* gdb.texinfo (Target Commands): Fix typo.
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include "gdb_assert.h"
37 #include <sys/types.h>
38 #include "gdb_stat.h"
39 #include <fcntl.h>
40 #include "gdb_obstack.h"
41 #include "gdb_string.h"
42 #include "hashtab.h"
43
44 #include "breakpoint.h"
45 #include "block.h"
46 #include "dictionary.h"
47 #include "source.h"
48 #include "addrmap.h"
49 #include "arch-utils.h"
50 #include "exec.h"
51 #include "observer.h"
52 #include "complaints.h"
53 #include "psymtab.h"
54 #include "solist.h"
55 #include "gdb_bfd.h"
56
57 /* Keep a registry of per-objfile data-pointers required by other GDB
58 modules. */
59
60 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
61
62 /* Externally visible variables that are owned by this module.
63 See declarations in objfile.h for more info. */
64
65 struct objfile *rt_common_objfile; /* For runtime common symbols */
66
67 struct objfile_pspace_info
68 {
69 int objfiles_changed_p;
70 struct obj_section **sections;
71 int num_sections;
72 };
73
74 /* Per-program-space data key. */
75 static const struct program_space_data *objfiles_pspace_data;
76
77 static void
78 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
79 {
80 struct objfile_pspace_info *info;
81
82 info = program_space_data (pspace, objfiles_pspace_data);
83 if (info != NULL)
84 {
85 xfree (info->sections);
86 xfree (info);
87 }
88 }
89
90 /* Get the current svr4 data. If none is found yet, add it now. This
91 function always returns a valid object. */
92
93 static struct objfile_pspace_info *
94 get_objfile_pspace_data (struct program_space *pspace)
95 {
96 struct objfile_pspace_info *info;
97
98 info = program_space_data (pspace, objfiles_pspace_data);
99 if (info == NULL)
100 {
101 info = XZALLOC (struct objfile_pspace_info);
102 set_program_space_data (pspace, objfiles_pspace_data, info);
103 }
104
105 return info;
106 }
107
108 \f
109
110 /* Per-BFD data key. */
111
112 static const struct bfd_data *objfiles_bfd_data;
113
114 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
115 NULL, and it already has a per-BFD storage object, use that.
116 Otherwise, allocate a new per-BFD storage object. If ABFD is not
117 NULL, the object is allocated on the BFD; otherwise it is allocated
118 on OBJFILE's obstack. Note that it is not safe to call this
119 multiple times for a given OBJFILE -- it can only be called when
120 allocating or re-initializing OBJFILE. */
121
122 static struct objfile_per_bfd_storage *
123 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
124 {
125 struct objfile_per_bfd_storage *storage = NULL;
126
127 if (abfd != NULL)
128 storage = bfd_data (abfd, objfiles_bfd_data);
129
130 if (storage == NULL)
131 {
132 if (abfd != NULL)
133 {
134 storage = bfd_zalloc (abfd, sizeof (struct objfile_per_bfd_storage));
135 set_bfd_data (abfd, objfiles_bfd_data, storage);
136 }
137 else
138 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
139 struct objfile_per_bfd_storage);
140
141 obstack_init (&storage->storage_obstack);
142 storage->filename_cache = bcache_xmalloc (NULL, NULL);
143 storage->macro_cache = bcache_xmalloc (NULL, NULL);
144 }
145
146 return storage;
147 }
148
149 /* Free STORAGE. */
150
151 static void
152 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
153 {
154 bcache_xfree (storage->filename_cache);
155 bcache_xfree (storage->macro_cache);
156 obstack_free (&storage->storage_obstack, 0);
157 }
158
159 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
160 cleanup function to the BFD registry. */
161
162 static void
163 objfile_bfd_data_free (struct bfd *unused, void *d)
164 {
165 free_objfile_per_bfd_storage (d);
166 }
167
168 /* See objfiles.h. */
169
170 void
171 set_objfile_per_bfd (struct objfile *objfile)
172 {
173 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
174 }
175
176 \f
177
178 /* Called via bfd_map_over_sections to build up the section table that
179 the objfile references. The objfile contains pointers to the start
180 of the table (objfile->sections) and to the first location after
181 the end of the table (objfile->sections_end). */
182
183 static void
184 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
185 void *objfilep)
186 {
187 struct objfile *objfile = (struct objfile *) objfilep;
188 struct obj_section section;
189 flagword aflag;
190
191 aflag = bfd_get_section_flags (abfd, asect);
192 if (!(aflag & SEC_ALLOC))
193 return;
194 if (bfd_section_size (abfd, asect) == 0)
195 return;
196
197 section.objfile = objfile;
198 section.the_bfd_section = asect;
199 section.ovly_mapped = 0;
200 obstack_grow (&objfile->objfile_obstack,
201 (char *) &section, sizeof (section));
202 objfile->sections_end
203 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
204 }
205
206 /* Builds a section table for OBJFILE.
207
208 Note that while we are building the table, which goes into the
209 objfile obstack, we hijack the sections_end pointer to instead hold
210 a count of the number of sections. When bfd_map_over_sections
211 returns, this count is used to compute the pointer to the end of
212 the sections table, which then overwrites the count.
