* config/tc-dvp.c (VU_LABEL_PREFIX): New macro.
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2 Copyright 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying objfile structures. */
23
24 #include "defs.h"
25 #include "bfd.h" /* Binary File Description */
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdb-stabs.h"
30 #include "target.h"
31
32 #include <sys/types.h>
33 #include "gdb_stat.h"
34 #include <fcntl.h>
35 #include "obstack.h"
36 #include "gdb_string.h"
37
38 /* Prototypes for local functions */
39
40 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
41
42 static int
43 open_existing_mapped_file PARAMS ((char *, long, int));
44
45 static int
46 open_mapped_file PARAMS ((char *filename, long mtime, int mapped));
47
48 static PTR
49 map_to_file PARAMS ((int));
50
51 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
52
53 static void
54 add_to_objfile_sections PARAMS ((bfd *, sec_ptr, PTR));
55
56 /* Externally visible variables that are owned by this module.
57 See declarations in objfile.h for more info. */
58
59 struct objfile *object_files; /* Linked list of all objfiles */
60 struct objfile *current_objfile; /* For symbol file being read in */
61 struct objfile *symfile_objfile; /* Main symbol table loaded from */
62 struct objfile *rt_common_objfile; /* For runtime common symbols */
63
64 int mapped_symbol_files; /* Try to use mapped symbol files */
65
66 /* Locate all mappable sections of a BFD file.
67 objfile_p_char is a char * to get it through
68 bfd_map_over_sections; we cast it back to its proper type. */
69
70 static void
71 add_to_objfile_sections (abfd, asect, objfile_p_char)
72 bfd *abfd;
73 sec_ptr asect;
74 PTR objfile_p_char;
75 {
76 struct objfile *objfile = (struct objfile *) objfile_p_char;
77 struct obj_section section;
78 flagword aflag;
79
80 aflag = bfd_get_section_flags (abfd, asect);
81 if (!(aflag & SEC_ALLOC))
82 return;
83 if (0 == bfd_section_size (abfd, asect))
84 return;
85 section.offset = 0;
86 section.objfile = objfile;
87 section.the_bfd_section = asect;
88 section.ovly_mapped = 0;
89 section.addr = bfd_section_vma (abfd, asect);
90 section.endaddr = section.addr + bfd_section_size (abfd, asect);
91 obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof(section));
92 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
93 }
94
95 /* Builds a section table for OBJFILE.
96 Returns 0 if OK, 1 on error (in which case bfd_error contains the
97 error). */
98
99 int
100 build_objfile_section_table (objfile)
101 struct objfile *objfile;
102 {
103 /* objfile->sections can be already set when reading a mapped symbol
104 file. I believe that we do need to rebuild the section table in
105 this case (we rebuild other things derived from the bfd), but we
106 can't free the old one (it's in the psymbol_obstack). So we just
107 waste some memory. */
108
109 objfile->sections_end = 0;
110 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *)objfile);
111 objfile->sections = (struct obj_section *)
112 obstack_finish (&objfile->psymbol_obstack);
113 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
114 return(0);
115 }
116
117 /* Given a pointer to an initialized bfd (ABFD) and a flag that indicates
118 whether or not an objfile is to be mapped (MAPPED), allocate a new objfile
119 struct, fill it in as best we can, link it into the list of all known
120 objfiles, and return a pointer to the new objfile struct. */
121
122 struct objfile *
123 allocate_objfile (abfd, mapped)
124 bfd *abfd;
125 int mapped;
126 {
127 struct objfile *objfile = NULL;
128 struct objfile *last_one = NULL;
129
130 mapped |= mapped_symbol_files;
131
132 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
133 if (abfd != NULL)
134 {
135
136 /* If we can support mapped symbol files, try to open/reopen the
137 mapped file that corresponds to the file from which we wish to
138 read symbols. If the objfile is to be mapped, we must malloc
139 the structure itself using the mmap version, and arrange that
140 all memory allocation for the objfile uses the mmap routines.
