Fix potential illegal memory access by readelf when parsing a binary containing corru...
[deliverable/binutils-gdb.git] / gdb / nto-tdep.c
1 /* nto-tdep.c - general QNX Neutrino target functionality.
2
3 Copyright (C) 2003-2019 Free Software Foundation, Inc.
4
5 Contributed by QNX Software Systems Ltd.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <sys/stat.h>
24 #include "nto-tdep.h"
25 #include "top.h"
26 #include "inferior.h"
27 #include "infrun.h"
28 #include "gdbarch.h"
29 #include "bfd.h"
30 #include "elf-bfd.h"
31 #include "solib-svr4.h"
32 #include "gdbcore.h"
33 #include "objfiles.h"
34 #include "source.h"
35 #include "common/pathstuff.h"
36
37 #define QNX_NOTE_NAME "QNX"
38 #define QNX_INFO_SECT_NAME "QNX_info"
39
40 #ifdef __CYGWIN__
41 #include <sys/cygwin.h>
42 #endif
43
44 #ifdef __CYGWIN__
45 static char default_nto_target[] = "C:\\QNXsdk\\target\\qnx6";
46 #elif defined(__sun__) || defined(linux)
47 static char default_nto_target[] = "/opt/QNXsdk/target/qnx6";
48 #else
49 static char default_nto_target[] = "";
50 #endif
51
52 struct nto_target_ops current_nto_target;
53
54 static const struct inferior_data *nto_inferior_data_reg;
55
56 static char *
57 nto_target (void)
58 {
59 char *p = getenv ("QNX_TARGET");
60
61 #ifdef __CYGWIN__
62 static char buf[PATH_MAX];
63 if (p)
64 cygwin_conv_path (CCP_WIN_A_TO_POSIX, p, buf, PATH_MAX);
65 else
66 cygwin_conv_path (CCP_WIN_A_TO_POSIX, default_nto_target, buf, PATH_MAX);
67 return buf;
68 #else
69 return p ? p : default_nto_target;
70 #endif
71 }
72
73 /* Take a string such as i386, rs6000, etc. and map it onto CPUTYPE_X86,
74 CPUTYPE_PPC, etc. as defined in nto-share/dsmsgs.h. */
75 int
76 nto_map_arch_to_cputype (const char *arch)
77 {
78 if (!strcmp (arch, "i386") || !strcmp (arch, "x86"))
79 return CPUTYPE_X86;
80 if (!strcmp (arch, "rs6000") || !strcmp (arch, "powerpc"))
81 return CPUTYPE_PPC;
82 if (!strcmp (arch, "mips"))
83 return CPUTYPE_MIPS;
84 if (!strcmp (arch, "arm"))
85 return CPUTYPE_ARM;
86 if (!strcmp (arch, "sh"))
87 return CPUTYPE_SH;
88 return CPUTYPE_UNKNOWN;
89 }
90
91 int
92 nto_find_and_open_solib (const char *solib, unsigned o_flags,
93 gdb::unique_xmalloc_ptr<char> *temp_pathname)
94 {
95 char *buf, *arch_path, *nto_root;
96 const char *endian;
97 const char *base;
98 const char *arch;
99 int arch_len, len, ret;
100 #define PATH_FMT \
101 "%s/lib:%s/usr/lib:%s/usr/photon/lib:%s/usr/photon/dll:%s/lib/dll"
102
103 nto_root = nto_target ();
104 if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name, "i386") == 0)
105 {
106 arch = "x86";
107 endian = "";
108 }
109 else if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name,
110 "rs6000") == 0
111 || strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name,
112 "powerpc") == 0)
113 {
114 arch = "ppc";
115 endian = "be";
116 }
117 else
118 {
119 arch = gdbarch_bfd_arch_info (target_gdbarch ())->arch_name;
120 endian = gdbarch_byte_order (target_gdbarch ())
121 == BFD_ENDIAN_BIG ? "be" : "le";
122 }
123
124 /* In case nto_root is short, add strlen(solib)
125 so we can reuse arch_path below. */
126
127 arch_len = (strlen (nto_root) + strlen (arch) + strlen (endian) + 2
128 + strlen (solib));
129 arch_path = (char *) alloca (arch_len);
130 xsnprintf (arch_path, arch_len, "%s/%s%s", nto_root, arch, endian);
131
132 len = strlen (PATH_FMT) + strlen (arch_path) * 5 + 1;
133 buf = (char *) alloca (len);
134 xsnprintf (buf, len, PATH_FMT, arch_path, arch_path, arch_path, arch_path,
135 arch_path);
136
137 base = lbasename (solib);
138 ret = openp (buf, OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, base, o_flags,
139 temp_pathname);
140 if (ret < 0 && base != solib)
141 {
142 xsnprintf (arch_path, arch_len, "/%s", solib);
143 ret = open (arch_path, o_flags, 0);
