2009-10-23 Tristan Gingold <gingold@adacore.com>
[deliverable/binutils-gdb.git] / gdb / mt-tdep.c
1 /* Target-dependent code for Morpho mt processor, for GDB.
2
3 Copyright (C) 2005, 2007, 2008, 2009 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Michael Snyder, msnyder@redhat.com. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "symtab.h"
27 #include "dis-asm.h"
28 #include "arch-utils.h"
29 #include "gdbtypes.h"
30 #include "gdb_string.h"
31 #include "regcache.h"
32 #include "reggroups.h"
33 #include "gdbcore.h"
34 #include "trad-frame.h"
35 #include "inferior.h"
36 #include "dwarf2-frame.h"
37 #include "infcall.h"
38 #include "gdb_assert.h"
39 #include "language.h"
40 #include "valprint.h"
41
42 enum mt_arch_constants
43 {
44 MT_MAX_STRUCT_SIZE = 16
45 };
46
47 enum mt_gdb_regnums
48 {
49 MT_R0_REGNUM, /* 32 bit regs. */
50 MT_R1_REGNUM,
51 MT_1ST_ARGREG = MT_R1_REGNUM,
52 MT_R2_REGNUM,
53 MT_R3_REGNUM,
54 MT_R4_REGNUM,
55 MT_LAST_ARGREG = MT_R4_REGNUM,
56 MT_R5_REGNUM,
57 MT_R6_REGNUM,
58 MT_R7_REGNUM,
59 MT_R8_REGNUM,
60 MT_R9_REGNUM,
61 MT_R10_REGNUM,
62 MT_R11_REGNUM,
63 MT_R12_REGNUM,
64 MT_FP_REGNUM = MT_R12_REGNUM,
65 MT_R13_REGNUM,
66 MT_SP_REGNUM = MT_R13_REGNUM,
67 MT_R14_REGNUM,
68 MT_RA_REGNUM = MT_R14_REGNUM,
69 MT_R15_REGNUM,
70 MT_IRA_REGNUM = MT_R15_REGNUM,
71 MT_PC_REGNUM,
72
73 /* Interrupt Enable pseudo-register, exported by SID. */
74 MT_INT_ENABLE_REGNUM,
75 /* End of CPU regs. */
76
77 MT_NUM_CPU_REGS,
78
79 /* Co-processor registers. */
80 MT_COPRO_REGNUM = MT_NUM_CPU_REGS, /* 16 bit regs. */
81 MT_CPR0_REGNUM,
82 MT_CPR1_REGNUM,
83 MT_CPR2_REGNUM,
84 MT_CPR3_REGNUM,
85 MT_CPR4_REGNUM,
86 MT_CPR5_REGNUM,
87 MT_CPR6_REGNUM,
88 MT_CPR7_REGNUM,
89 MT_CPR8_REGNUM,
90 MT_CPR9_REGNUM,
91 MT_CPR10_REGNUM,
92 MT_CPR11_REGNUM,
93 MT_CPR12_REGNUM,
94 MT_CPR13_REGNUM,
95 MT_CPR14_REGNUM,
96 MT_CPR15_REGNUM,
97 MT_BYPA_REGNUM, /* 32 bit regs. */
98 MT_BYPB_REGNUM,
99 MT_BYPC_REGNUM,
100 MT_FLAG_REGNUM,
101 MT_CONTEXT_REGNUM, /* 38 bits (treat as array of
102 six bytes). */
103 MT_MAC_REGNUM, /* 32 bits. */
104 MT_Z1_REGNUM, /* 16 bits. */
105 MT_Z2_REGNUM, /* 16 bits. */
106 MT_ICHANNEL_REGNUM, /* 32 bits. */
107 MT_ISCRAMB_REGNUM, /* 32 bits. */
108 MT_QSCRAMB_REGNUM, /* 32 bits. */
109 MT_OUT_REGNUM, /* 16 bits. */
110 MT_EXMAC_REGNUM, /* 32 bits (8 used). */
111 MT_QCHANNEL_REGNUM, /* 32 bits. */
112 MT_ZI2_REGNUM, /* 16 bits. */
113 MT_ZQ2_REGNUM, /* 16 bits. */
114 MT_CHANNEL2_REGNUM, /* 32 bits. */
115 MT_ISCRAMB2_REGNUM, /* 32 bits. */
116 MT_QSCRAMB2_REGNUM, /* 32 bits. */
117 MT_QCHANNEL2_REGNUM, /* 32 bits. */
118
119 /* Number of real registers. */
120 MT_NUM_REGS,
121
122 /* Pseudo-registers. */
123 MT_COPRO_PSEUDOREG_REGNUM = MT_NUM_REGS,
124 MT_MAC_PSEUDOREG_REGNUM,
125 MT_COPRO_PSEUDOREG_ARRAY,
126
127 MT_COPRO_PSEUDOREG_DIM_1 = 2,
128 MT_COPRO_PSEUDOREG_DIM_2 = 8,
129 /* The number of pseudo-registers for each coprocessor. These
130 include the real coprocessor registers, the pseudo-registe for
131 the coprocessor number, and the pseudo-register for the MAC. */
132 MT_COPRO_PSEUDOREG_REGS = MT_NUM_REGS - MT_NUM_CPU_REGS + 2,
133 /* The register number of the MAC, relative to a given coprocessor. */
134 MT_COPRO_PSEUDOREG_MAC_REGNUM = MT_COPRO_PSEUDOREG_REGS - 1,
135
136 /* Two pseudo-regs ('coprocessor' and 'mac'). */
137 MT_NUM_PSEUDO_REGS = 2 + (MT_COPRO_PSEUDOREG_REGS
138 * MT_COPRO_PSEUDOREG_DIM_1
139 * MT_COPRO_PSEUDOREG_DIM_2)
140 };
141
142 /* The tdep structure. */
143 struct gdbarch_tdep
144 {
145 /* ISA-specific types. */
146 struct type *copro_type;
147 };
148
149
150 /* Return name of register number specified by REGNUM. */
151
152 static const char *
153 mt_register_name (struct gdbarch *gdbarch, int regnum)
154 {
155 static const char *const register_names[] = {
156 /* CPU regs. */
157 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
158 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
159 "pc", "IE",
160 /* Co-processor regs. */
161 "", /* copro register. */
162 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
163 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
164 "bypa", "bypb", "bypc", "flag", "context", "" /* mac. */ , "z1", "z2",
165 "Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac. */ , "Qchannel",
166 "zi2", "zq2", "Ichannel2", "Iscramb2", "Qscramb2", "Qchannel2",
