
778 case 8:
779 case 12:
780 case 16:
781 val = value_contents (args[i]);
782 while (typelen > 0)
783 {
784 if (argreg <= MT_LAST_ARGREG)
785 {
786 /* This word of the argument is passed in a register. */
787 regcache_cooked_write_unsigned (regcache, argreg++,
788 extract_unsigned_integer
789 (val, wordsize));
790 typelen -= wordsize;
791 val += wordsize;
792 }
793 else
794 {
795 /* Remainder of this arg must be passed on the stack
796 (deferred to do later). */
797 split_param_len = typelen;
798 memcpy (buf, val, typelen);
799 break; /* No more args can be handled in regs. */
800 }
801 }
802 break;
803 default:
804 /* By reverse engineering of gcc output, args bigger than
805 16 bytes go on the stack, and their address is passed
806 in the argreg. */
807 stack_dest -= typelen;
808 write_memory (stack_dest, value_contents (args[i]), typelen);
809 regcache_cooked_write_unsigned (regcache, argreg++, stack_dest);
810 break;
811 }
812 }
813
814 /* Next, the rest of the arguments go onto the stack, in reverse order. */
815 for (j = nargs - 1; j >= i; j--)
816 {
817 gdb_byte *val;
818
819 /* Right-justify the value in an aligned-length buffer. */
820 typelen = TYPE_LENGTH (value_type (args[j]));
821 slacklen = (wordsize - (typelen % wordsize)) % wordsize;
822 val = alloca (typelen + slacklen);
823 memcpy (val, value_contents (args[j]), typelen);
824 memset (val + typelen, 0, slacklen);
825 /* Now write this data to the stack. */
826 stack_dest -= typelen + slacklen;
827 write_memory (stack_dest, val, typelen + slacklen);
828 }
829
830 /* Finally, if a param needs to be split between registers and stack,
831 write the second half to the stack now. */
832 if (split_param_len != 0)
833 {
834 stack_dest -= split_param_len;
835 write_memory (stack_dest, buf, split_param_len);
836 }
837
838 /* Set up return address (provided to us as bp_addr). */
839 regcache_cooked_write_unsigned (regcache, MT_RA_REGNUM, bp_addr);
840
841 /* Store struct return address, if given. */
842 if (struct_return && struct_addr != 0)
843 regcache_cooked_write_unsigned (regcache, MT_R11_REGNUM, struct_addr);
844
845 /* Set aside 16 bytes for the callee to save regs 1-4. */
846 stack_dest -= 16;
847
848 /* Update the stack pointer. */
849 regcache_cooked_write_unsigned (regcache, MT_SP_REGNUM, stack_dest);
850
851 /* And that should do it. Return the new stack pointer. */
852 return stack_dest;
853 }
854
855
856 /* The 'unwind_cache' data structure. */
857
858 struct mt_unwind_cache
859 {
860 /* The previous frame's inner most stack address.
861 Used as this frame ID's stack_addr. */
862 CORE_ADDR prev_sp;
863 CORE_ADDR frame_base;
864 int framesize;
865 int frameless_p;
866
867 /* Table indicating the location of each and every register. */
868 struct trad_frame_saved_reg *saved_regs;
869 };
870
871 /* Initialize an unwind_cache. Build up the saved_regs table etc. for
872 the frame. */
873
874 static struct mt_unwind_cache *
875 mt_frame_unwind_cache (struct frame_info *next_frame,
876 void **this_prologue_cache)
877 {
878 struct gdbarch *gdbarch;
879 struct mt_unwind_cache *info;
880 CORE_ADDR next_addr, start_addr, end_addr, prologue_end_addr;
881 unsigned long instr, upper_half, delayed_store = 0;
882 int regnum, offset;
883 ULONGEST sp, fp;
884
885 if ((*this_prologue_cache))
886 return (*this_prologue_cache);
887
888 gdbarch = get_frame_arch (next_frame);
889 info = FRAME_OBSTACK_ZALLOC (struct mt_unwind_cache);
890 (*this_prologue_cache) = info;
891
892 info->prev_sp = 0;
893 info->framesize = 0;
894 info->frame_base = 0;
895 info->frameless_p = 1;
896 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
897
898 /* Grab the frame-relative values of SP and FP, needed below.
