* mipsread.c (read_alphacoff_dynamic_symtab): Replace alloca calls
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2 Copyright 1992, 1993, 1994, 1995, 2001
3 Free Software Foundation, Inc.
4 Contributed by Cygnus Support, using pieces from other GDB modules.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* This file contains support routines for creating, manipulating, and
24 destroying objfile structures. */
25
26 #include "defs.h"
27 #include "bfd.h" /* Binary File Description */
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdb-stabs.h"
32 #include "target.h"
33
34 #include <sys/types.h>
35 #include "gdb_stat.h"
36 #include <fcntl.h>
37 #include "obstack.h"
38 #include "gdb_string.h"
39
40 #include "breakpoint.h"
41
42 /* Prototypes for local functions */
43
44 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
45
46 static int open_existing_mapped_file (char *, long, int);
47
48 static int open_mapped_file (char *filename, long mtime, int flags);
49
50 static PTR map_to_file (int);
51
52 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
53
54 static void add_to_objfile_sections (bfd *, sec_ptr, PTR);
55
56 /* Externally visible variables that are owned by this module.
57 See declarations in objfile.h for more info. */
58
59 struct objfile *object_files; /* Linked list of all objfiles */
60 struct objfile *current_objfile; /* For symbol file being read in */
61 struct objfile *symfile_objfile; /* Main symbol table loaded from */
62 struct objfile *rt_common_objfile; /* For runtime common symbols */
63
64 int mapped_symbol_files; /* Try to use mapped symbol files */
65
66 /* Locate all mappable sections of a BFD file.
67 objfile_p_char is a char * to get it through
68 bfd_map_over_sections; we cast it back to its proper type. */
69
70 #ifndef TARGET_KEEP_SECTION
71 #define TARGET_KEEP_SECTION(ASECT) 0
72 #endif
73
74 /* Called via bfd_map_over_sections to build up the section table that
75 the objfile references. The objfile contains pointers to the start
76 of the table (objfile->sections) and to the first location after
77 the end of the table (objfile->sections_end). */
78
79 static void
80 add_to_objfile_sections (bfd *abfd, sec_ptr asect, PTR objfile_p_char)
81 {
82 struct objfile *objfile = (struct objfile *) objfile_p_char;
83 struct obj_section section;
84 flagword aflag;
85
86 aflag = bfd_get_section_flags (abfd, asect);
87
88 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
89 return;
90
91 if (0 == bfd_section_size (abfd, asect))
92 return;
93 section.offset = 0;
94 section.objfile = objfile;
95 section.the_bfd_section = asect;
96 section.ovly_mapped = 0;
97 section.addr = bfd_section_vma (abfd, asect);
98 section.endaddr = section.addr + bfd_section_size (abfd, asect);
99 obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof (section));
100 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
101 }
102
103 /* Builds a section table for OBJFILE.
104 Returns 0 if OK, 1 on error (in which case bfd_error contains the
105 error).
106
107 Note that while we are building the table, which goes into the
108 psymbol obstack, we hijack the sections_end pointer to instead hold
109 a count of the number of sections. When bfd_map_over_sections
110 returns, this count is used to compute the pointer to the end of
111 the sections table, which then overwrites the count.
112
113 Also note that the OFFSET and OVLY_MAPPED in each table entry
114 are initialized to zero.
115
116 Also note that if anything else writes to the psymbol obstack while
117 we are building the table, we're pretty much hosed. */
118
119 int
120 build_objfile_section_table (struct objfile *objfile)
121 {
122 /* objfile->sections can be already set when reading a mapped symbol
123 file. I believe that we do need to rebuild the section table in
124 this case (we rebuild other things derived from the bfd), but we
125 can't free the old one (it's in the psymbol_obstack). So we just
126 waste some memory. */
127
128 objfile->sections_end = 0;
129 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
130 objfile->sections = (struct obj_section *)
131 obstack_finish (&objfile->psymbol_obstack);
132 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
133 return (0);
134 }
135
136 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
137 allocate a new objfile struct, fill it in as best we can, link it
138 into the list of all known objfiles, and return a pointer to the
139 new objfile struct.
