1 /* Target-dependent code for Morpho mt processor, for GDB.
3 Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* Contributed by Michael Snyder, msnyder@redhat.com. */
24 #include "frame-unwind.h"
25 #include "frame-base.h"
28 #include "arch-utils.h"
30 #include "gdb_string.h"
32 #include "reggroups.h"
34 #include "trad-frame.h"
36 #include "dwarf2-frame.h"
38 #include "gdb_assert.h"
41 enum mt_arch_constants
43 MT_MAX_STRUCT_SIZE
= 16
48 MT_R0_REGNUM
, /* 32 bit regs. */
50 MT_1ST_ARGREG
= MT_R1_REGNUM
,
54 MT_LAST_ARGREG
= MT_R4_REGNUM
,
63 MT_FP_REGNUM
= MT_R12_REGNUM
,
65 MT_SP_REGNUM
= MT_R13_REGNUM
,
67 MT_RA_REGNUM
= MT_R14_REGNUM
,
69 MT_IRA_REGNUM
= MT_R15_REGNUM
,
72 /* Interrupt Enable pseudo-register, exported by SID. */
74 /* End of CPU regs. */
78 /* Co-processor registers. */
79 MT_COPRO_REGNUM
= MT_NUM_CPU_REGS
, /* 16 bit regs. */
96 MT_BYPA_REGNUM
, /* 32 bit regs. */
100 MT_CONTEXT_REGNUM
, /* 38 bits (treat as array of
102 MT_MAC_REGNUM
, /* 32 bits. */
103 MT_Z1_REGNUM
, /* 16 bits. */
104 MT_Z2_REGNUM
, /* 16 bits. */
105 MT_ICHANNEL_REGNUM
, /* 32 bits. */
106 MT_ISCRAMB_REGNUM
, /* 32 bits. */
107 MT_QSCRAMB_REGNUM
, /* 32 bits. */
108 MT_OUT_REGNUM
, /* 16 bits. */
109 MT_EXMAC_REGNUM
, /* 32 bits (8 used). */
110 MT_QCHANNEL_REGNUM
, /* 32 bits. */
111 MT_ZI2_REGNUM
, /* 16 bits. */
112 MT_ZQ2_REGNUM
, /* 16 bits. */
113 MT_CHANNEL2_REGNUM
, /* 32 bits. */
114 MT_ISCRAMB2_REGNUM
, /* 32 bits. */
115 MT_QSCRAMB2_REGNUM
, /* 32 bits. */
116 MT_QCHANNEL2_REGNUM
, /* 32 bits. */
118 /* Number of real registers. */
121 /* Pseudo-registers. */
122 MT_COPRO_PSEUDOREG_REGNUM
= MT_NUM_REGS
,
123 MT_MAC_PSEUDOREG_REGNUM
,
124 MT_COPRO_PSEUDOREG_ARRAY
,
126 MT_COPRO_PSEUDOREG_DIM_1
= 2,
127 MT_COPRO_PSEUDOREG_DIM_2
= 8,
128 /* The number of pseudo-registers for each coprocessor. These
129 include the real coprocessor registers, the pseudo-registe for
130 the coprocessor number, and the pseudo-register for the MAC. */
131 MT_COPRO_PSEUDOREG_REGS
= MT_NUM_REGS
- MT_NUM_CPU_REGS
+ 2,
132 /* The register number of the MAC, relative to a given coprocessor. */
133 MT_COPRO_PSEUDOREG_MAC_REGNUM
= MT_COPRO_PSEUDOREG_REGS
- 1,
135 /* Two pseudo-regs ('coprocessor' and 'mac'). */
136 MT_NUM_PSEUDO_REGS
= 2 + (MT_COPRO_PSEUDOREG_REGS
137 * MT_COPRO_PSEUDOREG_DIM_1
138 * MT_COPRO_PSEUDOREG_DIM_2
)
141 /* Return name of register number specified by REGNUM. */
144 mt_register_name (struct gdbarch
*gdbarch
, int regnum
)
146 static const char *const register_names
[] = {
148 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
149 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
151 /* Co-processor regs. */
152 "", /* copro register. */
153 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
154 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
155 "bypa", "bypb", "bypc", "flag", "context", "" /* mac. */ , "z1", "z2",
156 "Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac. */ , "Qchannel",
157 "zi2", "zq2", "Ichannel2", "Iscramb2", "Qscramb2", "Qchannel2",
158 /* Pseudo-registers. */
161 static const char *array_names
[MT_COPRO_PSEUDOREG_REGS
162 * MT_COPRO_PSEUDOREG_DIM_1
163 * MT_COPRO_PSEUDOREG_DIM_2
];
167 if (regnum
< ARRAY_SIZE (register_names
))
168 return register_names
[regnum
];
169 if (array_names
[regnum
- MT_COPRO_PSEUDOREG_ARRAY
])
170 return array_names
[regnum
- MT_COPRO_PSEUDOREG_ARRAY
];
179 regnum
-= MT_COPRO_PSEUDOREG_ARRAY
;
180 index
= regnum
% MT_COPRO_PSEUDOREG_REGS
