2010-09-27 Andreas Krebbel <Andreas.Krebbel@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / objc-exp.y
1 /* YACC parser for C expressions, for GDB.
2
3 Copyright (C) 1986, 1989, 1990, 1991, 1993, 1994, 2002, 2006, 2007, 2008,
4 2009, 2010 Free Software Foundation, Inc.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* Parse a C expression from text in a string, and return the result
20 as a struct expression pointer. That structure contains arithmetic
21 operations in reverse polish, with constants represented by
22 operations that are followed by special data. See expression.h for
23 the details of the format. What is important here is that it can
24 be built up sequentially during the process of parsing; the lower
25 levels of the tree always come first in the result.
26
27 Note that malloc's and realloc's in this file are transformed to
28 xmalloc and xrealloc respectively by the same sed command in the
29 makefile that remaps any other malloc/realloc inserted by the
30 parser generator. Doing this with #defines and trying to control
31 the interaction with include files (<malloc.h> and <stdlib.h> for
32 example) just became too messy, particularly when such includes can
33 be inserted at random times by the parser generator. */
34
35 %{
36
37 #include "defs.h"
38 #include "gdb_string.h"
39 #include <ctype.h>
40 #include "expression.h"
41
42 #include "objc-lang.h" /* For objc language constructs. */
43
44 #include "value.h"
45 #include "parser-defs.h"
46 #include "language.h"
47 #include "c-lang.h"
48 #include "bfd.h" /* Required by objfiles.h. */
49 #include "symfile.h" /* Required by objfiles.h. */
50 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols. */
51 #include "top.h"
52 #include "completer.h" /* For skip_quoted(). */
53 #include "block.h"
54
55 #define parse_type builtin_type (parse_gdbarch)
56
57 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror,
58 etc), as well as gratuitiously global symbol names, so we can have
59 multiple yacc generated parsers in gdb. Note that these are only
60 the variables produced by yacc. If other parser generators (bison,
61 byacc, etc) produce additional global names that conflict at link
62 time, then those parser generators need to be fixed instead of
63 adding those names to this list. */
64
65 #define yymaxdepth objc_maxdepth
66 #define yyparse objc_parse
67 #define yylex objc_lex
68 #define yyerror objc_error
69 #define yylval objc_lval
70 #define yychar objc_char
71 #define yydebug objc_debug
72 #define yypact objc_pact
73 #define yyr1 objc_r1
74 #define yyr2 objc_r2
75 #define yydef objc_def
76 #define yychk objc_chk
77 #define yypgo objc_pgo
78 #define yyact objc_act
79 #define yyexca objc_exca
80 #define yyerrflag objc_errflag
81 #define yynerrs objc_nerrs
82 #define yyps objc_ps
83 #define yypv objc_pv
84 #define yys objc_s
85 #define yy_yys objc_yys
86 #define yystate objc_state
87 #define yytmp objc_tmp
88 #define yyv objc_v
89 #define yy_yyv objc_yyv
90 #define yyval objc_val
91 #define yylloc objc_lloc
92 #define yyreds objc_reds /* With YYDEBUG defined */
93 #define yytoks objc_toks /* With YYDEBUG defined */
94 #define yyname objc_name /* With YYDEBUG defined */
95 #define yyrule objc_rule /* With YYDEBUG defined */
96 #define yylhs objc_yylhs
97 #define yylen objc_yylen
98 #define yydefred objc_yydefred
99 #define yydgoto objc_yydgoto
100 #define yysindex objc_yysindex
101 #define yyrindex objc_yyrindex
102 #define yygindex objc_yygindex
103 #define yytable objc_yytable
104 #define yycheck objc_yycheck
105
106 #ifndef YYDEBUG
107 #define YYDEBUG 0 /* Default to no yydebug support. */
108 #endif
109
110 int
111 yyparse (void);
112
113 static int
114 yylex (void);
115
116 void
117 yyerror (char *);
118
119 %}
120
121 /* Although the yacc "value" of an expression is not used,
122 since the result is stored in the structure being created,
123 other node types do have values. */
124
125 %union
126 {
127 LONGEST lval;
128 struct {
129 LONGEST val;
130 struct type *type;
131 } typed_val_int;
132 struct {
133 DOUBLEST dval;
134 struct type *type;
135 } typed_val_float;
136 struct symbol *sym;
137 struct type *tval;
138 struct stoken sval;
139 struct ttype tsym;
140 struct symtoken ssym;
141 int voidval;
142 struct block *bval;
143 enum exp_opcode opcode;
144 struct internalvar *ivar;
145 struct objc_class_str class;
146
147 struct type **tvec;
148 int *ivec;
149 }
150
151 %{
152 /* YYSTYPE gets defined by %union. */
153 static int
154 parse_number (char *, int, int, YYSTYPE *);
155 %}
156
157 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
158 %type <lval> rcurly
159 %type <tval> type typebase
160 %type <tvec> nonempty_typelist
161 /* %type <bval> block */
162
163 /* Fancy type parsing. */
164 %type <voidval> func_mod direct_abs_decl abs_decl
165 %type <tval> ptype
166 %type <lval> array_mod
167
168 %token <typed_val_int> INT
169 %token <typed_val_float> FLOAT
170
171 /* Both NAME and TYPENAME tokens represent symbols in the input, and
172 both convey their data as strings. But a TYPENAME is a string that
173 happens to be defined as a typedef or builtin type name (such as
174 int or char) and a NAME is any other symbol. Contexts where this
175 distinction is not important can use the nonterminal "name", which
176 matches either NAME or TYPENAME. */
177
178 %token <sval> STRING
179 %token <sval> NSSTRING /* ObjC Foundation "NSString" literal */
180 %token <sval> SELECTOR /* ObjC "@selector" pseudo-operator */
181 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
182 %token <tsym> TYPENAME
183 %token <class> CLASSNAME /* ObjC Class name */
184 %type <sval> name
185 %type <ssym> name_not_typename
186 %type <tsym> typename
187
188 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
189 but which would parse as a valid number in the current input radix.
190 E.g. "c" when input_radix==16. Depending on the parse, it will be
191 turned into a name or into a number. */
192
193 %token <ssym> NAME_OR_INT
194
195 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
196 %token TEMPLATE
197 %token ERROR
198
199 /* Special type cases, put in to allow the parser to distinguish
200 different legal basetypes. */
201 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD DOUBLE_KEYWORD
202
203 %token <voidval> VARIABLE
204
205 %token <opcode> ASSIGN_MODIFY
206
207 %left ','
208 %left ABOVE_COMMA
209 %right '=' ASSIGN_MODIFY
210 %right '?'