213
214 Also note that the OFFSET and OVLY_MAPPED in each table entry
215 are initialized to zero.
216
217 Also note that if anything else writes to the objfile obstack while
218 we are building the table, we're pretty much hosed. */
219
220 void
221 build_objfile_section_table (struct objfile *objfile)
222 {
223 objfile->sections_end = 0;
224 bfd_map_over_sections (objfile->obfd,
225 add_to_objfile_sections, (void *) objfile);
226 objfile->sections = obstack_finish (&objfile->objfile_obstack);
227 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
228 }
229
230 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
231 allocate a new objfile struct, fill it in as best we can, link it
232 into the list of all known objfiles, and return a pointer to the
233 new objfile struct.
234
235 The FLAGS word contains various bits (OBJF_*) that can be taken as
236 requests for specific operations. Other bits like OBJF_SHARED are
237 simply copied through to the new objfile flags member. */
238
239 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
240 by jv-lang.c, to create an artificial objfile used to hold
241 information about dynamically-loaded Java classes. Unfortunately,
242 that branch of this function doesn't get tested very frequently, so
243 it's prone to breakage. (E.g. at one time the name was set to NULL
244 in that situation, which broke a loop over all names in the dynamic
245 library loader.) If you change this function, please try to leave
246 things in a consistent state even if abfd is NULL. */
247
248 struct objfile *
249 allocate_objfile (bfd *abfd, int flags)
250 {
251 struct objfile *objfile;
252
253 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
254 objfile->psymbol_cache = psymbol_bcache_init ();
255 /* We could use obstack_specify_allocation here instead, but
256 gdb_obstack.h specifies the alloc/dealloc functions. */
257 obstack_init (&objfile->objfile_obstack);
258 terminate_minimal_symbol_table (objfile);
259
260 objfile_alloc_data (objfile);
261
262 /* Update the per-objfile information that comes from the bfd, ensuring
263 that any data that is reference is saved in the per-objfile data
264 region. */
265
266 objfile->obfd = abfd;
267 gdb_bfd_ref (abfd);
268 if (abfd != NULL)
269 {
270 /* Look up the gdbarch associated with the BFD. */
271 objfile->gdbarch = gdbarch_from_bfd (abfd);
272
273 objfile->name = bfd_get_filename (abfd);
274 objfile->mtime = bfd_get_mtime (abfd);
275
276 /* Build section table. */
277 build_objfile_section_table (objfile);
278 }
279 else
280 {
281 objfile->name = "<<anonymous objfile>>";
282 }
283
284 objfile->per_bfd = get_objfile_bfd_data (objfile, abfd);
285 objfile->pspace = current_program_space;
286
287 /* Initialize the section indexes for this objfile, so that we can
288 later detect if they are used w/o being properly assigned to. */
289
290 objfile->sect_index_text = -1;
291 objfile->sect_index_data = -1;
292 objfile->sect_index_bss = -1;
293 objfile->sect_index_rodata = -1;
294
295 /* Add this file onto the tail of the linked list of other such files. */
296
297 objfile->next = NULL;
298 if (object_files == NULL)
299 object_files = objfile;
300 else
301 {
302 struct objfile *last_one;
303
304 for (last_one = object_files;
305 last_one->next;
306 last_one = last_one->next);
307 last_one->next = objfile;
308 }
309
310 /* Save passed in flag bits. */
311 objfile->flags |= flags;
312
313 /* Rebuild section map next time we need it. */
314 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
315
316 return objfile;
317 }
318
319 /* Retrieve the gdbarch associated with OBJFILE. */
320 struct gdbarch *
321 get_objfile_arch (struct objfile *objfile)
322 {
323 return objfile->gdbarch;
324 }
325
326 /* If there is a valid and known entry point, function fills *ENTRY_P with it
327 and returns non-zero; otherwise it returns zero. */
328
329 int
330 entry_point_address_query (CORE_ADDR *entry_p)
331 {
332 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
333 return 0;
334
335 *entry_p = symfile_objfile->ei.entry_point;
336
337 return 1;
338 }
339
340 /* Get current entry point address. Call error if it is not known. */
341
342 CORE_ADDR
343 entry_point_address (void)
344 {
345 CORE_ADDR retval;
346
347 if (!entry_point_address_query (&retval))
348 error (_("Entry point address is not known."));
349
350 return retval;
351 }
352
353 /* Iterator on PARENT and every separate debug objfile of PARENT.
354 The usage pattern is:
355 for (objfile = parent;
356 objfile;
357 objfile = objfile_separate_debug_iterate (parent, objfile))
358 ...