144 if (temp_pathname)
145 {
146 if (ret >= 0)
147 *temp_pathname = gdb_realpath (arch_path);
148 else
149 temp_pathname->reset (NULL);
150 }
151 }
152 return ret;
153 }
154
155 void
156 nto_init_solib_absolute_prefix (void)
157 {
158 char buf[PATH_MAX * 2], arch_path[PATH_MAX];
159 char *nto_root;
160 const char *endian;
161 const char *arch;
162
163 nto_root = nto_target ();
164 if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name, "i386") == 0)
165 {
166 arch = "x86";
167 endian = "";
168 }
169 else if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name,
170 "rs6000") == 0
171 || strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name,
172 "powerpc") == 0)
173 {
174 arch = "ppc";
175 endian = "be";
176 }
177 else
178 {
179 arch = gdbarch_bfd_arch_info (target_gdbarch ())->arch_name;
180 endian = gdbarch_byte_order (target_gdbarch ())
181 == BFD_ENDIAN_BIG ? "be" : "le";
182 }
183
184 xsnprintf (arch_path, sizeof (arch_path), "%s/%s%s", nto_root, arch, endian);
185
186 xsnprintf (buf, sizeof (buf), "set solib-absolute-prefix %s", arch_path);
187 execute_command (buf, 0);
188 }
189
190 char **
191 nto_parse_redirection (char *pargv[], const char **pin, const char **pout,
192 const char **perr)
193 {
194 char **argv;
195 const char *in, *out, *err, *p;
196 int argc, i, n;
197
198 for (n = 0; pargv[n]; n++);
199 if (n == 0)
200 return NULL;
201 in = "";
202 out = "";
203 err = "";
204
205 argv = XCNEWVEC (char *, n + 1);
206 argc = n;
207 for (i = 0, n = 0; n < argc; n++)
208 {
209 p = pargv[n];
210 if (*p == '>')
211 {
212 p++;
213 if (*p)
214 out = p;
215 else
216 out = pargv[++n];
217 }
218 else if (*p == '<')
219 {
220 p++;
221 if (*p)
222 in = p;
223 else
224 in = pargv[++n];
225 }
226 else if (*p++ == '2' && *p++ == '>')
227 {
228 if (*p == '&' && *(p + 1) == '1')
229 err = out;
230 else if (*p)
231 err = p;
232 else
233 err = pargv[++n];
234 }
235 else
236 argv[i++] = pargv[n];
237 }
238 *pin = in;
239 *pout = out;
240 *perr = err;
241 return argv;
242 }
243
244 static CORE_ADDR
245 lm_addr (struct so_list *so)
246 {
247 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
248
249 return li->l_addr;
250 }
251
252 static CORE_ADDR
253 nto_truncate_ptr (CORE_ADDR addr)
254 {
255 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
256 /* We don't need to truncate anything, and the bit twiddling below
257 will fail due to overflow problems. */
258 return addr;
259 else
260 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
261 }
262
263 static Elf_Internal_Phdr *
264 find_load_phdr (bfd *abfd)
265 {
266 Elf_Internal_Phdr *phdr;
267 unsigned int i;
268
269 if (!elf_tdata (abfd))
270 return NULL;
271
272 phdr = elf_tdata (abfd)->phdr;
273 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
274 {
275 if (phdr->p_type == PT_LOAD && (phdr->p_flags & PF_X))
276 return phdr;
277 }
278 return NULL;
279 }
280
281 void
282 nto_relocate_section_addresses (struct so_list *so, struct target_section *sec)
283 {
284 /* Neutrino treats the l_addr base address field in link.h as different than
285 the base address in the System V ABI and so the offset needs to be
286 calculated and applied to relocations. */
287 Elf_Internal_Phdr *phdr = find_load_phdr (sec->the_bfd_section->owner);
288 unsigned vaddr = phdr ? phdr->p_vaddr : 0;
289
290 sec->addr = nto_truncate_ptr (sec->addr + lm_addr (so) - vaddr);
291 sec->endaddr = nto_truncate_ptr (sec->endaddr + lm_addr (so) - vaddr);
292 }
293
294 /* This is cheating a bit because our linker code is in libc.so. If we
295 ever implement lazy linking, this may need to be re-examined. */
296 int
297 nto_in_dynsym_resolve_code (CORE_ADDR pc)
298 {
299 if (in_plt_section (pc))
300 return 1;
301 return 0;
302 }
303
304 void