211 %left OROR
212 %left ANDAND
213 %left '|'
214 %left '^'
215 %left '&'
216 %left EQUAL NOTEQUAL
217 %left '<' '>' LEQ GEQ
218 %left LSH RSH
219 %left '@'
220 %left '+' '-'
221 %left '*' '/' '%'
222 %right UNARY INCREMENT DECREMENT
223 %right ARROW '.' '[' '('
224 %token <ssym> BLOCKNAME
225 %type <bval> block
226 %left COLONCOLON
227
228 \f
229 %%
230
231 start : exp1
232 | type_exp
233 ;
234
235 type_exp: type
236 { write_exp_elt_opcode(OP_TYPE);
237 write_exp_elt_type($1);
238 write_exp_elt_opcode(OP_TYPE);}
239 ;
240
241 /* Expressions, including the comma operator. */
242 exp1 : exp
243 | exp1 ',' exp
244 { write_exp_elt_opcode (BINOP_COMMA); }
245 ;
246
247 /* Expressions, not including the comma operator. */
248 exp : '*' exp %prec UNARY
249 { write_exp_elt_opcode (UNOP_IND); }
250 ;
251
252 exp : '&' exp %prec UNARY
253 { write_exp_elt_opcode (UNOP_ADDR); }
254 ;
255
256 exp : '-' exp %prec UNARY
257 { write_exp_elt_opcode (UNOP_NEG); }
258 ;
259
260 exp : '!' exp %prec UNARY
261 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
262 ;
263
264 exp : '~' exp %prec UNARY
265 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
266 ;
267
268 exp : INCREMENT exp %prec UNARY
269 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
270 ;
271
272 exp : DECREMENT exp %prec UNARY
273 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
274 ;
275
276 exp : exp INCREMENT %prec UNARY
277 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
278 ;
279
280 exp : exp DECREMENT %prec UNARY
281 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
282 ;
283
284 exp : SIZEOF exp %prec UNARY
285 { write_exp_elt_opcode (UNOP_SIZEOF); }
286 ;
287
288 exp : exp ARROW name
289 { write_exp_elt_opcode (STRUCTOP_PTR);
290 write_exp_string ($3);
291 write_exp_elt_opcode (STRUCTOP_PTR); }
292 ;
293
294 exp : exp ARROW qualified_name
295 { /* exp->type::name becomes exp->*(&type::name) */
296 /* Note: this doesn't work if name is a
297 static member! FIXME */
298 write_exp_elt_opcode (UNOP_ADDR);
299 write_exp_elt_opcode (STRUCTOP_MPTR); }
300 ;
301 exp : exp ARROW '*' exp
302 { write_exp_elt_opcode (STRUCTOP_MPTR); }
303 ;
304
305 exp : exp '.' name
306 { write_exp_elt_opcode (STRUCTOP_STRUCT);
307 write_exp_string ($3);
308 write_exp_elt_opcode (STRUCTOP_STRUCT); }
309 ;
310
311
312 exp : exp '.' qualified_name
313 { /* exp.type::name becomes exp.*(&type::name) */
314 /* Note: this doesn't work if name is a
315 static member! FIXME */
316 write_exp_elt_opcode (UNOP_ADDR);
317 write_exp_elt_opcode (STRUCTOP_MEMBER); }
318 ;
319
320 exp : exp '.' '*' exp
321 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
322 ;
323
324 exp : exp '[' exp1 ']'
325 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
326 ;
327 /*
328 * The rules below parse ObjC message calls of the form:
329 * '[' target selector {':' argument}* ']'
330 */
331
332 exp : '[' TYPENAME
333 {
334 CORE_ADDR class;
335
336 class = lookup_objc_class (parse_gdbarch,
337 copy_name ($2.stoken));
338 if (class == 0)
339 error ("%s is not an ObjC Class",
340 copy_name ($2.stoken));
341 write_exp_elt_opcode (OP_LONG);
342 write_exp_elt_type (parse_type->builtin_int);
343 write_exp_elt_longcst ((LONGEST) class);
344 write_exp_elt_opcode (OP_LONG);
345 start_msglist();
346 }
347 msglist ']'
348 { write_exp_elt_opcode (OP_OBJC_MSGCALL);
349 end_msglist();
350 write_exp_elt_opcode (OP_OBJC_MSGCALL);
351 }
352 ;
353
354 exp : '[' CLASSNAME
355 {
356 write_exp_elt_opcode (OP_LONG);
357 write_exp_elt_type (parse_type->builtin_int);
358 write_exp_elt_longcst ((LONGEST) $2.class);
359 write_exp_elt_opcode (OP_LONG);
360 start_msglist();
361 }
362 msglist ']'
363 { write_exp_elt_opcode (OP_OBJC_MSGCALL);
364 end_msglist();
365 write_exp_elt_opcode (OP_OBJC_MSGCALL);
366 }
367 ;
368
369 exp : '[' exp
370 { start_msglist(); }
371 msglist ']'
372 { write_exp_elt_opcode (OP_OBJC_MSGCALL);
373 end_msglist();
374 write_exp_elt_opcode (OP_OBJC_MSGCALL);
375 }
376 ;
377
378 msglist : name
379 { add_msglist(&$1, 0); }
380 | msgarglist
381 ;
382
383 msgarglist : msgarg
384 | msgarglist msgarg
385 ;
386
387 msgarg : name ':' exp
388 { add_msglist(&$1, 1); }
389 | ':' exp /* Unnamed arg. */
390 { add_msglist(0, 1); }
391 | ',' exp /* Variable number of args. */
392 { add_msglist(0, 0); }
393 ;
394
395 exp : exp '('
396 /* This is to save the value of arglist_len
397 being accumulated by an outer function call. */
398 { start_arglist (); }
399 arglist ')' %prec ARROW
400 { write_exp_elt_opcode (OP_FUNCALL);
401 write_exp_elt_longcst ((LONGEST) end_arglist ());
402 write_exp_elt_opcode (OP_FUNCALL); }
403 ;
404
405 lcurly : '{'
406 { start_arglist (); }
407 ;
408
409 arglist :
410 ;
411
412 arglist : exp
413 { arglist_len = 1; }
414 ;
415
416 arglist : arglist ',' exp %prec ABOVE_COMMA
417 { arglist_len++; }
418 ;
419
420 rcurly : '}'
421 { $$ = end_arglist () - 1; }
422 ;
423 exp : lcurly arglist rcurly %prec ARROW
424 { write_exp_elt_opcode (OP_ARRAY);
425 write_exp_elt_longcst ((LONGEST) 0);
426 write_exp_elt_longcst ((LONGEST) $3);
427 write_exp_elt_opcode (OP_ARRAY); }
428 ;
429
430 exp : lcurly type rcurly exp %prec UNARY
431 { write_exp_elt_opcode (UNOP_MEMVAL);
432 write_exp_elt_type ($2);
433 write_exp_elt_opcode (UNOP_MEMVAL); }
434 ;
435
436 exp : '(' type ')' exp %prec UNARY
437 { write_exp_elt_opcode (UNOP_CAST);
438 write_exp_elt_type ($2);
439 write_exp_elt_opcode (UNOP_CAST); }
440 ;
441
442 exp : '(' exp1 ')'
443 { }
444 ;
445
446 /* Binary operators in order of decreasing precedence. */
447
448 exp : exp '@' exp
449 { write_exp_elt_opcode (BINOP_REPEAT); }
450 ;
451
452 exp : exp '*' exp
453 { write_exp_elt_opcode (BINOP_MUL); }
454 ;
455
456 exp : exp '/' exp
457 { write_exp_elt_opcode (BINOP_DIV); }
458 ;
459
460 exp : exp '%' exp
461 { write_exp_elt_opcode (BINOP_REM); }
462 ;
463
464 exp : exp '+' exp
465 { write_exp_elt_opcode (BINOP_ADD); }
466 ;
467
468 exp : exp '-' exp
469 { write_exp_elt_opcode (BINOP_SUB); }
470 ;
471
472 exp : exp LSH exp
473 { write_exp_elt_opcode (BINOP_LSH); }
474 ;
475
476 exp : exp RSH exp
477 { write_exp_elt_opcode (BINOP_RSH); }
478 ;
479
480 exp : exp EQUAL exp
481 { write_exp_elt_opcode (BINOP_EQUAL); }
482 ;
483
484 exp : exp NOTEQUAL exp
485 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
486 ;
487
488 exp : exp LEQ exp
489 { write_exp_elt_opcode (BINOP_LEQ); }
490 ;
491
492 exp : exp GEQ exp
493 { write_exp_elt_opcode (BINOP_GEQ); }
494 ;
495
496 exp : exp '<' exp
497 { write_exp_elt_opcode (BINOP_LESS); }
498 ;
499
500 exp : exp '>' exp
501 { write_exp_elt_opcode (BINOP_GTR); }
502 ;
503
504 exp : exp '&' exp
505 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
506 ;
507
508 exp : exp '^' exp
509 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
510 ;
511
512 exp : exp '|' exp
513 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
514 ;
515
516 exp : exp ANDAND exp
517 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
518 ;
519
520 exp : exp OROR exp
521 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
522 ;
523
524 exp : exp '?' exp ':' exp %prec '?'
