*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25 /* This file contains support routines for creating, manipulating, and
26 destroying objfile structures. */
27
28 #include "defs.h"
29 #include "bfd.h" /* Binary File Description */
30 #include "symtab.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "target.h"
35 #include "bcache.h"
36 #include "mdebugread.h"
37 #include "gdb_assert.h"
38 #include <sys/types.h>
39 #include "gdb_stat.h"
40 #include <fcntl.h>
41 #include "gdb_obstack.h"
42 #include "gdb_string.h"
43 #include "hashtab.h"
44
45 #include "breakpoint.h"
46 #include "block.h"
47 #include "dictionary.h"
48 #include "source.h"
49
50 /* Prototypes for local functions */
51
52 static void objfile_alloc_data (struct objfile *objfile);
53 static void objfile_free_data (struct objfile *objfile);
54
55 /* Externally visible variables that are owned by this module.
56 See declarations in objfile.h for more info. */
57
58 struct objfile *object_files; /* Linked list of all objfiles */
59 struct objfile *current_objfile; /* For symbol file being read in */
60 struct objfile *symfile_objfile; /* Main symbol table loaded from */
61 struct objfile *rt_common_objfile; /* For runtime common symbols */
62
63 /* Locate all mappable sections of a BFD file.
64 objfile_p_char is a char * to get it through
65 bfd_map_over_sections; we cast it back to its proper type. */
66
67 #ifndef TARGET_KEEP_SECTION
68 #define TARGET_KEEP_SECTION(ASECT) 0
69 #endif
70
71 /* Called via bfd_map_over_sections to build up the section table that
72 the objfile references. The objfile contains pointers to the start
73 of the table (objfile->sections) and to the first location after
74 the end of the table (objfile->sections_end). */
75
76 static void
77 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
78 void *objfile_p_char)
79 {
80 struct objfile *objfile = (struct objfile *) objfile_p_char;
81 struct obj_section section;
82 flagword aflag;
83
84 aflag = bfd_get_section_flags (abfd, asect);
85
86 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
87 return;
88
89 if (0 == bfd_section_size (abfd, asect))
90 return;
91 section.offset = 0;
92 section.objfile = objfile;
93 section.the_bfd_section = asect;
94 section.ovly_mapped = 0;
95 section.addr = bfd_section_vma (abfd, asect);
96 section.endaddr = section.addr + bfd_section_size (abfd, asect);
97 obstack_grow (&objfile->objfile_obstack, (char *) &section, sizeof (section));
98 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
99 }
100
101 /* Builds a section table for OBJFILE.
102 Returns 0 if OK, 1 on error (in which case bfd_error contains the
103 error).
104
105 Note that while we are building the table, which goes into the
106 psymbol obstack, we hijack the sections_end pointer to instead hold
107 a count of the number of sections. When bfd_map_over_sections
108 returns, this count is used to compute the pointer to the end of
109 the sections table, which then overwrites the count.
110
111 Also note that the OFFSET and OVLY_MAPPED in each table entry
112 are initialized to zero.
113
114 Also note that if anything else writes to the psymbol obstack while
115 we are building the table, we're pretty much hosed. */
116
117 int
118 build_objfile_section_table (struct objfile *objfile)
119 {
120 /* objfile->sections can be already set when reading a mapped symbol
121 file. I believe that we do need to rebuild the section table in
122 this case (we rebuild other things derived from the bfd), but we
123 can't free the old one (it's in the objfile_obstack). So we just
124 waste some memory. */
125
126 objfile->sections_end = 0;
127 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
128 objfile->sections = (struct obj_section *)
129 obstack_finish (&objfile->objfile_obstack);
130 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
131 return (0);
132 }
133
134 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
135 allocate a new objfile struct, fill it in as best we can, link it
136 into the list of all known objfiles, and return a pointer to the
137 new objfile struct.
