Fix ada array bounds display
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 /* This file contains support routines for creating, manipulating, and
25 destroying objfile structures. */
26
27 #include "defs.h"
28 #include "bfd.h" /* Binary File Description */
29 #include "symtab.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdb-stabs.h"
33 #include "target.h"
34 #include "bcache.h"
35 #include "mdebugread.h"
36 #include "expression.h"
37 #include "parser-defs.h"
38
39 #include "gdb_assert.h"
40 #include <sys/types.h>
41 #include "gdb_stat.h"
42 #include <fcntl.h>
43 #include "gdb_obstack.h"
44 #include "gdb_string.h"
45 #include "hashtab.h"
46
47 #include "breakpoint.h"
48 #include "block.h"
49 #include "dictionary.h"
50 #include "source.h"
51 #include "addrmap.h"
52 #include "arch-utils.h"
53 #include "exec.h"
54 #include "observer.h"
55 #include "complaints.h"
56 #include "psymtab.h"
57 #include "solist.h"
58
59 /* Prototypes for local functions */
60
61 static void objfile_alloc_data (struct objfile *objfile);
62 static void objfile_free_data (struct objfile *objfile);
63
64 /* Externally visible variables that are owned by this module.
65 See declarations in objfile.h for more info. */
66
67 struct objfile *rt_common_objfile; /* For runtime common symbols */
68
69 struct objfile_pspace_info
70 {
71 int objfiles_changed_p;
72 struct obj_section **sections;
73 int num_sections;
74 };
75
76 /* Per-program-space data key. */
77 static const struct program_space_data *objfiles_pspace_data;
78
79 static void
80 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
81 {
82 struct objfile_pspace_info *info;
83
84 info = program_space_data (pspace, objfiles_pspace_data);
85 if (info != NULL)
86 {
87 xfree (info->sections);
88 xfree (info);
89 }
90 }
91
92 /* Get the current svr4 data. If none is found yet, add it now. This
93 function always returns a valid object. */
94
95 static struct objfile_pspace_info *
96 get_objfile_pspace_data (struct program_space *pspace)
97 {
98 struct objfile_pspace_info *info;
99
100 info = program_space_data (pspace, objfiles_pspace_data);
101 if (info == NULL)
102 {
103 info = XZALLOC (struct objfile_pspace_info);
104 set_program_space_data (pspace, objfiles_pspace_data, info);
105 }
106
107 return info;
108 }
109
110 /* Records whether any objfiles appeared or disappeared since we last updated
111 address to obj section map. */
112
113 /* Locate all mappable sections of a BFD file.
114 objfile_p_char is a char * to get it through
115 bfd_map_over_sections; we cast it back to its proper type. */
116
117 /* Called via bfd_map_over_sections to build up the section table that
118 the objfile references. The objfile contains pointers to the start
119 of the table (objfile->sections) and to the first location after
120 the end of the table (objfile->sections_end). */
121
122 static void
123 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
124 void *objfile_p_char)
125 {
126 struct objfile *objfile = (struct objfile *) objfile_p_char;
127 struct obj_section section;
128 flagword aflag;
129
130 aflag = bfd_get_section_flags (abfd, asect);
131
132 if (!(aflag & SEC_ALLOC))
133 return;
134
135 if (0 == bfd_section_size (abfd, asect))
136 return;
137 section.objfile = objfile;
138 section.the_bfd_section = asect;
139 section.ovly_mapped = 0;
140 obstack_grow (&objfile->objfile_obstack,
141 (char *) &section, sizeof (section));
142 objfile->sections_end
143 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
144 }
145
146 /* Builds a section table for OBJFILE.
147 Returns 0 if OK, 1 on error (in which case bfd_error contains the
148 error).
149
150 Note that while we are building the table, which goes into the
151 psymbol obstack, we hijack the sections_end pointer to instead hold
152 a count of the number of sections. When bfd_map_over_sections
153 returns, this count is used to compute the pointer to the end of
154 the sections table, which then overwrites the count.
155
156 Also note that the OFFSET and OVLY_MAPPED in each table entry
157 are initialized to zero.
158
159 Also note that if anything else writes to the psymbol obstack while
160 we are building the table, we're pretty much hosed. */
161
162 int
163 build_objfile_section_table (struct objfile *objfile)
164 {
165 /* objfile->sections can be already set when reading a mapped symbol
166 file. I believe that we do need to rebuild the section table in
167 this case (we rebuild other things derived from the bfd), but we
168 can't free the old one (it's in the objfile_obstack). So we just
169 waste some memory. */
170
171 objfile->sections_end = 0;
172 bfd_map_over_sections (objfile->obfd,
173 add_to_objfile_sections, (void *) objfile);
174 objfile->sections = obstack_finish (&objfile->objfile_obstack);
175 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
176 return (0);
177 }
178
179 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
180 allocate a new objfile struct, fill it in as best we can, link it
181 into the list of all known objfiles, and return a pointer to the
182 new objfile struct.