525 { write_exp_elt_opcode (TERNOP_COND); }
526 ;
527
528 exp : exp '=' exp
529 { write_exp_elt_opcode (BINOP_ASSIGN); }
530 ;
531
532 exp : exp ASSIGN_MODIFY exp
533 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
534 write_exp_elt_opcode ($2);
535 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
536 ;
537
538 exp : INT
539 { write_exp_elt_opcode (OP_LONG);
540 write_exp_elt_type ($1.type);
541 write_exp_elt_longcst ((LONGEST)($1.val));
542 write_exp_elt_opcode (OP_LONG); }
543 ;
544
545 exp : NAME_OR_INT
546 { YYSTYPE val;
547 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
548 write_exp_elt_opcode (OP_LONG);
549 write_exp_elt_type (val.typed_val_int.type);
550 write_exp_elt_longcst ((LONGEST)val.typed_val_int.val);
551 write_exp_elt_opcode (OP_LONG);
552 }
553 ;
554
555
556 exp : FLOAT
557 { write_exp_elt_opcode (OP_DOUBLE);
558 write_exp_elt_type ($1.type);
559 write_exp_elt_dblcst ($1.dval);
560 write_exp_elt_opcode (OP_DOUBLE); }
561 ;
562
563 exp : variable
564 ;
565
566 exp : VARIABLE
567 /* Already written by write_dollar_variable. */
568 ;
569
570 exp : SELECTOR
571 {
572 write_exp_elt_opcode (OP_OBJC_SELECTOR);
573 write_exp_string ($1);
574 write_exp_elt_opcode (OP_OBJC_SELECTOR); }
575 ;
576
577 exp : SIZEOF '(' type ')' %prec UNARY
578 { write_exp_elt_opcode (OP_LONG);
579 write_exp_elt_type (parse_type->builtin_int);
580 CHECK_TYPEDEF ($3);
581 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
582 write_exp_elt_opcode (OP_LONG); }
583 ;
584
585 exp : STRING
586 { /* C strings are converted into array
587 constants with an explicit null byte
588 added at the end. Thus the array upper
589 bound is the string length. There is no
590 such thing in C as a completely empty
591 string. */
592 char *sp = $1.ptr; int count = $1.length;
593 while (count-- > 0)
594 {
595 write_exp_elt_opcode (OP_LONG);
596 write_exp_elt_type (parse_type->builtin_char);
597 write_exp_elt_longcst ((LONGEST)(*sp++));
598 write_exp_elt_opcode (OP_LONG);
599 }
600 write_exp_elt_opcode (OP_LONG);
601 write_exp_elt_type (parse_type->builtin_char);
602 write_exp_elt_longcst ((LONGEST)'\0');
603 write_exp_elt_opcode (OP_LONG);
604 write_exp_elt_opcode (OP_ARRAY);
605 write_exp_elt_longcst ((LONGEST) 0);
606 write_exp_elt_longcst ((LONGEST) ($1.length));
607 write_exp_elt_opcode (OP_ARRAY); }
608 ;
609
610 exp : NSSTRING /* ObjC NextStep NSString constant
611 * of the form '@' '"' string '"'.
612 */
613 { write_exp_elt_opcode (OP_OBJC_NSSTRING);
614 write_exp_string ($1);
615 write_exp_elt_opcode (OP_OBJC_NSSTRING); }
616 ;
617
618 block : BLOCKNAME
619 {
620 if ($1.sym != 0)
621 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
622 else
623 {
624 struct symtab *tem =
625 lookup_symtab (copy_name ($1.stoken));
626 if (tem)
627 $$ = BLOCKVECTOR_BLOCK (BLOCKVECTOR (tem), STATIC_BLOCK);
628 else
629 error ("No file or function \"%s\".",
630 copy_name ($1.stoken));
631 }
632 }
633 ;
634
635 block : block COLONCOLON name
636 { struct symbol *tem
637 = lookup_symbol (copy_name ($3), $1,
638 VAR_DOMAIN, (int *) NULL);
639 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
640 error ("No function \"%s\" in specified context.",
641 copy_name ($3));
642 $$ = SYMBOL_BLOCK_VALUE (tem); }
643 ;
644
645 variable: block COLONCOLON name
646 { struct symbol *sym;
647 sym = lookup_symbol (copy_name ($3), $1,
648 VAR_DOMAIN, (int *) NULL);
649 if (sym == 0)
650 error ("No symbol \"%s\" in specified context.",
651 copy_name ($3));
652
653 write_exp_elt_opcode (OP_VAR_VALUE);
654 /* block_found is set by lookup_symbol. */
655 write_exp_elt_block (block_found);
656 write_exp_elt_sym (sym);
657 write_exp_elt_opcode (OP_VAR_VALUE); }
658 ;
659
660 qualified_name: typebase COLONCOLON name
661 {
662 struct type *type = $1;
663 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
664 && TYPE_CODE (type) != TYPE_CODE_UNION)
665 error ("`%s' is not defined as an aggregate type.",
666 TYPE_NAME (type));
667
668 write_exp_elt_opcode (OP_SCOPE);
669 write_exp_elt_type (type);
670 write_exp_string ($3);
671 write_exp_elt_opcode (OP_SCOPE);
672 }
673 | typebase COLONCOLON '~' name
674 {
675 struct type *type = $1;
676 struct stoken tmp_token;
677 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
678 && TYPE_CODE (type) != TYPE_CODE_UNION)
679 error ("`%s' is not defined as an aggregate type.",
680 TYPE_NAME (type));
681
682 if (strcmp (type_name_no_tag (type), $4.ptr) != 0)
683 error ("invalid destructor `%s::~%s'",
684 type_name_no_tag (type), $4.ptr);
685
686 tmp_token.ptr = (char*) alloca ($4.length + 2);
687 tmp_token.length = $4.length + 1;
688 tmp_token.ptr[0] = '~';
689 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
690 tmp_token.ptr[tmp_token.length] = 0;
691 write_exp_elt_opcode (OP_SCOPE);
692 write_exp_elt_type (type);
693 write_exp_string (tmp_token);
694 write_exp_elt_opcode (OP_SCOPE);
695 }
696 ;
697
698 variable: qualified_name
699 | COLONCOLON name
700 {
701 char *name = copy_name ($2);
702 struct symbol *sym;
703 struct minimal_symbol *msymbol;
704
705 sym =
706 lookup_symbol (name, (const struct block *) NULL,
707 VAR_DOMAIN, (int *) NULL);
708 if (sym)
709 {
710 write_exp_elt_opcode (OP_VAR_VALUE);
711 write_exp_elt_block (NULL);
712 write_exp_elt_sym (sym);
713 write_exp_elt_opcode (OP_VAR_VALUE);
714 break;
715 }
716
717 msymbol = lookup_minimal_symbol (name, NULL, NULL);
718 if (msymbol != NULL)
719 write_exp_msymbol (msymbol);
720 else if (!have_full_symbols () && !have_partial_symbols ())
721 error ("No symbol table is loaded. Use the \"file\" command.");
722 else
723 error ("No symbol \"%s\" in current context.", name);
724 }
725 ;
726
727 variable: name_not_typename
728 { struct symbol *sym = $1.sym;
729
730 if (sym)
731 {
732 if (symbol_read_needs_frame (sym))
733 {
734 if (innermost_block == 0 ||
735 contained_in (block_found,
736 innermost_block))
737 innermost_block = block_found;
738 }
739
740 write_exp_elt_opcode (OP_VAR_VALUE);
741 /* We want to use the selected frame, not
742 another more inner frame which happens to
743 be in the same block. */
744 write_exp_elt_block (NULL);
745 write_exp_elt_sym (sym);
746 write_exp_elt_opcode (OP_VAR_VALUE);
747 }
748 else if ($1.is_a_field_of_this)
749 {
750 /* C++/ObjC: it hangs off of `this'/'self'.
