gdb/
[deliverable/binutils-gdb.git] / gdb / mt-tdep.c
1 /* Target-dependent code for Morpho mt processor, for GDB.
2
3 Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /* Contributed by Michael Snyder, msnyder@redhat.com. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "symtab.h"
28 #include "dis-asm.h"
29 #include "arch-utils.h"
30 #include "gdbtypes.h"
31 #include "gdb_string.h"
32 #include "regcache.h"
33 #include "reggroups.h"
34 #include "gdbcore.h"
35 #include "trad-frame.h"
36 #include "inferior.h"
37 #include "dwarf2-frame.h"
38 #include "infcall.h"
39 #include "gdb_assert.h"
40 #include "language.h"
41 #include "valprint.h"
42
43 enum mt_arch_constants
44 {
45 MT_MAX_STRUCT_SIZE = 16
46 };
47
48 enum mt_gdb_regnums
49 {
50 MT_R0_REGNUM, /* 32 bit regs. */
51 MT_R1_REGNUM,
52 MT_1ST_ARGREG = MT_R1_REGNUM,
53 MT_R2_REGNUM,
54 MT_R3_REGNUM,
55 MT_R4_REGNUM,
56 MT_LAST_ARGREG = MT_R4_REGNUM,
57 MT_R5_REGNUM,
58 MT_R6_REGNUM,
59 MT_R7_REGNUM,
60 MT_R8_REGNUM,
61 MT_R9_REGNUM,
62 MT_R10_REGNUM,
63 MT_R11_REGNUM,
64 MT_R12_REGNUM,
65 MT_FP_REGNUM = MT_R12_REGNUM,
66 MT_R13_REGNUM,
67 MT_SP_REGNUM = MT_R13_REGNUM,
68 MT_R14_REGNUM,
69 MT_RA_REGNUM = MT_R14_REGNUM,
70 MT_R15_REGNUM,
71 MT_IRA_REGNUM = MT_R15_REGNUM,
72 MT_PC_REGNUM,
73
74 /* Interrupt Enable pseudo-register, exported by SID. */
75 MT_INT_ENABLE_REGNUM,
76 /* End of CPU regs. */
77
78 MT_NUM_CPU_REGS,
79
80 /* Co-processor registers. */
81 MT_COPRO_REGNUM = MT_NUM_CPU_REGS, /* 16 bit regs. */
82 MT_CPR0_REGNUM,
83 MT_CPR1_REGNUM,
84 MT_CPR2_REGNUM,
85 MT_CPR3_REGNUM,
86 MT_CPR4_REGNUM,
87 MT_CPR5_REGNUM,
88 MT_CPR6_REGNUM,
89 MT_CPR7_REGNUM,
90 MT_CPR8_REGNUM,
91 MT_CPR9_REGNUM,
92 MT_CPR10_REGNUM,
93 MT_CPR11_REGNUM,
94 MT_CPR12_REGNUM,
95 MT_CPR13_REGNUM,
96 MT_CPR14_REGNUM,
97 MT_CPR15_REGNUM,
98 MT_BYPA_REGNUM, /* 32 bit regs. */
99 MT_BYPB_REGNUM,
100 MT_BYPC_REGNUM,
101 MT_FLAG_REGNUM,
102 MT_CONTEXT_REGNUM, /* 38 bits (treat as array of
103 six bytes). */
104 MT_MAC_REGNUM, /* 32 bits. */
105 MT_Z1_REGNUM, /* 16 bits. */
106 MT_Z2_REGNUM, /* 16 bits. */
107 MT_ICHANNEL_REGNUM, /* 32 bits. */
108 MT_ISCRAMB_REGNUM, /* 32 bits. */
109 MT_QSCRAMB_REGNUM, /* 32 bits. */
110 MT_OUT_REGNUM, /* 16 bits. */
111 MT_EXMAC_REGNUM, /* 32 bits (8 used). */
112 MT_QCHANNEL_REGNUM, /* 32 bits. */
113 MT_ZI2_REGNUM, /* 16 bits. */
114 MT_ZQ2_REGNUM, /* 16 bits. */
115 MT_CHANNEL2_REGNUM, /* 32 bits. */
116 MT_ISCRAMB2_REGNUM, /* 32 bits. */
117 MT_QSCRAMB2_REGNUM, /* 32 bits. */
118 MT_QCHANNEL2_REGNUM, /* 32 bits. */
119
120 /* Number of real registers. */
121 MT_NUM_REGS,
122
123 /* Pseudo-registers. */
124 MT_COPRO_PSEUDOREG_REGNUM = MT_NUM_REGS,
125 MT_MAC_PSEUDOREG_REGNUM,
126 MT_COPRO_PSEUDOREG_ARRAY,
127
128 MT_COPRO_PSEUDOREG_DIM_1 = 2,
129 MT_COPRO_PSEUDOREG_DIM_2 = 8,
130 /* The number of pseudo-registers for each coprocessor. These
131 include the real coprocessor registers, the pseudo-registe for
132 the coprocessor number, and the pseudo-register for the MAC. */
133 MT_COPRO_PSEUDOREG_REGS = MT_NUM_REGS - MT_NUM_CPU_REGS + 2,
134 /* The register number of the MAC, relative to a given coprocessor. */
135 MT_COPRO_PSEUDOREG_MAC_REGNUM = MT_COPRO_PSEUDOREG_REGS - 1,
136
137 /* Two pseudo-regs ('coprocessor' and 'mac'). */
138 MT_NUM_PSEUDO_REGS = 2 + (MT_COPRO_PSEUDOREG_REGS
139 * MT_COPRO_PSEUDOREG_DIM_1
140 * MT_COPRO_PSEUDOREG_DIM_2)
141 };
142
143 /* The tdep structure. */
144 struct gdbarch_tdep
145 {
146 /* ISA-specific types. */
147 struct type *copro_type;
148 };
149
150
151 /* Return name of register number specified by REGNUM. */
152
153 static const char *
154 mt_register_name (struct gdbarch *gdbarch, int regnum)
155 {
156 static const char *const register_names[] = {
157 /* CPU regs. */
158 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
159 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
160 "pc", "IE",
161 /* Co-processor regs. */
162 "", /* copro register. */
163 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
164 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
165 "bypa", "bypb", "bypc", "flag", "context", "" /* mac. */ , "z1", "z2",
166 "Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac. */ , "Qchannel",
167 "zi2", "zq2", "Ichannel2", "Iscramb2", "Qscramb2", "Qchannel2",