305 nto_dummy_supply_regset (struct regcache *regcache, char *regs)
306 {
307 /* Do nothing. */
308 }
309
310 static void
311 nto_sniff_abi_note_section (bfd *abfd, asection *sect, void *obj)
312 {
313 const char *sectname;
314 unsigned int sectsize;
315 /* Buffer holding the section contents. */
316 char *note;
317 unsigned int namelen;
318 const char *name;
319 const unsigned sizeof_Elf_Nhdr = 12;
320
321 sectname = bfd_get_section_name (abfd, sect);
322 sectsize = bfd_section_size (abfd, sect);
323
324 if (sectsize > 128)
325 sectsize = 128;
326
327 if (sectname != NULL && strstr (sectname, QNX_INFO_SECT_NAME) != NULL)
328 *(enum gdb_osabi *) obj = GDB_OSABI_QNXNTO;
329 else if (sectname != NULL && strstr (sectname, "note") != NULL
330 && sectsize > sizeof_Elf_Nhdr)
331 {
332 note = XNEWVEC (char, sectsize);
333 bfd_get_section_contents (abfd, sect, note, 0, sectsize);
334 namelen = (unsigned int) bfd_h_get_32 (abfd, note);
335 name = note + sizeof_Elf_Nhdr;
336 if (sectsize >= namelen + sizeof_Elf_Nhdr
337 && namelen == sizeof (QNX_NOTE_NAME)
338 && 0 == strcmp (name, QNX_NOTE_NAME))
339 *(enum gdb_osabi *) obj = GDB_OSABI_QNXNTO;
340
341 XDELETEVEC (note);
342 }
343 }
344
345 enum gdb_osabi
346 nto_elf_osabi_sniffer (bfd *abfd)
347 {
348 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
349
350 bfd_map_over_sections (abfd,
351 nto_sniff_abi_note_section,
352 &osabi);
353
354 return osabi;
355 }
356
357 static const char *nto_thread_state_str[] =
358 {
359 "DEAD", /* 0 0x00 */
360 "RUNNING", /* 1 0x01 */
361 "READY", /* 2 0x02 */
362 "STOPPED", /* 3 0x03 */
363 "SEND", /* 4 0x04 */
364 "RECEIVE", /* 5 0x05 */
365 "REPLY", /* 6 0x06 */
366 "STACK", /* 7 0x07 */
367 "WAITTHREAD", /* 8 0x08 */
368 "WAITPAGE", /* 9 0x09 */
369 "SIGSUSPEND", /* 10 0x0a */
370 "SIGWAITINFO", /* 11 0x0b */
371 "NANOSLEEP", /* 12 0x0c */
372 "MUTEX", /* 13 0x0d */
373 "CONDVAR", /* 14 0x0e */
374 "JOIN", /* 15 0x0f */
375 "INTR", /* 16 0x10 */
376 "SEM", /* 17 0x11 */
377 "WAITCTX", /* 18 0x12 */
378 "NET_SEND", /* 19 0x13 */
379 "NET_REPLY" /* 20 0x14 */
380 };
381
382 const char *
383 nto_extra_thread_info (struct target_ops *self, struct thread_info *ti)
384 {
385 if (ti != NULL && ti->priv != NULL)
386 {
387 nto_thread_info *priv = get_nto_thread_info (ti);
388
389 if (priv->state < ARRAY_SIZE (nto_thread_state_str))
390 return nto_thread_state_str [priv->state];
391 }
392 return "";
393 }
394
395 void
396 nto_initialize_signals (void)
397 {
398 /* We use SIG45 for pulses, or something, so nostop, noprint
399 and pass them. */
400 signal_stop_update (gdb_signal_from_name ("SIG45"), 0);
401 signal_print_update (gdb_signal_from_name ("SIG45"), 0);
402 signal_pass_update (gdb_signal_from_name ("SIG45"), 1);
403
404 /* By default we don't want to stop on these two, but we do want to pass. */
405 #if defined(SIGSELECT)
406 signal_stop_update (SIGSELECT, 0);
407 signal_print_update (SIGSELECT, 0);
408 signal_pass_update (SIGSELECT, 1);
409 #endif
410
411 #if defined(SIGPHOTON)
412 signal_stop_update (SIGPHOTON, 0);
413 signal_print_update (SIGPHOTON, 0);
414 signal_pass_update (SIGPHOTON, 1);
415 #endif
416 }
417
418 /* Read AUXV from initial_stack. */
419 LONGEST
420 nto_read_auxv_from_initial_stack (CORE_ADDR initial_stack, gdb_byte *readbuf,
421 LONGEST len, size_t sizeof_auxv_t)
422 {
423 gdb_byte targ32[4]; /* For 32 bit target values. */
424 gdb_byte targ64[8]; /* For 64 bit target values. */
425 CORE_ADDR data_ofs = 0;
426 ULONGEST anint;
427 LONGEST len_read = 0;
428 gdb_byte *buff;
429 enum bfd_endian byte_order;
430 int ptr_size;
431
432 if (sizeof_auxv_t == 16)
433 ptr_size = 8;
434 else
435 ptr_size = 4;
436
437 /* Skip over argc, argv and envp... Comment from ldd.c:
438
439 The startup frame is set-up so that we have:
440 auxv
441 NULL
442 ...