751 Must not inadvertently convert from a
752 method call to data ref. */
753 if (innermost_block == 0 ||
754 contained_in (block_found, innermost_block))
755 innermost_block = block_found;
756 write_exp_elt_opcode (OP_OBJC_SELF);
757 write_exp_elt_opcode (OP_OBJC_SELF);
758 write_exp_elt_opcode (STRUCTOP_PTR);
759 write_exp_string ($1.stoken);
760 write_exp_elt_opcode (STRUCTOP_PTR);
761 }
762 else
763 {
764 struct minimal_symbol *msymbol;
765 char *arg = copy_name ($1.stoken);
766
767 msymbol =
768 lookup_minimal_symbol (arg, NULL, NULL);
769 if (msymbol != NULL)
770 write_exp_msymbol (msymbol);
771 else if (!have_full_symbols () &&
772 !have_partial_symbols ())
773 error ("No symbol table is loaded. Use the \"file\" command.");
774 else
775 error ("No symbol \"%s\" in current context.",
776 copy_name ($1.stoken));
777 }
778 }
779 ;
780
781
782 ptype : typebase
783 /* "const" and "volatile" are curently ignored. A type
784 qualifier before the type is currently handled in the
785 typebase rule. The reason for recognizing these here
786 (shift/reduce conflicts) might be obsolete now that some
787 pointer to member rules have been deleted. */
788 | typebase CONST_KEYWORD
789 | typebase VOLATILE_KEYWORD
790 | typebase abs_decl
791 { $$ = follow_types ($1); }
792 | typebase CONST_KEYWORD abs_decl
793 { $$ = follow_types ($1); }
794 | typebase VOLATILE_KEYWORD abs_decl
795 { $$ = follow_types ($1); }
796 ;
797
798 abs_decl: '*'
799 { push_type (tp_pointer); $$ = 0; }
800 | '*' abs_decl
801 { push_type (tp_pointer); $$ = $2; }
802 | '&'
803 { push_type (tp_reference); $$ = 0; }
804 | '&' abs_decl
805 { push_type (tp_reference); $$ = $2; }
806 | direct_abs_decl
807 ;
808
809 direct_abs_decl: '(' abs_decl ')'
810 { $$ = $2; }
811 | direct_abs_decl array_mod
812 {
813 push_type_int ($2);
814 push_type (tp_array);
815 }
816 | array_mod
817 {
818 push_type_int ($1);
819 push_type (tp_array);
820 $$ = 0;
821 }
822
823 | direct_abs_decl func_mod
824 { push_type (tp_function); }
825 | func_mod
826 { push_type (tp_function); }
827 ;
828
829 array_mod: '[' ']'
830 { $$ = -1; }
831 | '[' INT ']'
832 { $$ = $2.val; }
833 ;
834
835 func_mod: '(' ')'
836 { $$ = 0; }
837 | '(' nonempty_typelist ')'
838 { free ($2); $$ = 0; }
839 ;
840
841 /* We used to try to recognize more pointer to member types here, but
842 that didn't work (shift/reduce conflicts meant that these rules
843 never got executed). The problem is that
844 int (foo::bar::baz::bizzle)
845 is a function type but
846 int (foo::bar::baz::bizzle::*)
847 is a pointer to member type. Stroustrup loses again! */
848
849 type : ptype
850 ;
851
852 typebase /* Implements (approximately): (type-qualifier)* type-specifier. */
853 : TYPENAME
854 { $$ = $1.type; }
855 | CLASSNAME
856 {
857 if ($1.type == NULL)
858 error ("No symbol \"%s\" in current context.",
859 copy_name($1.stoken));
860 else
861 $$ = $1.type;
862 }
863 | INT_KEYWORD
864 { $$ = parse_type->builtin_int; }
865 | LONG
866 { $$ = parse_type->builtin_long; }
867 | SHORT
868 { $$ = parse_type->builtin_short; }
869 | LONG INT_KEYWORD
870 { $$ = parse_type->builtin_long; }
871 | UNSIGNED LONG INT_KEYWORD
872 { $$ = parse_type->builtin_unsigned_long; }
873 | LONG LONG
874 { $$ = parse_type->builtin_long_long; }
875 | LONG LONG INT_KEYWORD
876 { $$ = parse_type->builtin_long_long; }
877 | UNSIGNED LONG LONG
878 { $$ = parse_type->builtin_unsigned_long_long; }
879 | UNSIGNED LONG LONG INT_KEYWORD
880 { $$ = parse_type->builtin_unsigned_long_long; }
881 | SHORT INT_KEYWORD
882 { $$ = parse_type->builtin_short; }
883 | UNSIGNED SHORT INT_KEYWORD
884 { $$ = parse_type->builtin_unsigned_short; }
885 | DOUBLE_KEYWORD
886 { $$ = parse_type->builtin_double; }
887 | LONG DOUBLE_KEYWORD
888 { $$ = parse_type->builtin_long_double; }
889 | STRUCT name
890 { $$ = lookup_struct (copy_name ($2),
891 expression_context_block); }
892 | CLASS name
893 { $$ = lookup_struct (copy_name ($2),
894 expression_context_block); }
895 | UNION name
896 { $$ = lookup_union (copy_name ($2),
897 expression_context_block); }
898 | ENUM name
899 { $$ = lookup_enum (copy_name ($2),
900 expression_context_block); }
901 | UNSIGNED typename
902 { $$ = lookup_unsigned_typename (parse_language,
903 parse_gdbarch,
904 TYPE_NAME($2.type)); }
905 | UNSIGNED
906 { $$ = parse_type->builtin_unsigned_int; }
907 | SIGNED_KEYWORD typename
908 { $$ = lookup_signed_typename (parse_language,
909 parse_gdbarch,
910 TYPE_NAME($2.type)); }