167 /* Pseudo-registers. */
168 "coprocessor", "MAC"
169 };
170 static const char *array_names[MT_COPRO_PSEUDOREG_REGS
171 * MT_COPRO_PSEUDOREG_DIM_1
172 * MT_COPRO_PSEUDOREG_DIM_2];
173
174 if (regnum < 0)
175 return "";
176 if (regnum < ARRAY_SIZE (register_names))
177 return register_names[regnum];
178 if (array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY])
179 return array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY];
180
181 {
182 char *name;
183 const char *stub;
184 unsigned dim_1;
185 unsigned dim_2;
186 unsigned index;
187
188 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
189 index = regnum % MT_COPRO_PSEUDOREG_REGS;
190 dim_2 = (regnum / MT_COPRO_PSEUDOREG_REGS) % MT_COPRO_PSEUDOREG_DIM_2;
191 dim_1 = ((regnum / MT_COPRO_PSEUDOREG_REGS / MT_COPRO_PSEUDOREG_DIM_2)
192 % MT_COPRO_PSEUDOREG_DIM_1);
193
194 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
195 stub = register_names[MT_MAC_PSEUDOREG_REGNUM];
196 else if (index >= MT_NUM_REGS - MT_CPR0_REGNUM)
197 stub = "";
198 else
199 stub = register_names[index + MT_CPR0_REGNUM];
200 if (!*stub)
201 {
202 array_names[regnum] = stub;
203 return stub;
204 }
205 name = xmalloc (30);
206 sprintf (name, "copro_%d_%d_%s", dim_1, dim_2, stub);
207 array_names[regnum] = name;
208 return name;
209 }
210 }
211
212 /* Return the type of a coprocessor register. */
213
214 static struct type *
215 mt_copro_register_type (struct gdbarch *arch, int regnum)
216 {
217 switch (regnum)
218 {
219 case MT_INT_ENABLE_REGNUM:
220 case MT_ICHANNEL_REGNUM:
221 case MT_QCHANNEL_REGNUM:
222 case MT_ISCRAMB_REGNUM:
223 case MT_QSCRAMB_REGNUM:
224 return builtin_type (arch)->builtin_int32;
225 case MT_BYPA_REGNUM:
226 case MT_BYPB_REGNUM:
227 case MT_BYPC_REGNUM:
228 case MT_Z1_REGNUM:
229 case MT_Z2_REGNUM:
230 case MT_OUT_REGNUM:
231 case MT_ZI2_REGNUM:
232 case MT_ZQ2_REGNUM:
233 return builtin_type (arch)->builtin_int16;
234 case MT_EXMAC_REGNUM:
235 case MT_MAC_REGNUM:
236 return builtin_type (arch)->builtin_uint32;
237 case MT_CONTEXT_REGNUM:
238 return builtin_type (arch)->builtin_long_long;
239 case MT_FLAG_REGNUM:
240 return builtin_type (arch)->builtin_unsigned_char;
241 default:
242 if (regnum >= MT_CPR0_REGNUM && regnum <= MT_CPR15_REGNUM)
243 return builtin_type (arch)->builtin_int16;
244 else if (regnum == MT_CPR0_REGNUM + MT_COPRO_PSEUDOREG_MAC_REGNUM)
245 {
246 if (gdbarch_bfd_arch_info (arch)->mach == bfd_mach_mrisc2
247 || gdbarch_bfd_arch_info (arch)->mach == bfd_mach_ms2)
248 return builtin_type (arch)->builtin_uint64;
249 else
250 return builtin_type (arch)->builtin_uint32;
251 }
252 else
253 return builtin_type (arch)->builtin_uint32;
254 }
255 }
256
257 /* Given ARCH and a register number specified by REGNUM, return the
258 type of that register. */
259
260 static struct type *
261 mt_register_type (struct gdbarch *arch, int regnum)
262 {
263 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
264
265 if (regnum >= 0 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS)
266 {
267 switch (regnum)
268 {
269 case MT_PC_REGNUM:
270 case MT_RA_REGNUM:
271 case MT_IRA_REGNUM:
272 return builtin_type (arch)->builtin_func_ptr;
273 case MT_SP_REGNUM:
274 case MT_FP_REGNUM:
275 return builtin_type (arch)->builtin_data_ptr;
276 case MT_COPRO_REGNUM:
277 case MT_COPRO_PSEUDOREG_REGNUM:
278 if (tdep->copro_type == NULL)
279 {
280 struct type *elt = builtin_type (arch)->builtin_int16;
281 tdep->copro_type = lookup_array_range_type (elt, 0, 1);
282 }
283 return tdep->copro_type;
284 case MT_MAC_PSEUDOREG_REGNUM:
285 return mt_copro_register_type (arch,
286 MT_CPR0_REGNUM
287 + MT_COPRO_PSEUDOREG_MAC_REGNUM);
288 default:
289 if (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM)
290 return builtin_type (arch)->builtin_int32;
291 else if (regnum < MT_COPRO_PSEUDOREG_ARRAY)
292 return mt_copro_register_type (arch, regnum);
293 else
294 {
295 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
296 regnum %= MT_COPRO_PSEUDOREG_REGS;
297 regnum += MT_CPR0_REGNUM;
298 return mt_copro_register_type (arch, regnum);
299 }
300 }
301 }
302 internal_error (__FILE__, __LINE__,
303 _("mt_register_type: illegal register number %d"), regnum);
304 }
305
306 /* Return true if register REGNUM is a member of the register group