183
184 The FLAGS word contains various bits (OBJF_*) that can be taken as
185 requests for specific operations. Other bits like OBJF_SHARED are
186 simply copied through to the new objfile flags member. */
187
188 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
189 by jv-lang.c, to create an artificial objfile used to hold
190 information about dynamically-loaded Java classes. Unfortunately,
191 that branch of this function doesn't get tested very frequently, so
192 it's prone to breakage. (E.g. at one time the name was set to NULL
193 in that situation, which broke a loop over all names in the dynamic
194 library loader.) If you change this function, please try to leave
195 things in a consistent state even if abfd is NULL. */
196
197 struct objfile *
198 allocate_objfile (bfd *abfd, int flags)
199 {
200 struct objfile *objfile;
201
202 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
203 objfile->psymbol_cache = psymbol_bcache_init ();
204 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
205 objfile->filename_cache = bcache_xmalloc (NULL, NULL);
206 /* We could use obstack_specify_allocation here instead, but
207 gdb_obstack.h specifies the alloc/dealloc functions. */
208 obstack_init (&objfile->objfile_obstack);
209 terminate_minimal_symbol_table (objfile);
210
211 objfile_alloc_data (objfile);
212
213 /* Update the per-objfile information that comes from the bfd, ensuring
214 that any data that is reference is saved in the per-objfile data
215 region. */
216
217 objfile->obfd = gdb_bfd_ref (abfd);
218 if (abfd != NULL)
219 {
220 /* Look up the gdbarch associated with the BFD. */
221 objfile->gdbarch = gdbarch_from_bfd (abfd);
222
223 objfile->name = xstrdup (bfd_get_filename (abfd));
224 objfile->mtime = bfd_get_mtime (abfd);
225
226 /* Build section table. */
227
228 if (build_objfile_section_table (objfile))
229 {
230 error (_("Can't find the file sections in `%s': %s"),
231 objfile->name, bfd_errmsg (bfd_get_error ()));
232 }
233 }
234 else
235 {
236 objfile->name = xstrdup ("<<anonymous objfile>>");
237 }
238
239 objfile->pspace = current_program_space;
240
241 /* Initialize the section indexes for this objfile, so that we can
242 later detect if they are used w/o being properly assigned to. */
243
244 objfile->sect_index_text = -1;
245 objfile->sect_index_data = -1;
246 objfile->sect_index_bss = -1;
247 objfile->sect_index_rodata = -1;
248
249 /* Add this file onto the tail of the linked list of other such files. */
250
251 objfile->next = NULL;
252 if (object_files == NULL)
253 object_files = objfile;
254 else
255 {
256 struct objfile *last_one;
257
258 for (last_one = object_files;
259 last_one->next;
260 last_one = last_one->next);
261 last_one->next = objfile;
262 }
263
264 /* Save passed in flag bits. */
265 objfile->flags |= flags;
266
267 /* Rebuild section map next time we need it. */
268 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
269
270 return objfile;
271 }
272
273 /* Retrieve the gdbarch associated with OBJFILE. */
274 struct gdbarch *
275 get_objfile_arch (struct objfile *objfile)
276 {
277 return objfile->gdbarch;
278 }
279
280 /* Initialize entry point information for this objfile. */
281
282 void
283 init_entry_point_info (struct objfile *objfile)
284 {
285 /* Save startup file's range of PC addresses to help blockframe.c
286 decide where the bottom of the stack is. */
287
288 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
289 {
290 /* Executable file -- record its entry point so we'll recognize
291 the startup file because it contains the entry point. */
292 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
293 objfile->ei.entry_point_p = 1;
294 }
295 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
296 && bfd_get_start_address (objfile->obfd) != 0)
297 {
298 /* Some shared libraries may have entry points set and be
299 runnable. There's no clear way to indicate this, so just check
300 for values other than zero. */
301 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
302 objfile->ei.entry_point_p = 1;
303 }
304 else
305 {
306 /* Examination of non-executable.o files. Short-circuit this stuff. */
307 objfile->ei.entry_point_p = 0;
308 }
309 }
310
311 /* If there is a valid and known entry point, function fills *ENTRY_P with it
312 and returns non-zero; otherwise it returns zero. */
313
314 int
315 entry_point_address_query (CORE_ADDR *entry_p)
316 {
317 struct gdbarch *gdbarch;
318 CORE_ADDR entry_point;
319
320 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
321 return 0;
322
323 gdbarch = get_objfile_arch (symfile_objfile);
324
325 entry_point = symfile_objfile->ei.entry_point;
326
327 /* Make certain that the address points at real code, and not a
328 function descriptor. */
329 entry_point = gdbarch_convert_from_func_ptr_addr (gdbarch, entry_point,
330 &current_target);
331
332 /* Remove any ISA markers, so that this matches entries in the
333 symbol table. */
334 entry_point = gdbarch_addr_bits_remove (gdbarch, entry_point);
335
336 *entry_p = entry_point;
337 return 1;
338 }
339
340 /* Get current entry point address. Call error if it is not known. */
341
342 CORE_ADDR
343 entry_point_address (void)
344 {
345 CORE_ADDR retval;
346
347 if (!entry_point_address_query (&retval))
348 error (_("Entry point address is not known."));
349
350 return retval;
351 }
352
353 /* Create the terminating entry of OBJFILE's minimal symbol table.