140
141 The FLAGS word contains various bits (OBJF_*) that can be taken as
142 requests for specific operations, like trying to open a mapped
143 version of the objfile (OBJF_MAPPED). Other bits like
144 OBJF_SHARED are simply copied through to the new objfile flags
145 member. */
146
147 struct objfile *
148 allocate_objfile (bfd *abfd, int flags)
149 {
150 struct objfile *objfile = NULL;
151 struct objfile *last_one = NULL;
152
153 if (mapped_symbol_files)
154 flags |= OBJF_MAPPED;
155
156 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
157 if (abfd != NULL)
158 {
159
160 /* If we can support mapped symbol files, try to open/reopen the
161 mapped file that corresponds to the file from which we wish to
162 read symbols. If the objfile is to be mapped, we must malloc
163 the structure itself using the mmap version, and arrange that
164 all memory allocation for the objfile uses the mmap routines.
165 If we are reusing an existing mapped file, from which we get
166 our objfile pointer, we have to make sure that we update the
167 pointers to the alloc/free functions in the obstack, in case
168 these functions have moved within the current gdb. */
169
170 int fd;
171
172 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
173 flags);
174 if (fd >= 0)
175 {
176 PTR md;
177
178 if ((md = map_to_file (fd)) == NULL)
179 {
180 close (fd);
181 }
182 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
183 {
184 /* Update memory corruption handler function addresses. */
185 init_malloc (md);
186 objfile->md = md;
187 objfile->mmfd = fd;
188 /* Update pointers to functions to *our* copies */
189 obstack_chunkfun (&objfile->psymbol_cache.cache, xmmalloc);
190 obstack_freefun (&objfile->psymbol_cache.cache, mfree);
191 obstack_chunkfun (&objfile->psymbol_obstack, xmmalloc);
192 obstack_freefun (&objfile->psymbol_obstack, mfree);
193 obstack_chunkfun (&objfile->symbol_obstack, xmmalloc);
194 obstack_freefun (&objfile->symbol_obstack, mfree);
195 obstack_chunkfun (&objfile->type_obstack, xmmalloc);
196 obstack_freefun (&objfile->type_obstack, mfree);
197 /* If already in objfile list, unlink it. */
198 unlink_objfile (objfile);
199 /* Forget things specific to a particular gdb, may have changed. */
200 objfile->sf = NULL;
201 }
202 else
203 {
204
205 /* Set up to detect internal memory corruption. MUST be
206 done before the first malloc. See comments in
207 init_malloc() and mmcheck(). */
208
209 init_malloc (md);
210
211 objfile = (struct objfile *)
212 xmmalloc (md, sizeof (struct objfile));
213 memset (objfile, 0, sizeof (struct objfile));
214 objfile->md = md;
215 objfile->mmfd = fd;
216 objfile->flags |= OBJF_MAPPED;
217 mmalloc_setkey (objfile->md, 0, objfile);
218 obstack_specify_allocation_with_arg (&objfile->psymbol_cache.cache,
219 0, 0, xmmalloc, mfree,
220 objfile->md);
221 obstack_specify_allocation_with_arg (&objfile->psymbol_obstack,
222 0, 0, xmmalloc, mfree,
223 objfile->md);
224 obstack_specify_allocation_with_arg (&objfile->symbol_obstack,
225 0, 0, xmmalloc, mfree,
226 objfile->md);
227 obstack_specify_allocation_with_arg (&objfile->type_obstack,
228 0, 0, xmmalloc, mfree,
229 objfile->md);
230 }
231 }
232
233 if ((flags & OBJF_MAPPED) && (objfile == NULL))
234 {
235 warning ("symbol table for '%s' will not be mapped",
236 bfd_get_filename (abfd));
237 flags &= ~OBJF_MAPPED;
238 }
239 }
240 #else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */
241
242 if (flags & OBJF_MAPPED)
243 {
244 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
245
246 /* Turn off the global flag so we don't try to do mapped symbol tables
247 any more, which shuts up gdb unless the user specifically gives the
248 "mapped" keyword again. */
249