;
181 dim_2
= (regnum
/ MT_COPRO_PSEUDOREG_REGS
) % MT_COPRO_PSEUDOREG_DIM_2
;
182 dim_1
= ((regnum
/ MT_COPRO_PSEUDOREG_REGS
/ MT_COPRO_PSEUDOREG_DIM_2
)
183 % MT_COPRO_PSEUDOREG_DIM_1
);
185 if (index
== MT_COPRO_PSEUDOREG_MAC_REGNUM
)
186 stub
= register_names
[MT_MAC_PSEUDOREG_REGNUM
];
187 else if (index
>= MT_NUM_REGS
- MT_CPR0_REGNUM
)
190 stub
= register_names
[index
+ MT_CPR0_REGNUM
];
193 array_names
[regnum
] = stub
;
197 sprintf (name
, "copro_%d_%d_%s", dim_1
, dim_2
, stub
);
198 array_names
[regnum
] = name
;
203 /* Return the type of a coprocessor register. */
206 mt_copro_register_type (struct gdbarch
*arch
, int regnum
)
210 case MT_INT_ENABLE_REGNUM
:
211 case MT_ICHANNEL_REGNUM
:
212 case MT_QCHANNEL_REGNUM
:
213 case MT_ISCRAMB_REGNUM
:
214 case MT_QSCRAMB_REGNUM
:
215 return builtin_type_int32
;
224 return builtin_type_int16
;
225 case MT_EXMAC_REGNUM
:
227 return builtin_type_uint32
;
228 case MT_CONTEXT_REGNUM
:
229 return builtin_type (arch
)->builtin_long_long
;
231 return builtin_type (arch
)->builtin_unsigned_char
;
233 if (regnum
>= MT_CPR0_REGNUM
&& regnum
<= MT_CPR15_REGNUM
)
234 return builtin_type_int16
;
235 else if (regnum
== MT_CPR0_REGNUM
+ MT_COPRO_PSEUDOREG_MAC_REGNUM
)
237 if (gdbarch_bfd_arch_info (arch
)->mach
== bfd_mach_mrisc2
238 || gdbarch_bfd_arch_info (arch
)->mach
== bfd_mach_ms2
)
239 return builtin_type_uint64
;
241 return builtin_type_uint32
;
244 return builtin_type_uint32
;
248 /* Given ARCH and a register number specified by REGNUM, return the
249 type of that register. */
252 mt_register_type (struct gdbarch
*arch
, int regnum
)
254 static struct type
*copro_type
= NULL
;
256 if (regnum
>= 0 && regnum
< MT_NUM_REGS
+ MT_NUM_PSEUDO_REGS
)
258 if (copro_type
== NULL
)
261 temp
= create_range_type (NULL
, builtin_type_int32
, 0, 1);
262 copro_type
= create_array_type (NULL
, builtin_type_int16
, temp
);
269 return builtin_type (arch
)->builtin_func_ptr
;
272 return builtin_type (arch
)->builtin_data_ptr
;
273 case MT_COPRO_REGNUM
:
274 case MT_COPRO_PSEUDOREG_REGNUM
:
276 case MT_MAC_PSEUDOREG_REGNUM
:
277 return mt_copro_register_type (arch
,
279 + MT_COPRO_PSEUDOREG_MAC_REGNUM
);
281 if (regnum
>= MT_R0_REGNUM
&& regnum
<= MT_R15_REGNUM
)
282 return builtin_type_int32
;
283 else if (regnum
< MT_COPRO_PSEUDOREG_ARRAY
)
284 return mt_copro_register_type (arch
, regnum
);
287 regnum
-= MT_COPRO_PSEUDOREG_ARRAY
;
288 regnum
%= MT_COPRO_PSEUDOREG_REGS
;
289 regnum
+= MT_CPR0_REGNUM
;
290 return mt_copro_register_type (arch
, regnum
);
294 internal_error (__FILE__
, __LINE__
,
295 _("mt_register_type: illegal register number %d"), regnum
);
298 /* Return true if register REGNUM is a member of the register group
299 specified by GROUP. */
302 mt_register_reggroup_p (struct gdbarch
*gdbarch
, int regnum
,
303 struct reggroup
*group
)
305 /* Groups of registers that can be displayed via "info reg". */
306 if (group
== all_reggroup
)
308 && regnum
< MT_NUM_REGS
+ MT_NUM_PSEUDO_REGS
309 && mt_register_name (gdbarch
, regnum
)[0] != '\0');
311 if (group
== general_reggroup
)
312 return (regnum
>= MT_R0_REGNUM
&& regnum
<= MT_R15_REGNUM
);
314 if (group
== float_reggroup
)
315 return 0; /* No float regs. */
317 if (group
== vector_reggroup
)
318 return 0; /* No vector regs. */
320 /* For any that are not handled above. */
321 return default_register_reggroup_p (gdbarch
, regnum
, group
);
324 /* Return the return value convention used for a given type TYPE.