354 If OBJFILE->msymbols is zero, allocate a single entry from
355 OBJFILE->objfile_obstack; otherwise, just initialize
356 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
357 void
358 terminate_minimal_symbol_table (struct objfile *objfile)
359 {
360 if (! objfile->msymbols)
361 objfile->msymbols = ((struct minimal_symbol *)
362 obstack_alloc (&objfile->objfile_obstack,
363 sizeof (objfile->msymbols[0])));
364
365 {
366 struct minimal_symbol *m
367 = &objfile->msymbols[objfile->minimal_symbol_count];
368
369 memset (m, 0, sizeof (*m));
370 /* Don't rely on these enumeration values being 0's. */
371 MSYMBOL_TYPE (m) = mst_unknown;
372 SYMBOL_SET_LANGUAGE (m, language_unknown);
373 }
374 }
375
376 /* Iterator on PARENT and every separate debug objfile of PARENT.
377 The usage pattern is:
378 for (objfile = parent;
379 objfile;
380 objfile = objfile_separate_debug_iterate (parent, objfile))
381 ...
382 */
383
384 struct objfile *
385 objfile_separate_debug_iterate (const struct objfile *parent,
386 const struct objfile *objfile)
387 {
388 struct objfile *res;
389
390 /* If any, return the first child. */
391 res = objfile->separate_debug_objfile;
392 if (res)
393 return res;
394
395 /* Common case where there is no separate debug objfile. */
396 if (objfile == parent)
397 return NULL;
398
399 /* Return the brother if any. Note that we don't iterate on brothers of
400 the parents. */
401 res = objfile->separate_debug_objfile_link;
402 if (res)
403 return res;
404
405 for (res = objfile->separate_debug_objfile_backlink;
406 res != parent;
407 res = res->separate_debug_objfile_backlink)
408 {
409 gdb_assert (res != NULL);
410 if (res->separate_debug_objfile_link)
411 return res->separate_debug_objfile_link;
412 }
413 return NULL;
414 }
415
416 /* Put one object file before a specified on in the global list.
417 This can be used to make sure an object file is destroyed before
418 another when using ALL_OBJFILES_SAFE to free all objfiles. */
419 void
420 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
421 {
422 struct objfile **objp;
423
424 unlink_objfile (objfile);
425
426 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
427 {
428 if (*objp == before_this)
429 {
430 objfile->next = *objp;
431 *objp = objfile;
432 return;
433 }
434 }
435
436 internal_error (__FILE__, __LINE__,
437 _("put_objfile_before: before objfile not in list"));
438 }
439
440 /* Put OBJFILE at the front of the list. */
441
442 void
443 objfile_to_front (struct objfile *objfile)
444 {
445 struct objfile **objp;
446 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
447 {
448 if (*objp == objfile)
449 {
450 /* Unhook it from where it is. */
451 *objp = objfile->next;
452 /* Put it in the front. */
453 objfile->next = object_files;
454 object_files = objfile;
455 break;
456 }
457 }
458 }
459
460 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
461 list.
462
463 It is not a bug, or error, to call this function if OBJFILE is not known
464 to be in the current list. This is done in the case of mapped objfiles,
465 for example, just to ensure that the mapped objfile doesn't appear twice
466 in the list. Since the list is threaded, linking in a mapped objfile
467 twice would create a circular list.
468
469 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
470 unlinking it, just to ensure that we have completely severed any linkages
471 between the OBJFILE and the list. */
472
473 void
474 unlink_objfile (struct objfile *objfile)
475 {
476 struct objfile **objpp;
477
478 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
479 {
480 if (*objpp == objfile)
481 {
482 *objpp = (*objpp)->next;
483 objfile->next = NULL;
484 return;
485 }
486 }
487
488 internal_error (__FILE__, __LINE__,
489 _("unlink_objfile: objfile already unlinked"));
490 }
491
492 /* Add OBJFILE as a separate debug objfile of PARENT. */
493
494 void
495 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
496 {
497 gdb_assert (objfile && parent);
498
499 /* Must not be already in a list. */
500 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
501 gdb_assert (objfile->separate_debug_objfile_link == NULL);
502
503 objfile->separate_debug_objfile_backlink = parent;
504 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
505 parent->separate_debug_objfile = objfile;
506
507 /* Put the separate debug object before the normal one, this is so that
508 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
509 put_objfile_before (objfile, parent);
510 }
511
512 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
513 itself. */
514
515 void
516 free_objfile_separate_debug (struct objfile *objfile)
517 {
518 struct objfile *child;
519
520 for (child = objfile->separate_debug_objfile; child;)
521 {
522 struct objfile *next_child = child->separate_debug_objfile_link;
523 free_objfile (child);
524 child = next_child;
525 }
526 }
527
528 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
529 that as much as possible is allocated on the objfile_obstack
530 so that the memory can be efficiently freed.