250 mapped_symbol_files = 0;
251 flags &= ~OBJF_MAPPED;
252 }
253
254 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
255
256 /* If we don't support mapped symbol files, didn't ask for the file to be
257 mapped, or failed to open the mapped file for some reason, then revert
258 back to an unmapped objfile. */
259
260 if (objfile == NULL)
261 {
262 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
263 memset (objfile, 0, sizeof (struct objfile));
264 objfile->md = NULL;
265 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
266 xmalloc, xfree);
267 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
268 xfree);
269 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
270 xfree);
271 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
272 xfree);
273 flags &= ~OBJF_MAPPED;
274 }
275
276 /* Update the per-objfile information that comes from the bfd, ensuring
277 that any data that is reference is saved in the per-objfile data
278 region. */
279
280 objfile->obfd = abfd;
281 if (objfile->name != NULL)
282 {
283 mfree (objfile->md, objfile->name);
284 }
285 if (abfd != NULL)
286 {
287 objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd));
288 objfile->mtime = bfd_get_mtime (abfd);
289
290 /* Build section table. */
291
292 if (build_objfile_section_table (objfile))
293 {
294 error ("Can't find the file sections in `%s': %s",
295 objfile->name, bfd_errmsg (bfd_get_error ()));
296 }
297 }
298
299 /* Initialize the section indexes for this objfile, so that we can
300 later detect if they are used w/o being properly assigned to. */
301
302 objfile->sect_index_text = -1;
303 objfile->sect_index_data = -1;
304 objfile->sect_index_bss = -1;
305 objfile->sect_index_rodata = -1;
306
307 /* Add this file onto the tail of the linked list of other such files. */
308
309 objfile->next = NULL;
310 if (object_files == NULL)
311 object_files = objfile;
312 else
313 {
314 for (last_one = object_files;
315 last_one->next;
316 last_one = last_one->next);
317 last_one->next = objfile;
318 }
319
320 /* Save passed in flag bits. */
321 objfile->flags |= flags;
322
323 return (objfile);
324 }
325
326 /* Put OBJFILE at the front of the list. */
327
328 void
329 objfile_to_front (struct objfile *objfile)
330 {
331 struct objfile **objp;
332 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
333 {
334 if (*objp == objfile)
335 {
336 /* Unhook it from where it is. */
337 *objp = objfile->next;
338 /* Put it in the front. */
339 objfile->next = object_files;
340 object_files = objfile;
341 break;
342 }
343 }
344 }
345
346 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
347 list.
348
349 It is not a bug, or error, to call this function if OBJFILE is not known
350 to be in the current list. This is done in the case of mapped objfiles,
351 for example, just to ensure that the mapped objfile doesn't appear twice
352 in the list. Since the list is threaded, linking in a mapped objfile
353 twice would create a circular list.
354
355 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
356 unlinking it, just to ensure that we have completely severed any linkages
357 between the OBJFILE and the list. */
358
359 void
360 unlink_objfile (struct objfile *objfile)
361 {
362 struct objfile **objpp;
363
364 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
365 {
366 if (*objpp == objfile)
367 {
368 *objpp = (*objpp)->next;
369 objfile->next = NULL;
370 return;
371 }
372 }
373
374 internal_error (__FILE__, __LINE__,
375 "unlink_objfile: objfile already unlinked");
376 }
377
378
379 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
380 that as much as possible is allocated on the symbol_obstack and
381 psymbol_obstack, so that the memory can be efficiently freed.