307 specified by GROUP. */
308
309 static int
310 mt_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
311 struct reggroup *group)
312 {
313 /* Groups of registers that can be displayed via "info reg". */
314 if (group == all_reggroup)
315 return (regnum >= 0
316 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS
317 && mt_register_name (gdbarch, regnum)[0] != '\0');
318
319 if (group == general_reggroup)
320 return (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM);
321
322 if (group == float_reggroup)
323 return 0; /* No float regs. */
324
325 if (group == vector_reggroup)
326 return 0; /* No vector regs. */
327
328 /* For any that are not handled above. */
329 return default_register_reggroup_p (gdbarch, regnum, group);
330 }
331
332 /* Return the return value convention used for a given type TYPE.
333 Optionally, fetch or set the return value via READBUF or
334 WRITEBUF respectively using REGCACHE for the register
335 values. */
336
337 static enum return_value_convention
338 mt_return_value (struct gdbarch *gdbarch, struct type *func_type,
339 struct type *type, struct regcache *regcache,
340 gdb_byte *readbuf, const gdb_byte *writebuf)
341 {
342 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
343
344 if (TYPE_LENGTH (type) > 4)
345 {
346 /* Return values > 4 bytes are returned in memory,
347 pointed to by R11. */
348 if (readbuf)
349 {
350 ULONGEST addr;
351
352 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
353 read_memory (addr, readbuf, TYPE_LENGTH (type));
354 }
355
356 if (writebuf)
357 {
358 ULONGEST addr;
359
360 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
361 write_memory (addr, writebuf, TYPE_LENGTH (type));
362 }
363
364 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
365 }
366 else
367 {
368 if (readbuf)
369 {
370 ULONGEST temp;
371
372 /* Return values of <= 4 bytes are returned in R11. */
373 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &temp);
374 store_unsigned_integer (readbuf, TYPE_LENGTH (type),
375 byte_order, temp);
376 }
377
378 if (writebuf)
379 {
380 if (TYPE_LENGTH (type) < 4)
381 {
382 gdb_byte buf[4];
383 /* Add leading zeros to the value. */
384 memset (buf, 0, sizeof (buf));
385 memcpy (buf + sizeof (buf) - TYPE_LENGTH (type),
386 writebuf, TYPE_LENGTH (type));
387 regcache_cooked_write (regcache, MT_R11_REGNUM, buf);
388 }
389 else /* (TYPE_LENGTH (type) == 4 */
390 regcache_cooked_write (regcache, MT_R11_REGNUM, writebuf);
391 }
392
393 return RETURN_VALUE_REGISTER_CONVENTION;
394 }
395 }
396
397 /* If the input address, PC, is in a function prologue, return the
398 address of the end of the prologue, otherwise return the input
399 address.
400
401 Note: PC is likely to be the function start, since this function
402 is mainly used for advancing a breakpoint to the first line, or
403 stepping to the first line when we have stepped into a function
404 call. */
405
406 static CORE_ADDR
407 mt_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
408 {
409 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
410 CORE_ADDR func_addr = 0, func_end = 0;
411 char *func_name;
412 unsigned long instr;
413
414 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
415 {
416 struct symtab_and_line sal;
417 struct symbol *sym;
418
419 /* Found a function. */
420 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL);
421 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
422 {
423 /* Don't use this trick for assembly source files. */
424 sal = find_pc_line (func_addr, 0);
425
426 if (sal.end && sal.end < func_end)
427 {
428 /* Found a line number, use it as end of prologue. */
429 return sal.end;
430 }
431 }
432 }
433
434 /* No function symbol, or no line symbol. Use prologue scanning method. */
435 for (;; pc += 4)
436 {
437 instr = read_memory_unsigned_integer (pc, 4, byte_order);
438 if (instr == 0x12000000) /* nop */
439 continue;
440 if (instr == 0x12ddc000) /* copy sp into fp */
441 continue;
442 instr >>= 16;
443 if (instr == 0x05dd) /* subi sp, sp, imm */
444 continue;
445 if (instr >= 0x43c0 && instr <= 0x43df) /* push */
446 continue;
447 /* Not an obvious prologue instruction. */
448 break;
449 }
450
451 return pc;
452 }
453
454 /* The breakpoint instruction must be the same size as the smallest
455 instruction in the instruction set.