168 /* Pseudo-registers. */
169 "coprocessor", "MAC"
170 };
171 static const char *array_names[MT_COPRO_PSEUDOREG_REGS
172 * MT_COPRO_PSEUDOREG_DIM_1
173 * MT_COPRO_PSEUDOREG_DIM_2];
174
175 if (regnum < 0)
176 return "";
177 if (regnum < ARRAY_SIZE (register_names))
178 return register_names[regnum];
179 if (array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY])
180 return array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY];
181
182 {
183 char *name;
184 const char *stub;
185 unsigned dim_1;
186 unsigned dim_2;
187 unsigned index;
188
189 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
190 index = regnum % MT_COPRO_PSEUDOREG_REGS;
191 dim_2 = (regnum / MT_COPRO_PSEUDOREG_REGS) % MT_COPRO_PSEUDOREG_DIM_2;
192 dim_1 = ((regnum / MT_COPRO_PSEUDOREG_REGS / MT_COPRO_PSEUDOREG_DIM_2)
193 % MT_COPRO_PSEUDOREG_DIM_1);
194
195 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
196 stub = register_names[MT_MAC_PSEUDOREG_REGNUM];
197 else if (index >= MT_NUM_REGS - MT_CPR0_REGNUM)
198 stub = "";
199 else
200 stub = register_names[index + MT_CPR0_REGNUM];
201 if (!*stub)
202 {
203 array_names[regnum] = stub;
204 return stub;
205 }
206 name = xmalloc (30);
207 sprintf (name, "copro_%d_%d_%s", dim_1, dim_2, stub);
208 array_names[regnum] = name;
209 return name;
210 }
211 }
212
213 /* Return the type of a coprocessor register. */
214
215 static struct type *
216 mt_copro_register_type (struct gdbarch *arch, int regnum)
217 {
218 switch (regnum)
219 {
220 case MT_INT_ENABLE_REGNUM:
221 case MT_ICHANNEL_REGNUM:
222 case MT_QCHANNEL_REGNUM:
223 case MT_ISCRAMB_REGNUM:
224 case MT_QSCRAMB_REGNUM:
225 return builtin_type (arch)->builtin_int32;
226 case MT_BYPA_REGNUM:
227 case MT_BYPB_REGNUM:
228 case MT_BYPC_REGNUM:
229 case MT_Z1_REGNUM:
230 case MT_Z2_REGNUM:
231 case MT_OUT_REGNUM:
232 case MT_ZI2_REGNUM:
233 case MT_ZQ2_REGNUM:
234 return builtin_type (arch)->builtin_int16;
235 case MT_EXMAC_REGNUM:
236 case MT_MAC_REGNUM:
237 return builtin_type (arch)->builtin_uint32;
238 case MT_CONTEXT_REGNUM:
239 return builtin_type (arch)->builtin_long_long;
240 case MT_FLAG_REGNUM:
241 return builtin_type (arch)->builtin_unsigned_char;
242 default:
243 if (regnum >= MT_CPR0_REGNUM && regnum <= MT_CPR15_REGNUM)
244 return builtin_type (arch)->builtin_int16;
245 else if (regnum == MT_CPR0_REGNUM + MT_COPRO_PSEUDOREG_MAC_REGNUM)
246 {
247 if (gdbarch_bfd_arch_info (arch)->mach == bfd_mach_mrisc2
248 || gdbarch_bfd_arch_info (arch)->mach == bfd_mach_ms2)
249 return builtin_type (arch)->builtin_uint64;
250 else
251 return builtin_type (arch)->builtin_uint32;
252 }
253 else
254 return builtin_type (arch)->builtin_uint32;
255 }
256 }
257
258 /* Given ARCH and a register number specified by REGNUM, return the
259 type of that register. */
260
261 static struct type *
262 mt_register_type (struct gdbarch *arch, int regnum)
263 {
264 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
265
266 if (regnum >= 0 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS)
267 {
268 switch (regnum)
269 {
270 case MT_PC_REGNUM:
271 case MT_RA_REGNUM:
272 case MT_IRA_REGNUM:
273 return builtin_type (arch)->builtin_func_ptr;
274 case MT_SP_REGNUM:
275 case MT_FP_REGNUM:
276 return builtin_type (arch)->builtin_data_ptr;
277 case MT_COPRO_REGNUM:
278 case MT_COPRO_PSEUDOREG_REGNUM:
279 if (tdep->copro_type == NULL)
280 {
281 struct type *elt = builtin_type (arch)->builtin_int16;
282 tdep->copro_type = lookup_array_range_type (elt, 0, 1);
283 }
284 return tdep->copro_type;
285 case MT_MAC_PSEUDOREG_REGNUM:
286 return mt_copro_register_type (arch,
287 MT_CPR0_REGNUM
288 + MT_COPRO_PSEUDOREG_MAC_REGNUM);
289 default:
290 if (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM)
291 return builtin_type (arch)->builtin_int32;
292 else if (regnum < MT_COPRO_PSEUDOREG_ARRAY)
293 return mt_copro_register_type (arch, regnum);
294 else
295 {
296 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
297 regnum %= MT_COPRO_PSEUDOREG_REGS;
298 regnum += MT_CPR0_REGNUM;
299 return mt_copro_register_type (arch, regnum);
300 }
301 }
302 }
303 internal_error (__FILE__, __LINE__,
304 _("mt_register_type: illegal register number %d"), regnum);
305 }
306
307 /* Return true if register REGNUM is a member of the register group
308 specified by GROUP. */