141 If we are reusing an existing mapped file, from which we get
142 our objfile pointer, we have to make sure that we update the
143 pointers to the alloc/free functions in the obstack, in case
144 these functions have moved within the current gdb. */
145
146 int fd;
147
148 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
149 mapped);
150 if (fd >= 0)
151 {
152 PTR md;
153
154 if ((md = map_to_file (fd)) == NULL)
155 {
156 close (fd);
157 }
158 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
159 {
160 /* Update memory corruption handler function addresses. */
161 init_malloc (md);
162 objfile -> md = md;
163 objfile -> mmfd = fd;
164 /* Update pointers to functions to *our* copies */
165 obstack_chunkfun (&objfile -> psymbol_cache.cache, xmmalloc);
166 obstack_freefun (&objfile -> psymbol_cache.cache, mfree);
167 obstack_chunkfun (&objfile -> psymbol_obstack, xmmalloc);
168 obstack_freefun (&objfile -> psymbol_obstack, mfree);
169 obstack_chunkfun (&objfile -> symbol_obstack, xmmalloc);
170 obstack_freefun (&objfile -> symbol_obstack, mfree);
171 obstack_chunkfun (&objfile -> type_obstack, xmmalloc);
172 obstack_freefun (&objfile -> type_obstack, mfree);
173 /* If already in objfile list, unlink it. */
174 unlink_objfile (objfile);
175 /* Forget things specific to a particular gdb, may have changed. */
176 objfile -> sf = NULL;
177 }
178 else
179 {
180
181 /* Set up to detect internal memory corruption. MUST be
182 done before the first malloc. See comments in
183 init_malloc() and mmcheck(). */
184
185 init_malloc (md);
186
187 objfile = (struct objfile *)
188 xmmalloc (md, sizeof (struct objfile));
189 memset (objfile, 0, sizeof (struct objfile));
190 objfile -> md = md;
191 objfile -> mmfd = fd;
192 objfile -> flags |= OBJF_MAPPED;
193 mmalloc_setkey (objfile -> md, 0, objfile);
194 obstack_specify_allocation_with_arg (&objfile -> psymbol_cache.cache,
195 0, 0, xmmalloc, mfree,
196 objfile -> md);
197 obstack_specify_allocation_with_arg (&objfile -> psymbol_obstack,
198 0, 0, xmmalloc, mfree,
199 objfile -> md);
200 obstack_specify_allocation_with_arg (&objfile -> symbol_obstack,
201 0, 0, xmmalloc, mfree,
202 objfile -> md);
203 obstack_specify_allocation_with_arg (&objfile -> type_obstack,
204 0, 0, xmmalloc, mfree,
205 objfile -> md);
206 }
207 }
208
209 if (mapped && (objfile == NULL))
210 {
211 warning ("symbol table for '%s' will not be mapped",
212 bfd_get_filename (abfd));
213 }
214 }
215 #else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */
216
217 if (mapped)
218 {
219 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
220
221 /* Turn off the global flag so we don't try to do mapped symbol tables
222 any more, which shuts up gdb unless the user specifically gives the
223 "mapped" keyword again. */
224
225 mapped_symbol_files = 0;
226 }
227
228 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
229
230 /* If we don't support mapped symbol files, didn't ask for the file to be
231 mapped, or failed to open the mapped file for some reason, then revert
232 back to an unmapped objfile. */
233
234 if (objfile == NULL)
235 {
236 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
237 memset (objfile, 0, sizeof (struct objfile));
238 objfile -> md = NULL;
239 obstack_specify_allocation (&objfile -> psymbol_cache.cache, 0, 0,
240 xmalloc, free);
241 obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc,
242 free);
243 obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc,
244 free);
245 obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc,
246 free);
247 }
248
249 /* Update the per-objfile information that comes from the bfd, ensuring
250 that any data that is reference is saved in the per-objfile data
251 region. */
252
253 objfile -> obfd = abfd;
254 if (objfile -> name != NULL)
255 {