456
457 The BP for ms1 is defined as 0x68000000 (BREAK).
458 The BP for ms2 is defined as 0x69000000 (illegal) */
459
460 static const gdb_byte *
461 mt_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
462 int *bp_size)
463 {
464 static gdb_byte ms1_breakpoint[] = { 0x68, 0, 0, 0 };
465 static gdb_byte ms2_breakpoint[] = { 0x69, 0, 0, 0 };
466
467 *bp_size = 4;
468 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
469 return ms2_breakpoint;
470
471 return ms1_breakpoint;
472 }
473
474 /* Select the correct coprocessor register bank. Return the pseudo
475 regnum we really want to read. */
476
477 static int
478 mt_select_coprocessor (struct gdbarch *gdbarch,
479 struct regcache *regcache, int regno)
480 {
481 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
482 unsigned index, base;
483 gdb_byte copro[4];
484
485 /* Get the copro pseudo regnum. */
486 regcache_raw_read (regcache, MT_COPRO_REGNUM, copro);
487 base = ((extract_signed_integer (&copro[0], 2, byte_order)
488 * MT_COPRO_PSEUDOREG_DIM_2)
489 + extract_signed_integer (&copro[2], 2, byte_order));
490
491 regno -= MT_COPRO_PSEUDOREG_ARRAY;
492 index = regno % MT_COPRO_PSEUDOREG_REGS;
493 regno /= MT_COPRO_PSEUDOREG_REGS;
494 if (base != regno)
495 {
496 /* Select the correct coprocessor register bank. Invalidate the
497 coprocessor register cache. */
498 unsigned ix;
499
500 store_signed_integer (&copro[0], 2, byte_order,
501 regno / MT_COPRO_PSEUDOREG_DIM_2);
502 store_signed_integer (&copro[2], 2, byte_order,
503 regno % MT_COPRO_PSEUDOREG_DIM_2);
504 regcache_raw_write (regcache, MT_COPRO_REGNUM, copro);
505
506 /* We must flush the cache, as it is now invalid. */
507 for (ix = MT_NUM_CPU_REGS; ix != MT_NUM_REGS; ix++)
508 regcache_invalidate (regcache, ix);
509 }
510
511 return index;
512 }
513
514 /* Fetch the pseudo registers:
515
516 There are two regular pseudo-registers:
517 1) The 'coprocessor' pseudo-register (which mirrors the
518 "real" coprocessor register sent by the target), and
519 2) The 'MAC' pseudo-register (which represents the union
520 of the original 32 bit target MAC register and the new
521 8-bit extended-MAC register).
522
523 Additionally there is an array of coprocessor registers which track
524 the coprocessor registers for each coprocessor. */
525
526 static void
527 mt_pseudo_register_read (struct gdbarch *gdbarch,
528 struct regcache *regcache, int regno, gdb_byte *buf)
529 {
530 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
531
532 switch (regno)
533 {
534 case MT_COPRO_REGNUM:
535 case MT_COPRO_PSEUDOREG_REGNUM:
536 regcache_raw_read (regcache, MT_COPRO_REGNUM, buf);
537 break;
538 case MT_MAC_REGNUM:
539 case MT_MAC_PSEUDOREG_REGNUM:
540 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
541 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
542 {
543 ULONGEST oldmac = 0, ext_mac = 0;
544 ULONGEST newmac;
545
546 regcache_cooked_read_unsigned (regcache, MT_MAC_REGNUM, &oldmac);
547 regcache_cooked_read_unsigned (regcache, MT_EXMAC_REGNUM, &ext_mac);
548 newmac =
549 (oldmac & 0xffffffff) | ((long long) (ext_mac & 0xff) << 32);
550 store_signed_integer (buf, 8, byte_order, newmac);
551 }
552 else
553 regcache_raw_read (regcache, MT_MAC_REGNUM, buf);
554 break;
555 default:
556 {
557 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
558
559 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
560 mt_pseudo_register_read (gdbarch, regcache,
561 MT_MAC_PSEUDOREG_REGNUM, buf);
562 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
563 regcache_raw_read (regcache, index + MT_CPR0_REGNUM, buf);
564 }
565 break;
566 }
567 }
568
569 /* Write the pseudo registers:
570
571 Mt pseudo-registers are stored directly to the target. The
572 'coprocessor' register is special, because when it is modified, all
573 the other coprocessor regs must be flushed from the reg cache. */
574
575 static void
576 mt_pseudo_register_write (struct gdbarch *gdbarch,
577 struct regcache *regcache,
578 int regno, const gdb_byte *buf)
579 {
580 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
581 int i;
582
583 switch (regno)
584 {
585 case MT_COPRO_REGNUM:
586 case MT_COPRO_PSEUDOREG_REGNUM:
587 regcache_raw_write (regcache, MT_COPRO_REGNUM, buf);
588 for (i = MT_NUM_CPU_REGS; i < MT_NUM_REGS; i++)
589 regcache_invalidate (regcache, i);
590 break;
591 case MT_MAC_REGNUM:
592 case MT_MAC_PSEUDOREG_REGNUM:
593 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
594 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
595 {
596 /* The 8-byte MAC pseudo-register must be broken down into two
597 32-byte registers. */
598 unsigned int oldmac, ext_mac;
599 ULONGEST newmac;
600
601 newmac = extract_unsigned_integer (buf, 8, byte_order);
602 oldmac = newmac & 0xffffffff;
603 ext_mac = (newmac >> 32) & 0xff;
604 regcache_cooked_write_unsigned (regcache, MT_MAC_REGNUM, oldmac);