309
310 static int
311 mt_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
312 struct reggroup *group)
313 {
314 /* Groups of registers that can be displayed via "info reg". */
315 if (group == all_reggroup)
316 return (regnum >= 0
317 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS
318 && mt_register_name (gdbarch, regnum)[0] != '\0');
319
320 if (group == general_reggroup)
321 return (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM);
322
323 if (group == float_reggroup)
324 return 0; /* No float regs. */
325
326 if (group == vector_reggroup)
327 return 0; /* No vector regs. */
328
329 /* For any that are not handled above. */
330 return default_register_reggroup_p (gdbarch, regnum, group);
331 }
332
333 /* Return the return value convention used for a given type TYPE.
334 Optionally, fetch or set the return value via READBUF or
335 WRITEBUF respectively using REGCACHE for the register
336 values. */
337
338 static enum return_value_convention
339 mt_return_value (struct gdbarch *gdbarch, struct type *func_type,
340 struct type *type, struct regcache *regcache,
341 gdb_byte *readbuf, const gdb_byte *writebuf)
342 {
343 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
344
345 if (TYPE_LENGTH (type) > 4)
346 {
347 /* Return values > 4 bytes are returned in memory,
348 pointed to by R11. */
349 if (readbuf)
350 {
351 ULONGEST addr;
352
353 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
354 read_memory (addr, readbuf, TYPE_LENGTH (type));
355 }
356
357 if (writebuf)
358 {
359 ULONGEST addr;
360
361 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
362 write_memory (addr, writebuf, TYPE_LENGTH (type));
363 }
364
365 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
366 }
367 else
368 {
369 if (readbuf)
370 {
371 ULONGEST temp;
372
373 /* Return values of <= 4 bytes are returned in R11. */
374 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &temp);
375 store_unsigned_integer (readbuf, TYPE_LENGTH (type),
376 byte_order, temp);
377 }
378
379 if (writebuf)
380 {
381 if (TYPE_LENGTH (type) < 4)
382 {
383 gdb_byte buf[4];
384 /* Add leading zeros to the value. */
385 memset (buf, 0, sizeof (buf));
386 memcpy (buf + sizeof (buf) - TYPE_LENGTH (type),
387 writebuf, TYPE_LENGTH (type));
388 regcache_cooked_write (regcache, MT_R11_REGNUM, buf);
389 }
390 else /* (TYPE_LENGTH (type) == 4 */
391 regcache_cooked_write (regcache, MT_R11_REGNUM, writebuf);
392 }
393
394 return RETURN_VALUE_REGISTER_CONVENTION;
395 }
396 }
397
398 /* If the input address, PC, is in a function prologue, return the
399 address of the end of the prologue, otherwise return the input
400 address.
401
402 Note: PC is likely to be the function start, since this function
403 is mainly used for advancing a breakpoint to the first line, or
404 stepping to the first line when we have stepped into a function
405 call. */
406
407 static CORE_ADDR
408 mt_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
409 {
410 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
411 CORE_ADDR func_addr = 0, func_end = 0;
412 char *func_name;
413 unsigned long instr;
414
415 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
416 {
417 struct symtab_and_line sal;
418 struct symbol *sym;
419
420 /* Found a function. */
421 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL);
422 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
423 {
424 /* Don't use this trick for assembly source files. */
425 sal = find_pc_line (func_addr, 0);
426
427 if (sal.end && sal.end < func_end)
428 {
429 /* Found a line number, use it as end of prologue. */
430 return sal.end;
431 }
432 }
433 }
434
435 /* No function symbol, or no line symbol. Use prologue scanning method. */
436 for (;; pc += 4)
437 {
438 instr = read_memory_unsigned_integer (pc, 4, byte_order);
439 if (instr == 0x12000000) /* nop */
440 continue;
441 if (instr == 0x12ddc000) /* copy sp into fp */
442 continue;
443 instr >>= 16;
444 if (instr == 0x05dd) /* subi sp, sp, imm */
445 continue;
446 if (instr >= 0x43c0 && instr <= 0x43df) /* push */
447 continue;
448 /* Not an obvious prologue instruction. */
449 break;
450 }
451
452 return pc;
453 }
454
455 /* The breakpoint instruction must be the same size as the smallest
456 instruction in the instruction set.