382
383 Things which we do NOT free because they are not in malloc'd memory
384 or not in memory specific to the objfile include:
385
386 objfile -> sf
387
388 FIXME: If the objfile is using reusable symbol information (via mmalloc),
389 then we need to take into account the fact that more than one process
390 may be using the symbol information at the same time (when mmalloc is
391 extended to support cooperative locking). When more than one process
392 is using the mapped symbol info, we need to be more careful about when
393 we free objects in the reusable area. */
394
395 void
396 free_objfile (struct objfile *objfile)
397 {
398 /* First do any symbol file specific actions required when we are
399 finished with a particular symbol file. Note that if the objfile
400 is using reusable symbol information (via mmalloc) then each of
401 these routines is responsible for doing the correct thing, either
402 freeing things which are valid only during this particular gdb
403 execution, or leaving them to be reused during the next one. */
404
405 if (objfile->sf != NULL)
406 {
407 (*objfile->sf->sym_finish) (objfile);
408 }
409
410 /* We always close the bfd. */
411
412 if (objfile->obfd != NULL)
413 {
414 char *name = bfd_get_filename (objfile->obfd);
415 if (!bfd_close (objfile->obfd))
416 warning ("cannot close \"%s\": %s",
417 name, bfd_errmsg (bfd_get_error ()));
418 xfree (name);
419 }
420
421 /* Remove it from the chain of all objfiles. */
422
423 unlink_objfile (objfile);
424
425 /* If we are going to free the runtime common objfile, mark it
426 as unallocated. */
427
428 if (objfile == rt_common_objfile)
429 rt_common_objfile = NULL;
430
431 /* Before the symbol table code was redone to make it easier to
432 selectively load and remove information particular to a specific
433 linkage unit, gdb used to do these things whenever the monolithic
434 symbol table was blown away. How much still needs to be done
435 is unknown, but we play it safe for now and keep each action until
436 it is shown to be no longer needed. */
437
438 /* I *think* all our callers call clear_symtab_users. If so, no need
439 to call this here. */
440 clear_pc_function_cache ();
441
442 /* The last thing we do is free the objfile struct itself for the
443 non-reusable case, or detach from the mapped file for the reusable
444 case. Note that the mmalloc_detach or the mfree is the last thing
445 we can do with this objfile. */
446
447 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
448
449 if (objfile->flags & OBJF_MAPPED)
450 {
451 /* Remember the fd so we can close it. We can't close it before
452 doing the detach, and after the detach the objfile is gone. */
453 int mmfd;
454
455 mmfd = objfile->mmfd;
456 mmalloc_detach (objfile->md);
457 objfile = NULL;
458 close (mmfd);
459 }
460
461 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
462
463 /* If we still have an objfile, then either we don't support reusable
464 objfiles or this one was not reusable. So free it normally. */
465
466 if (objfile != NULL)
467 {
468 if (objfile->name != NULL)
469 {
470 mfree (objfile->md, objfile->name);
471 }
472 if (objfile->global_psymbols.list)
473 mfree (objfile->md, objfile->global_psymbols.list);
474 if (objfile->static_psymbols.list)
475 mfree (objfile->md, objfile->static_psymbols.list);
476 /* Free the obstacks for non-reusable objfiles */
477 free_bcache (&objfile->psymbol_cache);
478 obstack_free (&objfile->psymbol_obstack, 0);
479 obstack_free (&objfile->symbol_obstack, 0);
480 obstack_free (&objfile->type_obstack, 0);
481 mfree (objfile->md, objfile);
482 objfile = NULL;
483 }
484 }
485
486 static void
487 do_free_objfile_cleanup (void *obj)
488 {
489 free_objfile (obj);
490 }
491
492 struct cleanup *
493 make_cleanup_free_objfile (struct objfile *obj)
494 {
495 return make_cleanup (do_free_objfile_cleanup, obj);
496 }
497
498 /* Free all the object files at once and clean up their users. */
499
500 void
501 free_all_objfiles (void)
502 {
503 struct objfile *objfile, *temp;
504
505 ALL_OBJFILES_SAFE (objfile, temp)
506 {
507 free_objfile (objfile);
508 }
509 clear_symtab_users ();
510 }
511 \f
512 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
513 entries in new_offsets. */
514 void
515 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
516 {
517 struct section_offsets *delta =
518 (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
519
520 {
521 int i;
522 int something_changed = 0;
523 for (i = 0; i < objfile->num_sections; ++i)
524 {
525 delta->offsets[i] =
526 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
527 if (ANOFFSET (delta, i) != 0)
528 something_changed = 1;
529 }
530 if (!something_changed)
531 return;
532 }
533
534 /* OK, get all the symtabs. */
535 {
536 struct symtab *s;
537
538 ALL_OBJFILE_SYMTABS (objfile, s)
539 {
540 struct linetable *l;
541 struct blockvector *bv;
542 int i;
543
544 /* First the line table. */
545 l = LINETABLE (s);
546 if (l)
547 {