325 Optionally, fetch or set the return value via READBUF or
326 WRITEBUF respectively using REGCACHE for the register
329 static enum return_value_convention
330 mt_return_value (struct gdbarch
*gdbarch
, struct type
*func_type
,
331 struct type
*type
, struct regcache
*regcache
,
332 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
334 if (TYPE_LENGTH (type
) > 4)
336 /* Return values > 4 bytes are returned in memory,
337 pointed to by R11. */
342 regcache_cooked_read_unsigned (regcache
, MT_R11_REGNUM
, &addr
);
343 read_memory (addr
, readbuf
, TYPE_LENGTH (type
));
350 regcache_cooked_read_unsigned (regcache
, MT_R11_REGNUM
, &addr
);
351 write_memory (addr
, writebuf
, TYPE_LENGTH (type
));
354 return RETURN_VALUE_ABI_RETURNS_ADDRESS
;
362 /* Return values of <= 4 bytes are returned in R11. */
363 regcache_cooked_read_unsigned (regcache
, MT_R11_REGNUM
, &temp
);
364 store_unsigned_integer (readbuf
, TYPE_LENGTH (type
), temp
);
369 if (TYPE_LENGTH (type
) < 4)
372 /* Add leading zeros to the value. */
373 memset (buf
, 0, sizeof (buf
));
374 memcpy (buf
+ sizeof (buf
) - TYPE_LENGTH (type
),
375 writebuf
, TYPE_LENGTH (type
));
376 regcache_cooked_write (regcache
, MT_R11_REGNUM
, buf
);
378 else /* (TYPE_LENGTH (type) == 4 */
379 regcache_cooked_write (regcache
, MT_R11_REGNUM
, writebuf
);
382 return RETURN_VALUE_REGISTER_CONVENTION
;
386 /* If the input address, PC, is in a function prologue, return the
387 address of the end of the prologue, otherwise return the input
390 Note: PC is likely to be the function start, since this function
391 is mainly used for advancing a breakpoint to the first line, or
392 stepping to the first line when we have stepped into a function
396 mt_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
398 CORE_ADDR func_addr
= 0, func_end
= 0;
402 if (find_pc_partial_function (pc
, &func_name
, &func_addr
, &func_end
))
404 struct symtab_and_line sal
;
407 /* Found a function. */
408 sym
= lookup_symbol (func_name
, NULL
, VAR_DOMAIN
, NULL
);
409 if (sym
&& SYMBOL_LANGUAGE (sym
) != language_asm
)
411 /* Don't use this trick for assembly source files. */
412 sal
= find_pc_line (func_addr
, 0);
414 if (sal
.end
&& sal
.end
< func_end
)
416 /* Found a line number, use it as end of prologue. */
422 /* No function symbol, or no line symbol. Use prologue scanning method. */
425 instr
= read_memory_unsigned_integer (pc
, 4);
426 if (instr
== 0x12000000) /* nop */
428 if (instr
== 0x12ddc000) /* copy sp into fp */
431 if (instr
== 0x05dd) /* subi sp, sp, imm */
433 if (instr
>= 0x43c0 && instr
<= 0x43df) /* push */
435 /* Not an obvious prologue instruction. */
442 /* The breakpoint instruction must be the same size as the smallest
443 instruction in the instruction set.
445 The BP for ms1 is defined as 0x68000000 (BREAK).
446 The BP for ms2 is defined as 0x69000000 (illegal) */
448 static const gdb_byte
*
449 mt_breakpoint_from_pc (struct gdbarch
*gdbarch
, CORE_ADDR
*bp_addr
,
452 static gdb_byte ms1_breakpoint
[] = { 0x68, 0, 0, 0 };
453 static gdb_byte ms2_breakpoint
[] = { 0x69, 0, 0, 0 };
456 if (gdbarch_bfd_arch_info (gdbarch
)->mach
== bfd_mach_ms2
)
457 return ms2_breakpoint
;
459 return ms1_breakpoint
;
462 /* Select the correct coprocessor register bank. Return the pseudo
463 regnum we really want to read. */
466 mt_select_coprocessor (struct gdbarch
*gdbarch
,
467 struct regcache
*regcache
, int regno
)
469 unsigned index
, base
;
472 /* Get the copro pseudo regnum. */
473 regcache_raw_read (regcache
, MT_COPRO_REGNUM
, copro
);
474 base
= (extract_signed_integer (&copro
[0], 2) * MT_COPRO_PSEUDOREG_DIM_2
475 + extract_signed_integer (&copro
[2], 2));
477 regno
-= MT_COPRO_PSEUDOREG_ARRAY
;
478 index
= regno
% MT_COPRO_PSEUDOREG_REGS
;
479 regno
/= MT_COPRO_PSEUDOREG_REGS
;
482 /* Select the correct coprocessor register bank. Invalidate the
483 coprocessor register cache. */
486 store_signed_integer (&copro
[0], 2, regno
/ MT_COPRO_PSEUDOREG_DIM_2
);
487 store_signed_integer (&copro
[2], 2, regno
% MT_COPRO_PSEUDOREG_DIM_2
);
488 regcache_raw_write (regcache
, MT_COPRO_REGNUM
, copro
);
490 /* We must flush the cache, as it is now invalid. */
491 for (ix
= MT_NUM_CPU_REGS
; ix
!= MT_NUM_REGS
; ix
++)
492 regcache_invalidate (regcache
, ix
);
498 /* Fetch the pseudo registers:
500 There are two regular pseudo-registers:
501 1) The 'coprocessor' pseudo-register (which mirrors the
502 "real" coprocessor register sent by the target), and
503 2) The 'MAC' pseudo-register (which represents the union
504 of the original 32 bit target MAC register and the new
505 8-bit extended-MAC register).