457
458 The BP for ms1 is defined as 0x68000000 (BREAK).
459 The BP for ms2 is defined as 0x69000000 (illegal). */
460
461 static const gdb_byte *
462 mt_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
463 int *bp_size)
464 {
465 static gdb_byte ms1_breakpoint[] = { 0x68, 0, 0, 0 };
466 static gdb_byte ms2_breakpoint[] = { 0x69, 0, 0, 0 };
467
468 *bp_size = 4;
469 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
470 return ms2_breakpoint;
471
472 return ms1_breakpoint;
473 }
474
475 /* Select the correct coprocessor register bank. Return the pseudo
476 regnum we really want to read. */
477
478 static int
479 mt_select_coprocessor (struct gdbarch *gdbarch,
480 struct regcache *regcache, int regno)
481 {
482 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
483 unsigned index, base;
484 gdb_byte copro[4];
485
486 /* Get the copro pseudo regnum. */
487 regcache_raw_read (regcache, MT_COPRO_REGNUM, copro);
488 base = ((extract_signed_integer (&copro[0], 2, byte_order)
489 * MT_COPRO_PSEUDOREG_DIM_2)
490 + extract_signed_integer (&copro[2], 2, byte_order));
491
492 regno -= MT_COPRO_PSEUDOREG_ARRAY;
493 index = regno % MT_COPRO_PSEUDOREG_REGS;
494 regno /= MT_COPRO_PSEUDOREG_REGS;
495 if (base != regno)
496 {
497 /* Select the correct coprocessor register bank. Invalidate the
498 coprocessor register cache. */
499 unsigned ix;
500
501 store_signed_integer (&copro[0], 2, byte_order,
502 regno / MT_COPRO_PSEUDOREG_DIM_2);
503 store_signed_integer (&copro[2], 2, byte_order,
504 regno % MT_COPRO_PSEUDOREG_DIM_2);
505 regcache_raw_write (regcache, MT_COPRO_REGNUM, copro);
506
507 /* We must flush the cache, as it is now invalid. */
508 for (ix = MT_NUM_CPU_REGS; ix != MT_NUM_REGS; ix++)
509 regcache_invalidate (regcache, ix);
510 }
511
512 return index;
513 }
514
515 /* Fetch the pseudo registers:
516
517 There are two regular pseudo-registers:
518 1) The 'coprocessor' pseudo-register (which mirrors the
519 "real" coprocessor register sent by the target), and
520 2) The 'MAC' pseudo-register (which represents the union
521 of the original 32 bit target MAC register and the new
522 8-bit extended-MAC register).
523
524 Additionally there is an array of coprocessor registers which track
525 the coprocessor registers for each coprocessor. */
526
527 static enum register_status
528 mt_pseudo_register_read (struct gdbarch *gdbarch,
529 struct regcache *regcache, int regno, gdb_byte *buf)
530 {
531 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
532
533 switch (regno)
534 {
535 case MT_COPRO_REGNUM:
536 case MT_COPRO_PSEUDOREG_REGNUM:
537 return regcache_raw_read (regcache, MT_COPRO_REGNUM, buf);
538 case MT_MAC_REGNUM:
539 case MT_MAC_PSEUDOREG_REGNUM:
540 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
541 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
542 {
543 enum register_status status;
544 ULONGEST oldmac = 0, ext_mac = 0;
545 ULONGEST newmac;
546
547 status = regcache_cooked_read_unsigned (regcache, MT_MAC_REGNUM, &oldmac);
548 if (status != REG_VALID)
549 return status;
550
551 regcache_cooked_read_unsigned (regcache, MT_EXMAC_REGNUM, &ext_mac);
552 if (status != REG_VALID)
553 return status;
554
555 newmac =
556 (oldmac & 0xffffffff) | ((long long) (ext_mac & 0xff) << 32);
557 store_signed_integer (buf, 8, byte_order, newmac);
558
559 return REG_VALID;
560 }
561 else
562 return regcache_raw_read (regcache, MT_MAC_REGNUM, buf);
563 break;
564 default:
565 {
566 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
567
568 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
569 return mt_pseudo_register_read (gdbarch, regcache,
570 MT_MAC_PSEUDOREG_REGNUM, buf);
571 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
572 return regcache_raw_read (regcache, index + MT_CPR0_REGNUM, buf);
573 else
574 /* ??? */
575 return REG_VALID;
576 }
577 break;
578 }
579 }
580
581 /* Write the pseudo registers:
582
583 Mt pseudo-registers are stored directly to the target. The
584 'coprocessor' register is special, because when it is modified, all
585 the other coprocessor regs must be flushed from the reg cache. */
586
587 static void
588 mt_pseudo_register_write (struct gdbarch *gdbarch,
589 struct regcache *regcache,
590 int regno, const gdb_byte *buf)
591 {
592 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
593 int i;
594
595 switch (regno)
596 {
597 case MT_COPRO_REGNUM:
598 case MT_COPRO_PSEUDOREG_REGNUM:
599 regcache_raw_write (regcache, MT_COPRO_REGNUM, buf);
600 for (i = MT_NUM_CPU_REGS; i < MT_NUM_REGS; i++)
601 regcache_invalidate (regcache, i);
602 break;
603 case MT_MAC_REGNUM:
604 case MT_MAC_PSEUDOREG_REGNUM:
605 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
606 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
607 {
608 /* The 8-byte MAC pseudo-register must be broken down into two
609 32-byte registers. */
610 unsigned int oldmac, ext_mac;
611 ULONGEST newmac;
612
613 newmac = extract_unsigned_integer (buf, 8, byte_order);
614 oldmac = newmac & 0xffffffff;