256 mfree (objfile -> md, objfile -> name);
257 }
258 if (abfd != NULL)
259 {
260 objfile -> name = mstrsave (objfile -> md, bfd_get_filename (abfd));
261 objfile -> mtime = bfd_get_mtime (abfd);
262
263 /* Build section table. */
264
265 if (build_objfile_section_table (objfile))
266 {
267 error ("Can't find the file sections in `%s': %s",
268 objfile -> name, bfd_errmsg (bfd_get_error ()));
269 }
270 }
271
272 /* Add this file onto the tail of the linked list of other such files. */
273
274 objfile -> next = NULL;
275 if (object_files == NULL)
276 object_files = objfile;
277 else
278 {
279 for (last_one = object_files;
280 last_one -> next;
281 last_one = last_one -> next);
282 last_one -> next = objfile;
283 }
284 return (objfile);
285 }
286
287 /* Put OBJFILE at the front of the list. */
288
289 void
290 objfile_to_front (objfile)
291 struct objfile *objfile;
292 {
293 struct objfile **objp;
294 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
295 {
296 if (*objp == objfile)
297 {
298 /* Unhook it from where it is. */
299 *objp = objfile->next;
300 /* Put it in the front. */
301 objfile->next = object_files;
302 object_files = objfile;
303 break;
304 }
305 }
306 }
307
308 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
309 list.
310
311 It is not a bug, or error, to call this function if OBJFILE is not known
312 to be in the current list. This is done in the case of mapped objfiles,
313 for example, just to ensure that the mapped objfile doesn't appear twice
314 in the list. Since the list is threaded, linking in a mapped objfile
315 twice would create a circular list.
316
317 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
318 unlinking it, just to ensure that we have completely severed any linkages
319 between the OBJFILE and the list. */
320
321 void
322 unlink_objfile (objfile)
323 struct objfile *objfile;
324 {
325 struct objfile** objpp;
326
327 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp) -> next))
328 {
329 if (*objpp == objfile)
330 {
331 *objpp = (*objpp) -> next;
332 objfile -> next = NULL;
333 break;
334 }
335 }
336 }
337
338
339 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
340 that as much as possible is allocated on the symbol_obstack and
341 psymbol_obstack, so that the memory can be efficiently freed.
342
343 Things which we do NOT free because they are not in malloc'd memory
344 or not in memory specific to the objfile include:
345
346 objfile -> sf
347
348 FIXME: If the objfile is using reusable symbol information (via mmalloc),
349 then we need to take into account the fact that more than one process
350 may be using the symbol information at the same time (when mmalloc is
351 extended to support cooperative locking). When more than one process
352 is using the mapped symbol info, we need to be more careful about when
353 we free objects in the reusable area. */
354
355 void
356 free_objfile (objfile)
357 struct objfile *objfile;
358 {
359 /* First do any symbol file specific actions required when we are
360 finished with a particular symbol file. Note that if the objfile
361 is using reusable symbol information (via mmalloc) then each of
362 these routines is responsible for doing the correct thing, either
363 freeing things which are valid only during this particular gdb
364 execution, or leaving them to be reused during the next one. */
365
366 if (objfile -> sf != NULL)
367 {
368 (*objfile -> sf -> sym_finish) (objfile);
369 }
370
371 /* We always close the bfd. */
372
373 if (objfile -> obfd != NULL)
374 {
375 char *name = bfd_get_filename (objfile->obfd);
376 if (!bfd_close (objfile -> obfd))
377 warning ("cannot close \"%s\": %s",
378 name, bfd_errmsg (bfd_get_error ()));
379 free (name);
380 }
381
382 /* Remove it from the chain of all objfiles. */
383
384 unlink_objfile (objfile);
385