507 Additionally there is an array of coprocessor registers which track
508 the coprocessor registers for each coprocessor. */
511 mt_pseudo_register_read (struct gdbarch
*gdbarch
,
512 struct regcache
*regcache
, int regno
, gdb_byte
*buf
)
516 case MT_COPRO_REGNUM
:
517 case MT_COPRO_PSEUDOREG_REGNUM
:
518 regcache_raw_read (regcache
, MT_COPRO_REGNUM
, buf
);
521 case MT_MAC_PSEUDOREG_REGNUM
:
522 if (gdbarch_bfd_arch_info (gdbarch
)->mach
== bfd_mach_mrisc2
523 || gdbarch_bfd_arch_info (gdbarch
)->mach
== bfd_mach_ms2
)
525 ULONGEST oldmac
= 0, ext_mac
= 0;
528 regcache_cooked_read_unsigned (regcache
, MT_MAC_REGNUM
, &oldmac
);
529 regcache_cooked_read_unsigned (regcache
, MT_EXMAC_REGNUM
, &ext_mac
);
531 (oldmac
& 0xffffffff) | ((long long) (ext_mac
& 0xff) << 32);
532 store_signed_integer (buf
, 8, newmac
);
535 regcache_raw_read (regcache
, MT_MAC_REGNUM
, buf
);
539 unsigned index
= mt_select_coprocessor (gdbarch
, regcache
, regno
);
541 if (index
== MT_COPRO_PSEUDOREG_MAC_REGNUM
)
542 mt_pseudo_register_read (gdbarch
, regcache
,
543 MT_MAC_PSEUDOREG_REGNUM
, buf
);
544 else if (index
< MT_NUM_REGS
- MT_CPR0_REGNUM
)
545 regcache_raw_read (regcache
, index
+ MT_CPR0_REGNUM
, buf
);
551 /* Write the pseudo registers:
553 Mt pseudo-registers are stored directly to the target. The
554 'coprocessor' register is special, because when it is modified, all
555 the other coprocessor regs must be flushed from the reg cache. */
558 mt_pseudo_register_write (struct gdbarch
*gdbarch
,
559 struct regcache
*regcache
,
560 int regno
, const gdb_byte
*buf
)
566 case MT_COPRO_REGNUM
:
567 case MT_COPRO_PSEUDOREG_REGNUM
:
568 regcache_raw_write (regcache
, MT_COPRO_REGNUM
, buf
);
569 for (i
= MT_NUM_CPU_REGS
; i
< MT_NUM_REGS
; i
++)
570 regcache_invalidate (regcache
, i
);
573 case MT_MAC_PSEUDOREG_REGNUM
:
574 if (gdbarch_bfd_arch_info (gdbarch
)->mach
== bfd_mach_mrisc2
575 || gdbarch_bfd_arch_info (gdbarch
)->mach
== bfd_mach_ms2
)
577 /* The 8-byte MAC pseudo-register must be broken down into two
578 32-byte registers. */
579 unsigned int oldmac
, ext_mac
;
582 newmac
= extract_unsigned_integer (buf
, 8);
583 oldmac
= newmac
& 0xffffffff;
584 ext_mac
= (newmac
>> 32) & 0xff;
585 regcache_cooked_write_unsigned (regcache
, MT_MAC_REGNUM
, oldmac
);
586 regcache_cooked_write_unsigned (regcache
, MT_EXMAC_REGNUM
, ext_mac
);
589 regcache_raw_write (regcache
, MT_MAC_REGNUM
, buf
);
593 unsigned index
= mt_select_coprocessor (gdbarch
, regcache
, regno
);
595 if (index
== MT_COPRO_PSEUDOREG_MAC_REGNUM
)
596 mt_pseudo_register_write (gdbarch
, regcache
,
597 MT_MAC_PSEUDOREG_REGNUM
, buf
);
598 else if (index
< MT_NUM_REGS
- MT_CPR0_REGNUM
)
599 regcache_raw_write (regcache
, index
+ MT_CPR0_REGNUM
, buf
);
606 mt_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR sp
)
608 /* Register size is 4 bytes. */
609 return align_down (sp
, 4);
612 /* Implements the "info registers" command. When ``all'' is non-zero,
613 the coprocessor registers will be printed in addition to the rest
617 mt_registers_info (struct gdbarch
*gdbarch
,
618 struct ui_file
*file
,
619 struct frame_info
*frame
, int regnum
, int all
)
625 lim
= all
? MT_NUM_REGS
: MT_NUM_CPU_REGS
;
627 for (regnum