359 */
360
361 struct objfile *
362 objfile_separate_debug_iterate (const struct objfile *parent,
363 const struct objfile *objfile)
364 {
365 struct objfile *res;
366
367 /* If any, return the first child. */
368 res = objfile->separate_debug_objfile;
369 if (res)
370 return res;
371
372 /* Common case where there is no separate debug objfile. */
373 if (objfile == parent)
374 return NULL;
375
376 /* Return the brother if any. Note that we don't iterate on brothers of
377 the parents. */
378 res = objfile->separate_debug_objfile_link;
379 if (res)
380 return res;
381
382 for (res = objfile->separate_debug_objfile_backlink;
383 res != parent;
384 res = res->separate_debug_objfile_backlink)
385 {
386 gdb_assert (res != NULL);
387 if (res->separate_debug_objfile_link)
388 return res->separate_debug_objfile_link;
389 }
390 return NULL;
391 }
392
393 /* Put one object file before a specified on in the global list.
394 This can be used to make sure an object file is destroyed before
395 another when using ALL_OBJFILES_SAFE to free all objfiles. */
396 void
397 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
398 {
399 struct objfile **objp;
400
401 unlink_objfile (objfile);
402
403 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
404 {
405 if (*objp == before_this)
406 {
407 objfile->next = *objp;
408 *objp = objfile;
409 return;
410 }
411 }
412
413 internal_error (__FILE__, __LINE__,
414 _("put_objfile_before: before objfile not in list"));
415 }
416
417 /* Put OBJFILE at the front of the list. */
418
419 void
420 objfile_to_front (struct objfile *objfile)
421 {
422 struct objfile **objp;
423 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
424 {
425 if (*objp == objfile)
426 {
427 /* Unhook it from where it is. */
428 *objp = objfile->next;
429 /* Put it in the front. */
430 objfile->next = object_files;
431 object_files = objfile;
432 break;
433 }
434 }
435 }
436
437 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
438 list.
439
440 It is not a bug, or error, to call this function if OBJFILE is not known
441 to be in the current list. This is done in the case of mapped objfiles,
442 for example, just to ensure that the mapped objfile doesn't appear twice
443 in the list. Since the list is threaded, linking in a mapped objfile
444 twice would create a circular list.
445
446 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
447 unlinking it, just to ensure that we have completely severed any linkages
448 between the OBJFILE and the list. */
449
450 void
451 unlink_objfile (struct objfile *objfile)
452 {
453 struct objfile **objpp;
454
455 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
456 {
457 if (*objpp == objfile)
458 {
459 *objpp = (*objpp)->next;
460 objfile->next = NULL;
461 return;
462 }
463 }
464
465 internal_error (__FILE__, __LINE__,
466 _("unlink_objfile: objfile already unlinked"));
467 }
468
469 /* Add OBJFILE as a separate debug objfile of PARENT. */
470
471 void
472 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
473 {
474 gdb_assert (objfile && parent);
475
476 /* Must not be already in a list. */
477 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
478 gdb_assert (objfile->separate_debug_objfile_link == NULL);
479
480 objfile->separate_debug_objfile_backlink = parent;
481 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
482 parent->separate_debug_objfile = objfile;
483
484 /* Put the separate debug object before the normal one, this is so that
485 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
486 put_objfile_before (objfile, parent);
487 }
488
489 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
490 itself. */
491
492 void
493 free_objfile_separate_debug (struct objfile *objfile)
494 {
495 struct objfile *child;
496
497 for (child = objfile->separate_debug_objfile; child;)
498 {
499 struct objfile *next_child = child->separate_debug_objfile_link;
500 free_objfile (child);
501 child = next_child;
502 }
503 }
504
505 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
506 that as much as possible is allocated on the objfile_obstack
507 so that the memory can be efficiently freed.
508
509 Things which we do NOT free because they are not in malloc'd memory
510 or not in memory specific to the objfile include:
511
512 objfile -> sf
513
514 FIXME: If the objfile is using reusable symbol information (via mmalloc),
515 then we need to take into account the fact that more than one process
516 may be using the symbol information at the same time (when mmalloc is
517 extended to support cooperative locking). When more than one process
518 is using the mapped symbol info, we need to be more careful about when
519 we free objects in the reusable area. */
520
521 void
522 free_objfile (struct objfile *objfile)
523 {
524 /* Free all separate debug objfiles. */
525 free_objfile_separate_debug (objfile);
526
527 if (objfile->separate_debug_objfile_backlink)
528 {
529 /* We freed the separate debug file, make sure the base objfile
530 doesn't reference it. */
531 struct objfile *child;
532
533 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
534
535 if (child == objfile)
536 {
537 /* OBJFILE is the first child. */
538 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
539 objfile->separate_debug_objfile_link;
540 }
541 else
542 {
543 /* Find OBJFILE in the list. */
544 while (1)
545 {
546 if (child->separate_debug_objfile_link == objfile)
547 {
548 child->separate_debug_objfile_link =
549 objfile->separate_debug_objfile_link;
550 break;
551 }
552 child = child->separate_debug_objfile_link;
553 gdb_assert (child);
554 }
555 }
556 }
557
558 /* Remove any references to this objfile in the global value
559 lists. */
560 preserve_values (objfile);
561
562 /* It still may reference data modules have associated with the objfile and
563 the symbol file data. */
564 forget_cached_source_info_for_objfile (objfile);
565
566 /* First do any symbol file specific actions required when we are
567 finished with a particular symbol file. Note that if the objfile
568 is using reusable symbol information (via mmalloc) then each of
569 these routines is responsible for doing the correct thing, either
570 freeing things which are valid only during this particular gdb
571 execution, or leaving them to be reused during the next one. */
572
573 if (objfile->sf != NULL)
574 {
575 (*objfile->sf->sym_finish) (objfile);
576 }
577
578 /* Discard any data modules have associated with the objfile. The function
579 still may reference objfile->obfd. */
580 objfile_free_data (objfile);
581
582 if (objfile->obfd)
583 gdb_bfd_unref (objfile->obfd);
584 else
585 free_objfile_per_bfd_storage (objfile->per_bfd);
586
587 /* Remove it from the chain of all objfiles. */
588
589 unlink_objfile (objfile);
590
591 if (objfile == symfile_objfile)
592 symfile_objfile = NULL;
593
594 if (objfile == rt_common_objfile)
595 rt_common_objfile = NULL;
596
597 /* Before the symbol table code was redone to make it easier to
598 selectively load and remove information particular to a specific
599 linkage unit, gdb used to do these things whenever the monolithic
600 symbol table was blown away. How much still needs to be done
601 is unknown, but we play it safe for now and keep each action until
602 it is shown to be no longer needed. */
603
604 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
605 for example), so we need to call this here. */
606 clear_pc_function_cache ();
607
608 /* Clear globals which might have pointed into a removed objfile.