911 | SIGNED_KEYWORD
912 { $$ = parse_type->builtin_int; }
913 | TEMPLATE name '<' type '>'
914 { $$ = lookup_template_type(copy_name($2), $4,
915 expression_context_block);
916 }
917 /* "const" and "volatile" are curently ignored. A type
918 qualifier after the type is handled in the ptype rule. I
919 think these could be too. */
920 | CONST_KEYWORD typebase { $$ = $2; }
921 | VOLATILE_KEYWORD typebase { $$ = $2; }
922 ;
923
924 typename: TYPENAME
925 | INT_KEYWORD
926 {
927 $$.stoken.ptr = "int";
928 $$.stoken.length = 3;
929 $$.type = parse_type->builtin_int;
930 }
931 | LONG
932 {
933 $$.stoken.ptr = "long";
934 $$.stoken.length = 4;
935 $$.type = parse_type->builtin_long;
936 }
937 | SHORT
938 {
939 $$.stoken.ptr = "short";
940 $$.stoken.length = 5;
941 $$.type = parse_type->builtin_short;
942 }
943 ;
944
945 nonempty_typelist
946 : type
947 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
948 $<ivec>$[0] = 1; /* Number of types in vector. */
949 $$[1] = $1;
950 }
951 | nonempty_typelist ',' type
952 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
953 $$ = (struct type **) realloc ((char *) $1, len);
954 $$[$<ivec>$[0]] = $3;
955 }
956 ;
957
958 name : NAME { $$ = $1.stoken; }
959 | BLOCKNAME { $$ = $1.stoken; }
960 | TYPENAME { $$ = $1.stoken; }
961 | CLASSNAME { $$ = $1.stoken; }
962 | NAME_OR_INT { $$ = $1.stoken; }
963 ;
964
965 name_not_typename : NAME
966 | BLOCKNAME
967 /* These would be useful if name_not_typename was useful, but it is
968 just a fake for "variable", so these cause reduce/reduce conflicts
969 because the parser can't tell whether NAME_OR_INT is a
970 name_not_typename (=variable, =exp) or just an exp. If
971 name_not_typename was ever used in an lvalue context where only a
972 name could occur, this might be useful. */
973 /* | NAME_OR_INT */
974 ;
975
976 %%
977
978 /* Take care of parsing a number (anything that starts with a digit).
979 Set yylval and return the token type; update lexptr. LEN is the
980 number of characters in it. */
981
982 /*** Needs some error checking for the float case. ***/
983
984 static int
985 parse_number (p, len, parsed_float, putithere)
986 char *p;
987 int len;
988 int parsed_float;
989 YYSTYPE *putithere;
990 {
991 /* FIXME: Shouldn't these be unsigned? We don't deal with negative
992 values here, and we do kind of silly things like cast to
993 unsigned. */
994 LONGEST n = 0;
995 LONGEST prevn = 0;
996 unsigned LONGEST un;
997
998 int i = 0;
999 int c;
1000 int base = input_radix;
1001 int unsigned_p = 0;
1002
1003 /* Number of "L" suffixes encountered. */
1004 int long_p = 0;
1005
1006 /* We have found a "L" or "U" suffix. */
1007 int found_suffix = 0;
1008
1009 unsigned LONGEST high_bit;
1010 struct type *signed_type;
1011 struct type *unsigned_type;
1012
1013 if (parsed_float)
1014 {
1015 if (! parse_c_float (parse_gdbarch, p, len,
1016 &putithere->typed_val_float.dval,
1017 &putithere->typed_val_float.type))
1018 return ERROR;
1019 return FLOAT;
1020 }
1021
1022 /* Handle base-switching prefixes 0x, 0t, 0d, and 0. */
1023 if (p[0] == '0')
1024 switch (p[1])
1025 {
1026 case 'x':
1027 case 'X':
1028 if (len >= 3)
1029 {
1030 p += 2;
1031 base = 16;
1032 len -= 2;
1033 }
1034 break;
1035
1036 case 't':
1037 case 'T':
1038 case 'd':
1039 case 'D':
1040 if (len >= 3)
1041 {
1042 p += 2;
1043 base = 10;
1044 len -= 2;
1045 }
1046 break;
1047
1048 default:
1049 base = 8;
1050 break;
1051 }
1052
1053 while (len-- > 0)
1054 {
1055 c = *p++;
1056 if (c >= 'A' && c <= 'Z')
1057 c += 'a' - 'A';
1058 if (c != 'l' && c != 'u')
1059 n *= base;
1060 if (c >= '0' && c <= '9')
1061 {
1062 if (found_suffix)
1063 return ERROR;
1064 n += i = c - '0';
1065 }
1066 else
1067 {
1068 if (base > 10 && c >= 'a' && c <= 'f')
1069 {
1070 if (found_suffix)
1071 return ERROR;
1072 n += i = c - 'a' + 10;
1073 }
1074 else if (c == 'l')
1075 {
1076 ++long_p;
1077 found_suffix = 1;
1078 }
1079 else if (c == 'u')
1080 {
1081 unsigned_p = 1;
1082 found_suffix = 1;
1083 }
1084 else
1085 return ERROR; /* Char not a digit. */
1086 }
1087 if (i >= base)
1088 return ERROR; /* Invalid digit in this base. */
1089
1090 /* Portably test for overflow (only works for nonzero values, so
1091 make a second check for zero). FIXME: Can't we just make n
1092 and prevn unsigned and avoid this? */
1093 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
1094 unsigned_p = 1; /* Try something unsigned. */
1095
1096 /* Portably test for unsigned overflow.