138
139 The FLAGS word contains various bits (OBJF_*) that can be taken as
140 requests for specific operations. Other bits like OBJF_SHARED are
141 simply copied through to the new objfile flags member. */
142
143 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
144 by jv-lang.c, to create an artificial objfile used to hold
145 information about dynamically-loaded Java classes. Unfortunately,
146 that branch of this function doesn't get tested very frequently, so
147 it's prone to breakage. (E.g. at one time the name was set to NULL
148 in that situation, which broke a loop over all names in the dynamic
149 library loader.) If you change this function, please try to leave
150 things in a consistent state even if abfd is NULL. */
151
152 struct objfile *
153 allocate_objfile (bfd *abfd, int flags)
154 {
155 struct objfile *objfile = NULL;
156 struct objfile *last_one = NULL;
157
158 /* If we don't support mapped symbol files, didn't ask for the file to be
159 mapped, or failed to open the mapped file for some reason, then revert
160 back to an unmapped objfile. */
161
162 if (objfile == NULL)
163 {
164 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
165 memset (objfile, 0, sizeof (struct objfile));
166 objfile->md = NULL;
167 objfile->psymbol_cache = bcache_xmalloc ();
168 objfile->macro_cache = bcache_xmalloc ();
169 /* We could use obstack_specify_allocation here instead, but
170 gdb_obstack.h specifies the alloc/dealloc functions. */
171 obstack_init (&objfile->objfile_obstack);
172 terminate_minimal_symbol_table (objfile);
173 }
174
175 objfile_alloc_data (objfile);
176
177 /* Update the per-objfile information that comes from the bfd, ensuring
178 that any data that is reference is saved in the per-objfile data
179 region. */
180
181 objfile->obfd = abfd;
182 if (objfile->name != NULL)
183 {
184 xfree (objfile->name);
185 }
186 if (abfd != NULL)
187 {
188 objfile->name = xstrdup (bfd_get_filename (abfd));
189 objfile->mtime = bfd_get_mtime (abfd);
190
191 /* Build section table. */
192
193 if (build_objfile_section_table (objfile))
194 {
195 error (_("Can't find the file sections in `%s': %s"),
196 objfile->name, bfd_errmsg (bfd_get_error ()));
197 }
198 }
199 else
200 {
201 objfile->name = xstrdup ("<<anonymous objfile>>");
202 }
203
204 /* Initialize the section indexes for this objfile, so that we can
205 later detect if they are used w/o being properly assigned to. */
206
207 objfile->sect_index_text = -1;
208 objfile->sect_index_data = -1;
209 objfile->sect_index_bss = -1;
210 objfile->sect_index_rodata = -1;
211
212 /* We don't yet have a C++-specific namespace symtab. */
213
214 objfile->cp_namespace_symtab = NULL;
215
216 /* Add this file onto the tail of the linked list of other such files. */
217
218 objfile->next = NULL;
219 if (object_files == NULL)
220 object_files = objfile;
221 else
222 {
223 for (last_one = object_files;
224 last_one->next;
225 last_one = last_one->next);
226 last_one->next = objfile;
227 }
228
229 /* Save passed in flag bits. */
230 objfile->flags |= flags;
231
232 return (objfile);
233 }
234
235 /* Initialize entry point information for this objfile. */
236
237 void
238 init_entry_point_info (struct objfile *objfile)
239 {
240 /* Save startup file's range of PC addresses to help blockframe.c
241 decide where the bottom of the stack is. */
242
243 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
244 {
245 /* Executable file -- record its entry point so we'll recognize
246 the startup file because it contains the entry point. */
247 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
248 }
249 else
250 {
251 /* Examination of non-executable.o files. Short-circuit this stuff. */
252 objfile->ei.entry_point = INVALID_ENTRY_POINT;
253 }
254 }
255
256 /* Get current entry point address. */
257
258 CORE_ADDR
259 entry_point_address (void)
260 {
261 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
262 }
263
264 /* Create the terminating entry of OBJFILE's minimal symbol table.
265 If OBJFILE->msymbols is zero, allocate a single entry from
266 OBJFILE->objfile_obstack; otherwise, just initialize
267 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
268 void
269 terminate_minimal_symbol_table (struct objfile *objfile)
270 {
271 if (! objfile->msymbols)
272 objfile->msymbols = ((struct minimal_symbol *)
273 obstack_alloc (&objfile->objfile_obstack,
274 sizeof (objfile->msymbols[0])));
275
276 {
277 struct minimal_symbol *m
278 = &objfile->msymbols[objfile->minimal_symbol_count];
279
280 memset (m, 0, sizeof (*m));
281 /* Don't rely on these enumeration values being 0's. */
282 MSYMBOL_TYPE (m) = mst_unknown;
283 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
284 }
285 }
286
287
288 /* Put one object file before a specified on in the global list.