615 ext_mac = (newmac >> 32) & 0xff;
616 regcache_cooked_write_unsigned (regcache, MT_MAC_REGNUM, oldmac);
617 regcache_cooked_write_unsigned (regcache, MT_EXMAC_REGNUM, ext_mac);
618 }
619 else
620 regcache_raw_write (regcache, MT_MAC_REGNUM, buf);
621 break;
622 default:
623 {
624 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
625
626 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
627 mt_pseudo_register_write (gdbarch, regcache,
628 MT_MAC_PSEUDOREG_REGNUM, buf);
629 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
630 regcache_raw_write (regcache, index + MT_CPR0_REGNUM, buf);
631 }
632 break;
633 }
634 }
635
636 static CORE_ADDR
637 mt_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
638 {
639 /* Register size is 4 bytes. */
640 return align_down (sp, 4);
641 }
642
643 /* Implements the "info registers" command. When ``all'' is non-zero,
644 the coprocessor registers will be printed in addition to the rest
645 of the registers. */
646
647 static void
648 mt_registers_info (struct gdbarch *gdbarch,
649 struct ui_file *file,
650 struct frame_info *frame, int regnum, int all)
651 {
652 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
653
654 if (regnum == -1)
655 {
656 int lim;
657
658 lim = all ? MT_NUM_REGS : MT_NUM_CPU_REGS;
659
660 for (regnum = 0; regnum < lim; regnum++)
661 {
662 /* Don't display the Qchannel register since it will be displayed
663 along with Ichannel. (See below.) */
664 if (regnum == MT_QCHANNEL_REGNUM)
665 continue;
666
667 mt_registers_info (gdbarch, file, frame, regnum, all);
668
669 /* Display the Qchannel register immediately after Ichannel. */
670 if (regnum == MT_ICHANNEL_REGNUM)
671 mt_registers_info (gdbarch, file, frame, MT_QCHANNEL_REGNUM, all);
672 }
673 }
674 else
675 {
676 if (regnum == MT_EXMAC_REGNUM)
677 return;
678 else if (regnum == MT_CONTEXT_REGNUM)
679 {
680 /* Special output handling for 38-bit context register. */
681 unsigned char *buff;
682 unsigned int *bytes, i, regsize;
683
684 regsize = register_size (gdbarch, regnum);
685
686 buff = alloca (regsize);
687 bytes = alloca (regsize * sizeof (*bytes));
688
689 frame_register_read (frame, regnum, buff);
690
691 fputs_filtered (gdbarch_register_name
692 (gdbarch, regnum), file);
693 print_spaces_filtered (15 - strlen (gdbarch_register_name
694 (gdbarch, regnum)),
695 file);
696 fputs_filtered ("0x", file);
697
698 for (i = 0; i < regsize; i++)
699 fprintf_filtered (file, "%02x", (unsigned int)
700 extract_unsigned_integer (buff + i, 1, byte_order));
701 fputs_filtered ("\t", file);
702 print_longest (file, 'd', 0,
703 extract_unsigned_integer (buff, regsize, byte_order));
704 fputs_filtered ("\n", file);
705 }
706 else if (regnum == MT_COPRO_REGNUM
707 || regnum == MT_COPRO_PSEUDOREG_REGNUM)
708 {
709 /* Special output handling for the 'coprocessor' register. */
710 gdb_byte *buf;
711 struct value_print_options opts;
712
713 buf = alloca (register_size (gdbarch, MT_COPRO_REGNUM));
714 frame_register_read (frame, MT_COPRO_REGNUM, buf);
715 /* And print. */
716 regnum = MT_COPRO_PSEUDOREG_REGNUM;
717 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
718 file);
719 print_spaces_filtered (15 - strlen (gdbarch_register_name
720 (gdbarch, regnum)),
721 file);
722 get_raw_print_options (&opts);
723 opts.deref_ref = 1;
724 val_print (register_type (gdbarch, regnum), buf,
725 0, 0, file, 0, NULL,
726 &opts, current_language);
727 fputs_filtered ("\n", file);
728 }
729 else if (regnum == MT_MAC_REGNUM || regnum == MT_MAC_PSEUDOREG_REGNUM)
730 {
731 ULONGEST oldmac, ext_mac, newmac;
732 gdb_byte buf[3 * sizeof (LONGEST)];
733
734 /* Get the two "real" mac registers. */
735 frame_register_read (frame, MT_MAC_REGNUM, buf);
736 oldmac = extract_unsigned_integer
737 (buf, register_size (gdbarch, MT_MAC_REGNUM), byte_order);
738 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
739 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
740 {
741 frame_register_read (frame, MT_EXMAC_REGNUM, buf);
742 ext_mac = extract_unsigned_integer
743 (buf, register_size (gdbarch, MT_EXMAC_REGNUM), byte_order);
744 }
745 else
746 ext_mac = 0;
747
748 /* Add them together. */
749 newmac = (oldmac & 0xffffffff) + ((ext_mac & 0xff) << 32);
750
751 /* And print. */
752 regnum = MT_MAC_PSEUDOREG_REGNUM;
753 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
754 file);
755 print_spaces_filtered (15 - strlen (gdbarch_register_name
756 (gdbarch, regnum)),
757 file);
758 fputs_filtered ("0x", file);
759 print_longest (file, 'x', 0, newmac);
760 fputs_filtered ("\t", file);
761 print_longest (file, 'u', 0, newmac);
762 fputs_filtered ("\n", file);
763 }
764 else
765 default_print_registers_info (gdbarch, file, frame, regnum, all);
766 }
767 }
768
769 /* Set up the callee's arguments for an inferior function call. The
770 arguments are pushed on the stack or are placed in registers as
771 appropriate. It also sets up the return address (which points to
772 the call dummy breakpoint).