548 for (i = 0; i < l->nitems; ++i)
549 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
550 }
551
552 /* Don't relocate a shared blockvector more than once. */
553 if (!s->primary)
554 continue;
555
556 bv = BLOCKVECTOR (s);
557 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
558 {
559 struct block *b;
560 int j;
561
562 b = BLOCKVECTOR_BLOCK (bv, i);
563 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
564 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
565
566 for (j = 0; j < BLOCK_NSYMS (b); ++j)
567 {
568 struct symbol *sym = BLOCK_SYM (b, j);
569
570 fixup_symbol_section (sym, objfile);
571
572 /* The RS6000 code from which this was taken skipped
573 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
574 But I'm leaving out that test, on the theory that
575 they can't possibly pass the tests below. */
576 if ((SYMBOL_CLASS (sym) == LOC_LABEL
577 || SYMBOL_CLASS (sym) == LOC_STATIC
578 || SYMBOL_CLASS (sym) == LOC_INDIRECT)
579 && SYMBOL_SECTION (sym) >= 0)
580 {
581 SYMBOL_VALUE_ADDRESS (sym) +=
582 ANOFFSET (delta, SYMBOL_SECTION (sym));
583 }
584 #ifdef MIPS_EFI_SYMBOL_NAME
585 /* Relocate Extra Function Info for ecoff. */
586
587 else if (SYMBOL_CLASS (sym) == LOC_CONST
588 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
589 && strcmp (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
590 ecoff_relocate_efi (sym, ANOFFSET (delta,
591 s->block_line_section));
592 #endif
593 }
594 }
595 }
596 }
597
598 {
599 struct partial_symtab *p;
600
601 ALL_OBJFILE_PSYMTABS (objfile, p)
602 {
603 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
604 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
605 }
606 }
607
608 {
609 struct partial_symbol **psym;
610
611 for (psym = objfile->global_psymbols.list;
612 psym < objfile->global_psymbols.next;
613 psym++)
614 {
615 fixup_psymbol_section (*psym, objfile);
616 if (SYMBOL_SECTION (*psym) >= 0)
617 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
618 SYMBOL_SECTION (*psym));
619 }
620 for (psym = objfile->static_psymbols.list;
621 psym < objfile->static_psymbols.next;
622 psym++)
623 {
624 fixup_psymbol_section (*psym, objfile);
625 if (SYMBOL_SECTION (*psym) >= 0)
626 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
627 SYMBOL_SECTION (*psym));
628 }
629 }
630
631 {
632 struct minimal_symbol *msym;
633 ALL_OBJFILE_MSYMBOLS (objfile, msym)
634 if (SYMBOL_SECTION (msym) >= 0)
635 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
636 }
637 /* Relocating different sections by different amounts may cause the symbols
638 to be out of order. */
639 msymbols_sort (objfile);
640
641 {
642 int i;
643 for (i = 0; i < objfile->num_sections; ++i)
644 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
645 }
646
647 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
648 {
649 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
650 only as a fallback. */
651 struct obj_section *s;
652 s = find_pc_section (objfile->ei.entry_point);
653 if (s)
654 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
655 else
656 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
657 }
658
659 {
660 struct obj_section *s;
661 bfd *abfd;
662
663 abfd = objfile->obfd;
664
665 ALL_OBJFILE_OSECTIONS (objfile, s)
666 {
667 int idx = s->the_bfd_section->index;
668
669 s->addr += ANOFFSET (delta, idx);
670 s->endaddr += ANOFFSET (delta, idx);
671 }
672 }
673
674 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
675 {
676 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
677 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
678 }
679
680 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
681 {
682 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
683 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
684 }
685
686 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
687 {
688 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
689 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
690 }
691
692 /* Relocate breakpoints as necessary, after things are relocated. */
693 breakpoint_re_set ();
694 }
695 \f
696 /* Many places in gdb want to test just to see if we have any partial
697 symbols available. This function returns zero if none are currently
698 available, nonzero otherwise. */
699
700 int
701 have_partial_symbols (void)
702 {
703 struct objfile *ofp;
704
705 ALL_OBJFILES (ofp)
706 {
707 if (ofp->psymtabs != NULL)
708 {
709 return 1;
710 }
711 }
712 return 0;
713 }
714
715 /* Many places in gdb want to test just to see if we have any full
716 symbols available. This function returns zero if none are currently
717 available, nonzero otherwise. */
718
719 int
720 have_full_symbols (void)
721 {
722 struct objfile *ofp;
723
724 ALL_OBJFILES (ofp)
725 {
726 if (ofp->symtabs != NULL)
727 {
728 return 1;
729 }
730 }
731 return 0;
732 }
733
734
735 /* This operations deletes all objfile entries that represent solibs that
736 weren't explicitly loaded by the user, via e.g., the add-symbol-file
737 command.