443 envp2
444 envp1 <----- void *frame + (argc + 2) * sizeof(char *)
445 NULL
446 ...
447 argv2
448 argv1
449 argc <------ void * frame
450
451 On entry to ldd, frame gives the address of argc on the stack. */
452 /* Read argc. 4 bytes on both 64 and 32 bit arches and luckily little
453 * endian. So we just read first 4 bytes. */
454 if (target_read_memory (initial_stack + data_ofs, targ32, 4) != 0)
455 return 0;
456
457 byte_order = gdbarch_byte_order (target_gdbarch ());
458
459 anint = extract_unsigned_integer (targ32, sizeof (targ32), byte_order);
460
461 /* Size of pointer is assumed to be 4 bytes (32 bit arch.) */
462 data_ofs += (anint + 2) * ptr_size; /* + 2 comes from argc itself and
463 NULL terminating pointer in
464 argv. */
465
466 /* Now loop over env table: */
467 anint = 0;
468 while (target_read_memory (initial_stack + data_ofs, targ64, ptr_size)
469 == 0)
470 {
471 if (extract_unsigned_integer (targ64, ptr_size, byte_order) == 0)
472 anint = 1; /* Keep looping until non-null entry is found. */
473 else if (anint)
474 break;
475 data_ofs += ptr_size;
476 }
477 initial_stack += data_ofs;
478
479 memset (readbuf, 0, len);
480 buff = readbuf;
481 while (len_read <= len-sizeof_auxv_t)
482 {
483 if (target_read_memory (initial_stack + len_read, buff, sizeof_auxv_t)
484 == 0)
485 {
486 /* Both 32 and 64 bit structures have int as the first field. */
487 const ULONGEST a_type
488 = extract_unsigned_integer (buff, sizeof (targ32), byte_order);
489
490 if (a_type == AT_NULL)
491 break;
492 buff += sizeof_auxv_t;
493 len_read += sizeof_auxv_t;
494 }
495 else
496 break;
497 }
498 return len_read;
499 }
500
501 /* Allocate new nto_inferior_data object. */
502
503 static struct nto_inferior_data *
504 nto_new_inferior_data (void)
505 {
506 struct nto_inferior_data *const inf_data
507 = XCNEW (struct nto_inferior_data);
508
509 return inf_data;
510 }
511
512 /* Free inferior data. */
513
514 static void
515 nto_inferior_data_cleanup (struct inferior *const inf, void *const dat)
516 {
517 xfree (dat);
518 }
519
520 /* Return nto_inferior_data for the given INFERIOR. If not yet created,
521 construct it. */
522
523 struct nto_inferior_data *
524 nto_inferior_data (struct inferior *const inferior)
525 {
526 struct inferior *const inf = inferior ? inferior : current_inferior ();
527 struct nto_inferior_data *inf_data;
528
529 gdb_assert (inf != NULL);
530
531 inf_data
532 = (struct nto_inferior_data *) inferior_data (inf, nto_inferior_data_reg);
533 if (inf_data == NULL)
534 {
535 set_inferior_data (inf, nto_inferior_data_reg,
536 (inf_data = nto_new_inferior_data ()));
537 }
538
539 return inf_data;
540 }
541
542 void
543 _initialize_nto_tdep (void)
544 {
545 nto_inferior_data_reg
546 = register_inferior_data_with_cleanup (NULL, nto_inferior_data_cleanup);
547 }
This page took 0.041018 seconds and 4 git commands to generate.