531
532 Things which we do NOT free because they are not in malloc'd memory
533 or not in memory specific to the objfile include:
534
535 objfile -> sf
536
537 FIXME: If the objfile is using reusable symbol information (via mmalloc),
538 then we need to take into account the fact that more than one process
539 may be using the symbol information at the same time (when mmalloc is
540 extended to support cooperative locking). When more than one process
541 is using the mapped symbol info, we need to be more careful about when
542 we free objects in the reusable area. */
543
544 void
545 free_objfile (struct objfile *objfile)
546 {
547 /* Free all separate debug objfiles. */
548 free_objfile_separate_debug (objfile);
549
550 if (objfile->separate_debug_objfile_backlink)
551 {
552 /* We freed the separate debug file, make sure the base objfile
553 doesn't reference it. */
554 struct objfile *child;
555
556 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
557
558 if (child == objfile)
559 {
560 /* OBJFILE is the first child. */
561 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
562 objfile->separate_debug_objfile_link;
563 }
564 else
565 {
566 /* Find OBJFILE in the list. */
567 while (1)
568 {
569 if (child->separate_debug_objfile_link == objfile)
570 {
571 child->separate_debug_objfile_link =
572 objfile->separate_debug_objfile_link;
573 break;
574 }
575 child = child->separate_debug_objfile_link;
576 gdb_assert (child);
577 }
578 }
579 }
580
581 /* Remove any references to this objfile in the global value
582 lists. */
583 preserve_values (objfile);
584
585 /* It still may reference data modules have associated with the objfile and
586 the symbol file data. */
587 forget_cached_source_info_for_objfile (objfile);
588
589 /* First do any symbol file specific actions required when we are
590 finished with a particular symbol file. Note that if the objfile
591 is using reusable symbol information (via mmalloc) then each of
592 these routines is responsible for doing the correct thing, either
593 freeing things which are valid only during this particular gdb
594 execution, or leaving them to be reused during the next one. */
595
596 if (objfile->sf != NULL)
597 {
598 (*objfile->sf->sym_finish) (objfile);
599 }
600
601 /* Discard any data modules have associated with the objfile. The function
602 still may reference objfile->obfd. */
603 objfile_free_data (objfile);
604
605 gdb_bfd_unref (objfile->obfd);
606
607 /* Remove it from the chain of all objfiles. */
608
609 unlink_objfile (objfile);
610
611 if (objfile == symfile_objfile)
612 symfile_objfile = NULL;
613
614 if (objfile == rt_common_objfile)
615 rt_common_objfile = NULL;
616
617 /* Before the symbol table code was redone to make it easier to
618 selectively load and remove information particular to a specific
619 linkage unit, gdb used to do these things whenever the monolithic
620 symbol table was blown away. How much still needs to be done
621 is unknown, but we play it safe for now and keep each action until
622 it is shown to be no longer needed. */
623
624 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
625 for example), so we need to call this here. */
626 clear_pc_function_cache ();
627
628 /* Clear globals which might have pointed into a removed objfile.
629 FIXME: It's not clear which of these are supposed to persist
630 between expressions and which ought to be reset each time. */
631 expression_context_block = NULL;
632 innermost_block = NULL;
633
634 /* Check to see if the current_source_symtab belongs to this objfile,
635 and if so, call clear_current_source_symtab_and_line. */
636
637 {
638 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
639
640 if (cursal.symtab && cursal.symtab->objfile == objfile)
641 clear_current_source_symtab_and_line ();
642 }
643
644 /* The last thing we do is free the objfile struct itself. */
645
646 xfree (objfile->name);
647 if (objfile->global_psymbols.list)
648 xfree (objfile->global_psymbols.list);
649 if (objfile->static_psymbols.list)
650 xfree (objfile->static_psymbols.list);
651 /* Free the obstacks for non-reusable objfiles. */
652 psymbol_bcache_free (objfile->psymbol_cache);
653 bcache_xfree (objfile->macro_cache);
654 bcache_xfree (objfile->filename_cache);
655 if (objfile->demangled_names_hash)
656 htab_delete (objfile->demangled_names_hash);
657 obstack_free (&objfile->objfile_obstack, 0);
658
659 /* Rebuild section map next time we need it. */
660 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
661
662 xfree (objfile);
663 }
664
665 static void
666 do_free_objfile_cleanup (void *obj)
667 {
668 free_objfile (obj);
669 }