609 FIXME: It's not clear which of these are supposed to persist
610 between expressions and which ought to be reset each time. */
611 expression_context_block = NULL;
612 innermost_block = NULL;
613
614 /* Check to see if the current_source_symtab belongs to this objfile,
615 and if so, call clear_current_source_symtab_and_line. */
616
617 {
618 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
619
620 if (cursal.symtab && cursal.symtab->objfile == objfile)
621 clear_current_source_symtab_and_line ();
622 }
623
624 /* The last thing we do is free the objfile struct itself. */
625
626 if (objfile->global_psymbols.list)
627 xfree (objfile->global_psymbols.list);
628 if (objfile->static_psymbols.list)
629 xfree (objfile->static_psymbols.list);
630 /* Free the obstacks for non-reusable objfiles. */
631 psymbol_bcache_free (objfile->psymbol_cache);
632 if (objfile->demangled_names_hash)
633 htab_delete (objfile->demangled_names_hash);
634 obstack_free (&objfile->objfile_obstack, 0);
635
636 /* Rebuild section map next time we need it. */
637 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
638
639 xfree (objfile);
640 }
641
642 static void
643 do_free_objfile_cleanup (void *obj)
644 {
645 free_objfile (obj);
646 }
647
648 struct cleanup *
649 make_cleanup_free_objfile (struct objfile *obj)
650 {
651 return make_cleanup (do_free_objfile_cleanup, obj);
652 }
653
654 /* Free all the object files at once and clean up their users. */
655
656 void
657 free_all_objfiles (void)
658 {
659 struct objfile *objfile, *temp;
660 struct so_list *so;
661
662 /* Any objfile referencewould become stale. */
663 for (so = master_so_list (); so; so = so->next)
664 gdb_assert (so->objfile == NULL);
665
666 ALL_OBJFILES_SAFE (objfile, temp)
667 {
668 free_objfile (objfile);
669 }
670 clear_symtab_users (0);
671 }
672 \f
673 /* A helper function for objfile_relocate1 that relocates a single
674 symbol. */
675
676 static void
677 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
678 struct section_offsets *delta)
679 {
680 fixup_symbol_section (sym, objfile);
681
682 /* The RS6000 code from which this was taken skipped
683 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
684 But I'm leaving out that test, on the theory that
685 they can't possibly pass the tests below. */
686 if ((SYMBOL_CLASS (sym) == LOC_LABEL
687 || SYMBOL_CLASS (sym) == LOC_STATIC)
688 && SYMBOL_SECTION (sym) >= 0)
689 {
690 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
691 }
692 }
693
694 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
695 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
696 Return non-zero iff any change happened. */
697
698 static int
699 objfile_relocate1 (struct objfile *objfile,
700 struct section_offsets *new_offsets)
701 {
702 struct obj_section *s;
703 struct section_offsets *delta =
704 ((struct section_offsets *)
705 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
706
707 int i;
708 int something_changed = 0;
709
710 for (i = 0; i < objfile->num_sections; ++i)
711 {
712 delta->offsets[i] =
713 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
714 if (ANOFFSET (delta, i) != 0)
715 something_changed = 1;
716 }
717 if (!something_changed)
718 return 0;
719
720 /* OK, get all the symtabs. */
721 {
722 struct symtab *s;
723
724 ALL_OBJFILE_SYMTABS (objfile, s)
725 {
726 struct linetable *l;
727 struct blockvector *bv;
728 int i;
729
730 /* First the line table. */
731 l = LINETABLE (s);
732 if (l)
733 {
734 for (i = 0; i < l->nitems; ++i)
735 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
736 }
737
738 /* Don't relocate a shared blockvector more than once. */
739 if (!s->primary)
740 continue;
741
742 bv = BLOCKVECTOR (s);
743 if (BLOCKVECTOR_MAP (bv))
744 addrmap_relocate (BLOCKVECTOR_MAP (bv),
745 ANOFFSET (delta, s->block_line_section));
746
747 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
748 {
749 struct block *b;
750 struct symbol *sym;
751 struct dict_iterator iter;
752
753 b = BLOCKVECTOR_BLOCK (bv, i);