1097 FIXME: This check is wrong; for example it doesn't find
1098 overflow on 0x123456789 when LONGEST is 32 bits. */
1099 if (c != 'l' && c != 'u' && n != 0)
1100 {
1101 if ((unsigned_p && (unsigned LONGEST) prevn >= (unsigned LONGEST) n))
1102 error ("Numeric constant too large.");
1103 }
1104 prevn = n;
1105 }
1106
1107 /* An integer constant is an int, a long, or a long long. An L
1108 suffix forces it to be long; an LL suffix forces it to be long
1109 long. If not forced to a larger size, it gets the first type of
1110 the above that it fits in. To figure out whether it fits, we
1111 shift it right and see whether anything remains. Note that we
1112 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
1113 operation, because many compilers will warn about such a shift
1114 (which always produces a zero result). Sometimes gdbarch_int_bit
1115 or gdbarch_long_int will be that big, sometimes not. To deal with
1116 the case where it is we just always shift the value more than
1117 once, with fewer bits each time. */
1118
1119 un = (unsigned LONGEST)n >> 2;
1120 if (long_p == 0
1121 && (un >> (gdbarch_int_bit (parse_gdbarch) - 2)) == 0)
1122 {
1123 high_bit = ((unsigned LONGEST)1) << (gdbarch_int_bit (parse_gdbarch) - 1);
1124
1125 /* A large decimal (not hex or octal) constant (between INT_MAX
1126 and UINT_MAX) is a long or unsigned long, according to ANSI,
1127 never an unsigned int, but this code treats it as unsigned
1128 int. This probably should be fixed. GCC gives a warning on
1129 such constants. */
1130
1131 unsigned_type = parse_type->builtin_unsigned_int;
1132 signed_type = parse_type->builtin_int;
1133 }
1134 else if (long_p <= 1
1135 && (un >> (gdbarch_long_bit (parse_gdbarch) - 2)) == 0)
1136 {
1137 high_bit = ((unsigned LONGEST)1) << (gdbarch_long_bit (parse_gdbarch) - 1);
1138 unsigned_type = parse_type->builtin_unsigned_long;
1139 signed_type = parse_type->builtin_long;
1140 }
1141 else
1142 {
1143 high_bit = (((unsigned LONGEST)1)
1144 << (gdbarch_long_long_bit (parse_gdbarch) - 32 - 1)
1145 << 16
1146 << 16);
1147 if (high_bit == 0)
1148 /* A long long does not fit in a LONGEST. */
1149 high_bit =
1150 (unsigned LONGEST)1 << (sizeof (LONGEST) * HOST_CHAR_BIT - 1);
1151 unsigned_type = parse_type->builtin_unsigned_long_long;
1152 signed_type = parse_type->builtin_long_long;
1153 }
1154
1155 putithere->typed_val_int.val = n;
1156
1157 /* If the high bit of the worked out type is set then this number
1158 has to be unsigned. */
1159
1160 if (unsigned_p || (n & high_bit))
1161 {
1162 putithere->typed_val_int.type = unsigned_type;
1163 }
1164 else
1165 {
1166 putithere->typed_val_int.type = signed_type;
1167 }
1168
1169 return INT;
1170 }
1171
1172 struct token
1173 {
1174 char *operator;
1175 int token;
1176 enum exp_opcode opcode;
1177 };
1178
1179 static const struct token tokentab3[] =
1180 {
1181 {">>=", ASSIGN_MODIFY, BINOP_RSH},
1182 {"<<=", ASSIGN_MODIFY, BINOP_LSH}
1183 };
1184
1185 static const struct token tokentab2[] =
1186 {
1187 {"+=", ASSIGN_MODIFY, BINOP_ADD},
1188 {"-=", ASSIGN_MODIFY, BINOP_SUB},
1189 {"*=", ASSIGN_MODIFY, BINOP_MUL},
1190 {"/=", ASSIGN_MODIFY, BINOP_DIV},
1191 {"%=", ASSIGN_MODIFY, BINOP_REM},
1192 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
1193 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
1194 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
1195 {"++", INCREMENT, BINOP_END},
1196 {"--", DECREMENT, BINOP_END},
1197 {"->", ARROW, BINOP_END},
1198 {"&&", ANDAND, BINOP_END},
1199 {"||", OROR, BINOP_END},
1200 {"::", COLONCOLON, BINOP_END},
1201 {"<<", LSH, BINOP_END},
1202 {">>", RSH, BINOP_END},
1203 {"==", EQUAL, BINOP_END},
1204 {"!=", NOTEQUAL, BINOP_END},
1205 {"<=", LEQ, BINOP_END},
1206 {">=", GEQ, BINOP_END}
1207 };
1208
1209 /* Read one token, getting characters through lexptr. */
1210
1211 static int
1212 yylex ()
1213 {
1214 int c, tokchr;
1215 int namelen;
1216 unsigned int i;
1217 char *tokstart;
1218 char *tokptr;
1219 int tempbufindex;
1220 static char *tempbuf;
1221 static int tempbufsize;
1222
1223 retry:
1224
1225 tokstart = lexptr;
1226 /* See if it is a special token of length 3. */
1227 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1228 if (strncmp (tokstart, tokentab3[i].operator, 3) == 0)
1229 {
1230 lexptr += 3;
1231 yylval.opcode = tokentab3[i].opcode;
1232 return tokentab3[i].token;
1233 }
1234
1235 /* See if it is a special token of length 2. */
1236 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1237 if (strncmp (tokstart, tokentab2[i].operator, 2) == 0)
1238 {
1239 lexptr += 2;
1240 yylval.opcode = tokentab2[i].opcode;
1241 return tokentab2[i].token;
1242 }
1243
1244 c = 0;
1245 switch (tokchr = *tokstart)
1246 {
1247 case 0:
1248 return 0;
1249
1250 case ' ':
1251 case '\t':
1252 case '\n':
1253 lexptr++;
1254 goto retry;
1255
1256 case '\'':
1257 /* We either have a character constant ('0' or '\177' for
1258 example) or we have a quoted symbol reference ('foo(int,int)'
1259 in C++ for example). */
1260 lexptr++;
1261 c = *lexptr++;
1262 if (c == '\\')
1263 c = parse_escape (parse_gdbarch, &lexptr);
1264 else if (c == '\'')
1265 error ("Empty character constant.");
1266
1267 yylval.typed_val_int.val = c;
1268 yylval.typed_val_int.type = parse_type->builtin_char;
1269
1270 c = *lexptr++;
1271 if (c != '\'')
1272 {
1273 namelen = skip_quoted (tokstart) - tokstart;
1274 if (namelen > 2)
1275 {
1276 lexptr = tokstart + namelen;
1277 if (lexptr[-1] != '\'')
1278 error ("Unmatched single quote.");
1279 namelen -= 2;
1280 tokstart++;
1281 goto tryname;
1282 }
1283 error ("Invalid character constant.");
1284 }
1285 return INT;
1286
1287 case '(':
1288 paren_depth++;
1289 lexptr++;
1290 return '(';
1291
1292 case ')':
1293 if (paren_depth == 0)
1294 return 0;
1295 paren_depth--;
1296 lexptr++;
1297 return ')';
1298
1299 case ',':
1300 if (comma_terminates && paren_depth == 0)
1301 return 0;
1302 lexptr++;
1303 return ',';
1304
1305 case '.':
1306 /* Might be a floating point number. */
1307 if (lexptr[1] < '0' || lexptr[1] > '9')
1308 goto symbol; /* Nope, must be a symbol. */
1309 /* FALL THRU into number case. */
1310
1311 case '0':
1312 case '1':
1313 case '2':
1314 case '3':
1315 case '4':
1316 case '5':
1317 case '6':
1318 case '7':
1319 case '8':
1320 case '9':
1321 {
1322 /* It's a number. */
1323 int got_dot = 0, got_e = 0, toktype = FLOAT;
1324 /* Initialize toktype to anything other than ERROR. */
1325 char *p = tokstart;
1326 int hex = input_radix > 10;
1327 int local_radix = input_radix;
1328 if (tokchr == '0' && (p[1] == 'x' || p[1] == 'X'))
1329 {
1330 p += 2;
1331 hex = 1;
1332 local_radix = 16;
1333 }
1334 else if (tokchr == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1335 {
1336 p += 2;
1337 hex = 0;
1338 local_radix = 10;
1339 }
1340
1341 for (;; ++p)
1342 {
1343 /* This test includes !hex because 'e' is a valid hex digit
1344 and thus does not indicate a floating point number when
1345 the radix is hex. */
1346
1347 if (!hex && (*p == 'e' || *p == 'E'))
1348 if (got_e)
1349 toktype = ERROR; /* Only one 'e' in a float. */
1350 else
1351 got_e = 1;
1352 /* This test does not include !hex, because a '.' always
1353 indicates a decimal floating point number regardless of
1354 the radix. */
1355 else if (*p == '.')