289 This can be used to make sure an object file is destroyed before
290 another when using ALL_OBJFILES_SAFE to free all objfiles. */
291 void
292 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
293 {
294 struct objfile **objp;
295
296 unlink_objfile (objfile);
297
298 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
299 {
300 if (*objp == before_this)
301 {
302 objfile->next = *objp;
303 *objp = objfile;
304 return;
305 }
306 }
307
308 internal_error (__FILE__, __LINE__,
309 _("put_objfile_before: before objfile not in list"));
310 }
311
312 /* Put OBJFILE at the front of the list. */
313
314 void
315 objfile_to_front (struct objfile *objfile)
316 {
317 struct objfile **objp;
318 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
319 {
320 if (*objp == objfile)
321 {
322 /* Unhook it from where it is. */
323 *objp = objfile->next;
324 /* Put it in the front. */
325 objfile->next = object_files;
326 object_files = objfile;
327 break;
328 }
329 }
330 }
331
332 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
333 list.
334
335 It is not a bug, or error, to call this function if OBJFILE is not known
336 to be in the current list. This is done in the case of mapped objfiles,
337 for example, just to ensure that the mapped objfile doesn't appear twice
338 in the list. Since the list is threaded, linking in a mapped objfile
339 twice would create a circular list.
340
341 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
342 unlinking it, just to ensure that we have completely severed any linkages
343 between the OBJFILE and the list. */
344
345 void
346 unlink_objfile (struct objfile *objfile)
347 {
348 struct objfile **objpp;
349
350 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
351 {
352 if (*objpp == objfile)
353 {
354 *objpp = (*objpp)->next;
355 objfile->next = NULL;
356 return;
357 }
358 }
359
360 internal_error (__FILE__, __LINE__,
361 _("unlink_objfile: objfile already unlinked"));
362 }
363
364
365 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
366 that as much as possible is allocated on the objfile_obstack
367 so that the memory can be efficiently freed.
368
369 Things which we do NOT free because they are not in malloc'd memory
370 or not in memory specific to the objfile include:
371
372 objfile -> sf
373
374 FIXME: If the objfile is using reusable symbol information (via mmalloc),
375 then we need to take into account the fact that more than one process
376 may be using the symbol information at the same time (when mmalloc is
377 extended to support cooperative locking). When more than one process
378 is using the mapped symbol info, we need to be more careful about when
379 we free objects in the reusable area. */
380
381 void
382 free_objfile (struct objfile *objfile)
383 {
384 if (objfile->separate_debug_objfile)
385 {
386 free_objfile (objfile->separate_debug_objfile);
387 }
388
389 if (objfile->separate_debug_objfile_backlink)
390 {
391 /* We freed the separate debug file, make sure the base objfile
392 doesn't reference it. */
393 objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL;
394 }
395
396 /* Remove any references to this objfile in the global value
397 lists. */
398 preserve_values (objfile);
399
400 /* First do any symbol file specific actions required when we are
401 finished with a particular symbol file. Note that if the objfile
402 is using reusable symbol information (via mmalloc) then each of
403 these routines is responsible for doing the correct thing, either
404 freeing things which are valid only during this particular gdb
405 execution, or leaving them to be reused during the next one. */
406
407 if (objfile->sf != NULL)
408 {
409 (*objfile->sf->sym_finish) (objfile);
410 }
411
412 /* We always close the bfd. */
413
414 if (objfile->obfd != NULL)
415 {
416 char *name = bfd_get_filename (objfile->obfd);