670
671 struct cleanup *
672 make_cleanup_free_objfile (struct objfile *obj)
673 {
674 return make_cleanup (do_free_objfile_cleanup, obj);
675 }
676
677 /* Free all the object files at once and clean up their users. */
678
679 void
680 free_all_objfiles (void)
681 {
682 struct objfile *objfile, *temp;
683 struct so_list *so;
684
685 /* Any objfile referencewould become stale. */
686 for (so = master_so_list (); so; so = so->next)
687 gdb_assert (so->objfile == NULL);
688
689 ALL_OBJFILES_SAFE (objfile, temp)
690 {
691 free_objfile (objfile);
692 }
693 clear_symtab_users (0);
694 }
695 \f
696 /* A helper function for objfile_relocate1 that relocates a single
697 symbol. */
698
699 static void
700 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
701 struct section_offsets *delta)
702 {
703 fixup_symbol_section (sym, objfile);
704
705 /* The RS6000 code from which this was taken skipped
706 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
707 But I'm leaving out that test, on the theory that
708 they can't possibly pass the tests below. */
709 if ((SYMBOL_CLASS (sym) == LOC_LABEL
710 || SYMBOL_CLASS (sym) == LOC_STATIC)
711 && SYMBOL_SECTION (sym) >= 0)
712 {
713 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
714 }
715 }
716
717 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
718 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
719 Return non-zero iff any change happened. */
720
721 static int
722 objfile_relocate1 (struct objfile *objfile,
723 struct section_offsets *new_offsets)
724 {
725 struct obj_section *s;
726 struct section_offsets *delta =
727 ((struct section_offsets *)
728 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
729
730 int i;
731 int something_changed = 0;
732
733 for (i = 0; i < objfile->num_sections; ++i)
734 {
735 delta->offsets[i] =
736 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
737 if (ANOFFSET (delta, i) != 0)
738 something_changed = 1;
739 }
740 if (!something_changed)
741 return 0;
742
743 /* OK, get all the symtabs. */
744 {
745 struct symtab *s;
746
747 ALL_OBJFILE_SYMTABS (objfile, s)
748 {
749 struct linetable *l;
750 struct blockvector *bv;
751 int i;
752
753 /* First the line table. */
754 l = LINETABLE (s);
755 if (l)
756 {
757 for (i = 0; i < l->nitems; ++i)
758 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
759 }
760
761 /* Don't relocate a shared blockvector more than once. */
762 if (!s->primary)
763 continue;
764
765 bv = BLOCKVECTOR (s);
766 if (BLOCKVECTOR_MAP (bv))
767 addrmap_relocate (BLOCKVECTOR_MAP (bv),
768 ANOFFSET (delta, s->block_line_section));
769
770 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
771 {
772 struct block *b;
773 struct symbol *sym;
774 struct dict_iterator iter;
775
776 b = BLOCKVECTOR_BLOCK (bv, i);
777 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
778 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
779
780 ALL_BLOCK_SYMBOLS (b, iter, sym)
781 {
782 relocate_one_symbol (sym, objfile, delta);
783 }
784 }
785 }
786 }
787
788 /* Relocate isolated symbols. */
789 {
790 struct symbol *iter;
791
792 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
793 relocate_one_symbol (iter, objfile, delta);
794 }
795
796 if (objfile->psymtabs_addrmap)
797 addrmap_relocate (objfile->psymtabs_addrmap,
798 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
799
800 if (objfile->sf)
801 objfile->sf->qf->relocate (objfile, new_offsets, delta);
802
803 {
804 struct minimal_symbol *msym;
805
806 ALL_OBJFILE_MSYMBOLS (objfile, msym)
807 if (SYMBOL_SECTION (msym) >= 0)
808 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
809 }
810 /* Relocating different sections by different amounts may cause the symbols
811 to be out of order. */
812 msymbols_sort (objfile);
813
814 if (objfile->ei.entry_point_p)
815 {
816 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
817 only as a fallback. */
818 struct obj_section *s;
819 s = find_pc_section (objfile->ei.entry_point);
820 if (s)
821 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
822 else
823 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
824 }
825
826 {
827 int i;
828
829 for (i = 0; i < objfile->num_sections; ++i)
830 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
831 }
832
833 /* Rebuild section map next time we need it. */
834 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
835
836 /* Update the table in exec_ops, used to read memory. */
837 ALL_OBJFILE_OSECTIONS (objfile, s)
838 {
839 int idx = s->the_bfd_section->index;
840
841 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
842 obj_section_addr (s));
843 }
844
845 /* Data changed. */
846 return 1;