386 /* If we are going to free the runtime common objfile, mark it
387 as unallocated. */
388
389 if (objfile == rt_common_objfile)
390 rt_common_objfile = NULL;
391
392 /* Before the symbol table code was redone to make it easier to
393 selectively load and remove information particular to a specific
394 linkage unit, gdb used to do these things whenever the monolithic
395 symbol table was blown away. How much still needs to be done
396 is unknown, but we play it safe for now and keep each action until
397 it is shown to be no longer needed. */
398
399 #if defined (CLEAR_SOLIB)
400 CLEAR_SOLIB ();
401 /* CLEAR_SOLIB closes the bfd's for any shared libraries. But
402 the to_sections for a core file might refer to those bfd's. So
403 detach any core file. */
404 {
405 struct target_ops *t = find_core_target ();
406 if (t != NULL)
407 (t->to_detach) (NULL, 0);
408 }
409 #endif
410 /* I *think* all our callers call clear_symtab_users. If so, no need
411 to call this here. */
412 clear_pc_function_cache ();
413
414 /* The last thing we do is free the objfile struct itself for the
415 non-reusable case, or detach from the mapped file for the reusable
416 case. Note that the mmalloc_detach or the mfree is the last thing
417 we can do with this objfile. */
418
419 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
420
421 if (objfile -> flags & OBJF_MAPPED)
422 {
423 /* Remember the fd so we can close it. We can't close it before
424 doing the detach, and after the detach the objfile is gone. */
425 int mmfd;
426
427 mmfd = objfile -> mmfd;
428 mmalloc_detach (objfile -> md);
429 objfile = NULL;
430 close (mmfd);
431 }
432
433 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
434
435 /* If we still have an objfile, then either we don't support reusable
436 objfiles or this one was not reusable. So free it normally. */
437
438 if (objfile != NULL)
439 {
440 if (objfile -> name != NULL)
441 {
442 mfree (objfile -> md, objfile -> name);
443 }
444 if (objfile->global_psymbols.list)
445 mfree (objfile->md, objfile->global_psymbols.list);
446 if (objfile->static_psymbols.list)
447 mfree (objfile->md, objfile->static_psymbols.list);
448 /* Free the obstacks for non-reusable objfiles */
449 obstack_free (&objfile -> psymbol_cache.cache, 0);
450 obstack_free (&objfile -> psymbol_obstack, 0);
451 obstack_free (&objfile -> symbol_obstack, 0);
452 obstack_free (&objfile -> type_obstack, 0);
453 mfree (objfile -> md, objfile);
454 objfile = NULL;
455 }
456 }
457
458
459 /* Free all the object files at once and clean up their users. */
460
461 void
462 free_all_objfiles ()
463 {
464 struct objfile *objfile, *temp;
465
466 ALL_OBJFILES_SAFE (objfile, temp)
467 {
468 free_objfile (objfile);
469 }
470 clear_symtab_users ();
471 }
472 \f
473 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
474 entries in new_offsets. */
475 void
476 objfile_relocate (objfile, new_offsets)
477 struct objfile *objfile;
478 struct section_offsets *new_offsets;
479 {
480 struct section_offsets *delta = (struct section_offsets *)
481 alloca (sizeof (struct section_offsets)
482 + objfile->num_sections * sizeof (delta->offsets));
483
484 {
485 int i;
486 int something_changed = 0;
487 for (i = 0; i < objfile->num_sections; ++i)
488 {
489 ANOFFSET (delta, i) =
490 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
491 if (ANOFFSET (delta, i) != 0)
492 something_changed = 1;
493 }
494 if (!something_changed)
495 return;
496 }
497
498 /* OK, get all the symtabs. */
499 {
500 struct symtab *s;
501
502 ALL_OBJFILE_SYMTABS (objfile, s)
503 {
504 struct linetable *l;
505 struct blockvector *bv;
506 int i;
507
508 /* First the line table. */
509 l = LINETABLE (s);
510 if (l)
511 {
512 for (i = 0; i < l->nitems; ++i)
513 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
514 }
515