417 if (!bfd_close (objfile->obfd))
418 warning (_("cannot close \"%s\": %s"),
419 name, bfd_errmsg (bfd_get_error ()));
420 xfree (name);
421 }
422
423 /* Remove it from the chain of all objfiles. */
424
425 unlink_objfile (objfile);
426
427 /* If we are going to free the runtime common objfile, mark it
428 as unallocated. */
429
430 if (objfile == rt_common_objfile)
431 rt_common_objfile = NULL;
432
433 /* Before the symbol table code was redone to make it easier to
434 selectively load and remove information particular to a specific
435 linkage unit, gdb used to do these things whenever the monolithic
436 symbol table was blown away. How much still needs to be done
437 is unknown, but we play it safe for now and keep each action until
438 it is shown to be no longer needed. */
439
440 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
441 for example), so we need to call this here. */
442 clear_pc_function_cache ();
443
444 /* Check to see if the current_source_symtab belongs to this objfile,
445 and if so, call clear_current_source_symtab_and_line. */
446
447 {
448 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
449 struct symtab *s;
450
451 ALL_OBJFILE_SYMTABS (objfile, s)
452 {
453 if (s == cursal.symtab)
454 clear_current_source_symtab_and_line ();
455 }
456 }
457
458 /* The last thing we do is free the objfile struct itself. */
459
460 objfile_free_data (objfile);
461 if (objfile->name != NULL)
462 {
463 xfree (objfile->name);
464 }
465 if (objfile->global_psymbols.list)
466 xfree (objfile->global_psymbols.list);
467 if (objfile->static_psymbols.list)
468 xfree (objfile->static_psymbols.list);
469 /* Free the obstacks for non-reusable objfiles */
470 bcache_xfree (objfile->psymbol_cache);
471 bcache_xfree (objfile->macro_cache);
472 if (objfile->demangled_names_hash)
473 htab_delete (objfile->demangled_names_hash);
474 obstack_free (&objfile->objfile_obstack, 0);
475 xfree (objfile);
476 objfile = NULL;
477 }
478
479 static void
480 do_free_objfile_cleanup (void *obj)
481 {
482 free_objfile (obj);
483 }
484
485 struct cleanup *
486 make_cleanup_free_objfile (struct objfile *obj)
487 {
488 return make_cleanup (do_free_objfile_cleanup, obj);
489 }
490
491 /* Free all the object files at once and clean up their users. */
492
493 void
494 free_all_objfiles (void)
495 {
496 struct objfile *objfile, *temp;
497
498 ALL_OBJFILES_SAFE (objfile, temp)
499 {
500 free_objfile (objfile);
501 }
502 clear_symtab_users ();
503 }
504 \f
505 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
506 entries in new_offsets. */
507 void
508 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
509 {
510 struct section_offsets *delta =
511 ((struct section_offsets *)
512 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
513
514 {
515 int i;
516 int something_changed = 0;
517 for (i = 0; i < objfile->num_sections; ++i)
518 {
519 delta->offsets[i] =
520 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
521 if (ANOFFSET (delta, i) != 0)
522 something_changed = 1;
523 }
524 if (!something_changed)
525 return;
526 }
527
528 /* OK, get all the symtabs. */
529 {
530 struct symtab *s;
531
532 ALL_OBJFILE_SYMTABS (objfile, s)
533 {
534 struct linetable *l;
535 struct blockvector *bv;
536 int i;
537
538 /* First the line table. */
539 l = LINETABLE (s);
540 if (l)
541 {
542 for (i = 0; i < l->nitems; ++i)
543 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
544 }
545
546 /* Don't relocate a shared blockvector more than once. */
547 if (!s->primary)
548 continue;
549
550 bv = BLOCKVECTOR (s);
551 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
552 {
553 struct block *b;
554 struct symbol *sym;
555 struct dict_iterator iter;
556
557 b = BLOCKVECTOR_BLOCK (bv, i);
558 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