754 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
755 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
756
757 /* We only want to iterate over the local symbols, not any
758 symbols in included symtabs. */
759 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
760 {
761 relocate_one_symbol (sym, objfile, delta);
762 }
763 }
764 }
765 }
766
767 /* Relocate isolated symbols. */
768 {
769 struct symbol *iter;
770
771 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
772 relocate_one_symbol (iter, objfile, delta);
773 }
774
775 if (objfile->psymtabs_addrmap)
776 addrmap_relocate (objfile->psymtabs_addrmap,
777 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
778
779 if (objfile->sf)
780 objfile->sf->qf->relocate (objfile, new_offsets, delta);
781
782 {
783 struct minimal_symbol *msym;
784
785 ALL_OBJFILE_MSYMBOLS (objfile, msym)
786 if (SYMBOL_SECTION (msym) >= 0)
787 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
788 }
789 /* Relocating different sections by different amounts may cause the symbols
790 to be out of order. */
791 msymbols_sort (objfile);
792
793 if (objfile->ei.entry_point_p)
794 {
795 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
796 only as a fallback. */
797 struct obj_section *s;
798 s = find_pc_section (objfile->ei.entry_point);
799 if (s)
800 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
801 else
802 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
803 }
804
805 {
806 int i;
807
808 for (i = 0; i < objfile->num_sections; ++i)
809 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
810 }
811
812 /* Rebuild section map next time we need it. */
813 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
814
815 /* Update the table in exec_ops, used to read memory. */
816 ALL_OBJFILE_OSECTIONS (objfile, s)
817 {
818 int idx = s->the_bfd_section->index;
819
820 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
821 obj_section_addr (s));
822 }
823
824 /* Relocating probes. */
825 if (objfile->sf && objfile->sf->sym_probe_fns)
826 objfile->sf->sym_probe_fns->sym_relocate_probe (objfile,
827 new_offsets, delta);
828
829 /* Data changed. */
830 return 1;
831 }
832
833 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
834 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
835
836 The number and ordering of sections does differ between the two objfiles.
837 Only their names match. Also the file offsets will differ (objfile being
838 possibly prelinked but separate_debug_objfile is probably not prelinked) but
839 the in-memory absolute address as specified by NEW_OFFSETS must match both
840 files. */
841
842 void
843 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
844 {
845 struct objfile *debug_objfile;
846 int changed = 0;
847
848 changed |= objfile_relocate1 (objfile, new_offsets);
849
850 for (debug_objfile = objfile->separate_debug_objfile;
851 debug_objfile;
852 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
853 {
854 struct section_addr_info *objfile_addrs;
855 struct section_offsets *new_debug_offsets;
856 struct cleanup *my_cleanups;
857
858 objfile_addrs = build_section_addr_info_from_objfile (objfile);
859 my_cleanups = make_cleanup (xfree, objfile_addrs);
860
861 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
862 relative ones must be already created according to debug_objfile. */
863
864 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
865
866 gdb_assert (debug_objfile->num_sections
867 == bfd_count_sections (debug_objfile->obfd));
868 new_debug_offsets =
869 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
870 make_cleanup (xfree, new_debug_offsets);
871 relative_addr_info_to_section_offsets (new_debug_offsets,
872 debug_objfile->num_sections,
873 objfile_addrs);
874
875 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
876
877 do_cleanups (my_cleanups);
878 }
879
880 /* Relocate breakpoints as necessary, after things are relocated. */
881 if (changed)
882 breakpoint_re_set ();
883 }
884
885 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
886 not touched here.