605 regcache_cooked_write_unsigned (regcache, MT_EXMAC_REGNUM, ext_mac);
606 }
607 else
608 regcache_raw_write (regcache, MT_MAC_REGNUM, buf);
609 break;
610 default:
611 {
612 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
613
614 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
615 mt_pseudo_register_write (gdbarch, regcache,
616 MT_MAC_PSEUDOREG_REGNUM, buf);
617 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
618 regcache_raw_write (regcache, index + MT_CPR0_REGNUM, buf);
619 }
620 break;
621 }
622 }
623
624 static CORE_ADDR
625 mt_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
626 {
627 /* Register size is 4 bytes. */
628 return align_down (sp, 4);
629 }
630
631 /* Implements the "info registers" command. When ``all'' is non-zero,
632 the coprocessor registers will be printed in addition to the rest
633 of the registers. */
634
635 static void
636 mt_registers_info (struct gdbarch *gdbarch,
637 struct ui_file *file,
638 struct frame_info *frame, int regnum, int all)
639 {
640 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
641
642 if (regnum == -1)
643 {
644 int lim;
645
646 lim = all ? MT_NUM_REGS : MT_NUM_CPU_REGS;
647
648 for (regnum = 0; regnum < lim; regnum++)
649 {
650 /* Don't display the Qchannel register since it will be displayed
651 along with Ichannel. (See below.) */
652 if (regnum == MT_QCHANNEL_REGNUM)
653 continue;
654
655 mt_registers_info (gdbarch, file, frame, regnum, all);
656
657 /* Display the Qchannel register immediately after Ichannel. */
658 if (regnum == MT_ICHANNEL_REGNUM)
659 mt_registers_info (gdbarch, file, frame, MT_QCHANNEL_REGNUM, all);
660 }
661 }
662 else
663 {
664 if (regnum == MT_EXMAC_REGNUM)
665 return;
666 else if (regnum == MT_CONTEXT_REGNUM)
667 {
668 /* Special output handling for 38-bit context register. */
669 unsigned char *buff;
670 unsigned int *bytes, i, regsize;
671
672 regsize = register_size (gdbarch, regnum);
673
674 buff = alloca (regsize);
675 bytes = alloca (regsize * sizeof (*bytes));
676
677 frame_register_read (frame, regnum, buff);
678
679 fputs_filtered (gdbarch_register_name
680 (gdbarch, regnum), file);
681 print_spaces_filtered (15 - strlen (gdbarch_register_name
682 (gdbarch, regnum)),
683 file);
684 fputs_filtered ("0x", file);
685
686 for (i = 0; i < regsize; i++)
687 fprintf_filtered (file, "%02x", (unsigned int)
688 extract_unsigned_integer (buff + i, 1, byte_order));
689 fputs_filtered ("\t", file);
690 print_longest (file, 'd', 0,
691 extract_unsigned_integer (buff, regsize, byte_order));
692 fputs_filtered ("\n", file);
693 }
694 else if (regnum == MT_COPRO_REGNUM
695 || regnum == MT_COPRO_PSEUDOREG_REGNUM)
696 {
697 /* Special output handling for the 'coprocessor' register. */
698 gdb_byte *buf;
699 struct value_print_options opts;
700
701 buf = alloca (register_size (gdbarch, MT_COPRO_REGNUM));
702 frame_register_read (frame, MT_COPRO_REGNUM, buf);
703 /* And print. */
704 regnum = MT_COPRO_PSEUDOREG_REGNUM;
705 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
706 file);
707 print_spaces_filtered (15 - strlen (gdbarch_register_name
708 (gdbarch, regnum)),
709 file);
710 get_raw_print_options (&opts);
711 opts.deref_ref = 1;
712 val_print (register_type (gdbarch, regnum), buf,
713 0, 0, file, 0, &opts,
714 current_language);
715 fputs_filtered ("\n", file);
716 }
717 else if (regnum == MT_MAC_REGNUM || regnum == MT_MAC_PSEUDOREG_REGNUM)
718 {
719 ULONGEST oldmac, ext_mac, newmac;
720 gdb_byte buf[3 * sizeof (LONGEST)];
721
722 /* Get the two "real" mac registers. */
723 frame_register_read (frame, MT_MAC_REGNUM, buf);
724 oldmac = extract_unsigned_integer
725 (buf, register_size (gdbarch, MT_MAC_REGNUM), byte_order);
726 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
727 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
728 {
729 frame_register_read (frame, MT_EXMAC_REGNUM, buf);
730 ext_mac = extract_unsigned_integer
731 (buf, register_size (gdbarch, MT_EXMAC_REGNUM), byte_order);
732 }
733 else
734 ext_mac = 0;
735
736 /* Add them together. */
737 newmac = (oldmac & 0xffffffff) + ((ext_mac & 0xff) << 32);
738
739 /* And print. */
740 regnum = MT_MAC_PSEUDOREG_REGNUM;
741 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
742 file);
743 print_spaces_filtered (15 - strlen (gdbarch_register_name
744 (gdbarch, regnum)),
745 file);
746 fputs_filtered ("0x", file);
747 print_longest (file, 'x', 0, newmac);
748 fputs_filtered ("\t", file);
749 print_longest (file, 'u', 0, newmac);
750 fputs_filtered ("\n", file);
751 }
752 else
753 default_print_registers_info (gdbarch, file, frame, regnum, all);
754 }
755 }
756
757 /* Set up the callee's arguments for an inferior function call. The
758 arguments are pushed on the stack or are placed in registers as
759 appropriate. It also sets up the return address (which points to
760 the call dummy breakpoint).
