Move some declarations to source.h
[deliverable/binutils-gdb.git] / gdb / nto-tdep.c
1 /* nto-tdep.c - general QNX Neutrino target functionality.
2
3 Copyright (C) 2003-2018 Free Software Foundation, Inc.
4
5 Contributed by QNX Software Systems Ltd.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <sys/stat.h>
24 #include "nto-tdep.h"
25 #include "top.h"
26 #include "inferior.h"
27 #include "infrun.h"
28 #include "gdbarch.h"
29 #include "bfd.h"
30 #include "elf-bfd.h"
31 #include "solib-svr4.h"
32 #include "gdbcore.h"
33 #include "objfiles.h"
34 #include "source.h"
35
36 #define QNX_NOTE_NAME "QNX"
37 #define QNX_INFO_SECT_NAME "QNX_info"
38
39 #ifdef __CYGWIN__
40 #include <sys/cygwin.h>
41 #endif
42
43 #ifdef __CYGWIN__
44 static char default_nto_target[] = "C:\\QNXsdk\\target\\qnx6";
45 #elif defined(__sun__) || defined(linux)
46 static char default_nto_target[] = "/opt/QNXsdk/target/qnx6";
47 #else
48 static char default_nto_target[] = "";
49 #endif
50
51 struct nto_target_ops current_nto_target;
52
53 static const struct inferior_data *nto_inferior_data_reg;
54
55 static char *
56 nto_target (void)
57 {
58 char *p = getenv ("QNX_TARGET");
59
60 #ifdef __CYGWIN__
61 static char buf[PATH_MAX];
62 if (p)
63 cygwin_conv_path (CCP_WIN_A_TO_POSIX, p, buf, PATH_MAX);
64 else
65 cygwin_conv_path (CCP_WIN_A_TO_POSIX, default_nto_target, buf, PATH_MAX);
66 return buf;
67 #else
68 return p ? p : default_nto_target;
69 #endif
70 }
71
72 /* Take a string such as i386, rs6000, etc. and map it onto CPUTYPE_X86,
73 CPUTYPE_PPC, etc. as defined in nto-share/dsmsgs.h. */
74 int
75 nto_map_arch_to_cputype (const char *arch)
76 {
77 if (!strcmp (arch, "i386") || !strcmp (arch, "x86"))
78 return CPUTYPE_X86;
79 if (!strcmp (arch, "rs6000") || !strcmp (arch, "powerpc"))
80 return CPUTYPE_PPC;
81 if (!strcmp (arch, "mips"))
82 return CPUTYPE_MIPS;
83 if (!strcmp (arch, "arm"))
84 return CPUTYPE_ARM;
85 if (!strcmp (arch, "sh"))
86 return CPUTYPE_SH;
87 return CPUTYPE_UNKNOWN;
88 }
89
90 int
91 nto_find_and_open_solib (const char *solib, unsigned o_flags,
92 char **temp_pathname)
93 {
94 char *buf, *arch_path, *nto_root;
95 const char *endian;
96 const char *base;
97 const char *arch;
98 int arch_len, len, ret;
99 #define PATH_FMT \
100 "%s/lib:%s/usr/lib:%s/usr/photon/lib:%s/usr/photon/dll:%s/lib/dll"
101
102 nto_root = nto_target ();
103 if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name, "i386") == 0)
104 {
105 arch = "x86";
106 endian = "";
107 }
108 else if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name,
109 "rs6000") == 0
110 || strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name,
111 "powerpc") == 0)
112 {
113 arch = "ppc";
114 endian = "be";
115 }
116 else
117 {
118 arch = gdbarch_bfd_arch_info (target_gdbarch ())->arch_name;
119 endian = gdbarch_byte_order (target_gdbarch ())
120 == BFD_ENDIAN_BIG ? "be" : "le";
121 }
122
123 /* In case nto_root is short, add strlen(solib)
124 so we can reuse arch_path below. */
125
126 arch_len = (strlen (nto_root) + strlen (arch) + strlen (endian) + 2
127 + strlen (solib));
128 arch_path = (char *) alloca (arch_len);
129 xsnprintf (arch_path, arch_len, "%s/%s%s", nto_root, arch, endian);
130
131 len = strlen (PATH_FMT) + strlen (arch_path) * 5 + 1;
132 buf = (char *) alloca (len);
133 xsnprintf (buf, len, PATH_FMT, arch_path, arch_path, arch_path, arch_path,
134 arch_path);
135
136 base = lbasename (solib);
137 ret = openp (buf, OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, base, o_flags,
138 temp_pathname);
139 if (ret < 0 && base != solib)
140 {
141 xsnprintf (arch_path, arch_len, "/%s", solib);
142 ret = open (arch_path, o_flags, 0);
143 if (temp_pathname)
144 {
145 if (ret >= 0)