1356 if (got_dot)
1357 toktype = ERROR; /* Only one '.' in a float. */
1358 else
1359 got_dot = 1;
1360 else if (got_e && (p[-1] == 'e' || p[-1] == 'E') &&
1361 (*p == '-' || *p == '+'))
1362 /* This is the sign of the exponent, not the end of the
1363 number. */
1364 continue;
1365 /* Always take decimal digits; parse_number handles radix
1366 error. */
1367 else if (*p >= '0' && *p <= '9')
1368 continue;
1369 /* We will take letters only if hex is true, and only up
1370 to what the input radix would permit. FSF was content
1371 to rely on parse_number to validate; but it leaks. */
1372 else if (*p >= 'a' && *p <= 'z')
1373 {
1374 if (!hex || *p >= ('a' + local_radix - 10))
1375 toktype = ERROR;
1376 }
1377 else if (*p >= 'A' && *p <= 'Z')
1378 {
1379 if (!hex || *p >= ('A' + local_radix - 10))
1380 toktype = ERROR;
1381 }
1382 else break;
1383 }
1384 if (toktype != ERROR)
1385 toktype = parse_number (tokstart, p - tokstart,
1386 got_dot | got_e, &yylval);
1387 if (toktype == ERROR)
1388 {
1389 char *err_copy = (char *) alloca (p - tokstart + 1);
1390
1391 memcpy (err_copy, tokstart, p - tokstart);
1392 err_copy[p - tokstart] = 0;
1393 error ("Invalid number \"%s\".", err_copy);
1394 }
1395 lexptr = p;
1396 return toktype;
1397 }
1398
1399 case '+':
1400 case '-':
1401 case '*':
1402 case '/':
1403 case '%':
1404 case '|':
1405 case '&':
1406 case '^':
1407 case '~':
1408 case '!':
1409 #if 0
1410 case '@': /* Moved out below. */
1411 #endif
1412 case '<':
1413 case '>':
1414 case '[':
1415 case ']':
1416 case '?':
1417 case ':':
1418 case '=':
1419 case '{':
1420 case '}':
1421 symbol:
1422 lexptr++;
1423 return tokchr;
1424
1425 case '@':
1426 if (strncmp(tokstart, "@selector", 9) == 0)
1427 {
1428 tokptr = strchr(tokstart, '(');
1429 if (tokptr == NULL)
1430 {
1431 error ("Missing '(' in @selector(...)");
1432 }
1433 tempbufindex = 0;
1434 tokptr++; /* Skip the '('. */
1435 do {
1436 /* Grow the static temp buffer if necessary, including
1437 allocating the first one on demand. */
1438 if (tempbufindex + 1 >= tempbufsize)
1439 {
1440 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1441 }
1442 tempbuf[tempbufindex++] = *tokptr++;
1443 } while ((*tokptr != ')') && (*tokptr != '\0'));
1444 if (*tokptr++ != ')')
1445 {
1446 error ("Missing ')' in @selector(...)");
1447 }
1448 tempbuf[tempbufindex] = '\0';
1449 yylval.sval.ptr = tempbuf;
1450 yylval.sval.length = tempbufindex;
1451 lexptr = tokptr;
1452 return SELECTOR;
1453 }
1454 if (tokstart[1] != '"')
1455 {
1456 lexptr++;
1457 return tokchr;
1458 }
1459 /* ObjC NextStep NSString constant: fall thru and parse like
1460 STRING. */
1461 tokstart++;
1462
1463 case '"':
1464
1465 /* Build the gdb internal form of the input string in tempbuf,
1466 translating any standard C escape forms seen. Note that the
1467 buffer is null byte terminated *only* for the convenience of
1468 debugging gdb itself and printing the buffer contents when
1469 the buffer contains no embedded nulls. Gdb does not depend
1470 upon the buffer being null byte terminated, it uses the
1471 length string instead. This allows gdb to handle C strings
1472 (as well as strings in other languages) with embedded null
1473 bytes. */
1474
1475 tokptr = ++tokstart;
1476 tempbufindex = 0;
1477
1478 do {
1479 /* Grow the static temp buffer if necessary, including
1480 allocating the first one on demand. */
1481 if (tempbufindex + 1 >= tempbufsize)
1482 {
1483 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1484 }
1485 switch (*tokptr)
1486 {
1487 case '\0':
1488 case '"':
1489 /* Do nothing, loop will terminate. */
1490 break;
1491 case '\\':
1492 tokptr++;
1493 c = parse_escape (parse_gdbarch, &tokptr);
1494 if (c == -1)
1495 {
1496 continue;
1497 }
1498 tempbuf[tempbufindex++] = c;
1499 break;
1500 default:
1501 tempbuf[tempbufindex++] = *tokptr++;
1502 break;
1503 }
1504 } while ((*tokptr != '"') && (*tokptr != '\0'));
1505 if (*tokptr++ != '"')
1506 {
1507 error ("Unterminated string in expression.");
1508 }
1509 tempbuf[tempbufindex] = '\0'; /* See note above. */
1510 yylval.sval.ptr = tempbuf;
1511 yylval.sval.length = tempbufindex;
1512 lexptr = tokptr;
1513 return (tokchr == '@' ? NSSTRING : STRING);
1514 }
1515
1516 if (!(tokchr == '_' || tokchr == '$' ||
1517 (tokchr >= 'a' && tokchr <= 'z') || (tokchr >= 'A' && tokchr <= 'Z')))
1518 /* We must have come across a bad character (e.g. ';'). */
1519 error ("Invalid character '%c' in expression.", c);
1520
1521 /* It's a name. See how long it is. */
1522 namelen = 0;
1523 for (c = tokstart[namelen];
1524 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1525 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
1526 {
1527 if (c == '<')
1528 {
1529 int i = namelen;
1530 while (tokstart[++i] && tokstart[i] != '>');
1531 if (tokstart[i] == '>')
1532 namelen = i;
1533 }
1534 c = tokstart[++namelen];
1535 }
1536
1537 /* The token "if" terminates the expression and is NOT
1538 removed from the input stream. */
1539 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1540 {
1541 return 0;
1542 }
1543
1544 lexptr += namelen;
1545
1546 tryname:
1547
1548 /* Catch specific keywords. Should be done with a data structure. */
1549 switch (namelen)
1550 {
1551 case 8:
1552 if (strncmp (tokstart, "unsigned", 8) == 0)
1553 return UNSIGNED;
1554 if (parse_language->la_language == language_cplus
1555 && strncmp (tokstart, "template", 8) == 0)
1556 return TEMPLATE;
1557 if (strncmp (tokstart, "volatile", 8) == 0)
1558 return VOLATILE_KEYWORD;
1559 break;
1560 case 6:
1561 if (strncmp (tokstart, "struct", 6) == 0)
1562 return STRUCT;
1563 if (strncmp (tokstart, "signed", 6) == 0)
1564 return SIGNED_KEYWORD;
1565 if (strncmp (tokstart, "sizeof", 6) == 0)
1566 return SIZEOF;
1567 if (strncmp (tokstart, "double", 6) == 0)
1568 return DOUBLE_KEYWORD;
1569 break;
1570 case 5:
1571 if ((parse_language->la_language == language_cplus)
1572 && strncmp (tokstart, "class", 5) == 0)
1573 return CLASS;
1574 if (strncmp (tokstart, "union", 5) == 0)
1575 return UNION;
1576 if (strncmp (tokstart, "short", 5) == 0)
1577 return SHORT;
1578 if (strncmp (tokstart, "const", 5) == 0)
1579 return CONST_KEYWORD;
1580 break;
1581 case 4:
1582 if (strncmp (tokstart, "enum", 4) == 0)
1583 return ENUM;
1584 if (strncmp (tokstart, "long", 4) == 0)
1585 return LONG;
1586 break;
1587 case 3:
1588 if (strncmp (tokstart, "int", 3) == 0)
1589 return INT_KEYWORD;
1590 break;
1591 default:
1592 break;
1593 }
1594
1595 yylval.sval.ptr = tokstart;
1596 yylval.sval.length = namelen;
1597
1598 if (*tokstart == '$')
1599 {
1600 write_dollar_variable (yylval.sval);
1601 return VARIABLE;
1602 }
1603
1604 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1605 functions or symtabs. If this is not so, then ...
