ffc03fbab812d465782d3e06f87eecfcba90e4fd
[deliverable/binutils-gdb.git] / gdb / mt-tdep.c
1 /* Target-dependent code for Morpho mt processor, for GDB.
2
3 Copyright (C) 2005-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Michael Snyder, msnyder@redhat.com. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "symtab.h"
27 #include "dis-asm.h"
28 #include "arch-utils.h"
29 #include "gdbtypes.h"
30 #include "regcache.h"
31 #include "reggroups.h"
32 #include "gdbcore.h"
33 #include "trad-frame.h"
34 #include "inferior.h"
35 #include "dwarf2-frame.h"
36 #include "infcall.h"
37 #include "language.h"
38 #include "valprint.h"
39
40 enum mt_arch_constants
41 {
42 MT_MAX_STRUCT_SIZE = 16
43 };
44
45 enum mt_gdb_regnums
46 {
47 MT_R0_REGNUM, /* 32 bit regs. */
48 MT_R1_REGNUM,
49 MT_1ST_ARGREG = MT_R1_REGNUM,
50 MT_R2_REGNUM,
51 MT_R3_REGNUM,
52 MT_R4_REGNUM,
53 MT_LAST_ARGREG = MT_R4_REGNUM,
54 MT_R5_REGNUM,
55 MT_R6_REGNUM,
56 MT_R7_REGNUM,
57 MT_R8_REGNUM,
58 MT_R9_REGNUM,
59 MT_R10_REGNUM,
60 MT_R11_REGNUM,
61 MT_R12_REGNUM,
62 MT_FP_REGNUM = MT_R12_REGNUM,
63 MT_R13_REGNUM,
64 MT_SP_REGNUM = MT_R13_REGNUM,
65 MT_R14_REGNUM,
66 MT_RA_REGNUM = MT_R14_REGNUM,
67 MT_R15_REGNUM,
68 MT_IRA_REGNUM = MT_R15_REGNUM,
69 MT_PC_REGNUM,
70
71 /* Interrupt Enable pseudo-register, exported by SID. */
72 MT_INT_ENABLE_REGNUM,
73 /* End of CPU regs. */
74
75 MT_NUM_CPU_REGS,
76
77 /* Co-processor registers. */
78 MT_COPRO_REGNUM = MT_NUM_CPU_REGS, /* 16 bit regs. */
79 MT_CPR0_REGNUM,
80 MT_CPR1_REGNUM,
81 MT_CPR2_REGNUM,
82 MT_CPR3_REGNUM,
83 MT_CPR4_REGNUM,
84 MT_CPR5_REGNUM,
85 MT_CPR6_REGNUM,
86 MT_CPR7_REGNUM,
87 MT_CPR8_REGNUM,
88 MT_CPR9_REGNUM,
89 MT_CPR10_REGNUM,
90 MT_CPR11_REGNUM,
91 MT_CPR12_REGNUM,
92 MT_CPR13_REGNUM,
93 MT_CPR14_REGNUM,
94 MT_CPR15_REGNUM,
95 MT_BYPA_REGNUM, /* 32 bit regs. */
96 MT_BYPB_REGNUM,
97 MT_BYPC_REGNUM,
98 MT_FLAG_REGNUM,
99 MT_CONTEXT_REGNUM, /* 38 bits (treat as array of
100 six bytes). */
101 MT_MAC_REGNUM, /* 32 bits. */
102 MT_Z1_REGNUM, /* 16 bits. */
103 MT_Z2_REGNUM, /* 16 bits. */
104 MT_ICHANNEL_REGNUM, /* 32 bits. */
105 MT_ISCRAMB_REGNUM, /* 32 bits. */
106 MT_QSCRAMB_REGNUM, /* 32 bits. */
107 MT_OUT_REGNUM, /* 16 bits. */
108 MT_EXMAC_REGNUM, /* 32 bits (8 used). */
109 MT_QCHANNEL_REGNUM, /* 32 bits. */
110 MT_ZI2_REGNUM, /* 16 bits. */
111 MT_ZQ2_REGNUM, /* 16 bits. */
112 MT_CHANNEL2_REGNUM, /* 32 bits. */
113 MT_ISCRAMB2_REGNUM, /* 32 bits. */
114 MT_QSCRAMB2_REGNUM, /* 32 bits. */
115 MT_QCHANNEL2_REGNUM, /* 32 bits. */
116
117 /* Number of real registers. */
118 MT_NUM_REGS,
119
120 /* Pseudo-registers. */
121 MT_COPRO_PSEUDOREG_REGNUM = MT_NUM_REGS,
122 MT_MAC_PSEUDOREG_REGNUM,
123 MT_COPRO_PSEUDOREG_ARRAY,
124
125 MT_COPRO_PSEUDOREG_DIM_1 = 2,
126 MT_COPRO_PSEUDOREG_DIM_2 = 8,
127 /* The number of pseudo-registers for each coprocessor. These
128 include the real coprocessor registers, the pseudo-registe for
129 the coprocessor number, and the pseudo-register for the MAC. */
130 MT_COPRO_PSEUDOREG_REGS = MT_NUM_REGS - MT_NUM_CPU_REGS + 2,
131 /* The register number of the MAC, relative to a given coprocessor. */
132 MT_COPRO_PSEUDOREG_MAC_REGNUM = MT_COPRO_PSEUDOREG_REGS - 1,
133
134 /* Two pseudo-regs ('coprocessor' and 'mac'). */
135 MT_NUM_PSEUDO_REGS = 2 + (MT_COPRO_PSEUDOREG_REGS
136 * MT_COPRO_PSEUDOREG_DIM_1
137 * MT_COPRO_PSEUDOREG_DIM_2)
138 };
139
140 /* The tdep structure. */
141 struct gdbarch_tdep
142 {
143 /* ISA-specific types. */
144 struct type *copro_type;
145 };
146
147
148 /* Return name of register number specified by REGNUM. */
149
150 static const char *
151 mt_register_name (struct gdbarch *gdbarch, int regnum)
152 {
153 static const char *const register_names[] = {
154 /* CPU regs. */
155 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
156 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
157 "pc", "IE",
158 /* Co-processor regs. */
159 "", /* copro register. */
160 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
161 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
162 "bypa", "bypb", "bypc", "flag", "context", "" /* mac. */ , "z1", "z2",
163 "Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac. */ , "Qchannel",
164 "zi2", "zq2", "Ichannel2", "Iscramb2", "Qscramb2", "Qchannel2",
165 /* Pseudo-registers. */
166 "coprocessor", "MAC"
167 };
168 static const char *array_names[MT_COPRO_PSEUDOREG_REGS
169 * MT_COPRO_PSEUDOREG_DIM_1
170 * MT_COPRO_PSEUDOREG_DIM_2];
171
172 if (regnum < 0)
173 return "";
174 if (regnum < ARRAY_SIZE (register_names))
175 return register_names[regnum];
176 if (array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY])
177 return array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY];