559 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
560
561 ALL_BLOCK_SYMBOLS (b, iter, sym)
562 {
563 fixup_symbol_section (sym, objfile);
564
565 /* The RS6000 code from which this was taken skipped
566 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
567 But I'm leaving out that test, on the theory that
568 they can't possibly pass the tests below. */
569 if ((SYMBOL_CLASS (sym) == LOC_LABEL
570 || SYMBOL_CLASS (sym) == LOC_STATIC
571 || SYMBOL_CLASS (sym) == LOC_INDIRECT)
572 && SYMBOL_SECTION (sym) >= 0)
573 {
574 SYMBOL_VALUE_ADDRESS (sym) +=
575 ANOFFSET (delta, SYMBOL_SECTION (sym));
576 }
577 }
578 }
579 }
580 }
581
582 {
583 struct partial_symtab *p;
584
585 ALL_OBJFILE_PSYMTABS (objfile, p)
586 {
587 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
588 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
589 }
590 }
591
592 {
593 struct partial_symbol **psym;
594
595 for (psym = objfile->global_psymbols.list;
596 psym < objfile->global_psymbols.next;
597 psym++)
598 {
599 fixup_psymbol_section (*psym, objfile);
600 if (SYMBOL_SECTION (*psym) >= 0)
601 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
602 SYMBOL_SECTION (*psym));
603 }
604 for (psym = objfile->static_psymbols.list;
605 psym < objfile->static_psymbols.next;
606 psym++)
607 {
608 fixup_psymbol_section (*psym, objfile);
609 if (SYMBOL_SECTION (*psym) >= 0)
610 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
611 SYMBOL_SECTION (*psym));
612 }
613 }
614
615 {
616 struct minimal_symbol *msym;
617 ALL_OBJFILE_MSYMBOLS (objfile, msym)
618 if (SYMBOL_SECTION (msym) >= 0)
619 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
620 }
621 /* Relocating different sections by different amounts may cause the symbols
622 to be out of order. */
623 msymbols_sort (objfile);
624
625 {
626 int i;
627 for (i = 0; i < objfile->num_sections; ++i)
628 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
629 }
630
631 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
632 {
633 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
634 only as a fallback. */
635 struct obj_section *s;
636 s = find_pc_section (objfile->ei.entry_point);
637 if (s)
638 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
639 else
640 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
641 }
642
643 {
644 struct obj_section *s;
645 bfd *abfd;
646
647 abfd = objfile->obfd;
648
649 ALL_OBJFILE_OSECTIONS (objfile, s)
650 {
651 int idx = s->the_bfd_section->index;
652
653 s->addr += ANOFFSET (delta, idx);
654 s->endaddr += ANOFFSET (delta, idx);
655 }
656 }
657
658 /* Relocate breakpoints as necessary, after things are relocated. */
659 breakpoint_re_set ();
660 }
661 \f
662 /* Many places in gdb want to test just to see if we have any partial
663 symbols available. This function returns zero if none are currently
664 available, nonzero otherwise. */
665
666 int
667 have_partial_symbols (void)
668 {
669 struct objfile *ofp;
670
671 ALL_OBJFILES (ofp)
672 {
673 if (ofp->psymtabs != NULL)
674 {
675 return 1;
676 }
677 }
678 return 0;
679 }
680
681 /* Many places in gdb want to test just to see if we have any full
682 symbols available. This function returns zero if none are currently
683 available, nonzero otherwise. */
684
685 int
686 have_full_symbols (void)
687 {
688 struct objfile *ofp;
689
690 ALL_OBJFILES (ofp)
691 {
692 if (ofp->symtabs != NULL)
693 {
694 return 1;
695 }
696 }
697 return 0;
698 }
699
700
701 /* This operations deletes all objfile entries that represent solibs that
702 weren't explicitly loaded by the user, via e.g., the add-symbol-file
703 command.
704 */
705 void
706 objfile_purge_solibs (void)
707 {
708 struct objfile *objf;
709 struct objfile *temp;
710
711 ALL_OBJFILES_SAFE (objf, temp)
712 {
713 /* We assume that the solib package has been purged already, or will
714 be soon.