899 The frame_saved_register function will find them on the
900 stack or in the registers as appropriate. */
901 sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM);
902 fp = frame_unwind_register_unsigned (next_frame, MT_FP_REGNUM);
903
904 start_addr = frame_func_unwind (next_frame, NORMAL_FRAME);
905
906 /* Return early if GDB couldn't find the function. */
907 if (start_addr == 0)
908 return info;
909
910 end_addr = frame_pc_unwind (next_frame);
911 prologue_end_addr = skip_prologue_using_sal (start_addr);
912 if (end_addr == 0)
913 for (next_addr = start_addr; next_addr < end_addr; next_addr += 4)
914 {
915 instr = get_frame_memory_unsigned (next_frame, next_addr, 4);
916 if (delayed_store) /* previous instr was a push */
917 {
918 upper_half = delayed_store >> 16;
919 regnum = upper_half & 0xf;
920 offset = delayed_store & 0xffff;
921 switch (upper_half & 0xfff0)
922 {
923 case 0x43c0: /* push using frame pointer */
924 info->saved_regs[regnum].addr = offset;
925 break;
926 case 0x43d0: /* push using stack pointer */
927 info->saved_regs[regnum].addr = offset;
928 break;
929 default: /* lint */
930 break;
931 }
932 delayed_store = 0;
933 }
934
935 switch (instr)
936 {
937 case 0x12000000: /* NO-OP */
938 continue;
939 case 0x12ddc000: /* copy sp into fp */
940 info->frameless_p = 0; /* Record that the frame pointer is in use. */
941 continue;
942 default:
943 upper_half = instr >> 16;
944 if (upper_half == 0x05dd || /* subi sp, sp, imm */
945 upper_half == 0x07dd) /* subui sp, sp, imm */
946 {
947 /* Record the frame size. */
948 info->framesize = instr & 0xffff;
949 continue;
950 }
951 if ((upper_half & 0xfff0) == 0x43c0 || /* frame push */
952 (upper_half & 0xfff0) == 0x43d0) /* stack push */
953 {
954 /* Save this instruction, but don't record the
955 pushed register as 'saved' until we see the
956 next instruction. That's because of deferred stores
957 on this target -- GDB won't be able to read the register
958 from the stack until one instruction later. */
959 delayed_store = instr;
960 continue;
961 }
962 /* Not a prologue instruction. Is this the end of the prologue?
963 This is the most difficult decision; when to stop scanning.
964
965 If we have no line symbol, then the best thing we can do
966 is to stop scanning when we encounter an instruction that
967 is not likely to be a part of the prologue.
968
969 But if we do have a line symbol, then we should
970 keep scanning until we reach it (or we reach end_addr). */
971
972 if (prologue_end_addr && (prologue_end_addr > (next_addr + 4)))
973 continue; /* Keep scanning, recording saved_regs etc. */
974 else
975 break; /* Quit scanning: breakpoint can be set here. */
976 }
977 }
978
979 /* Special handling for the "saved" address of the SP:
980 The SP is of course never saved on the stack at all, so
981 by convention what we put here is simply the previous
982 _value_ of the SP (as opposed to an address where the
983 previous value would have been pushed). This will also
984 give us the frame base address. */
985
986 if (info->frameless_p)
987 {
988 info->frame_base = sp + info->framesize;
989 info->prev_sp = sp + info->framesize;
990 }
991 else
992 {
993 info->frame_base = fp + info->framesize;
994 info->prev_sp = fp + info->framesize;
995 }
996 /* Save prev_sp in saved_regs as a value, not as an address. */
997 trad_frame_set_value (info->saved_regs, MT_SP_REGNUM, info->prev_sp);
998
999 /* Now convert frame offsets to actual addresses (not offsets). */
1000 for (regnum = 0; regnum < MT_NUM_REGS; regnum++)
1001 if (trad_frame_addr_p (info->saved_regs, regnum))
1002 info->saved_regs[regnum].addr += info->frame_base - info->framesize;
1003
1004 /* The call instruction moves the caller's PC in the callee's RA reg.