178
179 {
180 char *name;
181 const char *stub;
182 unsigned dim_1;
183 unsigned dim_2;
184 unsigned index;
185
186 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
187 index = regnum % MT_COPRO_PSEUDOREG_REGS;
188 dim_2 = (regnum / MT_COPRO_PSEUDOREG_REGS) % MT_COPRO_PSEUDOREG_DIM_2;
189 dim_1 = ((regnum / MT_COPRO_PSEUDOREG_REGS / MT_COPRO_PSEUDOREG_DIM_2)
190 % MT_COPRO_PSEUDOREG_DIM_1);
191
192 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
193 stub = register_names[MT_MAC_PSEUDOREG_REGNUM];
194 else if (index >= MT_NUM_REGS - MT_CPR0_REGNUM)
195 stub = "";
196 else
197 stub = register_names[index + MT_CPR0_REGNUM];
198 if (!*stub)
199 {
200 array_names[regnum] = stub;
201 return stub;
202 }
203 name = (char *) xmalloc (30);
204 sprintf (name, "copro_%d_%d_%s", dim_1, dim_2, stub);
205 array_names[regnum] = name;
206 return name;
207 }
208 }
209
210 /* Return the type of a coprocessor register. */
211
212 static struct type *
213 mt_copro_register_type (struct gdbarch *arch, int regnum)
214 {
215 switch (regnum)
216 {
217 case MT_INT_ENABLE_REGNUM:
218 case MT_ICHANNEL_REGNUM:
219 case MT_QCHANNEL_REGNUM:
220 case MT_ISCRAMB_REGNUM:
221 case MT_QSCRAMB_REGNUM:
222 return builtin_type (arch)->builtin_int32;
223 case MT_BYPA_REGNUM:
224 case MT_BYPB_REGNUM:
225 case MT_BYPC_REGNUM:
226 case MT_Z1_REGNUM:
227 case MT_Z2_REGNUM:
228 case MT_OUT_REGNUM:
229 case MT_ZI2_REGNUM:
230 case MT_ZQ2_REGNUM:
231 return builtin_type (arch)->builtin_int16;
232 case MT_EXMAC_REGNUM:
233 case MT_MAC_REGNUM:
234 return builtin_type (arch)->builtin_uint32;
235 case MT_CONTEXT_REGNUM:
236 return builtin_type (arch)->builtin_long_long;
237 case MT_FLAG_REGNUM:
238 return builtin_type (arch)->builtin_unsigned_char;
239 default:
240 if (regnum >= MT_CPR0_REGNUM && regnum <= MT_CPR15_REGNUM)
241 return builtin_type (arch)->builtin_int16;
242 else if (regnum == MT_CPR0_REGNUM + MT_COPRO_PSEUDOREG_MAC_REGNUM)
243 {
244 if (gdbarch_bfd_arch_info (arch)->mach == bfd_mach_mrisc2
245 || gdbarch_bfd_arch_info (arch)->mach == bfd_mach_ms2)
246 return builtin_type (arch)->builtin_uint64;
247 else
248 return builtin_type (arch)->builtin_uint32;
249 }
250 else
251 return builtin_type (arch)->builtin_uint32;
252 }
253 }
254
255 /* Given ARCH and a register number specified by REGNUM, return the
256 type of that register. */
257
258 static struct type *
259 mt_register_type (struct gdbarch *arch, int regnum)
260 {
261 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
262
263 if (regnum >= 0 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS)
264 {
265 switch (regnum)
266 {
267 case MT_PC_REGNUM:
268 case MT_RA_REGNUM:
269 case MT_IRA_REGNUM:
270 return builtin_type (arch)->builtin_func_ptr;
271 case MT_SP_REGNUM:
272 case MT_FP_REGNUM:
273 return builtin_type (arch)->builtin_data_ptr;
274 case MT_COPRO_REGNUM:
275 case MT_COPRO_PSEUDOREG_REGNUM:
276 if (tdep->copro_type == NULL)
277 {
278 struct type *elt = builtin_type (arch)->builtin_int16;
279 tdep->copro_type = lookup_array_range_type (elt, 0, 1);
280 }
281 return tdep->copro_type;
282 case MT_MAC_PSEUDOREG_REGNUM:
283 return mt_copro_register_type (arch,
284 MT_CPR0_REGNUM
285 + MT_COPRO_PSEUDOREG_MAC_REGNUM);
286 default:
287 if (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM)
288 return builtin_type (arch)->builtin_int32;
289 else if (regnum < MT_COPRO_PSEUDOREG_ARRAY)
290 return mt_copro_register_type (arch, regnum);
291 else
292 {
293 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
294 regnum %= MT_COPRO_PSEUDOREG_REGS;
295 regnum += MT_CPR0_REGNUM;
296 return mt_copro_register_type (arch, regnum);
297 }
298 }
299 }
300 internal_error (__FILE__, __LINE__,
301 _("mt_register_type: illegal register number %d"), regnum);
302 }
303
304 /* Return true if register REGNUM is a member of the register group
305 specified by GROUP. */
306
307 static int
308 mt_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
309 struct reggroup *group)
310 {
311 /* Groups of registers that can be displayed via "info reg". */
312 if (group == all_reggroup)
313 return (regnum >= 0
314 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS
315 && mt_register_name (gdbarch, regnum)[0] != '\0');
316
317 if (group == general_reggroup)
318 return (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM);
319
320 if (group == float_reggroup)
321 return 0; /* No float regs. */
322
323 if (group == vector_reggroup)
324 return 0; /* No vector regs. */
325
326 /* For any that are not handled above. */
327 return default_register_reggroup_p (gdbarch, regnum, group);
328 }
329
330 /* Return the return value convention used for a given type TYPE.