738 */
739 void
740 objfile_purge_solibs (void)
741 {
742 struct objfile *objf;
743 struct objfile *temp;
744
745 ALL_OBJFILES_SAFE (objf, temp)
746 {
747 /* We assume that the solib package has been purged already, or will
748 be soon.
749 */
750 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
751 free_objfile (objf);
752 }
753 }
754
755
756 /* Many places in gdb want to test just to see if we have any minimal
757 symbols available. This function returns zero if none are currently
758 available, nonzero otherwise. */
759
760 int
761 have_minimal_symbols (void)
762 {
763 struct objfile *ofp;
764
765 ALL_OBJFILES (ofp)
766 {
767 if (ofp->msymbols != NULL)
768 {
769 return 1;
770 }
771 }
772 return 0;
773 }
774
775 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
776
777 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
778 of the corresponding symbol file in MTIME, try to open an existing file
779 with the name SYMSFILENAME and verify it is more recent than the base
780 file by checking it's timestamp against MTIME.
781
782 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
783
784 If SYMSFILENAME does exist, but is out of date, we check to see if the
785 user has specified creation of a mapped file. If so, we don't issue
786 any warning message because we will be creating a new mapped file anyway,
787 overwriting the old one. If not, then we issue a warning message so that
788 the user will know why we aren't using this existing mapped symbol file.
789 In either case, we return -1.
790
791 If SYMSFILENAME does exist and is not out of date, but can't be opened for
792 some reason, then prints an appropriate system error message and returns -1.
793
794 Otherwise, returns the open file descriptor. */
795
796 static int
797 open_existing_mapped_file (char *symsfilename, long mtime, int flags)
798 {
799 int fd = -1;
800 struct stat sbuf;
801
802 if (stat (symsfilename, &sbuf) == 0)
803 {
804 if (sbuf.st_mtime < mtime)
805 {
806 if (!(flags & OBJF_MAPPED))
807 {
808 warning ("mapped symbol file `%s' is out of date, ignored it",
809 symsfilename);
810 }
811 }
812 else if ((fd = open (symsfilename, O_RDWR)) < 0)
813 {
814 if (error_pre_print)
815 {
816 printf_unfiltered (error_pre_print);
817 }
818 print_sys_errmsg (symsfilename, errno);
819 }
820 }
821 return (fd);
822 }
823
824 /* Look for a mapped symbol file that corresponds to FILENAME and is more
825 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
826 use a mapped symbol file for this file, so create a new one if one does
827 not currently exist.
828
829 If found, then return an open file descriptor for the file, otherwise
830 return -1.
831
832 This routine is responsible for implementing the policy that generates
833 the name of the mapped symbol file from the name of a file containing
834 symbols that gdb would like to read. Currently this policy is to append
835 ".syms" to the name of the file.
836
837 This routine is also responsible for implementing the policy that
838 determines where the mapped symbol file is found (the search path).
839 This policy is that when reading an existing mapped file, a file of
840 the correct name in the current directory takes precedence over a
841 file of the correct name in the same directory as the symbol file.
842 When creating a new mapped file, it is always created in the current
843 directory. This helps to minimize the chances of a user unknowingly
844 creating big mapped files in places like /bin and /usr/local/bin, and
845 allows a local copy to override a manually installed global copy (in
846 /bin for example). */
847
848 static int
849 open_mapped_file (char *filename, long mtime, int flags)
850 {
851 int fd;
852 char *symsfilename;
853
854 /* First try to open an existing file in the current directory, and
855 then try the directory where the symbol file is located. */
856
857 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
858 if ((fd = open_existing_mapped_file (symsfilename, mtime, flags)) < 0)
859 {
860 xfree (symsfilename);
861 symsfilename = concat (filename, ".syms", (char *) NULL);
862 fd = open_existing_mapped_file (symsfilename, mtime, flags);
863 }
864
865 /* If we don't have an open file by now, then either the file does not
866 already exist, or the base file has changed since it was created. In
867 either case, if the user has specified use of a mapped file, then
868 create a new mapped file, truncating any existing one. If we can't
869 create one, print a system error message saying why we can't.