516 /* Don't relocate a shared blockvector more than once. */
517 if (!s->primary)
518 continue;
519
520 bv = BLOCKVECTOR (s);
521 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
522 {
523 struct block *b;
524 int j;
525
526 b = BLOCKVECTOR_BLOCK (bv, i);
527 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
528 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
529
530 for (j = 0; j < BLOCK_NSYMS (b); ++j)
531 {
532 struct symbol *sym = BLOCK_SYM (b, j);
533 /* The RS6000 code from which this was taken skipped
534 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
535 But I'm leaving out that test, on the theory that
536 they can't possibly pass the tests below. */
537 if ((SYMBOL_CLASS (sym) == LOC_LABEL
538 || SYMBOL_CLASS (sym) == LOC_STATIC)
539 && SYMBOL_SECTION (sym) >= 0)
540 {
541 SYMBOL_VALUE_ADDRESS (sym) +=
542 ANOFFSET (delta, SYMBOL_SECTION (sym));
543 }
544 #ifdef MIPS_EFI_SYMBOL_NAME
545 /* Relocate Extra Function Info for ecoff. */
546
547 else
548 if (SYMBOL_CLASS (sym) == LOC_CONST
549 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
550 && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
551 ecoff_relocate_efi (sym, ANOFFSET (delta,
552 s->block_line_section));
553 #endif
554 }
555 }
556 }
557 }
558
559 {
560 struct partial_symtab *p;
561
562 ALL_OBJFILE_PSYMTABS (objfile, p)
563 {
564 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT);
565 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT);
566 }
567 }
568
569 {
570 struct partial_symbol **psym;
571
572 for (psym = objfile->global_psymbols.list;
573 psym < objfile->global_psymbols.next;
574 psym++)
575 if (SYMBOL_SECTION (*psym) >= 0)
576 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
577 SYMBOL_SECTION (*psym));
578 for (psym = objfile->static_psymbols.list;
579 psym < objfile->static_psymbols.next;
580 psym++)
581 if (SYMBOL_SECTION (*psym) >= 0)
582 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
583 SYMBOL_SECTION (*psym));
584 }
585
586 {
587 struct minimal_symbol *msym;
588 ALL_OBJFILE_MSYMBOLS (objfile, msym)
589 if (SYMBOL_SECTION (msym) >= 0)
590 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
591 }
592 /* Relocating different sections by different amounts may cause the symbols
593 to be out of order. */
594 msymbols_sort (objfile);
595
596 {
597 int i;
598 for (i = 0; i < objfile->num_sections; ++i)
599 ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i);
600 }
601
602 {
603 struct obj_section *s;
604 bfd *abfd;
605
606 abfd = objfile->obfd;
607
608 for (s = objfile->sections;
609 s < objfile->sections_end; ++s)
610 {
611 flagword flags;
612
613 flags = bfd_get_section_flags (abfd, s->the_bfd_section);
614
615 if (flags & SEC_CODE)
616 {
617 s->addr += ANOFFSET (delta, SECT_OFF_TEXT);
618 s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT);
619 }
620 else if (flags & (SEC_DATA | SEC_LOAD))
621 {
622 s->addr += ANOFFSET (delta, SECT_OFF_DATA);
623 s->endaddr += ANOFFSET (delta, SECT_OFF_DATA);
624 }
625 else if (flags & SEC_ALLOC)
626 {
627 s->addr += ANOFFSET (delta, SECT_OFF_BSS);
628 s->endaddr += ANOFFSET (delta, SECT_OFF_BSS);
629 }
630 }
631 }
632
633 if (objfile->ei.entry_point != ~(CORE_ADDR)0)
634 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT);
635
636 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
637 {
638 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
639 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
640 }
641
642 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
643 {
644 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
645 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
646 }
647
648 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
649 {
650 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
651 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
652 }