847 }
848
849 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
850 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
851
852 The number and ordering of sections does differ between the two objfiles.
853 Only their names match. Also the file offsets will differ (objfile being
854 possibly prelinked but separate_debug_objfile is probably not prelinked) but
855 the in-memory absolute address as specified by NEW_OFFSETS must match both
856 files. */
857
858 void
859 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
860 {
861 struct objfile *debug_objfile;
862 int changed = 0;
863
864 changed |= objfile_relocate1 (objfile, new_offsets);
865
866 for (debug_objfile = objfile->separate_debug_objfile;
867 debug_objfile;
868 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
869 {
870 struct section_addr_info *objfile_addrs;
871 struct section_offsets *new_debug_offsets;
872 struct cleanup *my_cleanups;
873
874 objfile_addrs = build_section_addr_info_from_objfile (objfile);
875 my_cleanups = make_cleanup (xfree, objfile_addrs);
876
877 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
878 relative ones must be already created according to debug_objfile. */
879
880 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
881
882 gdb_assert (debug_objfile->num_sections
883 == bfd_count_sections (debug_objfile->obfd));
884 new_debug_offsets =
885 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
886 make_cleanup (xfree, new_debug_offsets);
887 relative_addr_info_to_section_offsets (new_debug_offsets,
888 debug_objfile->num_sections,
889 objfile_addrs);
890
891 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
892
893 do_cleanups (my_cleanups);
894 }
895
896 /* Relocate breakpoints as necessary, after things are relocated. */
897 if (changed)
898 breakpoint_re_set ();
899 }
900 \f
901 /* Return non-zero if OBJFILE has partial symbols. */
902
903 int
904 objfile_has_partial_symbols (struct objfile *objfile)
905 {
906 if (!objfile->sf)
907 return 0;
908
909 /* If we have not read psymbols, but we have a function capable of reading
910 them, then that is an indication that they are in fact available. Without
911 this function the symbols may have been already read in but they also may
912 not be present in this objfile. */
913 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
914 && objfile->sf->sym_read_psymbols != NULL)
915 return 1;
916
917 return objfile->sf->qf->has_symbols (objfile);
918 }
919
920 /* Return non-zero if OBJFILE has full symbols. */
921
922 int
923 objfile_has_full_symbols (struct objfile *objfile)
924 {
925 return objfile->symtabs != NULL;
926 }
927
928 /* Return non-zero if OBJFILE has full or partial symbols, either directly
929 or through a separate debug file. */
930
931 int
932 objfile_has_symbols (struct objfile *objfile)
933 {
934 struct objfile *o;
935
936 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
937 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
938 return 1;
939 return 0;
940 }
941
942
943 /* Many places in gdb want to test just to see if we have any partial
944 symbols available. This function returns zero if none are currently
945 available, nonzero otherwise. */
946
947 int
948 have_partial_symbols (void)
949 {
950 struct objfile *ofp;
951
952 ALL_OBJFILES (ofp)
953 {
954 if (objfile_has_partial_symbols (ofp))
955 return 1;
956 }
957 return 0;
958 }
959
960 /* Many places in gdb want to test just to see if we have any full
961 symbols available. This function returns zero if none are currently
962 available, nonzero otherwise. */
963
964 int
965 have_full_symbols (void)
966 {
967 struct objfile *ofp;
968
969 ALL_OBJFILES (ofp)
970 {
971 if (objfile_has_full_symbols (ofp))
972 return 1;
973 }
974 return 0;
975 }
976
977
978 /* This operations deletes all objfile entries that represent solibs that
979 weren't explicitly loaded by the user, via e.g., the add-symbol-file
980 command. */
981
982 void
983 objfile_purge_solibs (void)
984 {
985 struct objfile *objf;
986 struct objfile *temp;
987
988 ALL_OBJFILES_SAFE (objf, temp)
989 {
990 /* We assume that the solib package has been purged already, or will
991 be soon. */
992
993 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
994 free_objfile (objf);
995 }
996 }
997
998
999 /* Many places in gdb want to test just to see if we have any minimal
1000 symbols available. This function returns zero if none are currently
1001 available, nonzero otherwise. */
1002
1003 int
1004 have_minimal_symbols (void)
1005 {
1006 struct objfile *ofp;
1007
1008 ALL_OBJFILES (ofp)
1009 {
1010 if (ofp->minimal_symbol_count > 0)
1011 {
1012 return 1;
1013 }
1014 }
1015 return 0;
1016 }
1017
1018 /* Qsort comparison function. */
1019
1020 static int
1021 qsort_cmp (const void *a, const void *b)
1022 {
1023 const struct obj_section *sect1 = *(const struct obj_section **) a;
1024 const struct obj_section *sect2 = *(const struct obj_section **) b;
1025 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1026 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1027
1028 if (sect1_addr < sect2_addr)
1029 return -1;
1030 else if (sect1_addr > sect2_addr)
1031 return 1;
1032 else
1033 {
1034 /* Sections are at the same address. This could happen if
1035 A) we have an objfile and a separate debuginfo.
1036 B) we are confused, and have added sections without proper relocation,
1037 or something like that. */
1038
1039 const struct objfile *const objfile1 = sect1->objfile;
1040 const struct objfile *const objfile2 = sect2->objfile;
1041
1042 if (objfile1->separate_debug_objfile == objfile2
1043 || objfile2->separate_debug_objfile == objfile1)
1044 {
1045 /* Case A. The ordering doesn't matter: separate debuginfo files
1046 will be filtered out later. */
1047
1048 return 0;
1049 }
1050
1051 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1052 triage. This section could be slow (since we iterate over all
1053 objfiles in each call to qsort_cmp), but this shouldn't happen
1054 very often (GDB is already in a confused state; one hopes this
1055 doesn't happen at all). If you discover that significant time is
1056 spent in the loops below, do 'set complaints 100' and examine the
1057 resulting complaints. */
1058
1059 if (objfile1 == objfile2)
1060 {
1061 /* Both sections came from the same objfile. We are really confused.
1062 Sort on sequence order of sections within the objfile. */
1063
1064 const struct obj_section *osect;
1065
1066 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1067 if (osect == sect1)
1068 return -1;
1069 else if (osect == sect2)
1070 return 1;
1071
1072 /* We should have found one of the sections before getting here. */
1073 gdb_assert_not_reached ("section not found");
1074 }
1075 else
1076 {
1077 /* Sort on sequence number of the objfile in the chain. */
1078
1079 const struct objfile *objfile;
1080
1081 ALL_OBJFILES (objfile)
1082 if (objfile == objfile1)
1083 return -1;
1084 else if (objfile == objfile2)
1085 return 1;
1086
1087 /* We should have found one of the objfiles before getting here. */
1088 gdb_assert_not_reached ("objfile not found");
1089 }
1090 }
1091
1092 /* Unreachable. */
1093 gdb_assert_not_reached ("unexpected code path");
1094 return 0;
1095 }
1096
1097 /* Select "better" obj_section to keep. We prefer the one that came from
1098 the real object, rather than the one from separate debuginfo.