1005 Since this is an unwind, do the reverse. Copy the location of RA
1006 into PC (the address / regnum) so that a request for PC will be
1007 converted into a request for the RA. */
1008 info->saved_regs[MT_PC_REGNUM] = info->saved_regs[MT_RA_REGNUM];
1009
1010 return info;
1011 }
1012
1013 static CORE_ADDR
1014 mt_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1015 {
1016 ULONGEST pc;
1017
1018 pc = frame_unwind_register_unsigned (next_frame, MT_PC_REGNUM);
1019 return pc;
1020 }
1021
1022 static CORE_ADDR
1023 mt_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1024 {
1025 ULONGEST sp;
1026
1027 sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM);
1028 return sp;
1029 }
1030
1031 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1032 dummy frame. The frame ID's base needs to match the TOS value
1033 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1034 breakpoint. */
1035
1036 static struct frame_id
1037 mt_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1038 {
1039 return frame_id_build (mt_unwind_sp (gdbarch, next_frame),
1040 frame_pc_unwind (next_frame));
1041 }
1042
1043 /* Given a GDB frame, determine the address of the calling function's
1044 frame. This will be used to create a new GDB frame struct. */
1045
1046 static void
1047 mt_frame_this_id (struct frame_info *next_frame,
1048 void **this_prologue_cache, struct frame_id *this_id)
1049 {
1050 struct mt_unwind_cache *info =
1051 mt_frame_unwind_cache (next_frame, this_prologue_cache);
1052
1053 if (!(info == NULL || info->prev_sp == 0))
1054 (*this_id) = frame_id_build (info->prev_sp,
1055 frame_func_unwind (next_frame, NORMAL_FRAME));
1056
1057 return;
1058 }
1059
1060 static void
1061 mt_frame_prev_register (struct frame_info *next_frame,
1062 void **this_prologue_cache,
1063 int regnum, int *optimizedp,
1064 enum lval_type *lvalp, CORE_ADDR *addrp,
1065 int *realnump, gdb_byte *bufferp)
1066 {
1067 struct mt_unwind_cache *info =
1068 mt_frame_unwind_cache (next_frame, this_prologue_cache);
1069
1070 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1071 optimizedp, lvalp, addrp, realnump, bufferp);
1072 }
1073
1074 static CORE_ADDR
1075 mt_frame_base_address (struct frame_info *next_frame,
1076 void **this_prologue_cache)
1077 {
1078 struct mt_unwind_cache *info =
1079 mt_frame_unwind_cache (next_frame, this_prologue_cache);
1080
1081 return info->frame_base;
1082 }
1083
1084 /* This is a shared interface: the 'frame_unwind' object is what's
1085 returned by the 'sniffer' function, and in turn specifies how to
1086 get a frame's ID and prev_regs.