= 0; regnum
< lim
; regnum
++)
629 /* Don't display the Qchannel register since it will be displayed
630 along with Ichannel. (See below.) */
631 if (regnum
== MT_QCHANNEL_REGNUM
)
634 mt_registers_info (gdbarch
, file
, frame
, regnum
, all
);
636 /* Display the Qchannel register immediately after Ichannel. */
637 if (regnum
== MT_ICHANNEL_REGNUM
)
638 mt_registers_info (gdbarch
, file
, frame
, MT_QCHANNEL_REGNUM
, all
);
643 if (regnum
== MT_EXMAC_REGNUM
)
645 else if (regnum
== MT_CONTEXT_REGNUM
)
647 /* Special output handling for 38-bit context register. */
649 unsigned int *bytes
, i
, regsize
;
651 regsize
= register_size (gdbarch
, regnum
);
653 buff
= alloca (regsize
);
654 bytes
= alloca (regsize
* sizeof (*bytes
));
656 frame_register_read (frame
, regnum
, buff
);
658 fputs_filtered (gdbarch_register_name
659 (gdbarch
, regnum
), file
);
660 print_spaces_filtered (15 - strlen (gdbarch_register_name
663 fputs_filtered ("0x", file
);
665 for (i
= 0; i
< regsize
; i
++)
666 fprintf_filtered (file
, "%02x", (unsigned int)
667 extract_unsigned_integer (buff
+ i
, 1));
668 fputs_filtered ("\t", file
);
669 print_longest (file
, 'd', 0,
670 extract_unsigned_integer (buff
, regsize
));
671 fputs_filtered ("\n", file
);
673 else if (regnum
== MT_COPRO_REGNUM
674 || regnum
== MT_COPRO_PSEUDOREG_REGNUM
)
676 /* Special output handling for the 'coprocessor' register. */
679 buf
= alloca (register_size (gdbarch
, MT_COPRO_REGNUM
));
680 frame_register_read (frame
, MT_COPRO_REGNUM
, buf
);
682 regnum
= MT_COPRO_PSEUDOREG_REGNUM
;
683 fputs_filtered (gdbarch_register_name (gdbarch
, regnum
),
685 print_spaces_filtered (15 - strlen (gdbarch_register_name
688 val_print (register_type (gdbarch
, regnum
), buf
,
689 0, 0, file
, 0, 1, 0, Val_no_prettyprint
,
691 fputs_filtered ("\n", file
);
693 else if (regnum
== MT_MAC_REGNUM
|| regnum
== MT_MAC_PSEUDOREG_REGNUM
)
695 ULONGEST oldmac
, ext_mac
, newmac
;
696 gdb_byte buf
[3 * sizeof (LONGEST
)];
698 /* Get the two "real" mac registers. */
699 frame_register_read (frame
, MT_MAC_REGNUM
, buf
);
700 oldmac
= extract_unsigned_integer
701 (buf
, register_size (gdbarch
, MT_MAC_REGNUM
));
702 if (gdbarch_bfd_arch_info (gdbarch
)->mach
== bfd_mach_mrisc2
703 || gdbarch_bfd_arch_info (gdbarch
)->mach
== bfd_mach_ms2
)
705 frame_register_read (frame
, MT_EXMAC_REGNUM
, buf
);
706 ext_mac
= extract_unsigned_integer
707 (buf
, register_size (gdbarch
, MT_EXMAC_REGNUM
));
712 /* Add them together. */
713 newmac
= (oldmac
& 0xffffffff) + ((ext_mac
& 0xff) << 32);
716 regnum
= MT_MAC_PSEUDOREG_REGNUM
;
717 fputs_filtered (gdbarch_register_name (gdbarch
, regnum
),
719 print_spaces_filtered (15 - strlen (gdbarch_register_name
722 fputs_filtered ("0x", file
);
723 print_longest (file
, 'x', 0, newmac
);
724 fputs_filtered ("\t", file
);
725 print_longest (file
, 'u', 0, newmac
);
726 fputs_filtered ("\n", file
);
729 default_print_registers_info (gdbarch
, file
, frame
, regnum
, all
);
733 /* Set up the callee's arguments for an inferior function call. The
734 arguments are pushed on the stack or are placed in registers as
735 appropriate. It also sets up the return address (which points to
736 the call dummy breakpoint).