1099 Most of the time the two sections are exactly identical, but with
1100 prelinking the .rel.dyn section in the real object may have different
1101 size. */
1102
1103 static struct obj_section *
1104 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1105 {
1106 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1107 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1108 || (b->objfile->separate_debug_objfile == a->objfile));
1109 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1110 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1111
1112 if (a->objfile->separate_debug_objfile != NULL)
1113 return a;
1114 return b;
1115 }
1116
1117 /* Return 1 if SECTION should be inserted into the section map.
1118 We want to insert only non-overlay and non-TLS section. */
1119
1120 static int
1121 insert_section_p (const struct bfd *abfd,
1122 const struct bfd_section *section)
1123 {
1124 const bfd_vma lma = bfd_section_lma (abfd, section);
1125
1126 if (lma != 0 && lma != bfd_section_vma (abfd, section)
1127 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1128 /* This is an overlay section. IN_MEMORY check is needed to avoid
1129 discarding sections from the "system supplied DSO" (aka vdso)
1130 on some Linux systems (e.g. Fedora 11). */
1131 return 0;
1132 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1133 /* This is a TLS section. */
1134 return 0;
1135
1136 return 1;
1137 }
1138
1139 /* Filter out overlapping sections where one section came from the real
1140 objfile, and the other from a separate debuginfo file.
1141 Return the size of table after redundant sections have been eliminated. */
1142
1143 static int
1144 filter_debuginfo_sections (struct obj_section **map, int map_size)
1145 {
1146 int i, j;
1147
1148 for (i = 0, j = 0; i < map_size - 1; i++)
1149 {
1150 struct obj_section *const sect1 = map[i];
1151 struct obj_section *const sect2 = map[i + 1];
1152 const struct objfile *const objfile1 = sect1->objfile;
1153 const struct objfile *const objfile2 = sect2->objfile;
1154 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1155 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1156
1157 if (sect1_addr == sect2_addr
1158 && (objfile1->separate_debug_objfile == objfile2
1159 || objfile2->separate_debug_objfile == objfile1))
1160 {
1161 map[j++] = preferred_obj_section (sect1, sect2);
1162 ++i;
1163 }
1164 else
1165 map[j++] = sect1;
1166 }
1167
1168 if (i < map_size)
1169 {
1170 gdb_assert (i == map_size - 1);
1171 map[j++] = map[i];
1172 }
1173
1174 /* The map should not have shrunk to less than half the original size. */
1175 gdb_assert (map_size / 2 <= j);
1176
1177 return j;
1178 }
1179
1180 /* Filter out overlapping sections, issuing a warning if any are found.
1181 Overlapping sections could really be overlay sections which we didn't
1182 classify as such in insert_section_p, or we could be dealing with a
1183 corrupt binary. */
1184
1185 static int
1186 filter_overlapping_sections (struct obj_section **map, int map_size)
1187 {
1188 int i, j;
1189
1190 for (i = 0, j = 0; i < map_size - 1; )
1191 {
1192 int k;
1193
1194 map[j++] = map[i];
1195 for (k = i + 1; k < map_size; k++)
1196 {
1197 struct obj_section *const sect1 = map[i];
1198 struct obj_section *const sect2 = map[k];
1199 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1200 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1201 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1202
1203 gdb_assert (sect1_addr <= sect2_addr);
1204
1205 if (sect1_endaddr <= sect2_addr)
1206 break;
1207 else
1208 {
1209 /* We have an overlap. Report it. */
1210
1211 struct objfile *const objf1 = sect1->objfile;
1212 struct objfile *const objf2 = sect2->objfile;
1213
1214 const struct bfd *const abfd1 = objf1->obfd;
1215 const struct bfd *const abfd2 = objf2->obfd;
1216
1217 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1218 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1219
1220 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1221
1222 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1223
1224 complaint (&symfile_complaints,
1225 _("unexpected overlap between:\n"
1226 " (A) section `%s' from `%s' [%s, %s)\n"
1227 " (B) section `%s' from `%s' [%s, %s).\n"
1228 "Will ignore section B"),
1229 bfd_section_name (abfd1, bfds1), objf1->name,
1230 paddress (gdbarch, sect1_addr),
1231 paddress (gdbarch, sect1_endaddr),
1232 bfd_section_name (abfd2, bfds2), objf2->name,
1233 paddress (gdbarch, sect2_addr),
1234 paddress (gdbarch, sect2_endaddr));
1235 }
1236 }
1237 i = k;
1238 }
1239
1240 if (i < map_size)
1241 {
1242 gdb_assert (i == map_size - 1);
1243 map[j++] = map[i];
1244 }
1245
1246 return j;
1247 }
1248
1249