653
654 /* Relocate breakpoints as necessary, after things are relocated. */
655 breakpoint_re_set ();
656 }
657 \f
658 /* Many places in gdb want to test just to see if we have any partial
659 symbols available. This function returns zero if none are currently
660 available, nonzero otherwise. */
661
662 int
663 have_partial_symbols ()
664 {
665 struct objfile *ofp;
666
667 ALL_OBJFILES (ofp)
668 {
669 if (ofp -> psymtabs != NULL)
670 {
671 return 1;
672 }
673 }
674 return 0;
675 }
676
677 /* Many places in gdb want to test just to see if we have any full
678 symbols available. This function returns zero if none are currently
679 available, nonzero otherwise. */
680
681 int
682 have_full_symbols ()
683 {
684 struct objfile *ofp;
685
686 ALL_OBJFILES (ofp)
687 {
688 if (ofp -> symtabs != NULL)
689 {
690 return 1;
691 }
692 }
693 return 0;
694 }
695
696 /* Many places in gdb want to test just to see if we have any minimal
697 symbols available. This function returns zero if none are currently
698 available, nonzero otherwise. */
699
700 int
701 have_minimal_symbols ()
702 {
703 struct objfile *ofp;
704
705 ALL_OBJFILES (ofp)
706 {
707 if (ofp -> msymbols != NULL)
708 {
709 return 1;
710 }
711 }
712 return 0;
713 }
714
715 #if defined(USE_MMALLOC) && defined(HAVE_MMAP)
716
717 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
718 of the corresponding symbol file in MTIME, try to open an existing file
719 with the name SYMSFILENAME and verify it is more recent than the base
720 file by checking it's timestamp against MTIME.
721
722 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
723
724 If SYMSFILENAME does exist, but is out of date, we check to see if the
725 user has specified creation of a mapped file. If so, we don't issue
726 any warning message because we will be creating a new mapped file anyway,
727 overwriting the old one. If not, then we issue a warning message so that
728 the user will know why we aren't using this existing mapped symbol file.
729 In either case, we return -1.
730
731 If SYMSFILENAME does exist and is not out of date, but can't be opened for
732 some reason, then prints an appropriate system error message and returns -1.
733
734 Otherwise, returns the open file descriptor. */
735
736 static int
737 open_existing_mapped_file (symsfilename, mtime, mapped)
738 char *symsfilename;
739 long mtime;
740 int mapped;
741 {
742 int fd = -1;
743 struct stat sbuf;
744
745 if (stat (symsfilename, &sbuf) == 0)
746 {
747 if (sbuf.st_mtime < mtime)
748 {
749 if (!mapped)
750 {
751 warning ("mapped symbol file `%s' is out of date, ignored it",
752 symsfilename);
753 }
754 }
755 else if ((fd = open (symsfilename, O_RDWR)) < 0)
756 {
757 if (error_pre_print)
758 {
759 printf_unfiltered (error_pre_print);
760 }
761 print_sys_errmsg (symsfilename, errno);
762 }
763 }
764 return (fd);
765 }
766
767 /* Look for a mapped symbol file that corresponds to FILENAME and is more
768 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
769 use a mapped symbol file for this file, so create a new one if one does
770 not currently exist.
771
772 If found, then return an open file descriptor for the file, otherwise
773 return -1.
774
775 This routine is responsible for implementing the policy that generates
776 the name of the mapped symbol file from the name of a file containing
777 symbols that gdb would like to read. Currently this policy is to append
778 ".syms" to the name of the file.
779
780 This routine is also responsible for implementing the policy that
781 determines where the mapped symbol file is found (the search path).
782 This policy is that when reading an existing mapped file, a file of
783 the correct name in the current directory takes precedence over a
784 file of the correct name in the same directory as the symbol file.