761
762 Returns the updated (and aligned) stack pointer. */
763
764 static CORE_ADDR
765 mt_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
766 struct regcache *regcache, CORE_ADDR bp_addr,
767 int nargs, struct value **args, CORE_ADDR sp,
768 int struct_return, CORE_ADDR struct_addr)
769 {
770 #define wordsize 4
771 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
772 gdb_byte buf[MT_MAX_STRUCT_SIZE];
773 int argreg = MT_1ST_ARGREG;
774 int split_param_len = 0;
775 int stack_dest = sp;
776 int slacklen;
777 int typelen;
778 int i, j;
779
780 /* First handle however many args we can fit into MT_1ST_ARGREG thru
781 MT_LAST_ARGREG. */
782 for (i = 0; i < nargs && argreg <= MT_LAST_ARGREG; i++)
783 {
784 const gdb_byte *val;
785 typelen = TYPE_LENGTH (value_type (args[i]));
786 switch (typelen)
787 {
788 case 1:
789 case 2:
790 case 3:
791 case 4:
792 regcache_cooked_write_unsigned (regcache, argreg++,
793 extract_unsigned_integer
794 (value_contents (args[i]),
795 wordsize, byte_order));
796 break;
797 case 8:
798 case 12:
799 case 16:
800 val = value_contents (args[i]);
801 while (typelen > 0)
802 {
803 if (argreg <= MT_LAST_ARGREG)
804 {
805 /* This word of the argument is passed in a register. */
806 regcache_cooked_write_unsigned (regcache, argreg++,
807 extract_unsigned_integer
808 (val, wordsize, byte_order));
809 typelen -= wordsize;
810 val += wordsize;
811 }
812 else
813 {
814 /* Remainder of this arg must be passed on the stack
815 (deferred to do later). */
816 split_param_len = typelen;
817 memcpy (buf, val, typelen);
818 break; /* No more args can be handled in regs. */
819 }
820 }
821 break;
822 default:
823 /* By reverse engineering of gcc output, args bigger than
824 16 bytes go on the stack, and their address is passed
825 in the argreg. */
826 stack_dest -= typelen;
827 write_memory (stack_dest, value_contents (args[i]), typelen);
828 regcache_cooked_write_unsigned (regcache, argreg++, stack_dest);
829 break;
830 }
831 }
832
833 /* Next, the rest of the arguments go onto the stack, in reverse order. */
834 for (j = nargs - 1; j >= i; j--)
835 {
836 gdb_byte *val;
837
838 /* Right-justify the value in an aligned-length buffer. */
839 typelen = TYPE_LENGTH (value_type (args[j]));
840 slacklen = (wordsize - (typelen % wordsize)) % wordsize;
841 val = alloca (typelen + slacklen);
842 memcpy (val, value_contents (args[j]), typelen);
843 memset (val + typelen, 0, slacklen);
844 /* Now write this data to the stack. */
845 stack_dest -= typelen + slacklen;
846 write_memory (stack_dest, val, typelen + slacklen);
847 }
848
849 /* Finally, if a param needs to be split between registers and stack,
850 write the second half to the stack now. */
851 if (split_param_len != 0)
852 {
853 stack_dest -= split_param_len;
854 write_memory (stack_dest, buf, split_param_len);
855 }
856
857 /* Set up return address (provided to us as bp_addr). */
858 regcache_cooked_write_unsigned (regcache, MT_RA_REGNUM, bp_addr);
859
860 /* Store struct return address, if given. */
861 if (struct_return && struct_addr != 0)
862 regcache_cooked_write_unsigned (regcache, MT_R11_REGNUM, struct_addr);
863
864 /* Set aside 16 bytes for the callee to save regs 1-4. */
865 stack_dest -= 16;
866
867 /* Update the stack pointer. */
868 regcache_cooked_write_unsigned (regcache, MT_SP_REGNUM, stack_dest);
869
870 /* And that should do it. Return the new stack pointer. */
871 return stack_dest;
872 }
873
874
875 /* The 'unwind_cache' data structure. */
876
877 struct mt_unwind_cache
878 {
879 /* The previous frame's inner most stack address.
880 Used as this frame ID's stack_addr. */
881 CORE_ADDR prev_sp;
882 CORE_ADDR frame_base;
883 int framesize;
884 int frameless_p;
885
886 /* Table indicating the location of each and every register. */
887 struct trad_frame_saved_reg *saved_regs;
888 };
889
890 /* Initialize an unwind_cache. Build up the saved_regs table etc. for
891 the frame. */
892
893 static struct mt_unwind_cache *
894 mt_frame_unwind_cache (struct frame_info *this_frame,
895 void **this_prologue_cache)
896 {
897 struct gdbarch *gdbarch;
898 struct mt_unwind_cache *info;
899 CORE_ADDR next_addr, start_addr, end_addr, prologue_end_addr;
900 unsigned long instr, upper_half, delayed_store = 0;
901 int regnum, offset;
902 ULONGEST sp, fp;
903
904 if ((*this_prologue_cache))
905 return (*this_prologue_cache);
906
907 gdbarch = get_frame_arch (this_frame);
908 info = FRAME_OBSTACK_ZALLOC (struct mt_unwind_cache);
909 (*this_prologue_cache) = info;
910
911 info->prev_sp = 0;
912 info->framesize = 0;
913 info->frame_base = 0;
914 info->frameless_p = 1;
915 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
916
917 /* Grab the frame-relative values of SP and FP, needed below.