331 Optionally, fetch or set the return value via READBUF or
332 WRITEBUF respectively using REGCACHE for the register
333 values. */
334
335 static enum return_value_convention
336 mt_return_value (struct gdbarch *gdbarch, struct value *function,
337 struct type *type, struct regcache *regcache,
338 gdb_byte *readbuf, const gdb_byte *writebuf)
339 {
340 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
341
342 if (TYPE_LENGTH (type) > 4)
343 {
344 /* Return values > 4 bytes are returned in memory,
345 pointed to by R11. */
346 if (readbuf)
347 {
348 ULONGEST addr;
349
350 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
351 read_memory (addr, readbuf, TYPE_LENGTH (type));
352 }
353
354 if (writebuf)
355 {
356 ULONGEST addr;
357
358 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
359 write_memory (addr, writebuf, TYPE_LENGTH (type));
360 }
361
362 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
363 }
364 else
365 {
366 if (readbuf)
367 {
368 ULONGEST temp;
369
370 /* Return values of <= 4 bytes are returned in R11. */
371 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &temp);
372 store_unsigned_integer (readbuf, TYPE_LENGTH (type),
373 byte_order, temp);
374 }
375
376 if (writebuf)
377 {
378 if (TYPE_LENGTH (type) < 4)
379 {
380 gdb_byte buf[4];
381 /* Add leading zeros to the value. */
382 memset (buf, 0, sizeof (buf));
383 memcpy (buf + sizeof (buf) - TYPE_LENGTH (type),
384 writebuf, TYPE_LENGTH (type));
385 regcache_cooked_write (regcache, MT_R11_REGNUM, buf);
386 }
387 else /* (TYPE_LENGTH (type) == 4 */
388 regcache_cooked_write (regcache, MT_R11_REGNUM, writebuf);
389 }
390
391 return RETURN_VALUE_REGISTER_CONVENTION;
392 }
393 }
394
395 /* If the input address, PC, is in a function prologue, return the
396 address of the end of the prologue, otherwise return the input
397 address.
398
399 Note: PC is likely to be the function start, since this function
400 is mainly used for advancing a breakpoint to the first line, or
401 stepping to the first line when we have stepped into a function
402 call. */
403
404 static CORE_ADDR
405 mt_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
406 {
407 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
408 CORE_ADDR func_addr = 0, func_end = 0;
409 const char *func_name;
410 unsigned long instr;
411
412 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
413 {
414 struct symtab_and_line sal;
415 struct symbol *sym;
416
417 /* Found a function. */
418 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL).symbol;
419 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
420 {
421 /* Don't use this trick for assembly source files. */
422 sal = find_pc_line (func_addr, 0);
423
424 if (sal.end && sal.end < func_end)
425 {
426 /* Found a line number, use it as end of prologue. */
427 return sal.end;
428 }
429 }
430 }
431
432 /* No function symbol, or no line symbol. Use prologue scanning method. */
433 for (;; pc += 4)
434 {
435 instr = read_memory_unsigned_integer (pc, 4, byte_order);
436 if (instr == 0x12000000) /* nop */
437 continue;
438 if (instr == 0x12ddc000) /* copy sp into fp */
439 continue;
440 instr >>= 16;
441 if (instr == 0x05dd) /* subi sp, sp, imm */
442 continue;
443 if (instr >= 0x43c0 && instr <= 0x43df) /* push */
444 continue;
445 /* Not an obvious prologue instruction. */
446 break;
447 }
448
449 return pc;
450 }
451
452 /* Implement the breakpoint_kind_from_pc gdbarch method. */
453
454 static int
455 mt_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
456 {
457 return 4;
458 }
459
460 /* Implement the sw_breakpoint_from_kind gdbarch method. */
461
462 static const gdb_byte *
463 mt_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
464 {
465 /* The breakpoint instruction must be the same size as the smallest
466 instruction in the instruction set.