887 Return non-zero iff any change happened. */
888
889 static int
890 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
891 {
892 struct section_offsets *new_offsets =
893 ((struct section_offsets *)
894 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
895 int i;
896
897 for (i = 0; i < objfile->num_sections; ++i)
898 new_offsets->offsets[i] = slide;
899
900 return objfile_relocate1 (objfile, new_offsets);
901 }
902
903 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
904 SEPARATE_DEBUG_OBJFILEs. */
905
906 void
907 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
908 {
909 struct objfile *debug_objfile;
910 int changed = 0;
911
912 changed |= objfile_rebase1 (objfile, slide);
913
914 for (debug_objfile = objfile->separate_debug_objfile;
915 debug_objfile;
916 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
917 changed |= objfile_rebase1 (debug_objfile, slide);
918
919 /* Relocate breakpoints as necessary, after things are relocated. */
920 if (changed)
921 breakpoint_re_set ();
922 }
923 \f
924 /* Return non-zero if OBJFILE has partial symbols. */
925
926 int
927 objfile_has_partial_symbols (struct objfile *objfile)
928 {
929 if (!objfile->sf)
930 return 0;
931
932 /* If we have not read psymbols, but we have a function capable of reading
933 them, then that is an indication that they are in fact available. Without
934 this function the symbols may have been already read in but they also may
935 not be present in this objfile. */
936 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
937 && objfile->sf->sym_read_psymbols != NULL)
938 return 1;
939
940 return objfile->sf->qf->has_symbols (objfile);
941 }
942
943 /* Return non-zero if OBJFILE has full symbols. */
944
945 int
946 objfile_has_full_symbols (struct objfile *objfile)
947 {
948 return objfile->symtabs != NULL;
949 }
950
951 /* Return non-zero if OBJFILE has full or partial symbols, either directly
952 or through a separate debug file. */
953
954 int
955 objfile_has_symbols (struct objfile *objfile)
956 {
957 struct objfile *o;
958
959 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
960 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
961 return 1;
962 return 0;
963 }
964
965
966 /* Many places in gdb want to test just to see if we have any partial
967 symbols available. This function returns zero if none are currently
968 available, nonzero otherwise. */
969
970 int
971 have_partial_symbols (void)
972 {
973 struct objfile *ofp;
974
975 ALL_OBJFILES (ofp)
976 {
977 if (objfile_has_partial_symbols (ofp))
978 return 1;
979 }
980 return 0;
981 }
982
983 /* Many places in gdb want to test just to see if we have any full
984 symbols available. This function returns zero if none are currently
985 available, nonzero otherwise. */
986
987 int
988 have_full_symbols (void)
989 {
990 struct objfile *ofp;
991
992 ALL_OBJFILES (ofp)
993 {
994 if (objfile_has_full_symbols (ofp))
995 return 1;
996 }
997 return 0;
998 }
999
1000
1001 /* This operations deletes all objfile entries that represent solibs that
1002 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1003 command. */
1004
1005 void
1006 objfile_purge_solibs (void)
1007 {
1008 struct objfile *objf;
1009 struct objfile *temp;
1010
1011 ALL_OBJFILES_SAFE (objf, temp)
1012 {
1013 /* We assume that the solib package has been purged already, or will
1014 be soon. */
1015
1016 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1017 free_objfile (objf);
1018 }
1019 }
1020
1021
1022 /* Many places in gdb want to test just to see if we have any minimal
1023 symbols available. This function returns zero if none are currently
1024 available, nonzero otherwise. */
1025
1026 int
1027 have_minimal_symbols (void)
1028 {
1029 struct objfile *ofp;
1030
1031 ALL_OBJFILES (ofp)
1032 {
1033 if (ofp->minimal_symbol_count > 0)
1034 {
1035 return 1;
1036 }
1037 }
1038 return 0;
1039 }
1040
1041 /* Qsort comparison function. */
1042
1043 static int
1044 qsort_cmp (const void *a, const void *b)
1045 {
1046 const struct obj_section *sect1 = *(const struct obj_section **) a;
1047 const struct obj_section *sect2 = *(const struct obj_section **) b;
1048 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1049 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1050
1051 if (sect1_addr < sect2_addr)
1052 return -1;
1053 else if (sect1_addr > sect2_addr)
1054 return 1;
1055 else
1056 {
1057 /* Sections are at the same address. This could happen if
1058 A) we have an objfile and a separate debuginfo.
1059 B) we are confused, and have added sections without proper relocation,
1060 or something like that. */
1061
1062 const struct objfile *const objfile1 = sect1->objfile;
1063 const struct objfile *const objfile2 = sect2->objfile;
1064
1065 if (objfile1->separate_debug_objfile == objfile2
1066 || objfile2->separate_debug_objfile == objfile1)
1067 {
1068 /* Case A. The ordering doesn't matter: separate debuginfo files
1069 will be filtered out later. */
1070
1071 return 0;
1072 }
1073
1074 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1075 triage. This section could be slow (since we iterate over all
1076 objfiles in each call to qsort_cmp), but this shouldn't happen
1077 very often (GDB is already in a confused state; one hopes this
1078 doesn't happen at all). If you discover that significant time is
1079 spent in the loops below, do 'set complaints 100' and examine the
1080 resulting complaints. */
1081
1082 if (objfile1 == objfile2)
1083 {
1084 /* Both sections came from the same objfile. We are really confused.
1085 Sort on sequence order of sections within the objfile. */
1086
1087 const struct obj_section *osect;
1088
1089 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1090 if (osect == sect1)
1091 return -1;
1092 else if (osect == sect2)
1093 return 1;
1094
1095 /* We should have found one of the sections before getting here. */
1096 gdb_assert_not_reached ("section not found");
1097 }
1098 else
1099 {
1100 /* Sort on sequence number of the objfile in the chain. */
1101
1102 const struct objfile *objfile;
1103
1104 ALL_OBJFILES (objfile)
1105 if (objfile == objfile1)
1106 return -1;
1107 else if (objfile == objfile2)
1108 return 1;
1109
1110 /* We should have found one of the objfiles before getting here. */
1111 gdb_assert_not_reached ("objfile not found");
1112 }
1113 }
1114
1115 /* Unreachable. */
1116 gdb_assert_not_reached ("unexpected code path");
1117 return 0;
1118 }
1119
1120 /* Select "better" obj_section to keep. We prefer the one that came from
1121 the real object, rather than the one from separate debuginfo.