773
774 Returns the updated (and aligned) stack pointer. */
775
776 static CORE_ADDR
777 mt_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
778 struct regcache *regcache, CORE_ADDR bp_addr,
779 int nargs, struct value **args, CORE_ADDR sp,
780 int struct_return, CORE_ADDR struct_addr)
781 {
782 #define wordsize 4
783 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
784 gdb_byte buf[MT_MAX_STRUCT_SIZE];
785 int argreg = MT_1ST_ARGREG;
786 int split_param_len = 0;
787 int stack_dest = sp;
788 int slacklen;
789 int typelen;
790 int i, j;
791
792 /* First handle however many args we can fit into MT_1ST_ARGREG thru
793 MT_LAST_ARGREG. */
794 for (i = 0; i < nargs && argreg <= MT_LAST_ARGREG; i++)
795 {
796 const gdb_byte *val;
797 typelen = TYPE_LENGTH (value_type (args[i]));
798 switch (typelen)
799 {
800 case 1:
801 case 2:
802 case 3:
803 case 4:
804 regcache_cooked_write_unsigned (regcache, argreg++,
805 extract_unsigned_integer
806 (value_contents (args[i]),
807 wordsize, byte_order));
808 break;
809 case 8:
810 case 12:
811 case 16:
812 val = value_contents (args[i]);
813 while (typelen > 0)
814 {
815 if (argreg <= MT_LAST_ARGREG)
816 {
817 /* This word of the argument is passed in a register. */
818 regcache_cooked_write_unsigned (regcache, argreg++,
819 extract_unsigned_integer
820 (val, wordsize, byte_order));
821 typelen -= wordsize;
822 val += wordsize;
823 }
824 else
825 {
826 /* Remainder of this arg must be passed on the stack
827 (deferred to do later). */
828 split_param_len = typelen;
829 memcpy (buf, val, typelen);
830 break; /* No more args can be handled in regs. */
831 }
832 }
833 break;
834 default:
835 /* By reverse engineering of gcc output, args bigger than
836 16 bytes go on the stack, and their address is passed
837 in the argreg. */
838 stack_dest -= typelen;
839 write_memory (stack_dest, value_contents (args[i]), typelen);
840 regcache_cooked_write_unsigned (regcache, argreg++, stack_dest);
841 break;
842 }
843 }
844
845 /* Next, the rest of the arguments go onto the stack, in reverse order. */
846 for (j = nargs - 1; j >= i; j--)
847 {
848 gdb_byte *val;
849
850 /* Right-justify the value in an aligned-length buffer. */
851 typelen = TYPE_LENGTH (value_type (args[j]));
852 slacklen = (wordsize - (typelen % wordsize)) % wordsize;
853 val = alloca (typelen + slacklen);
854 memcpy (val, value_contents (args[j]), typelen);
855 memset (val + typelen, 0, slacklen);
856 /* Now write this data to the stack. */
857 stack_dest -= typelen + slacklen;
858 write_memory (stack_dest, val, typelen + slacklen);
859 }
860
861 /* Finally, if a param needs to be split between registers and stack,
862 write the second half to the stack now. */
863 if (split_param_len != 0)
864 {
865 stack_dest -= split_param_len;
866 write_memory (stack_dest, buf, split_param_len);
867 }
868
869 /* Set up return address (provided to us as bp_addr). */
870 regcache_cooked_write_unsigned (regcache, MT_RA_REGNUM, bp_addr);
871
872 /* Store struct return address, if given. */
873 if (struct_return && struct_addr != 0)
874 regcache_cooked_write_unsigned (regcache, MT_R11_REGNUM, struct_addr);
875
876 /* Set aside 16 bytes for the callee to save regs 1-4. */
877 stack_dest -= 16;
878
879 /* Update the stack pointer. */
880 regcache_cooked_write_unsigned (regcache, MT_SP_REGNUM, stack_dest);
881
882 /* And that should do it. Return the new stack pointer. */
883 return stack_dest;
884 }
885
886
887 /* The 'unwind_cache' data structure. */
888
889 struct mt_unwind_cache
890 {
891 /* The previous frame's inner most stack address.
892 Used as this frame ID's stack_addr. */
893 CORE_ADDR prev_sp;
894 CORE_ADDR frame_base;
895 int framesize;
896 int frameless_p;
897
898 /* Table indicating the location of each and every register. */
899 struct trad_frame_saved_reg *saved_regs;
900 };
901
902 /* Initialize an unwind_cache. Build up the saved_regs table etc. for
903 the frame. */
904
905 static struct mt_unwind_cache *
906 mt_frame_unwind_cache (struct frame_info *this_frame,
907 void **this_prologue_cache)
908 {
909 struct gdbarch *gdbarch;
910 struct mt_unwind_cache *info;
911 CORE_ADDR next_addr, start_addr, end_addr, prologue_end_addr;
912 unsigned long instr, upper_half, delayed_store = 0;
913 int regnum, offset;
914 ULONGEST sp, fp;
915
916 if ((*this_prologue_cache))
917 return (*this_prologue_cache);
918
919 gdbarch = get_frame_arch (this_frame);
920 info = FRAME_OBSTACK_ZALLOC (struct mt_unwind_cache);
921 (*this_prologue_cache) = info;
922
923 info->prev_sp = 0;
924 info->framesize = 0;
925 info->frame_base = 0;
926 info->frameless_p = 1;
927 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
928
929 /* Grab the frame-relative values of SP and FP, needed below.