738 Returns the updated (and aligned) stack pointer. */
741 mt_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
742 struct regcache
*regcache
, CORE_ADDR bp_addr
,
743 int nargs
, struct value
**args
, CORE_ADDR sp
,
744 int struct_return
, CORE_ADDR struct_addr
)
747 gdb_byte buf
[MT_MAX_STRUCT_SIZE
];
748 int argreg
= MT_1ST_ARGREG
;
749 int split_param_len
= 0;
755 /* First handle however many args we can fit into MT_1ST_ARGREG thru
757 for (i
= 0; i
< nargs
&& argreg
<= MT_LAST_ARGREG
; i
++)
760 typelen
= TYPE_LENGTH (value_type (args
[i
]));
767 regcache_cooked_write_unsigned (regcache
, argreg
++,
768 extract_unsigned_integer
769 (value_contents (args
[i
]),
775 val
= value_contents (args
[i
]);
778 if (argreg
<= MT_LAST_ARGREG
)
780 /* This word of the argument is passed in a register. */
781 regcache_cooked_write_unsigned (regcache
, argreg
++,
782 extract_unsigned_integer
789 /* Remainder of this arg must be passed on the stack
790 (deferred to do later). */
791 split_param_len
= typelen
;
792 memcpy (buf
, val
, typelen
);
793 break; /* No more args can be handled in regs. */
798 /* By reverse engineering of gcc output, args bigger than
799 16 bytes go on the stack, and their address is passed
801 stack_dest
-= typelen
;
802 write_memory (stack_dest
, value_contents (args
[i
]), typelen
);
803 regcache_cooked_write_unsigned (regcache
, argreg
++, stack_dest
);
808 /* Next, the rest of the arguments go onto the stack, in reverse order. */
809 for (j
= nargs
- 1; j
>= i
; j
--)
813 /* Right-justify the value in an aligned-length buffer. */
814 typelen
= TYPE_LENGTH (value_type (args
[j
]));
815 slacklen
= (wordsize
- (typelen
% wordsize
)) % wordsize
;
816 val
= alloca (typelen
+ slacklen
);
817 memcpy (val
, value_contents (args
[j
]), typelen
);
818 memset (val
+ typelen
, 0, slacklen
);
819 /* Now write this data to the stack. */
820 stack_dest
-= typelen
+ slacklen
;
821 write_memory (stack_dest
, val
, typelen
+ slacklen
);
824 /* Finally, if a param needs to be split between registers and stack,
825 write the second half to the stack now. */
826 if (split_param_len
!= 0)
828 stack_dest
-= split_param_len
;
829 write_memory (stack_dest
, buf
, split_param_len
);
832 /* Set up return address (provided to us as bp_addr). */
833 regcache_cooked_write_unsigned (regcache
, MT_RA_REGNUM
, bp_addr
);
835 /* Store struct return address, if given. */
836 if (struct_return
&& struct_addr
!= 0)
837 regcache_cooked_write_unsigned (regcache
, MT_R11_REGNUM
, struct_addr
);
839 /* Set aside 16 bytes for the callee to save regs 1-4. */
842 /* Update the stack pointer. */
843 regcache_cooked_write_unsigned (regcache
, MT_SP_REGNUM
, stack_dest
);
845 /* And that should do it. Return the new stack pointer. */
850 /* The 'unwind_cache' data structure. */
852 struct mt_unwind_cache
854 /* The previous frame's inner most stack address.
855 Used as this frame ID's stack_addr. */
857 CORE_ADDR frame_base
;
861 /* Table indicating the location of each and every register. */
862 struct trad_frame_saved_reg
*saved_regs
;
865 /* Initialize an unwind_cache. Build up the saved_regs table etc. for
868 static struct mt_unwind_cache
*
869 mt_frame_unwind_cache (struct frame_info
*this_frame
,
870 void **this_prologue_cache
)
872 struct gdbarch
*gdbarch
;
873 struct mt_unwind_cache
*info
;
874 CORE_ADDR next_addr
, start_addr
, end_addr
, prologue_end_addr
;
875 unsigned long instr
, upper_half
, delayed_store
= 0;
879 if ((*this_prologue_cache
))
880 return (*this_prologue_cache
);
882 gdbarch
= get_frame_arch (this_frame
);
883 info
= FRAME_OBSTACK_ZALLOC (struct mt_unwind_cache
);
884 (*this_prologue_cache
) = info
;
888 info
->frame_base
= 0;
889 info
->frameless_p
= 1;
890 info
->saved_regs
= trad_frame_alloc_saved_regs (this_frame
);
892 /* Grab the frame-relative values of SP and FP, needed below.