1087
1088 This exports the 'prev_register' and 'this_id' methods. */
1089
1090 static const struct frame_unwind mt_frame_unwind = {
1091 NORMAL_FRAME,
1092 mt_frame_this_id,
1093 mt_frame_prev_register
1094 };
1095
1096 /* The sniffer is a registered function that identifies our family of
1097 frame unwind functions (this_id and prev_register). */
1098
1099 static const struct frame_unwind *
1100 mt_frame_sniffer (struct frame_info *next_frame)
1101 {
1102 return &mt_frame_unwind;
1103 }
1104
1105 /* Another shared interface: the 'frame_base' object specifies how to
1106 unwind a frame and secure the base addresses for frame objects
1107 (locals, args). */
1108
1109 static struct frame_base mt_frame_base = {
1110 &mt_frame_unwind,
1111 mt_frame_base_address,
1112 mt_frame_base_address,
1113 mt_frame_base_address
1114 };
1115
1116 static struct gdbarch *
1117 mt_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1118 {
1119 struct gdbarch *gdbarch;
1120
1121 /* Find a candidate among the list of pre-declared architectures. */
1122 arches = gdbarch_list_lookup_by_info (arches, &info);
1123 if (arches != NULL)
1124 return arches->gdbarch;
1125
1126 /* None found, create a new architecture from the information
1127 provided. */
1128 gdbarch = gdbarch_alloc (&info, NULL);
1129
1130 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1131 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1132 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1133
1134 set_gdbarch_register_name (gdbarch, mt_register_name);
1135 set_gdbarch_num_regs (gdbarch, MT_NUM_REGS);
1136 set_gdbarch_num_pseudo_regs (gdbarch, MT_NUM_PSEUDO_REGS);
1137 set_gdbarch_pc_regnum (gdbarch, MT_PC_REGNUM);
1138 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1139 set_gdbarch_pseudo_register_read (gdbarch, mt_pseudo_register_read);
1140 set_gdbarch_pseudo_register_write (gdbarch, mt_pseudo_register_write);
1141 set_gdbarch_skip_prologue (gdbarch, mt_skip_prologue);
1142 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1143 set_gdbarch_breakpoint_from_pc (gdbarch, mt_breakpoint_from_pc);
1144 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1145 set_gdbarch_frame_args_skip (gdbarch, 0);
1146 set_gdbarch_print_insn (gdbarch, print_insn_mt);
1147 set_gdbarch_register_type (gdbarch, mt_register_type);
1148 set_gdbarch_register_reggroup_p (gdbarch, mt_register_reggroup_p);
1149
1150 set_gdbarch_return_value (gdbarch, mt_return_value);
1151 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1152
1153 set_gdbarch_frame_align (gdbarch, mt_frame_align);
1154
1155 set_gdbarch_print_registers_info (gdbarch, mt_registers_info);
1156
1157 set_gdbarch_push_dummy_call (gdbarch, mt_push_dummy_call);
1158
1159 /* Target builtin data types. */
1160 set_gdbarch_short_bit (gdbarch, 16);
1161 set_gdbarch_int_bit (gdbarch, 32);
1162 set_gdbarch_long_bit (gdbarch, 32);
1163 set_gdbarch_long_long_bit (gdbarch, 64);
1164 set_gdbarch_float_bit (gdbarch, 32);
1165 set_gdbarch_double_bit (gdbarch, 64);
1166 set_gdbarch_long_double_bit (gdbarch, 64);
1167 set_gdbarch_ptr_bit (gdbarch, 32);
1168
1169 /* Register the DWARF 2 sniffer first, and then the traditional prologue
1170 based sniffer. */
1171 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1172 frame_unwind_append_sniffer (gdbarch, mt_frame_sniffer);
1173 frame_base_set_default (gdbarch, &mt_frame_base);
1174
1175 /* Register the 'unwind_pc' method. */
1176 set_gdbarch_unwind_pc (gdbarch, mt_unwind_pc);
1177 set_gdbarch_unwind_sp (gdbarch, mt_unwind_sp);
1178
1179 /* Methods for saving / extracting a dummy frame's ID.
1180 The ID's stack address must match the SP value returned by
1181 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1182 set_gdbarch_unwind_dummy_id (gdbarch, mt_unwind_dummy_id);
1183
1184 return gdbarch;
1185 }
1186
1187 void
1188 _initialize_mt_tdep (void)
1189 {
1190 register_gdbarch_init (bfd_arch_mt, mt_gdbarch_init);
1191 }
This page took 0.099963 seconds and 4 git commands to generate.