930 The frame_saved_register function will find them on the
931 stack or in the registers as appropriate. */
932 sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
933 fp = get_frame_register_unsigned (this_frame, MT_FP_REGNUM);
934
935 start_addr = get_frame_func (this_frame);
936
937 /* Return early if GDB couldn't find the function. */
938 if (start_addr == 0)
939 return info;
940
941 end_addr = get_frame_pc (this_frame);
942 prologue_end_addr = skip_prologue_using_sal (gdbarch, start_addr);
943 if (end_addr == 0)
944 for (next_addr = start_addr; next_addr < end_addr; next_addr += 4)
945 {
946 instr = get_frame_memory_unsigned (this_frame, next_addr, 4);
947 if (delayed_store) /* Previous instr was a push. */
948 {
949 upper_half = delayed_store >> 16;
950 regnum = upper_half & 0xf;
951 offset = delayed_store & 0xffff;
952 switch (upper_half & 0xfff0)
953 {
954 case 0x43c0: /* push using frame pointer. */
955 info->saved_regs[regnum].addr = offset;
956 break;
957 case 0x43d0: /* push using stack pointer. */
958 info->saved_regs[regnum].addr = offset;
959 break;
960 default: /* lint */
961 break;
962 }
963 delayed_store = 0;
964 }
965
966 switch (instr)
967 {
968 case 0x12000000: /* NO-OP */
969 continue;
970 case 0x12ddc000: /* copy sp into fp */
971 info->frameless_p = 0; /* Record that the frame
972 pointer is in use. */
973 continue;
974 default:
975 upper_half = instr >> 16;
976 if (upper_half == 0x05dd || /* subi sp, sp, imm */
977 upper_half == 0x07dd) /* subui sp, sp, imm */
978 {
979 /* Record the frame size. */
980 info->framesize = instr & 0xffff;
981 continue;
982 }
983 if ((upper_half & 0xfff0) == 0x43c0 || /* frame push */
984 (upper_half & 0xfff0) == 0x43d0) /* stack push */
985 {
986 /* Save this instruction, but don't record the
987 pushed register as 'saved' until we see the
988 next instruction. That's because of deferred stores
989 on this target -- GDB won't be able to read the register
990 from the stack until one instruction later. */
991 delayed_store = instr;
992 continue;
993 }
994 /* Not a prologue instruction. Is this the end of the prologue?
995 This is the most difficult decision; when to stop scanning.
996
997 If we have no line symbol, then the best thing we can do
998 is to stop scanning when we encounter an instruction that
999 is not likely to be a part of the prologue.
1000
1001 But if we do have a line symbol, then we should
1002 keep scanning until we reach it (or we reach end_addr). */
1003
1004 if (prologue_end_addr && (prologue_end_addr > (next_addr + 4)))
1005 continue; /* Keep scanning, recording saved_regs etc. */
1006 else
1007 break; /* Quit scanning: breakpoint can be set here. */
1008 }
1009 }
1010
1011 /* Special handling for the "saved" address of the SP:
1012 The SP is of course never saved on the stack at all, so
1013 by convention what we put here is simply the previous
1014 _value_ of the SP (as opposed to an address where the
1015 previous value would have been pushed). This will also
1016 give us the frame base address. */
1017
1018 if (info->frameless_p)
1019 {
1020 info->frame_base = sp + info->framesize;
1021 info->prev_sp = sp + info->framesize;
1022 }
1023 else
1024 {
1025 info->frame_base = fp + info->framesize;
1026 info->prev_sp = fp + info->framesize;
1027 }
1028 /* Save prev_sp in saved_regs as a value, not as an address. */
1029 trad_frame_set_value (info->saved_regs, MT_SP_REGNUM, info->prev_sp);
1030
1031 /* Now convert frame offsets to actual addresses (not offsets). */
1032 for (regnum = 0; regnum < MT_NUM_REGS; regnum++)
1033 if (trad_frame_addr_p (info->saved_regs, regnum))
1034 info->saved_regs[regnum].addr += info->frame_base - info->framesize;
1035
1036 /* The call instruction moves the caller's PC in the callee's RA reg.
1037 Since this is an unwind, do the reverse. Copy the location of RA
1038 into PC (the address / regnum) so that a request for PC will be
1039 converted into a request for the RA. */
1040 info->saved_regs[MT_PC_REGNUM] = info->saved_regs[MT_RA_REGNUM];
1041
1042 return info;
1043 }
1044
1045 static CORE_ADDR
1046 mt_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1047 {
1048 ULONGEST pc;
1049
1050 pc = frame_unwind_register_unsigned (next_frame, MT_PC_REGNUM);
1051 return pc;
1052 }
1053
1054 static CORE_ADDR
1055 mt_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1056 {
1057 ULONGEST sp;
1058
1059 sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM);
1060 return sp;
1061 }
1062
1063 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1064 frame. The frame ID's base needs to match the TOS value saved by
1065 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1066
1067 static struct frame_id
1068 mt_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1069 {
1070 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
1071 return frame_id_build (sp, get_frame_pc (this_frame));
1072 }
1073
1074 /* Given a GDB frame, determine the address of the calling function's
1075 frame. This will be used to create a new GDB frame struct. */
1076
1077 static void
1078 mt_frame_this_id (struct frame_info *this_frame,
1079 void **this_prologue_cache, struct frame_id *this_id)
1080 {
1081 struct mt_unwind_cache *info =
1082 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1083
1084 if (!(info == NULL || info->prev_sp == 0))
1085 (*this_id) = frame_id_build (info->prev_sp, get_frame_func (this_frame));
1086
1087 return;
1088 }
1089
1090 static struct value *
1091 mt_frame_prev_register (struct frame_info *this_frame,
1092 void **this_prologue_cache, int regnum)
1093 {
1094 struct mt_unwind_cache *info =
1095 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1096
1097 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1098 }
1099
1100 static CORE_ADDR
1101 mt_frame_base_address (struct frame_info *this_frame,
1102 void **this_prologue_cache)
1103 {
1104 struct mt_unwind_cache *info =
1105 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1106
1107 return info->frame_base;
1108 }
1109
1110 /* This is a shared interface: the 'frame_unwind' object is what's
1111 returned by the 'sniffer' function, and in turn specifies how to
1112 get a frame's ID and prev_regs.