467
468 The BP for ms1 is defined as 0x68000000 (BREAK).
469 The BP for ms2 is defined as 0x69000000 (illegal). */
470 static gdb_byte ms1_breakpoint[] = { 0x68, 0, 0, 0 };
471 static gdb_byte ms2_breakpoint[] = { 0x69, 0, 0, 0 };
472
473 *size = kind;
474
475 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
476 return ms2_breakpoint;
477
478 return ms1_breakpoint;
479 }
480
481 GDBARCH_BREAKPOINT_FROM_PC (mt)
482
483 /* Select the correct coprocessor register bank. Return the pseudo
484 regnum we really want to read. */
485
486 static int
487 mt_select_coprocessor (struct gdbarch *gdbarch,
488 struct regcache *regcache, int regno)
489 {
490 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
491 unsigned index, base;
492 gdb_byte copro[4];
493
494 /* Get the copro pseudo regnum. */
495 regcache_raw_read (regcache, MT_COPRO_REGNUM, copro);
496 base = ((extract_signed_integer (&copro[0], 2, byte_order)
497 * MT_COPRO_PSEUDOREG_DIM_2)
498 + extract_signed_integer (&copro[2], 2, byte_order));
499
500 regno -= MT_COPRO_PSEUDOREG_ARRAY;
501 index = regno % MT_COPRO_PSEUDOREG_REGS;
502 regno /= MT_COPRO_PSEUDOREG_REGS;
503 if (base != regno)
504 {
505 /* Select the correct coprocessor register bank. Invalidate the
506 coprocessor register cache. */
507 unsigned ix;
508
509 store_signed_integer (&copro[0], 2, byte_order,
510 regno / MT_COPRO_PSEUDOREG_DIM_2);
511 store_signed_integer (&copro[2], 2, byte_order,
512 regno % MT_COPRO_PSEUDOREG_DIM_2);
513 regcache_raw_write (regcache, MT_COPRO_REGNUM, copro);
514
515 /* We must flush the cache, as it is now invalid. */
516 for (ix = MT_NUM_CPU_REGS; ix != MT_NUM_REGS; ix++)
517 regcache_invalidate (regcache, ix);
518 }
519
520 return index;
521 }
522
523 /* Fetch the pseudo registers:
524
525 There are two regular pseudo-registers:
526 1) The 'coprocessor' pseudo-register (which mirrors the
527 "real" coprocessor register sent by the target), and
528 2) The 'MAC' pseudo-register (which represents the union
529 of the original 32 bit target MAC register and the new
530 8-bit extended-MAC register).
531
532 Additionally there is an array of coprocessor registers which track
533 the coprocessor registers for each coprocessor. */
534
535 static enum register_status
536 mt_pseudo_register_read (struct gdbarch *gdbarch,
537 struct regcache *regcache, int regno, gdb_byte *buf)
538 {
539 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
540
541 switch (regno)
542 {
543 case MT_COPRO_REGNUM:
544 case MT_COPRO_PSEUDOREG_REGNUM:
545 return regcache_raw_read (regcache, MT_COPRO_REGNUM, buf);
546 case MT_MAC_REGNUM:
547 case MT_MAC_PSEUDOREG_REGNUM:
548 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
549 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
550 {
551 enum register_status status;
552 ULONGEST oldmac = 0, ext_mac = 0;
553 ULONGEST newmac;
554
555 status = regcache_cooked_read_unsigned (regcache, MT_MAC_REGNUM, &oldmac);
556 if (status != REG_VALID)
557 return status;
558
559 regcache_cooked_read_unsigned (regcache, MT_EXMAC_REGNUM, &ext_mac);
560 if (status != REG_VALID)
561 return status;
562
563 newmac =
564 (oldmac & 0xffffffff) | ((long long) (ext_mac & 0xff) << 32);
565 store_signed_integer (buf, 8, byte_order, newmac);
566
567 return REG_VALID;
568 }
569 else
570 return regcache_raw_read (regcache, MT_MAC_REGNUM, buf);
571 break;
572 default:
573 {
574 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
575
576 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
577 return mt_pseudo_register_read (gdbarch, regcache,
578 MT_MAC_PSEUDOREG_REGNUM, buf);
579 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
580 return regcache_raw_read (regcache, index + MT_CPR0_REGNUM, buf);
581 else
582 /* ??? */
583 return REG_VALID;
584 }
585 break;
586 }
587 }
588
589 /* Write the pseudo registers:
590
591 Mt pseudo-registers are stored directly to the target. The
592 'coprocessor' register is special, because when it is modified, all
593 the other coprocessor regs must be flushed from the reg cache. */
594
595 static void
596 mt_pseudo_register_write (struct gdbarch *gdbarch,
597 struct regcache *regcache,
598 int regno, const gdb_byte *buf)
599 {
600 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
601 int i;
602
603 switch (regno)
604 {
605 case MT_COPRO_REGNUM:
606 case MT_COPRO_PSEUDOREG_REGNUM:
607 regcache_raw_write (regcache, MT_COPRO_REGNUM, buf);
608 for (i = MT_NUM_CPU_REGS; i < MT_NUM_REGS; i++)
609 regcache_invalidate (regcache, i);
610 break;
611 case MT_MAC_REGNUM:
612 case MT_MAC_PSEUDOREG_REGNUM:
613 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
614 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
615 {
616 /* The 8-byte MAC pseudo-register must be broken down into two
617 32-byte registers. */
618 unsigned int oldmac, ext_mac;
619 ULONGEST newmac;
620
621 newmac = extract_unsigned_integer (buf, 8, byte_order);
622 oldmac = newmac & 0xffffffff;
623 ext_mac = (newmac >> 32) & 0xff;