1122 Most of the time the two sections are exactly identical, but with
1123 prelinking the .rel.dyn section in the real object may have different
1124 size. */
1125
1126 static struct obj_section *
1127 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1128 {
1129 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1130 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1131 || (b->objfile->separate_debug_objfile == a->objfile));
1132 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1133 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1134
1135 if (a->objfile->separate_debug_objfile != NULL)
1136 return a;
1137 return b;
1138 }
1139
1140 /* Return 1 if SECTION should be inserted into the section map.
1141 We want to insert only non-overlay and non-TLS section. */
1142
1143 static int
1144 insert_section_p (const struct bfd *abfd,
1145 const struct bfd_section *section)
1146 {
1147 const bfd_vma lma = bfd_section_lma (abfd, section);
1148
1149 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1150 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1151 /* This is an overlay section. IN_MEMORY check is needed to avoid
1152 discarding sections from the "system supplied DSO" (aka vdso)
1153 on some Linux systems (e.g. Fedora 11). */
1154 return 0;
1155 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1156 /* This is a TLS section. */
1157 return 0;
1158
1159 return 1;
1160 }
1161
1162 /* Filter out overlapping sections where one section came from the real
1163 objfile, and the other from a separate debuginfo file.
1164 Return the size of table after redundant sections have been eliminated. */
1165
1166 static int
1167 filter_debuginfo_sections (struct obj_section **map, int map_size)
1168 {
1169 int i, j;
1170
1171 for (i = 0, j = 0; i < map_size - 1; i++)
1172 {
1173 struct obj_section *const sect1 = map[i];
1174 struct obj_section *const sect2 = map[i + 1];
1175 const struct objfile *const objfile1 = sect1->objfile;
1176 const struct objfile *const objfile2 = sect2->objfile;
1177 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1178 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1179
1180 if (sect1_addr == sect2_addr
1181 && (objfile1->separate_debug_objfile == objfile2
1182 || objfile2->separate_debug_objfile == objfile1))
1183 {
1184 map[j++] = preferred_obj_section (sect1, sect2);
1185 ++i;
1186 }
1187 else
1188 map[j++] = sect1;
1189 }
1190
1191 if (i < map_size)
1192 {
1193 gdb_assert (i == map_size - 1);
1194 map[j++] = map[i];
1195 }
1196
1197 /* The map should not have shrunk to less than half the original size. */
1198 gdb_assert (map_size / 2 <= j);
1199
1200 return j;
1201 }
1202
1203 /* Filter out overlapping sections, issuing a warning if any are found.
1204 Overlapping sections could really be overlay sections which we didn't
1205 classify as such in insert_section_p, or we could be dealing with a
1206 corrupt binary. */
1207
1208 static int
1209 filter_overlapping_sections (struct obj_section **map, int map_size)
1210 {
1211 int i, j;
1212
1213 for (i = 0, j = 0; i < map_size - 1; )
1214 {
1215 int k;
1216
1217 map[j++] = map[i];
1218 for (k = i + 1; k < map_size; k++)
1219 {
1220 struct obj_section *const sect1 = map[i];
1221 struct obj_section *const sect2 = map[k];
1222 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1223 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1224 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1225
1226 gdb_assert (sect1_addr <= sect2_addr);
1227
1228 if (sect1_endaddr <= sect2_addr)
1229 break;
1230 else
1231 {
1232 /* We have an overlap. Report it. */
1233
1234 struct objfile *const objf1 = sect1->objfile;
1235 struct objfile *const objf2 = sect2->objfile;
1236
1237 const struct bfd *const abfd1 = objf1->obfd;
1238 const struct bfd *const abfd2 = objf2->obfd;
1239
1240 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1241 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1242
1243 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1244
1245 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1246
1247 complaint (&symfile_complaints,
1248 _("unexpected overlap between:\n"
1249 " (A) section `%s' from `%s' [%s, %s)\n"
1250 " (B) section `%s' from `%s' [%s, %s).\n"
1251 "Will ignore section B"),
1252 bfd_section_name (abfd1, bfds1), objf1->name,
1253 paddress (gdbarch, sect1_addr),
1254 paddress (gdbarch, sect1_endaddr),
1255 bfd_section_name (abfd2, bfds2), objf2->name,
1256 paddress (gdbarch, sect2_addr),
1257 paddress (gdbarch, sect2_endaddr));
1258 }
1259 }
1260 i = k;
1261 }
1262
1263 if (i < map_size)
1264 {
1265 gdb_assert (i == map_size - 1);
1266 map[j++] = map[i];
1267 }
1268
1269 return j;
1270 }
1271
1272
1273 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1274 TLS, overlay and overlapping sections. */
1275
1276 static void
1277 update_section_map (struct program_space *pspace,