893 The frame_saved_register function will find them on the
894 stack or in the registers as appropriate. */
895 sp
= get_frame_register_unsigned (this_frame
, MT_SP_REGNUM
);
896 fp
= get_frame_register_unsigned (this_frame
, MT_FP_REGNUM
);
898 start_addr
= get_frame_func (this_frame
);
900 /* Return early if GDB couldn't find the function. */
904 end_addr
= get_frame_pc (this_frame
);
905 prologue_end_addr
= skip_prologue_using_sal (start_addr
);
907 for (next_addr
= start_addr
; next_addr
< end_addr
; next_addr
+= 4)
909 instr
= get_frame_memory_unsigned (this_frame
, next_addr
, 4);
910 if (delayed_store
) /* previous instr was a push */
912 upper_half
= delayed_store
>> 16;
913 regnum
= upper_half
& 0xf;
914 offset
= delayed_store
& 0xffff;
915 switch (upper_half
& 0xfff0)
917 case 0x43c0: /* push using frame pointer */
918 info
->saved_regs
[regnum
].addr
= offset
;
920 case 0x43d0: /* push using stack pointer */
921 info
->saved_regs
[regnum
].addr
= offset
;
931 case 0x12000000: /* NO-OP */
933 case 0x12ddc000: /* copy sp into fp */
934 info
->frameless_p
= 0; /* Record that the frame pointer is in use. */
937 upper_half
= instr
>> 16;
938 if (upper_half
== 0x05dd || /* subi sp, sp, imm */
939 upper_half
== 0x07dd) /* subui sp, sp, imm */
941 /* Record the frame size. */
942 info
->framesize
= instr
& 0xffff;
945 if ((upper_half
& 0xfff0) == 0x43c0 || /* frame push */
946 (upper_half
& 0xfff0) == 0x43d0) /* stack push */
948 /* Save this instruction, but don't record the
949 pushed register as 'saved' until we see the
950 next instruction. That's because of deferred stores
951 on this target -- GDB won't be able to read the register
952 from the stack until one instruction later. */
953 delayed_store
= instr
;
956 /* Not a prologue instruction. Is this the end of the prologue?
957 This is the most difficult decision; when to stop scanning.
959 If we have no line symbol, then the best thing we can do
960 is to stop scanning when we encounter an instruction that
961 is not likely to be a part of the prologue.
963 But if we do have a line symbol, then we should
964 keep scanning until we reach it (or we reach end_addr). */
966 if (prologue_end_addr
&& (prologue_end_addr
> (next_addr
+ 4)))
967 continue; /* Keep scanning, recording saved_regs etc. */
969 break; /* Quit scanning: breakpoint can be set here. */
973 /* Special handling for the "saved" address of the SP:
974 The SP is of course never saved on the stack at all, so
975 by convention what we put here is simply the previous
976 _value_ of the SP (as opposed to an address where the
977 previous value would have been pushed). This will also
978 give us the frame base address. */
980 if (info
->frameless_p
)
982 info
->frame_base
= sp
+ info
->framesize
;
983 info
->prev_sp
= sp
+ info
->framesize
;
987 info
->frame_base
= fp
+ info
->framesize
;
988 info
->prev_sp
= fp
+ info
->framesize
;
990 /* Save prev_sp in saved_regs as a value, not as an address. */
991 trad_frame_set_value (info
->saved_regs
, MT_SP_REGNUM
, info
->prev_sp
);
993 /* Now convert frame offsets to actual addresses (not offsets). */
994 for (regnum
= 0; regnum
< MT_NUM_REGS
; regnum
++)
995 if (trad_frame_addr_p (info
->saved_regs
, regnum
))
996 info
->saved_regs
[regnum
].addr
+= info
->frame_base
- info
->framesize
;
998 /* The call instruction moves the caller's PC in the callee's RA reg.
999 Since this is an unwind, do the reverse. Copy the location of RA
1000 into PC (the address / regnum) so that a request for PC will be
1001 converted into a request for the RA. */
1002 info
->saved_regs
[MT_PC_REGNUM
] = info
->saved_regs
[MT_RA_REGNUM
];
1008 mt_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
1012 pc
= frame_unwind_register_unsigned (next_frame
, MT_PC_REGNUM
);
1017 mt_unwind_sp (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
1021 sp
= frame_unwind_register_unsigned (next_frame
, MT_SP_REGNUM
);
1025 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1026 frame. The frame ID's base needs to match the TOS value saved by
1027 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1029 static struct frame_id
1030 mt_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
1032 CORE_ADDR sp
= get_frame_register_unsigned (this_frame
, MT_SP_REGNUM
);
1033 return frame_id_build (sp
, get_frame_pc (this_frame
));
1036 /* Given a GDB frame, determine the address of the calling function's
1037 frame. This will be used to create a new GDB frame struct. */
1040 mt_frame_this_id (struct frame_info
*this_frame
,
1041 void **this_prologue_cache
, struct frame_id
*this_id
)
1043 struct mt_unwind_cache
*info
=
1044 mt_frame_unwind_cache (this_frame
, this_prologue_cache
);
1046 if (!(info
== NULL
|| info
->prev_sp
== 0))
1047 (*this_id
) = frame_id_build (info
->prev_sp
, get_frame_func (this_frame
));
1052 static struct value
*
1053 mt_frame_prev_register (struct frame_info
*this_frame
,
1054 void **this_prologue_cache
, int regnum
)
1056 struct mt_unwind_cache
*info
=
1057 mt_frame_unwind_cache (this_frame
, this_prologue_cache
);
1059 return trad_frame_get_prev_register (this_frame
, info
->saved_regs
, regnum
);
1063 mt_frame_base_address (struct frame_info
*this_frame
,
1064 void **this_prologue_cache
)
1066 struct mt_unwind_cache
*info
=
1067 mt_frame_unwind_cache (this_frame
, this_prologue_cache
);
1069 return info
->frame_base
;
1072 /* This is a shared interface: the 'frame_unwind' object is what's
1073 returned by the 'sniffer' function, and in turn specifies how to
1074 get a frame's ID and prev_regs.