918 The frame_saved_register function will find them on the
919 stack or in the registers as appropriate. */
920 sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
921 fp = get_frame_register_unsigned (this_frame, MT_FP_REGNUM);
922
923 start_addr = get_frame_func (this_frame);
924
925 /* Return early if GDB couldn't find the function. */
926 if (start_addr == 0)
927 return info;
928
929 end_addr = get_frame_pc (this_frame);
930 prologue_end_addr = skip_prologue_using_sal (gdbarch, start_addr);
931 if (end_addr == 0)
932 for (next_addr = start_addr; next_addr < end_addr; next_addr += 4)
933 {
934 instr = get_frame_memory_unsigned (this_frame, next_addr, 4);
935 if (delayed_store) /* previous instr was a push */
936 {
937 upper_half = delayed_store >> 16;
938 regnum = upper_half & 0xf;
939 offset = delayed_store & 0xffff;
940 switch (upper_half & 0xfff0)
941 {
942 case 0x43c0: /* push using frame pointer */
943 info->saved_regs[regnum].addr = offset;
944 break;
945 case 0x43d0: /* push using stack pointer */
946 info->saved_regs[regnum].addr = offset;
947 break;
948 default: /* lint */
949 break;
950 }
951 delayed_store = 0;
952 }
953
954 switch (instr)
955 {
956 case 0x12000000: /* NO-OP */
957 continue;
958 case 0x12ddc000: /* copy sp into fp */
959 info->frameless_p = 0; /* Record that the frame pointer is in use. */
960 continue;
961 default:
962 upper_half = instr >> 16;
963 if (upper_half == 0x05dd || /* subi sp, sp, imm */
964 upper_half == 0x07dd) /* subui sp, sp, imm */
965 {
966 /* Record the frame size. */
967 info->framesize = instr & 0xffff;
968 continue;
969 }
970 if ((upper_half & 0xfff0) == 0x43c0 || /* frame push */
971 (upper_half & 0xfff0) == 0x43d0) /* stack push */
972 {
973 /* Save this instruction, but don't record the
974 pushed register as 'saved' until we see the
975 next instruction. That's because of deferred stores
976 on this target -- GDB won't be able to read the register
977 from the stack until one instruction later. */
978 delayed_store = instr;
979 continue;
980 }
981 /* Not a prologue instruction. Is this the end of the prologue?
982 This is the most difficult decision; when to stop scanning.
983
984 If we have no line symbol, then the best thing we can do
985 is to stop scanning when we encounter an instruction that
986 is not likely to be a part of the prologue.
987
988 But if we do have a line symbol, then we should
989 keep scanning until we reach it (or we reach end_addr). */
990
991 if (prologue_end_addr && (prologue_end_addr > (next_addr + 4)))
992 continue; /* Keep scanning, recording saved_regs etc. */
993 else
994 break; /* Quit scanning: breakpoint can be set here. */
995 }
996 }
997
998 /* Special handling for the "saved" address of the SP:
999 The SP is of course never saved on the stack at all, so
1000 by convention what we put here is simply the previous
1001 _value_ of the SP (as opposed to an address where the
1002 previous value would have been pushed). This will also
1003 give us the frame base address. */
1004
1005 if (info->frameless_p)
1006 {
1007 info->frame_base = sp + info->framesize;
1008 info->prev_sp = sp + info->framesize;
1009 }
1010 else
1011 {
1012 info->frame_base = fp + info->framesize;
1013 info->prev_sp = fp + info->framesize;
1014 }
1015 /* Save prev_sp in saved_regs as a value, not as an address. */
1016 trad_frame_set_value (info->saved_regs, MT_SP_REGNUM, info->prev_sp);
1017
1018 /* Now convert frame offsets to actual addresses (not offsets). */
1019 for (regnum = 0; regnum < MT_NUM_REGS; regnum++)
1020 if (trad_frame_addr_p (info->saved_regs, regnum))
1021 info->saved_regs[regnum].addr += info->frame_base - info->framesize;
1022
1023 /* The call instruction moves the caller's PC in the callee's RA reg.
1024 Since this is an unwind, do the reverse. Copy the location of RA
1025 into PC (the address / regnum) so that a request for PC will be
1026 converted into a request for the RA. */
1027 info->saved_regs[MT_PC_REGNUM] = info->saved_regs[MT_RA_REGNUM];
1028
1029 return info;
1030 }
1031
1032 static CORE_ADDR
1033 mt_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1034 {
1035 ULONGEST pc;
1036
1037 pc = frame_unwind_register_unsigned (next_frame, MT_PC_REGNUM);
1038 return pc;
1039 }
1040
1041 static CORE_ADDR
1042 mt_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1043 {
1044 ULONGEST sp;
1045
1046 sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM);
1047 return sp;
1048 }
1049
1050 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1051 frame. The frame ID's base needs to match the TOS value saved by
1052 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1053
1054 static struct frame_id
1055 mt_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1056 {
1057 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
1058 return frame_id_build (sp, get_frame_pc (this_frame));
1059 }
1060
1061 /* Given a GDB frame, determine the address of the calling function's
1062 frame. This will be used to create a new GDB frame struct. */
1063
1064 static void
1065 mt_frame_this_id (struct frame_info *this_frame,
1066 void **this_prologue_cache, struct frame_id *this_id)
1067 {
1068 struct mt_unwind_cache *info =
1069 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1070
1071 if (!(info == NULL || info->prev_sp == 0))
1072 (*this_id) = frame_id_build (info->prev_sp, get_frame_func (this_frame));
1073
1074 return;
1075 }
1076
1077 static struct value *
1078 mt_frame_prev_register (struct frame_info *this_frame,
1079 void **this_prologue_cache, int regnum)
1080 {
1081 struct mt_unwind_cache *info =
1082 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1083
1084 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1085 }
1086
1087 static CORE_ADDR
1088 mt_frame_base_address (struct frame_info *this_frame,
1089 void **this_prologue_cache)
1090 {
1091 struct mt_unwind_cache *info =
1092 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1093
1094 return info->frame_base;
1095 }
1096
1097 /* This is a shared interface: the 'frame_unwind' object is what's
1098 returned by the 'sniffer' function, and in turn specifies how to
1099 get a frame's ID and prev_regs.