146 *temp_pathname = gdb_realpath (arch_path).release ();
147 else
148 *temp_pathname = NULL;
149 }
150 }
151 return ret;
152 }
153
154 void
155 nto_init_solib_absolute_prefix (void)
156 {
157 char buf[PATH_MAX * 2], arch_path[PATH_MAX];
158 char *nto_root;
159 const char *endian;
160 const char *arch;
161
162 nto_root = nto_target ();
163 if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name, "i386") == 0)
164 {
165 arch = "x86";
166 endian = "";
167 }
168 else if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name,
169 "rs6000") == 0
170 || strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name,
171 "powerpc") == 0)
172 {
173 arch = "ppc";
174 endian = "be";
175 }
176 else
177 {
178 arch = gdbarch_bfd_arch_info (target_gdbarch ())->arch_name;
179 endian = gdbarch_byte_order (target_gdbarch ())
180 == BFD_ENDIAN_BIG ? "be" : "le";
181 }
182
183 xsnprintf (arch_path, sizeof (arch_path), "%s/%s%s", nto_root, arch, endian);
184
185 xsnprintf (buf, sizeof (buf), "set solib-absolute-prefix %s", arch_path);
186 execute_command (buf, 0);
187 }
188
189 char **
190 nto_parse_redirection (char *pargv[], const char **pin, const char **pout,
191 const char **perr)
192 {
193 char **argv;
194 const char *in, *out, *err, *p;
195 int argc, i, n;
196
197 for (n = 0; pargv[n]; n++);
198 if (n == 0)
199 return NULL;
200 in = "";
201 out = "";
202 err = "";
203
204 argv = XCNEWVEC (char *, n + 1);
205 argc = n;
206 for (i = 0, n = 0; n < argc; n++)
207 {
208 p = pargv[n];
209 if (*p == '>')
210 {
211 p++;
212 if (*p)
213 out = p;
214 else
215 out = pargv[++n];
216 }
217 else if (*p == '<')
218 {
219 p++;
220 if (*p)
221 in = p;
222 else
223 in = pargv[++n];
224 }
225 else if (*p++ == '2' && *p++ == '>')
226 {
227 if (*p == '&' && *(p + 1) == '1')
228 err = out;
229 else if (*p)
230 err = p;
231 else
232 err = pargv[++n];
233 }
234 else
235 argv[i++] = pargv[n];
236 }
237 *pin = in;
238 *pout = out;
239 *perr = err;
240 return argv;
241 }
242
243 static CORE_ADDR
244 lm_addr (struct so_list *so)
245 {
246 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
247
248 return li->l_addr;
249 }
250
251 static CORE_ADDR
252 nto_truncate_ptr (CORE_ADDR addr)
253 {
254 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
255 /* We don't need to truncate anything, and the bit twiddling below
256 will fail due to overflow problems. */
257 return addr;
258 else
259 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
260 }
261
262 static Elf_Internal_Phdr *
263 find_load_phdr (bfd *abfd)
264 {
265 Elf_Internal_Phdr *phdr;
266 unsigned int i;
267
268 if (!elf_tdata (abfd))
269 return NULL;
270
271 phdr = elf_tdata (abfd)->phdr;
272 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
273 {
274 if (phdr->p_type == PT_LOAD && (phdr->p_flags & PF_X))
275 return phdr;
276 }
277 return NULL;
278 }
279
280 void
281 nto_relocate_section_addresses (struct so_list *so, struct target_section *sec)
282 {
283 /* Neutrino treats the l_addr base address field in link.h as different than
284 the base address in the System V ABI and so the offset needs to be
285 calculated and applied to relocations. */
286 Elf_Internal_Phdr *phdr = find_load_phdr (sec->the_bfd_section->owner);
287 unsigned vaddr = phdr ? phdr->p_vaddr : 0;
288
289 sec->addr = nto_truncate_ptr (sec->addr + lm_addr (so) - vaddr);
290 sec->endaddr = nto_truncate_ptr (sec->endaddr + lm_addr (so) - vaddr);
291 }
292
293 /* This is cheating a bit because our linker code is in libc.so. If we
294 ever implement lazy linking, this may need to be re-examined. */
295 int
296 nto_in_dynsym_resolve_code (CORE_ADDR pc)
297 {
298 if (in_plt_section (pc))
299 return 1;
300 return 0;
301 }
302
303 void
304 nto_dummy_supply_regset (struct regcache *regcache, char *regs)