1076 This exports the 'prev_register' and 'this_id' methods. */
1078 static const struct frame_unwind mt_frame_unwind
= {
1081 mt_frame_prev_register
,
1083 default_frame_sniffer
1086 /* Another shared interface: the 'frame_base' object specifies how to
1087 unwind a frame and secure the base addresses for frame objects
1090 static struct frame_base mt_frame_base
= {
1092 mt_frame_base_address
,
1093 mt_frame_base_address
,
1094 mt_frame_base_address
1097 static struct gdbarch
*
1098 mt_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
1100 struct gdbarch
*gdbarch
;
1102 /* Find a candidate among the list of pre-declared architectures. */
1103 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
1105 return arches
->gdbarch
;
1107 /* None found, create a new architecture from the information
1109 gdbarch
= gdbarch_alloc (&info
, NULL
);
1111 set_gdbarch_float_format (gdbarch
, floatformats_ieee_single
);
1112 set_gdbarch_double_format (gdbarch
, floatformats_ieee_double
);
1113 set_gdbarch_long_double_format (gdbarch
, floatformats_ieee_double
);
1115 set_gdbarch_register_name (gdbarch
, mt_register_name
);
1116 set_gdbarch_num_regs (gdbarch
, MT_NUM_REGS
);
1117 set_gdbarch_num_pseudo_regs (gdbarch
, MT_NUM_PSEUDO_REGS
);
1118 set_gdbarch_pc_regnum (gdbarch
, MT_PC_REGNUM
);
1119 set_gdbarch_sp_regnum (gdbarch
, MT_SP_REGNUM
);
1120 set_gdbarch_pseudo_register_read (gdbarch
, mt_pseudo_register_read
);
1121 set_gdbarch_pseudo_register_write (gdbarch
, mt_pseudo_register_write
);
1122 set_gdbarch_skip_prologue (gdbarch
, mt_skip_prologue
);
1123 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
1124 set_gdbarch_breakpoint_from_pc (gdbarch
, mt_breakpoint_from_pc
);
1125 set_gdbarch_decr_pc_after_break (gdbarch
, 0);
1126 set_gdbarch_frame_args_skip (gdbarch
, 0);
1127 set_gdbarch_print_insn (gdbarch
, print_insn_mt
);
1128 set_gdbarch_register_type (gdbarch
, mt_register_type
);
1129 set_gdbarch_register_reggroup_p (gdbarch
, mt_register_reggroup_p
);
1131 set_gdbarch_return_value (gdbarch
, mt_return_value
);
1132 set_gdbarch_sp_regnum (gdbarch
, MT_SP_REGNUM
);
1134 set_gdbarch_frame_align (gdbarch
, mt_frame_align
);
1136 set_gdbarch_print_registers_info (gdbarch
, mt_registers_info
);
1138 set_gdbarch_push_dummy_call (gdbarch
, mt_push_dummy_call
);
1140 /* Target builtin data types. */
1141 set_gdbarch_short_bit (gdbarch
, 16);
1142 set_gdbarch_int_bit (gdbarch
, 32);
1143 set_gdbarch_long_bit (gdbarch
, 32);
1144 set_gdbarch_long_long_bit (gdbarch
, 64);
1145 set_gdbarch_float_bit (gdbarch
, 32);
1146 set_gdbarch_double_bit (gdbarch
, 64);
1147 set_gdbarch_long_double_bit (gdbarch
, 64);
1148 set_gdbarch_ptr_bit (gdbarch
, 32);
1150 /* Register the DWARF 2 sniffer first, and then the traditional prologue
1152 dwarf2_append_unwinders (gdbarch
);
1153 frame_unwind_append_unwinder (gdbarch
, &mt_frame_unwind
);
1154 frame_base_set_default (gdbarch
, &mt_frame_base
);
1156 /* Register the 'unwind_pc' method. */
1157 set_gdbarch_unwind_pc (gdbarch
, mt_unwind_pc
);
1158 set_gdbarch_unwind_sp (gdbarch
, mt_unwind_sp
);
1160 /* Methods for saving / extracting a dummy frame's ID.
1161 The ID's stack address must match the SP value returned by
1162 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1163 set_gdbarch_dummy_id (gdbarch
, mt_dummy_id
);
1169 _initialize_mt_tdep (void)
1171 register_gdbarch_init (bfd_arch_mt
, mt_gdbarch_init
);