1100
1101 This exports the 'prev_register' and 'this_id' methods. */
1102
1103 static const struct frame_unwind mt_frame_unwind = {
1104 NORMAL_FRAME,
1105 mt_frame_this_id,
1106 mt_frame_prev_register,
1107 NULL,
1108 default_frame_sniffer
1109 };
1110
1111 /* Another shared interface: the 'frame_base' object specifies how to
1112 unwind a frame and secure the base addresses for frame objects
1113 (locals, args). */
1114
1115 static struct frame_base mt_frame_base = {
1116 &mt_frame_unwind,
1117 mt_frame_base_address,
1118 mt_frame_base_address,
1119 mt_frame_base_address
1120 };
1121
1122 static struct gdbarch *
1123 mt_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1124 {
1125 struct gdbarch *gdbarch;
1126 struct gdbarch_tdep *tdep;
1127
1128 /* Find a candidate among the list of pre-declared architectures. */
1129 arches = gdbarch_list_lookup_by_info (arches, &info);
1130 if (arches != NULL)
1131 return arches->gdbarch;
1132
1133 /* None found, create a new architecture from the information
1134 provided. */
1135 tdep = XCALLOC (1, struct gdbarch_tdep);
1136 gdbarch = gdbarch_alloc (&info, tdep);
1137
1138 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1139 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1140 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1141
1142 set_gdbarch_register_name (gdbarch, mt_register_name);
1143 set_gdbarch_num_regs (gdbarch, MT_NUM_REGS);
1144 set_gdbarch_num_pseudo_regs (gdbarch, MT_NUM_PSEUDO_REGS);
1145 set_gdbarch_pc_regnum (gdbarch, MT_PC_REGNUM);
1146 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1147 set_gdbarch_pseudo_register_read (gdbarch, mt_pseudo_register_read);
1148 set_gdbarch_pseudo_register_write (gdbarch, mt_pseudo_register_write);
1149 set_gdbarch_skip_prologue (gdbarch, mt_skip_prologue);
1150 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1151 set_gdbarch_breakpoint_from_pc (gdbarch, mt_breakpoint_from_pc);
1152 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1153 set_gdbarch_frame_args_skip (gdbarch, 0);
1154 set_gdbarch_print_insn (gdbarch, print_insn_mt);
1155 set_gdbarch_register_type (gdbarch, mt_register_type);
1156 set_gdbarch_register_reggroup_p (gdbarch, mt_register_reggroup_p);
1157
1158 set_gdbarch_return_value (gdbarch, mt_return_value);
1159 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1160
1161 set_gdbarch_frame_align (gdbarch, mt_frame_align);
1162
1163 set_gdbarch_print_registers_info (gdbarch, mt_registers_info);
1164
1165 set_gdbarch_push_dummy_call (gdbarch, mt_push_dummy_call);
1166
1167 /* Target builtin data types. */
1168 set_gdbarch_short_bit (gdbarch, 16);
1169 set_gdbarch_int_bit (gdbarch, 32);
1170 set_gdbarch_long_bit (gdbarch, 32);
1171 set_gdbarch_long_long_bit (gdbarch, 64);
1172 set_gdbarch_float_bit (gdbarch, 32);
1173 set_gdbarch_double_bit (gdbarch, 64);
1174 set_gdbarch_long_double_bit (gdbarch, 64);
1175 set_gdbarch_ptr_bit (gdbarch, 32);
1176
1177 /* Register the DWARF 2 sniffer first, and then the traditional prologue
1178 based sniffer. */
1179 dwarf2_append_unwinders (gdbarch);
1180 frame_unwind_append_unwinder (gdbarch, &mt_frame_unwind);
1181 frame_base_set_default (gdbarch, &mt_frame_base);
1182
1183 /* Register the 'unwind_pc' method. */
1184 set_gdbarch_unwind_pc (gdbarch, mt_unwind_pc);
1185 set_gdbarch_unwind_sp (gdbarch, mt_unwind_sp);
1186
1187 /* Methods for saving / extracting a dummy frame's ID.
1188 The ID's stack address must match the SP value returned by
1189 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1190 set_gdbarch_dummy_id (gdbarch, mt_dummy_id);
1191
1192 return gdbarch;
1193 }
1194
1195 /* Provide a prototype to silence -Wmissing-prototypes. */
1196 extern initialize_file_ftype _initialize_mt_tdep;
1197
1198 void
1199 _initialize_mt_tdep (void)
1200 {
1201 register_gdbarch_init (bfd_arch_mt, mt_gdbarch_init);
1202 }
This page took 0.057957 seconds and 4 git commands to generate.