624 regcache_cooked_write_unsigned (regcache, MT_MAC_REGNUM, oldmac);
625 regcache_cooked_write_unsigned (regcache, MT_EXMAC_REGNUM, ext_mac);
626 }
627 else
628 regcache_raw_write (regcache, MT_MAC_REGNUM, buf);
629 break;
630 default:
631 {
632 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
633
634 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
635 mt_pseudo_register_write (gdbarch, regcache,
636 MT_MAC_PSEUDOREG_REGNUM, buf);
637 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
638 regcache_raw_write (regcache, index + MT_CPR0_REGNUM, buf);
639 }
640 break;
641 }
642 }
643
644 static CORE_ADDR
645 mt_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
646 {
647 /* Register size is 4 bytes. */
648 return align_down (sp, 4);
649 }
650
651 /* Implements the "info registers" command. When ``all'' is non-zero,
652 the coprocessor registers will be printed in addition to the rest
653 of the registers. */
654
655 static void
656 mt_registers_info (struct gdbarch *gdbarch,
657 struct ui_file *file,
658 struct frame_info *frame, int regnum, int all)
659 {
660 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
661
662 if (regnum == -1)
663 {
664 int lim;
665
666 lim = all ? MT_NUM_REGS : MT_NUM_CPU_REGS;
667
668 for (regnum = 0; regnum < lim; regnum++)
669 {
670 /* Don't display the Qchannel register since it will be displayed
671 along with Ichannel. (See below.) */
672 if (regnum == MT_QCHANNEL_REGNUM)
673 continue;
674
675 mt_registers_info (gdbarch, file, frame, regnum, all);
676
677 /* Display the Qchannel register immediately after Ichannel. */
678 if (regnum == MT_ICHANNEL_REGNUM)
679 mt_registers_info (gdbarch, file, frame, MT_QCHANNEL_REGNUM, all);
680 }
681 }
682 else
683 {
684 if (regnum == MT_EXMAC_REGNUM)
685 return;
686 else if (regnum == MT_CONTEXT_REGNUM)
687 {
688 /* Special output handling for 38-bit context register. */
689 unsigned char *buff;
690 unsigned int i, regsize;
691
692 regsize = register_size (gdbarch, regnum);
693
694 buff = (unsigned char *) alloca (regsize);
695
696 deprecated_frame_register_read (frame, regnum, buff);
697
698 fputs_filtered (gdbarch_register_name
699 (gdbarch, regnum), file);
700 print_spaces_filtered (15 - strlen (gdbarch_register_name
701 (gdbarch, regnum)),
702 file);
703 fputs_filtered ("0x", file);
704
705 for (i = 0; i < regsize; i++)
706 fprintf_filtered (file, "%02x", (unsigned int)
707 extract_unsigned_integer (buff + i, 1, byte_order));
708 fputs_filtered ("\t", file);
709 print_longest (file, 'd', 0,
710 extract_unsigned_integer (buff, regsize, byte_order));
711 fputs_filtered ("\n", file);
712 }
713 else if (regnum == MT_COPRO_REGNUM
714 || regnum == MT_COPRO_PSEUDOREG_REGNUM)
715 {
716 /* Special output handling for the 'coprocessor' register. */
717 gdb_byte *buf;
718 struct value_print_options opts;
719
720 buf = (gdb_byte *) alloca (register_size (gdbarch, MT_COPRO_REGNUM));
721 deprecated_frame_register_read (frame, MT_COPRO_REGNUM, buf);
722 /* And print. */
723 regnum = MT_COPRO_PSEUDOREG_REGNUM;
724 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
725 file);
726 print_spaces_filtered (15 - strlen (gdbarch_register_name
727 (gdbarch, regnum)),
728 file);
729 get_no_prettyformat_print_options (&opts);
730 opts.deref_ref = 1;
731 val_print (register_type (gdbarch, regnum), buf,
732 0, 0, file, 0, NULL,
733 &opts, current_language);
734 fputs_filtered ("\n", file);
735 }
736 else if (regnum == MT_MAC_REGNUM || regnum == MT_MAC_PSEUDOREG_REGNUM)
737 {
738 ULONGEST oldmac, ext_mac, newmac;
739 gdb_byte buf[3 * sizeof (LONGEST)];
740
741 /* Get the two "real" mac registers. */
742 deprecated_frame_register_read (frame, MT_MAC_REGNUM, buf);
743 oldmac = extract_unsigned_integer
744 (buf, register_size (gdbarch, MT_MAC_REGNUM), byte_order);
745 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
746 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
747 {
748 deprecated_frame_register_read (frame, MT_EXMAC_REGNUM, buf);
749 ext_mac = extract_unsigned_integer
750 (buf, register_size (gdbarch, MT_EXMAC_REGNUM), byte_order);
751 }
752 else
753 ext_mac = 0;
754
755 /* Add them together. */
756 newmac = (oldmac & 0xffffffff) + ((ext_mac & 0xff) << 32);
757
758 /* And print. */
759 regnum = MT_MAC_PSEUDOREG_REGNUM;
760 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
761 file);
762 print_spaces_filtered (15 - strlen (gdbarch_register_name
763 (gdbarch, regnum)),
764 file);
765 fputs_filtered ("0x", file);
766 print_longest (file, 'x', 0, newmac);
767 fputs_filtered ("\t", file);
768 print_longest (file, 'u', 0, newmac);
769 fputs_filtered ("\n", file);
770 }
771 else
772 default_print_registers_info (gdbarch, file, frame, regnum, all);
773 }
774 }
775
776 /* Set up the callee's arguments for an inferior function call. The
777 arguments are pushed on the stack or are placed in registers as
778 appropriate. It also sets up the return address (which points to
779 the call dummy breakpoint).