870
871 By default the file is rw for everyone, with the user's umask taking
872 care of turning off the permissions the user wants off. */
873
874 if ((fd < 0) && (flags & OBJF_MAPPED))
875 {
876 xfree (symsfilename);
877 symsfilename = concat ("./", basename (filename), ".syms",
878 (char *) NULL);
879 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
880 {
881 if (error_pre_print)
882 {
883 printf_unfiltered (error_pre_print);
884 }
885 print_sys_errmsg (symsfilename, errno);
886 }
887 }
888
889 xfree (symsfilename);
890 return (fd);
891 }
892
893 static PTR
894 map_to_file (int fd)
895 {
896 PTR md;
897 CORE_ADDR mapto;
898
899 md = mmalloc_attach (fd, (PTR) 0);
900 if (md != NULL)
901 {
902 mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
903 md = mmalloc_detach (md);
904 if (md != NULL)
905 {
906 /* FIXME: should figure out why detach failed */
907 md = NULL;
908 }
909 else if (mapto != (CORE_ADDR) NULL)
910 {
911 /* This mapping file needs to be remapped at "mapto" */
912 md = mmalloc_attach (fd, (PTR) mapto);
913 }
914 else
915 {
916 /* This is a freshly created mapping file. */
917 mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
918 if (mapto != 0)
919 {
920 /* To avoid reusing the freshly created mapping file, at the
921 address selected by mmap, we must truncate it before trying
922 to do an attach at the address we want. */
923 ftruncate (fd, 0);
924 md = mmalloc_attach (fd, (PTR) mapto);
925 if (md != NULL)
926 {
927 mmalloc_setkey (md, 1, (PTR) mapto);
928 }
929 }
930 }
931 }
932 return (md);
933 }
934
935 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
936
937 /* Returns a section whose range includes PC and SECTION,
938 or NULL if none found. Note the distinction between the return type,
939 struct obj_section (which is defined in gdb), and the input type
940 struct sec (which is a bfd-defined data type). The obj_section
941 contains a pointer to the bfd struct sec section. */
942
943 struct obj_section *
944 find_pc_sect_section (CORE_ADDR pc, struct sec *section)
945 {
946 struct obj_section *s;
947 struct objfile *objfile;
948
949 ALL_OBJSECTIONS (objfile, s)
950 if ((section == 0 || section == s->the_bfd_section) &&
951 s->addr <= pc && pc < s->endaddr)
952 return (s);
953
954 return (NULL);
955 }
956
957 /* Returns a section whose range includes PC or NULL if none found.
958 Backward compatibility, no section. */
959
960 struct obj_section *
961 find_pc_section (CORE_ADDR pc)
962 {
963 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
964 }
965
966
967 /* In SVR4, we recognize a trampoline by it's section name.
968 That is, if the pc is in a section named ".plt" then we are in
969 a trampoline. */
970
971 int
972 in_plt_section (CORE_ADDR pc, char *name)
973 {
974 struct obj_section *s;
975 int retval = 0;
976
977 s = find_pc_section (pc);
978
979 retval = (s != NULL
980 && s->the_bfd_section->name != NULL
981 && STREQ (s->the_bfd_section->name, ".plt"));
982 return (retval);
983 }
984
985 /* Return nonzero if NAME is in the import list of OBJFILE. Else
986 return zero. */
987
988 int
989 is_in_import_list (char *name, struct objfile *objfile)
990 {
991 register int i;
992
993 if (!objfile || !name || !*name)
994 return 0;
995
996 for (i = 0; i < objfile->import_list_size; i++)
997 if (objfile->import_list[i] && STREQ (name, objfile->import_list[i]))
998 return 1;
999 return 0;
1000 }
1001
This page took 0.121222 seconds and 4 git commands to generate.