1113
1114 This exports the 'prev_register' and 'this_id' methods. */
1115
1116 static const struct frame_unwind mt_frame_unwind = {
1117 NORMAL_FRAME,
1118 mt_frame_this_id,
1119 mt_frame_prev_register,
1120 NULL,
1121 default_frame_sniffer
1122 };
1123
1124 /* Another shared interface: the 'frame_base' object specifies how to
1125 unwind a frame and secure the base addresses for frame objects
1126 (locals, args). */
1127
1128 static struct frame_base mt_frame_base = {
1129 &mt_frame_unwind,
1130 mt_frame_base_address,
1131 mt_frame_base_address,
1132 mt_frame_base_address
1133 };
1134
1135 static struct gdbarch *
1136 mt_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1137 {
1138 struct gdbarch *gdbarch;
1139 struct gdbarch_tdep *tdep;
1140
1141 /* Find a candidate among the list of pre-declared architectures. */
1142 arches = gdbarch_list_lookup_by_info (arches, &info);
1143 if (arches != NULL)
1144 return arches->gdbarch;
1145
1146 /* None found, create a new architecture from the information
1147 provided. */
1148 tdep = XCALLOC (1, struct gdbarch_tdep);
1149 gdbarch = gdbarch_alloc (&info, tdep);
1150
1151 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1152 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1153 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1154
1155 set_gdbarch_register_name (gdbarch, mt_register_name);
1156 set_gdbarch_num_regs (gdbarch, MT_NUM_REGS);
1157 set_gdbarch_num_pseudo_regs (gdbarch, MT_NUM_PSEUDO_REGS);
1158 set_gdbarch_pc_regnum (gdbarch, MT_PC_REGNUM);
1159 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1160 set_gdbarch_pseudo_register_read (gdbarch, mt_pseudo_register_read);
1161 set_gdbarch_pseudo_register_write (gdbarch, mt_pseudo_register_write);
1162 set_gdbarch_skip_prologue (gdbarch, mt_skip_prologue);
1163 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1164 set_gdbarch_breakpoint_from_pc (gdbarch, mt_breakpoint_from_pc);
1165 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1166 set_gdbarch_frame_args_skip (gdbarch, 0);
1167 set_gdbarch_print_insn (gdbarch, print_insn_mt);
1168 set_gdbarch_register_type (gdbarch, mt_register_type);
1169 set_gdbarch_register_reggroup_p (gdbarch, mt_register_reggroup_p);
1170
1171 set_gdbarch_return_value (gdbarch, mt_return_value);
1172 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1173
1174 set_gdbarch_frame_align (gdbarch, mt_frame_align);
1175
1176 set_gdbarch_print_registers_info (gdbarch, mt_registers_info);
1177
1178 set_gdbarch_push_dummy_call (gdbarch, mt_push_dummy_call);
1179
1180 /* Target builtin data types. */
1181 set_gdbarch_short_bit (gdbarch, 16);
1182 set_gdbarch_int_bit (gdbarch, 32);
1183 set_gdbarch_long_bit (gdbarch, 32);
1184 set_gdbarch_long_long_bit (gdbarch, 64);
1185 set_gdbarch_float_bit (gdbarch, 32);
1186 set_gdbarch_double_bit (gdbarch, 64);
1187 set_gdbarch_long_double_bit (gdbarch, 64);
1188 set_gdbarch_ptr_bit (gdbarch, 32);
1189
1190 /* Register the DWARF 2 sniffer first, and then the traditional prologue
1191 based sniffer. */
1192 dwarf2_append_unwinders (gdbarch);
1193 frame_unwind_append_unwinder (gdbarch, &mt_frame_unwind);
1194 frame_base_set_default (gdbarch, &mt_frame_base);
1195
1196 /* Register the 'unwind_pc' method. */
1197 set_gdbarch_unwind_pc (gdbarch, mt_unwind_pc);
1198 set_gdbarch_unwind_sp (gdbarch, mt_unwind_sp);
1199
1200 /* Methods for saving / extracting a dummy frame's ID.
1201 The ID's stack address must match the SP value returned by
1202 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1203 set_gdbarch_dummy_id (gdbarch, mt_dummy_id);
1204
1205 return gdbarch;
1206 }
1207
1208 /* Provide a prototype to silence -Wmissing-prototypes. */
1209 extern initialize_file_ftype _initialize_mt_tdep;
1210
1211 void
1212 _initialize_mt_tdep (void)
1213 {
1214 register_gdbarch_init (bfd_arch_mt, mt_gdbarch_init);
1215 }
This page took 0.055199 seconds and 4 git commands to generate.