780
781 Returns the updated (and aligned) stack pointer. */
782
783 static CORE_ADDR
784 mt_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
785 struct regcache *regcache, CORE_ADDR bp_addr,
786 int nargs, struct value **args, CORE_ADDR sp,
787 int struct_return, CORE_ADDR struct_addr)
788 {
789 #define wordsize 4
790 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
791 gdb_byte buf[MT_MAX_STRUCT_SIZE];
792 int argreg = MT_1ST_ARGREG;
793 int split_param_len = 0;
794 int stack_dest = sp;
795 int slacklen;
796 int typelen;
797 int i, j;
798
799 /* First handle however many args we can fit into MT_1ST_ARGREG thru
800 MT_LAST_ARGREG. */
801 for (i = 0; i < nargs && argreg <= MT_LAST_ARGREG; i++)
802 {
803 const gdb_byte *val;
804 typelen = TYPE_LENGTH (value_type (args[i]));
805 switch (typelen)
806 {
807 case 1:
808 case 2:
809 case 3:
810 case 4:
811 regcache_cooked_write_unsigned (regcache, argreg++,
812 extract_unsigned_integer
813 (value_contents (args[i]),
814 wordsize, byte_order));
815 break;
816 case 8:
817 case 12:
818 case 16:
819 val = value_contents (args[i]);
820 while (typelen > 0)
821 {
822 if (argreg <= MT_LAST_ARGREG)
823 {
824 /* This word of the argument is passed in a register. */
825 regcache_cooked_write_unsigned (regcache, argreg++,
826 extract_unsigned_integer
827 (val, wordsize, byte_order));
828 typelen -= wordsize;
829 val += wordsize;
830 }
831 else
832 {
833 /* Remainder of this arg must be passed on the stack
834 (deferred to do later). */
835 split_param_len = typelen;
836 memcpy (buf, val, typelen);
837 break; /* No more args can be handled in regs. */
838 }
839 }
840 break;
841 default:
842 /* By reverse engineering of gcc output, args bigger than
843 16 bytes go on the stack, and their address is passed
844 in the argreg. */
845 stack_dest -= typelen;
846 write_memory (stack_dest, value_contents (args[i]), typelen);
847 regcache_cooked_write_unsigned (regcache, argreg++, stack_dest);
848 break;
849 }
850 }
851
852 /* Next, the rest of the arguments go onto the stack, in reverse order. */
853 for (j = nargs - 1; j >= i; j--)
854 {
855 gdb_byte *val;
856 struct cleanup *back_to;
857 const gdb_byte *contents = value_contents (args[j]);
858
859 /* Right-justify the value in an aligned-length buffer. */
860 typelen = TYPE_LENGTH (value_type (args[j]));
861 slacklen = (wordsize - (typelen % wordsize)) % wordsize;
862 val = (gdb_byte *) xmalloc (typelen + slacklen);
863 back_to = make_cleanup (xfree, val);
864 memcpy (val, contents, typelen);
865 memset (val + typelen, 0, slacklen);
866 /* Now write this data to the stack. */
867 stack_dest -= typelen + slacklen;
868 write_memory (stack_dest, val, typelen + slacklen);
869 do_cleanups (back_to);
870 }
871
872 /* Finally, if a param needs to be split between registers and stack,
873 write the second half to the stack now. */
874 if (split_param_len != 0)
875 {
876 stack_dest -= split_param_len;
877 write_memory (stack_dest, buf, split_param_len);
878 }
879
880 /* Set up return address (provided to us as bp_addr). */
881 regcache_cooked_write_unsigned (regcache, MT_RA_REGNUM, bp_addr);
882
883 /* Store struct return address, if given. */
884 if (struct_return && struct_addr != 0)
885 regcache_cooked_write_unsigned (regcache, MT_R11_REGNUM, struct_addr);
886
887 /* Set aside 16 bytes for the callee to save regs 1-4. */
888 stack_dest -= 16;
889
890 /* Update the stack pointer. */
891 regcache_cooked_write_unsigned (regcache, MT_SP_REGNUM, stack_dest);
892
893 /* And that should do it. Return the new stack pointer. */
894 return stack_dest;
895 }
896
897
898 /* The 'unwind_cache' data structure. */
899
900 struct mt_unwind_cache
901 {
902 /* The previous frame's inner most stack address.
903 Used as this frame ID's stack_addr. */
904 CORE_ADDR prev_sp;
905 CORE_ADDR frame_base;
906 int framesize;
907 int frameless_p;
908
909 /* Table indicating the location of each and every register. */
910 struct trad_frame_saved_reg *saved_regs;
911 };
912
913 /* Initialize an unwind_cache. Build up the saved_regs table etc. for
914 the frame. */
915
916 static struct mt_unwind_cache *
917 mt_frame_unwind_cache (struct frame_info *this_frame,
918 void **this_prologue_cache)
919 {
920 struct gdbarch *gdbarch;
921 struct mt_unwind_cache *info;
922 CORE_ADDR next_addr, start_addr, end_addr, prologue_end_addr;
923 unsigned long instr, upper_half, delayed_store = 0;
924 int regnum, offset;
925 ULONGEST sp, fp;
926
927 if ((*this_prologue_cache))
928 return (struct mt_unwind_cache *) (*this_prologue_cache);
929
930 gdbarch = get_frame_arch (this_frame);
931 info = FRAME_OBSTACK_ZALLOC (struct mt_unwind_cache);
932 (*this_prologue_cache) = info;
933
934 info->prev_sp = 0;
935 info->framesize = 0;
936 info->frame_base = 0;
937 info->frameless_p = 1;
938 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
939
940 /* Grab the frame-relative values of SP and FP, needed below.