715 */
716 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
717 free_objfile (objf);
718 }
719 }
720
721
722 /* Many places in gdb want to test just to see if we have any minimal
723 symbols available. This function returns zero if none are currently
724 available, nonzero otherwise. */
725
726 int
727 have_minimal_symbols (void)
728 {
729 struct objfile *ofp;
730
731 ALL_OBJFILES (ofp)
732 {
733 if (ofp->minimal_symbol_count > 0)
734 {
735 return 1;
736 }
737 }
738 return 0;
739 }
740
741 /* Returns a section whose range includes PC and SECTION, or NULL if
742 none found. Note the distinction between the return type, struct
743 obj_section (which is defined in gdb), and the input type "struct
744 bfd_section" (which is a bfd-defined data type). The obj_section
745 contains a pointer to the "struct bfd_section". */
746
747 struct obj_section *
748 find_pc_sect_section (CORE_ADDR pc, struct bfd_section *section)
749 {
750 struct obj_section *s;
751 struct objfile *objfile;
752
753 ALL_OBJSECTIONS (objfile, s)
754 if ((section == 0 || section == s->the_bfd_section) &&
755 s->addr <= pc && pc < s->endaddr)
756 return (s);
757
758 return (NULL);
759 }
760
761 /* Returns a section whose range includes PC or NULL if none found.
762 Backward compatibility, no section. */
763
764 struct obj_section *
765 find_pc_section (CORE_ADDR pc)
766 {
767 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
768 }
769
770
771 /* In SVR4, we recognize a trampoline by it's section name.
772 That is, if the pc is in a section named ".plt" then we are in
773 a trampoline. */
774
775 int
776 in_plt_section (CORE_ADDR pc, char *name)
777 {
778 struct obj_section *s;
779 int retval = 0;
780
781 s = find_pc_section (pc);
782
783 retval = (s != NULL
784 && s->the_bfd_section->name != NULL
785 && strcmp (s->the_bfd_section->name, ".plt") == 0);
786 return (retval);
787 }
788
789 /* Return nonzero if NAME is in the import list of OBJFILE. Else
790 return zero. */
791
792 int
793 is_in_import_list (char *name, struct objfile *objfile)
794 {
795 int i;
796
797 if (!objfile || !name || !*name)
798 return 0;
799
800 for (i = 0; i < objfile->import_list_size; i++)
801 if (objfile->import_list[i] && DEPRECATED_STREQ (name, objfile->import_list[i]))
802 return 1;
803 return 0;
804 }
805 \f
806
807 /* Keep a registry of per-objfile data-pointers required by other GDB
808 modules. */
809
810 struct objfile_data
811 {
812 unsigned index;
813 };
814
815 struct objfile_data_registration
816 {
817 struct objfile_data *data;
818 struct objfile_data_registration *next;
819 };
820
821 struct objfile_data_registry
822 {
823 struct objfile_data_registration *registrations;
824 unsigned num_registrations;
825 };
826
827 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
828
829 const struct objfile_data *
830 register_objfile_data (void)
831 {
832 struct objfile_data_registration **curr;
833
834 /* Append new registration. */
835 for (curr = &objfile_data_registry.registrations;
836 *curr != NULL; curr = &(*curr)->next);
837
838 *curr = XMALLOC (struct objfile_data_registration);
839 (*curr)->next = NULL;
840 (*curr)->data = XMALLOC (struct objfile_data);
841 (*curr)->data->index = objfile_data_registry.num_registrations++;
842
843 return (*curr)->data;
844 }
845
846 static void
847 objfile_alloc_data (struct objfile *objfile)
848 {
849 gdb_assert (objfile->data == NULL);
850 objfile->num_data = objfile_data_registry.num_registrations;
851 objfile->data = XCALLOC (objfile->num_data, void *);
852 }
853
854 static void
855 objfile_free_data (struct objfile *objfile)
856 {
857 gdb_assert (objfile->data != NULL);
858 xfree (objfile->data);
859 objfile->data = NULL;
860 }
861
862 void
863 clear_objfile_data (struct objfile *objfile)
864 {
865 gdb_assert (objfile->data != NULL);
866 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
867 }
868
869 void
870 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
871 void *value)
872 {
873 gdb_assert (data->index < objfile->num_data);
874 objfile->data[data->index] = value;
875 }
876
877 void *
878 objfile_data (struct objfile *objfile, const struct objfile_data *data)
879 {
880 gdb_assert (data->index < objfile->num_data);
881 return objfile->data[data->index];
882 }
This page took 0.046996 seconds and 4 git commands to generate.