1278 struct obj_section ***pmap, int *pmap_size)
1279 {
1280 int alloc_size, map_size, i;
1281 struct obj_section *s, **map;
1282 struct objfile *objfile;
1283
1284 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1285
1286 map = *pmap;
1287 xfree (map);
1288
1289 alloc_size = 0;
1290 ALL_PSPACE_OBJFILES (pspace, objfile)
1291 ALL_OBJFILE_OSECTIONS (objfile, s)
1292 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1293 alloc_size += 1;
1294
1295 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1296 if (alloc_size == 0)
1297 {
1298 *pmap = NULL;
1299 *pmap_size = 0;
1300 return;
1301 }
1302
1303 map = xmalloc (alloc_size * sizeof (*map));
1304
1305 i = 0;
1306 ALL_PSPACE_OBJFILES (pspace, objfile)
1307 ALL_OBJFILE_OSECTIONS (objfile, s)
1308 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1309 map[i++] = s;
1310
1311 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1312 map_size = filter_debuginfo_sections(map, alloc_size);
1313 map_size = filter_overlapping_sections(map, map_size);
1314
1315 if (map_size < alloc_size)
1316 /* Some sections were eliminated. Trim excess space. */
1317 map = xrealloc (map, map_size * sizeof (*map));
1318 else
1319 gdb_assert (alloc_size == map_size);
1320
1321 *pmap = map;
1322 *pmap_size = map_size;
1323 }
1324
1325 /* Bsearch comparison function. */
1326
1327 static int
1328 bsearch_cmp (const void *key, const void *elt)
1329 {
1330 const CORE_ADDR pc = *(CORE_ADDR *) key;
1331 const struct obj_section *section = *(const struct obj_section **) elt;
1332
1333 if (pc < obj_section_addr (section))
1334 return -1;
1335 if (pc < obj_section_endaddr (section))
1336 return 0;
1337 return 1;
1338 }
1339
1340 /* Returns a section whose range includes PC or NULL if none found. */
1341
1342 struct obj_section *
1343 find_pc_section (CORE_ADDR pc)
1344 {
1345 struct objfile_pspace_info *pspace_info;
1346 struct obj_section *s, **sp;
1347
1348 /* Check for mapped overlay section first. */
1349 s = find_pc_mapped_section (pc);
1350 if (s)
1351 return s;
1352
1353 pspace_info = get_objfile_pspace_data (current_program_space);
1354 if (pspace_info->objfiles_changed_p != 0)
1355 {
1356 update_section_map (current_program_space,
1357 &pspace_info->sections,
1358 &pspace_info->num_sections);
1359
1360 /* Don't need updates to section map until objfiles are added,
1361 removed or relocated. */
1362 pspace_info->objfiles_changed_p = 0;
1363 }
1364
1365 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1366 bsearch be non-NULL. */
1367 if (pspace_info->sections == NULL)
1368 {
1369 gdb_assert (pspace_info->num_sections == 0);
1370 return NULL;
1371 }
1372
1373 sp = (struct obj_section **) bsearch (&pc,
1374 pspace_info->sections,
1375 pspace_info->num_sections,
1376 sizeof (*pspace_info->sections),
1377 bsearch_cmp);
1378 if (sp != NULL)
1379 return *sp;
1380 return NULL;
1381 }
1382
1383
1384 /* In SVR4, we recognize a trampoline by it's section name.
1385 That is, if the pc is in a section named ".plt" then we are in
1386 a trampoline. */
1387
1388 int
1389 in_plt_section (CORE_ADDR pc, char *name)
1390 {
1391 struct obj_section *s;
1392 int retval = 0;
1393
1394 s = find_pc_section (pc);
1395
1396 retval = (s != NULL
1397 && s->the_bfd_section->name != NULL
1398 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1399 return (retval);
1400 }
1401 \f
1402
1403 /* Set objfiles_changed_p so section map will be rebuilt next time it
1404 is used. Called by reread_symbols. */
1405
1406 void
1407 objfiles_changed (void)
1408 {
1409 /* Rebuild section map next time we need it. */
1410 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1411 }
1412
1413 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1414 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1415 searching the objfiles in the order they are stored internally,
1416 ignoring CURRENT_OBJFILE.
1417
1418 On most platorms, it should be close enough to doing the best
1419 we can without some knowledge specific to the architecture. */
1420
1421 void
1422 default_iterate_over_objfiles_in_search_order
1423 (struct gdbarch *gdbarch,
1424 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1425 void *cb_data, struct objfile *current_objfile)
1426 {
1427 int stop = 0;
1428 struct objfile *objfile;
1429
1430 ALL_OBJFILES (objfile)
1431 {
1432 stop = cb (objfile, cb_data);
1433 if (stop)
1434 return;
1435 }
1436 }
1437
1438 /* Provide a prototype to silence -Wmissing-prototypes. */
1439 extern initialize_file_ftype _initialize_objfiles;
1440
1441 void
1442 _initialize_objfiles (void)
1443 {
1444 objfiles_pspace_data
1445 = register_program_space_data_with_cleanup (NULL,
1446 objfiles_pspace_data_cleanup);
1447
1448 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1449 objfile_bfd_data_free);
1450 }
This page took 0.066036 seconds and 4 git commands to generate.