305 {
306 /* Do nothing. */
307 }
308
309 static void
310 nto_sniff_abi_note_section (bfd *abfd, asection *sect, void *obj)
311 {
312 const char *sectname;
313 unsigned int sectsize;
314 /* Buffer holding the section contents. */
315 char *note;
316 unsigned int namelen;
317 const char *name;
318 const unsigned sizeof_Elf_Nhdr = 12;
319
320 sectname = bfd_get_section_name (abfd, sect);
321 sectsize = bfd_section_size (abfd, sect);
322
323 if (sectsize > 128)
324 sectsize = 128;
325
326 if (sectname != NULL && strstr (sectname, QNX_INFO_SECT_NAME) != NULL)
327 *(enum gdb_osabi *) obj = GDB_OSABI_QNXNTO;
328 else if (sectname != NULL && strstr (sectname, "note") != NULL
329 && sectsize > sizeof_Elf_Nhdr)
330 {
331 note = XNEWVEC (char, sectsize);
332 bfd_get_section_contents (abfd, sect, note, 0, sectsize);
333 namelen = (unsigned int) bfd_h_get_32 (abfd, note);
334 name = note + sizeof_Elf_Nhdr;
335 if (sectsize >= namelen + sizeof_Elf_Nhdr
336 && namelen == sizeof (QNX_NOTE_NAME)
337 && 0 == strcmp (name, QNX_NOTE_NAME))
338 *(enum gdb_osabi *) obj = GDB_OSABI_QNXNTO;
339
340 XDELETEVEC (note);
341 }
342 }
343
344 enum gdb_osabi
345 nto_elf_osabi_sniffer (bfd *abfd)
346 {
347 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
348
349 bfd_map_over_sections (abfd,
350 nto_sniff_abi_note_section,
351 &osabi);
352
353 return osabi;
354 }
355
356 static const char *nto_thread_state_str[] =
357 {
358 "DEAD", /* 0 0x00 */
359 "RUNNING", /* 1 0x01 */
360 "READY", /* 2 0x02 */
361 "STOPPED", /* 3 0x03 */
362 "SEND", /* 4 0x04 */
363 "RECEIVE", /* 5 0x05 */
364 "REPLY", /* 6 0x06 */
365 "STACK", /* 7 0x07 */
366 "WAITTHREAD", /* 8 0x08 */
367 "WAITPAGE", /* 9 0x09 */
368 "SIGSUSPEND", /* 10 0x0a */
369 "SIGWAITINFO", /* 11 0x0b */
370 "NANOSLEEP", /* 12 0x0c */
371 "MUTEX", /* 13 0x0d */
372 "CONDVAR", /* 14 0x0e */
373 "JOIN", /* 15 0x0f */
374 "INTR", /* 16 0x10 */
375 "SEM", /* 17 0x11 */
376 "WAITCTX", /* 18 0x12 */
377 "NET_SEND", /* 19 0x13 */
378 "NET_REPLY" /* 20 0x14 */
379 };
380
381 const char *
382 nto_extra_thread_info (struct target_ops *self, struct thread_info *ti)
383 {
384 if (ti != NULL && ti->priv != NULL)
385 {
386 nto_thread_info *priv = get_nto_thread_info (ti);
387
388 if (priv->state < ARRAY_SIZE (nto_thread_state_str))
389 return nto_thread_state_str [priv->state];
390 }
391 return "";
392 }
393
394 void
395 nto_initialize_signals (void)
396 {
397 /* We use SIG45 for pulses, or something, so nostop, noprint
398 and pass them. */
399 signal_stop_update (gdb_signal_from_name ("SIG45"), 0);
400 signal_print_update (gdb_signal_from_name ("SIG45"), 0);
401 signal_pass_update (gdb_signal_from_name ("SIG45"), 1);
402
403 /* By default we don't want to stop on these two, but we do want to pass. */
404 #if defined(SIGSELECT)
405 signal_stop_update (SIGSELECT, 0);
406 signal_print_update (SIGSELECT, 0);
407 signal_pass_update (SIGSELECT, 1);
408 #endif
409
410 #if defined(SIGPHOTON)
411 signal_stop_update (SIGPHOTON, 0);
412 signal_print_update (SIGPHOTON, 0);
413 signal_pass_update (SIGPHOTON, 1);
414 #endif
415 }
416
417 /* Read AUXV from initial_stack. */
418 LONGEST
419 nto_read_auxv_from_initial_stack (CORE_ADDR initial_stack, gdb_byte *readbuf,
420 LONGEST len, size_t sizeof_auxv_t)
421 {
422 gdb_byte targ32[4]; /* For 32 bit target values. */
423 gdb_byte targ64[8]; /* For 64 bit target values. */
424 CORE_ADDR data_ofs = 0;
425 ULONGEST anint;
426 LONGEST len_read = 0;
427 gdb_byte *buff;
428 enum bfd_endian byte_order;
429 int ptr_size;
430
431 if (sizeof_auxv_t == 16)
432 ptr_size = 8;
433 else
434 ptr_size = 4;
435
436 /* Skip over argc, argv and envp... Comment from ldd.c:
437
438 The startup frame is set-up so that we have:
439 auxv
440 NULL
441 ...