1606 Use token-type TYPENAME for symbols that happen to be defined
1607 currently as names of types; NAME for other symbols.
1608 The caller is not constrained to care about the distinction. */
1609 {
1610 char *tmp = copy_name (yylval.sval);
1611 struct symbol *sym;
1612 int is_a_field_of_this = 0, *need_this;
1613 int hextype;
1614
1615 if (parse_language->la_language == language_cplus ||
1616 parse_language->la_language == language_objc)
1617 need_this = &is_a_field_of_this;
1618 else
1619 need_this = (int *) NULL;
1620
1621 sym = lookup_symbol (tmp, expression_context_block,
1622 VAR_DOMAIN,
1623 need_this);
1624 /* Call lookup_symtab, not lookup_partial_symtab, in case there
1625 are no psymtabs (coff, xcoff, or some future change to blow
1626 away the psymtabs once symbols are read). */
1627 if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK) ||
1628 lookup_symtab (tmp))
1629 {
1630 yylval.ssym.sym = sym;
1631 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1632 return BLOCKNAME;
1633 }
1634 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1635 {
1636 #if 1
1637 /* Despite the following flaw, we need to keep this code
1638 enabled. Because we can get called from
1639 check_stub_method, if we don't handle nested types then
1640 it screws many operations in any program which uses
1641 nested types. */
1642 /* In "A::x", if x is a member function of A and there
1643 happens to be a type (nested or not, since the stabs
1644 don't make that distinction) named x, then this code
1645 incorrectly thinks we are dealing with nested types
1646 rather than a member function. */
1647
1648 char *p;
1649 char *namestart;
1650 struct symbol *best_sym;
1651
1652 /* Look ahead to detect nested types. This probably should
1653 be done in the grammar, but trying seemed to introduce a
1654 lot of shift/reduce and reduce/reduce conflicts. It's
1655 possible that it could be done, though. Or perhaps a
1656 non-grammar, but less ad hoc, approach would work well. */
1657
1658 /* Since we do not currently have any way of distinguishing
1659 a nested type from a non-nested one (the stabs don't tell
1660 us whether a type is nested), we just ignore the
1661 containing type. */
1662
1663 p = lexptr;
1664 best_sym = sym;
1665 while (1)
1666 {
1667 /* Skip whitespace. */
1668 while (*p == ' ' || *p == '\t' || *p == '\n')
1669 ++p;
1670 if (*p == ':' && p[1] == ':')
1671 {
1672 /* Skip the `::'. */
1673 p += 2;
1674 /* Skip whitespace. */
1675 while (*p == ' ' || *p == '\t' || *p == '\n')
1676 ++p;
1677 namestart = p;
1678 while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9')
1679 || (*p >= 'a' && *p <= 'z')
1680 || (*p >= 'A' && *p <= 'Z'))
1681 ++p;
1682 if (p != namestart)
1683 {
1684 struct symbol *cur_sym;
1685 /* As big as the whole rest of the expression,
1686 which is at least big enough. */
1687 char *ncopy = alloca (strlen (tmp) +
1688 strlen (namestart) + 3);
1689 char *tmp1;
1690
1691 tmp1 = ncopy;
1692 memcpy (tmp1, tmp, strlen (tmp));
1693 tmp1 += strlen (tmp);
1694 memcpy (tmp1, "::", 2);
1695 tmp1 += 2;
1696 memcpy (tmp1, namestart, p - namestart);
1697 tmp1[p - namestart] = '\0';
1698 cur_sym = lookup_symbol (ncopy,
1699 expression_context_block,
1700 VAR_DOMAIN, (int *) NULL);
1701 if (cur_sym)
1702 {
1703 if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF)
1704 {
1705 best_sym = cur_sym;
1706 lexptr = p;
1707 }
1708 else
1709 break;
1710 }
1711 else
1712 break;
1713 }
1714 else
1715 break;
1716 }
1717 else
1718 break;
1719 }
1720
1721 yylval.tsym.type = SYMBOL_TYPE (best_sym);
1722 #else /* not 0 */
1723 yylval.tsym.type = SYMBOL_TYPE (sym);
1724 #endif /* not 0 */
1725 return TYPENAME;
1726 }
1727 yylval.tsym.type
1728 = language_lookup_primitive_type_by_name (parse_language,
1729 parse_gdbarch, tmp);
1730 if (yylval.tsym.type != NULL)
1731 return TYPENAME;
1732
1733 /* See if it's an ObjC classname. */
1734 if (!sym)
1735 {
1736 CORE_ADDR Class = lookup_objc_class (parse_gdbarch, tmp);
1737 if (Class)
1738 {
1739 yylval.class.class = Class;
1740 if ((sym = lookup_struct_typedef (tmp,
1741 expression_context_block,
1742 1)))
1743 yylval.class.type = SYMBOL_TYPE (sym);
1744 return CLASSNAME;
1745 }
1746 }
1747
1748 /* Input names that aren't symbols but ARE valid hex numbers,
1749 when the input radix permits them, can be names or numbers
1750 depending on the parse. Note we support radixes > 16 here. */
1751 if (!sym &&
1752 ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
1753 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1754 {
1755 YYSTYPE newlval; /* Its value is ignored. */
1756 hextype = parse_number (tokstart, namelen, 0, &newlval);
1757 if (hextype == INT)
1758 {
1759 yylval.ssym.sym = sym;
1760 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1761 return NAME_OR_INT;
1762 }
1763 }
1764
1765 /* Any other kind of symbol. */
1766 yylval.ssym.sym = sym;
1767 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1768 return NAME;
1769 }
1770 }
1771
1772 void
1773 yyerror (msg)
1774 char *msg;
1775 {
1776 if (*lexptr == '\0')
1777 error("A %s near end of expression.", (msg ? msg : "error"));
1778 else
1779 error ("A %s in expression, near `%s'.", (msg ? msg : "error"),
1780 lexptr);
1781 }
This page took 0.083645 seconds and 4 git commands to generate.