941 The frame_saved_register function will find them on the
942 stack or in the registers as appropriate. */
943 sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
944 fp = get_frame_register_unsigned (this_frame, MT_FP_REGNUM);
945
946 start_addr = get_frame_func (this_frame);
947
948 /* Return early if GDB couldn't find the function. */
949 if (start_addr == 0)
950 return info;
951
952 end_addr = get_frame_pc (this_frame);
953 prologue_end_addr = skip_prologue_using_sal (gdbarch, start_addr);
954 if (end_addr == 0)
955 for (next_addr = start_addr; next_addr < end_addr; next_addr += 4)
956 {
957 instr = get_frame_memory_unsigned (this_frame, next_addr, 4);
958 if (delayed_store) /* Previous instr was a push. */
959 {
960 upper_half = delayed_store >> 16;
961 regnum = upper_half & 0xf;
962 offset = delayed_store & 0xffff;
963 switch (upper_half & 0xfff0)
964 {
965 case 0x43c0: /* push using frame pointer. */
966 info->saved_regs[regnum].addr = offset;
967 break;
968 case 0x43d0: /* push using stack pointer. */
969 info->saved_regs[regnum].addr = offset;
970 break;
971 default: /* lint */
972 break;
973 }
974 delayed_store = 0;
975 }
976
977 switch (instr)
978 {
979 case 0x12000000: /* NO-OP */
980 continue;
981 case 0x12ddc000: /* copy sp into fp */
982 info->frameless_p = 0; /* Record that the frame
983 pointer is in use. */
984 continue;
985 default:
986 upper_half = instr >> 16;
987 if (upper_half == 0x05dd || /* subi sp, sp, imm */
988 upper_half == 0x07dd) /* subui sp, sp, imm */
989 {
990 /* Record the frame size. */
991 info->framesize = instr & 0xffff;
992 continue;
993 }
994 if ((upper_half & 0xfff0) == 0x43c0 || /* frame push */
995 (upper_half & 0xfff0) == 0x43d0) /* stack push */
996 {
997 /* Save this instruction, but don't record the
998 pushed register as 'saved' until we see the
999 next instruction. That's because of deferred stores
1000 on this target -- GDB won't be able to read the register
1001 from the stack until one instruction later. */
1002 delayed_store = instr;
1003 continue;
1004 }
1005 /* Not a prologue instruction. Is this the end of the prologue?
1006 This is the most difficult decision; when to stop scanning.
1007
1008 If we have no line symbol, then the best thing we can do
1009 is to stop scanning when we encounter an instruction that
1010 is not likely to be a part of the prologue.
1011
1012 But if we do have a line symbol, then we should
1013 keep scanning until we reach it (or we reach end_addr). */
1014
1015 if (prologue_end_addr && (prologue_end_addr > (next_addr + 4)))
1016 continue; /* Keep scanning, recording saved_regs etc. */
1017 else
1018 break; /* Quit scanning: breakpoint can be set here. */
1019 }
1020 }
1021
1022 /* Special handling for the "saved" address of the SP:
1023 The SP is of course never saved on the stack at all, so
1024 by convention what we put here is simply the previous
1025 _value_ of the SP (as opposed to an address where the
1026 previous value would have been pushed). This will also
1027 give us the frame base address. */
1028
1029 if (info->frameless_p)
1030 {
1031 info->frame_base = sp + info->framesize;
1032 info->prev_sp = sp + info->framesize;
1033 }
1034 else
1035 {
1036 info->frame_base = fp + info->framesize;
1037 info->prev_sp = fp + info->framesize;
1038 }
1039 /* Save prev_sp in saved_regs as a value, not as an address. */
1040 trad_frame_set_value (info->saved_regs, MT_SP_REGNUM, info->prev_sp);
1041
1042 /* Now convert frame offsets to actual addresses (not offsets). */
1043 for (regnum = 0; regnum < MT_NUM_REGS; regnum++)
1044 if (trad_frame_addr_p (info->saved_regs, regnum))
1045 info->saved_regs[regnum].addr += info->frame_base - info->framesize;
1046
1047 /* The call instruction moves the caller's PC in the callee's RA reg.
1048 Since this is an unwind, do the reverse. Copy the location of RA
1049 into PC (the address / regnum) so that a request for PC will be
1050 converted into a request for the RA. */
1051 info->saved_regs[MT_PC_REGNUM] = info->saved_regs[MT_RA_REGNUM];
1052
1053 return info;
1054 }
1055
1056 static CORE_ADDR
1057 mt_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1058 {
1059 ULONGEST pc;
1060
1061 pc = frame_unwind_register_unsigned (next_frame, MT_PC_REGNUM);
1062 return pc;
1063 }
1064
1065 static CORE_ADDR
1066 mt_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1067 {
1068 ULONGEST sp;
1069
1070 sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM);
1071 return sp;
1072 }
1073
1074 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1075 frame. The frame ID's base needs to match the TOS value saved by
1076 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1077
1078 static struct frame_id
1079 mt_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1080 {
1081 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
1082 return frame_id_build (sp, get_frame_pc (this_frame));
1083 }
1084
1085 /* Given a GDB frame, determine the address of the calling function's
1086 frame. This will be used to create a new GDB frame struct. */
1087
1088 static void
1089 mt_frame_this_id (struct frame_info *this_frame,
1090 void **this_prologue_cache, struct frame_id *this_id)
1091 {
1092 struct mt_unwind_cache *info =
1093 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1094
1095 if (!(info == NULL || info->prev_sp == 0))
1096 (*this_id) = frame_id_build (info->prev_sp, get_frame_func (this_frame));
1097
1098 return;
1099 }
1100
1101 static struct value *
1102 mt_frame_prev_register (struct frame_info *this_frame,
1103 void **this_prologue_cache, int regnum)
1104 {
1105 struct mt_unwind_cache *info =
1106 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1107
1108 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1109 }
1110
1111 static CORE_ADDR
1112 mt_frame_base_address (struct frame_info *this_frame,
1113 void **this_prologue_cache)
1114 {
1115 struct mt_unwind_cache *info =
1116 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1117
1118 return info->frame_base;
1119 }
1120
1121 /* This is a shared interface: the 'frame_unwind' object is what's
1122 returned by the 'sniffer' function, and in turn specifies how to
1123 get a frame's ID and prev_regs.