442 envp2
443 envp1 <----- void *frame + (argc + 2) * sizeof(char *)
444 NULL
445 ...
446 argv2
447 argv1
448 argc <------ void * frame
449
450 On entry to ldd, frame gives the address of argc on the stack. */
451 /* Read argc. 4 bytes on both 64 and 32 bit arches and luckily little
452 * endian. So we just read first 4 bytes. */
453 if (target_read_memory (initial_stack + data_ofs, targ32, 4) != 0)
454 return 0;
455
456 byte_order = gdbarch_byte_order (target_gdbarch ());
457
458 anint = extract_unsigned_integer (targ32, sizeof (targ32), byte_order);
459
460 /* Size of pointer is assumed to be 4 bytes (32 bit arch.) */
461 data_ofs += (anint + 2) * ptr_size; /* + 2 comes from argc itself and
462 NULL terminating pointer in
463 argv. */
464
465 /* Now loop over env table: */
466 anint = 0;
467 while (target_read_memory (initial_stack + data_ofs, targ64, ptr_size)
468 == 0)
469 {
470 if (extract_unsigned_integer (targ64, ptr_size, byte_order) == 0)
471 anint = 1; /* Keep looping until non-null entry is found. */
472 else if (anint)
473 break;
474 data_ofs += ptr_size;
475 }
476 initial_stack += data_ofs;
477
478 memset (readbuf, 0, len);
479 buff = readbuf;
480 while (len_read <= len-sizeof_auxv_t)
481 {
482 if (target_read_memory (initial_stack + len_read, buff, sizeof_auxv_t)
483 == 0)
484 {
485 /* Both 32 and 64 bit structures have int as the first field. */
486 const ULONGEST a_type
487 = extract_unsigned_integer (buff, sizeof (targ32), byte_order);
488
489 if (a_type == AT_NULL)
490 break;
491 buff += sizeof_auxv_t;
492 len_read += sizeof_auxv_t;
493 }
494 else
495 break;
496 }
497 return len_read;
498 }
499
500 /* Allocate new nto_inferior_data object. */
501
502 static struct nto_inferior_data *
503 nto_new_inferior_data (void)
504 {
505 struct nto_inferior_data *const inf_data
506 = XCNEW (struct nto_inferior_data);
507
508 return inf_data;
509 }
510
511 /* Free inferior data. */
512
513 static void
514 nto_inferior_data_cleanup (struct inferior *const inf, void *const dat)
515 {
516 xfree (dat);
517 }
518
519 /* Return nto_inferior_data for the given INFERIOR. If not yet created,
520 construct it. */
521
522 struct nto_inferior_data *
523 nto_inferior_data (struct inferior *const inferior)
524 {
525 struct inferior *const inf = inferior ? inferior : current_inferior ();
526 struct nto_inferior_data *inf_data;
527
528 gdb_assert (inf != NULL);
529
530 inf_data
531 = (struct nto_inferior_data *) inferior_data (inf, nto_inferior_data_reg);
532 if (inf_data == NULL)
533 {
534 set_inferior_data (inf, nto_inferior_data_reg,
535 (inf_data = nto_new_inferior_data ()));
536 }
537
538 return inf_data;
539 }
540
541 void
542 _initialize_nto_tdep (void)
543 {
544 nto_inferior_data_reg
545 = register_inferior_data_with_cleanup (NULL, nto_inferior_data_cleanup);
546 }
This page took 0.041085 seconds and 4 git commands to generate.