785 When creating a new mapped file, it is always created in the current
786 directory. This helps to minimize the chances of a user unknowingly
787 creating big mapped files in places like /bin and /usr/local/bin, and
788 allows a local copy to override a manually installed global copy (in
789 /bin for example). */
790
791 static int
792 open_mapped_file (filename, mtime, mapped)
793 char *filename;
794 long mtime;
795 int mapped;
796 {
797 int fd;
798 char *symsfilename;
799
800 /* First try to open an existing file in the current directory, and
801 then try the directory where the symbol file is located. */
802
803 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
804 if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0)
805 {
806 free (symsfilename);
807 symsfilename = concat (filename, ".syms", (char *) NULL);
808 fd = open_existing_mapped_file (symsfilename, mtime, mapped);
809 }
810
811 /* If we don't have an open file by now, then either the file does not
812 already exist, or the base file has changed since it was created. In
813 either case, if the user has specified use of a mapped file, then
814 create a new mapped file, truncating any existing one. If we can't
815 create one, print a system error message saying why we can't.
816
817 By default the file is rw for everyone, with the user's umask taking
818 care of turning off the permissions the user wants off. */
819
820 if ((fd < 0) && mapped)
821 {
822 free (symsfilename);
823 symsfilename = concat ("./", basename (filename), ".syms",
824 (char *) NULL);
825 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
826 {
827 if (error_pre_print)
828 {
829 printf_unfiltered (error_pre_print);
830 }
831 print_sys_errmsg (symsfilename, errno);
832 }
833 }
834
835 free (symsfilename);
836 return (fd);
837 }
838
839 static PTR
840 map_to_file (fd)
841 int fd;
842 {
843 PTR md;
844 CORE_ADDR mapto;
845
846 md = mmalloc_attach (fd, (PTR) 0);
847 if (md != NULL)
848 {
849 mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
850 md = mmalloc_detach (md);
851 if (md != NULL)
852 {
853 /* FIXME: should figure out why detach failed */
854 md = NULL;
855 }
856 else if (mapto != (CORE_ADDR) NULL)
857 {
858 /* This mapping file needs to be remapped at "mapto" */
859 md = mmalloc_attach (fd, (PTR) mapto);
860 }
861 else
862 {
863 /* This is a freshly created mapping file. */
864 mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
865 if (mapto != 0)
866 {
867 /* To avoid reusing the freshly created mapping file, at the
868 address selected by mmap, we must truncate it before trying
869 to do an attach at the address we want. */
870 ftruncate (fd, 0);
871 md = mmalloc_attach (fd, (PTR) mapto);
872 if (md != NULL)
873 {
874 mmalloc_setkey (md, 1, (PTR) mapto);
875 }
876 }
877 }
878 }
879 return (md);
880 }
881
882 #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
883
884 /* Returns a section whose range includes PC and SECTION,
885 or NULL if none found. Note the distinction between the return type,
886 struct obj_section (which is defined in gdb), and the input type
887 struct sec (which is a bfd-defined data type). The obj_section
888 contains a pointer to the bfd struct sec section. */
889
890 struct obj_section *
891 find_pc_sect_section (pc, section)
892 CORE_ADDR pc;
893 struct sec *section;
894 {
895 struct obj_section *s;
896 struct objfile *objfile;
897
898 ALL_OBJFILES (objfile)
899 for (s = objfile->sections; s < objfile->sections_end; ++s)
900 if ((section == 0 || section == s->the_bfd_section) &&
901 s->addr <= pc && pc < s->endaddr)
902 return(s);
903
904 return(NULL);
905 }
906
907 /* Returns a section whose range includes PC or NULL if none found.
908 Backward compatibility, no section. */
909
910 struct obj_section *
911 find_pc_section(pc)
912 CORE_ADDR pc;
913 {
914 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
915 }
916
917
918 /* In SVR4, we recognize a trampoline by it's section name.
919 That is, if the pc is in a section named ".plt" then we are in
920 a trampoline. */
921
922 int
923 in_plt_section(pc, name)
924 CORE_ADDR pc;
925 char *name;
926 {
927 struct obj_section *s;
928 int retval = 0;
929
930 s = find_pc_section(pc);
931
932 retval = (s != NULL
933 && s->the_bfd_section->name != NULL
934 && STREQ (s->the_bfd_section->name, ".plt"));
935 return(retval);
936 }
This page took 0.06629 seconds and 4 git commands to generate.