1124
1125 This exports the 'prev_register' and 'this_id' methods. */
1126
1127 static const struct frame_unwind mt_frame_unwind = {
1128 NORMAL_FRAME,
1129 default_frame_unwind_stop_reason,
1130 mt_frame_this_id,
1131 mt_frame_prev_register,
1132 NULL,
1133 default_frame_sniffer
1134 };
1135
1136 /* Another shared interface: the 'frame_base' object specifies how to
1137 unwind a frame and secure the base addresses for frame objects
1138 (locals, args). */
1139
1140 static struct frame_base mt_frame_base = {
1141 &mt_frame_unwind,
1142 mt_frame_base_address,
1143 mt_frame_base_address,
1144 mt_frame_base_address
1145 };
1146
1147 static struct gdbarch *
1148 mt_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1149 {
1150 struct gdbarch *gdbarch;
1151 struct gdbarch_tdep *tdep;
1152
1153 /* Find a candidate among the list of pre-declared architectures. */
1154 arches = gdbarch_list_lookup_by_info (arches, &info);
1155 if (arches != NULL)
1156 return arches->gdbarch;
1157
1158 /* None found, create a new architecture from the information
1159 provided. */
1160 tdep = XCNEW (struct gdbarch_tdep);
1161 gdbarch = gdbarch_alloc (&info, tdep);
1162
1163 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1164 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1165 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1166
1167 set_gdbarch_register_name (gdbarch, mt_register_name);
1168 set_gdbarch_num_regs (gdbarch, MT_NUM_REGS);
1169 set_gdbarch_num_pseudo_regs (gdbarch, MT_NUM_PSEUDO_REGS);
1170 set_gdbarch_pc_regnum (gdbarch, MT_PC_REGNUM);
1171 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1172 set_gdbarch_pseudo_register_read (gdbarch, mt_pseudo_register_read);
1173 set_gdbarch_pseudo_register_write (gdbarch, mt_pseudo_register_write);
1174 set_gdbarch_skip_prologue (gdbarch, mt_skip_prologue);
1175 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1176 SET_GDBARCH_BREAKPOINT_MANIPULATION (mt);
1177 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1178 set_gdbarch_frame_args_skip (gdbarch, 0);
1179 set_gdbarch_print_insn (gdbarch, print_insn_mt);
1180 set_gdbarch_register_type (gdbarch, mt_register_type);
1181 set_gdbarch_register_reggroup_p (gdbarch, mt_register_reggroup_p);
1182
1183 set_gdbarch_return_value (gdbarch, mt_return_value);
1184 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1185
1186 set_gdbarch_frame_align (gdbarch, mt_frame_align);
1187
1188 set_gdbarch_print_registers_info (gdbarch, mt_registers_info);
1189
1190 set_gdbarch_push_dummy_call (gdbarch, mt_push_dummy_call);
1191
1192 /* Target builtin data types. */
1193 set_gdbarch_short_bit (gdbarch, 16);
1194 set_gdbarch_int_bit (gdbarch, 32);
1195 set_gdbarch_long_bit (gdbarch, 32);
1196 set_gdbarch_long_long_bit (gdbarch, 64);
1197 set_gdbarch_float_bit (gdbarch, 32);
1198 set_gdbarch_double_bit (gdbarch, 64);
1199 set_gdbarch_long_double_bit (gdbarch, 64);
1200 set_gdbarch_ptr_bit (gdbarch, 32);
1201
1202 /* Register the DWARF 2 sniffer first, and then the traditional prologue
1203 based sniffer. */
1204 dwarf2_append_unwinders (gdbarch);
1205 frame_unwind_append_unwinder (gdbarch, &mt_frame_unwind);
1206 frame_base_set_default (gdbarch, &mt_frame_base);
1207
1208 /* Register the 'unwind_pc' method. */
1209 set_gdbarch_unwind_pc (gdbarch, mt_unwind_pc);
1210 set_gdbarch_unwind_sp (gdbarch, mt_unwind_sp);
1211
1212 /* Methods for saving / extracting a dummy frame's ID.
1213 The ID's stack address must match the SP value returned by
1214 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1215 set_gdbarch_dummy_id (gdbarch, mt_dummy_id);
1216
1217 return gdbarch;
1218 }
1219
1220 /* Provide a prototype to silence -Wmissing-prototypes. */
1221 extern initialize_file_ftype _initialize_mt_tdep;
1222
1223 void
1224 _initialize_mt_tdep (void)
1225 {
1226 register_gdbarch_init (bfd_arch_mt, mt_gdbarch_init);
1227 }
This page took 0.052973 seconds and 3 git commands to generate.