1250 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1251 TLS, overlay and overlapping sections. */
1252
1253 static void
1254 update_section_map (struct program_space *pspace,
1255 struct obj_section ***pmap, int *pmap_size)
1256 {
1257 int alloc_size, map_size, i;
1258 struct obj_section *s, **map;
1259 struct objfile *objfile;
1260
1261 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1262
1263 map = *pmap;
1264 xfree (map);
1265
1266 alloc_size = 0;
1267 ALL_PSPACE_OBJFILES (pspace, objfile)
1268 ALL_OBJFILE_OSECTIONS (objfile, s)
1269 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1270 alloc_size += 1;
1271
1272 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1273 if (alloc_size == 0)
1274 {
1275 *pmap = NULL;
1276 *pmap_size = 0;
1277 return;
1278 }
1279
1280 map = xmalloc (alloc_size * sizeof (*map));
1281
1282 i = 0;
1283 ALL_PSPACE_OBJFILES (pspace, objfile)
1284 ALL_OBJFILE_OSECTIONS (objfile, s)
1285 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1286 map[i++] = s;
1287
1288 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1289 map_size = filter_debuginfo_sections(map, alloc_size);
1290 map_size = filter_overlapping_sections(map, map_size);
1291
1292 if (map_size < alloc_size)
1293 /* Some sections were eliminated. Trim excess space. */
1294 map = xrealloc (map, map_size * sizeof (*map));
1295 else
1296 gdb_assert (alloc_size == map_size);
1297
1298 *pmap = map;
1299 *pmap_size = map_size;
1300 }
1301
1302 /* Bsearch comparison function. */
1303
1304 static int
1305 bsearch_cmp (const void *key, const void *elt)
1306 {
1307 const CORE_ADDR pc = *(CORE_ADDR *) key;
1308 const struct obj_section *section = *(const struct obj_section **) elt;
1309
1310 if (pc < obj_section_addr (section))
1311 return -1;
1312 if (pc < obj_section_endaddr (section))
1313 return 0;
1314 return 1;
1315 }
1316
1317 /* Returns a section whose range includes PC or NULL if none found. */
1318
1319 struct obj_section *
1320 find_pc_section (CORE_ADDR pc)
1321 {
1322 struct objfile_pspace_info *pspace_info;
1323 struct obj_section *s, **sp;
1324
1325 /* Check for mapped overlay section first. */
1326 s = find_pc_mapped_section (pc);
1327 if (s)
1328 return s;
1329
1330 pspace_info = get_objfile_pspace_data (current_program_space);
1331 if (pspace_info->objfiles_changed_p != 0)
1332 {
1333 update_section_map (current_program_space,
1334 &pspace_info->sections,
1335 &pspace_info->num_sections);
1336
1337 /* Don't need updates to section map until objfiles are added,
1338 removed or relocated. */
1339 pspace_info->objfiles_changed_p = 0;
1340 }
1341
1342 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1343 bsearch be non-NULL. */
1344 if (pspace_info->sections == NULL)
1345 {
1346 gdb_assert (pspace_info->num_sections == 0);
1347 return NULL;
1348 }
1349
1350 sp = (struct obj_section **) bsearch (&pc,
1351 pspace_info->sections,
1352 pspace_info->num_sections,
1353 sizeof (*pspace_info->sections),
1354 bsearch_cmp);
1355 if (sp != NULL)
1356 return *sp;
1357 return NULL;
1358 }
1359
1360
1361 /* In SVR4, we recognize a trampoline by it's section name.
1362 That is, if the pc is in a section named ".plt" then we are in
1363 a trampoline. */
1364
1365 int
1366 in_plt_section (CORE_ADDR pc, char *name)
1367 {
1368 struct obj_section *s;
1369 int retval = 0;
1370
1371 s = find_pc_section (pc);
1372
1373 retval = (s != NULL
1374 && s->the_bfd_section->name != NULL
1375 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1376 return (retval);
1377 }
1378 \f
1379
1380 /* Keep a registry of per-objfile data-pointers required by other GDB
1381 modules. */
1382
1383 struct objfile_data
1384 {
1385 unsigned index;
1386 void (*save) (struct objfile *, void *);
1387 void (*free) (struct objfile *, void *);
1388 };
1389
1390 struct objfile_data_registration
1391 {
1392 struct objfile_data *data;
1393 struct objfile_data_registration *next;
1394 };
1395
1396 struct objfile_data_registry
1397 {
1398 struct objfile_data_registration *registrations;
1399 unsigned num_registrations;
1400 };
1401
1402 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
1403
1404 const struct objfile_data *
1405 register_objfile_data_with_cleanup (void (*save) (struct objfile *, void *),
1406 void (*free) (struct objfile *, void *))
1407 {
1408 struct objfile_data_registration **curr;
1409
1410 /* Append new registration. */
1411 for (curr = &objfile_data_registry.registrations;
1412 *curr != NULL; curr = &(*curr)->next);
1413
1414 *curr = XMALLOC (struct objfile_data_registration);
1415 (*curr)->next = NULL;
1416 (*curr)->data = XMALLOC (struct objfile_data);
1417 (*curr)->data->index = objfile_data_registry.num_registrations++;
1418 (*curr)->data->save = save;
1419 (*curr)->data->free = free;
1420
1421 return (*curr)->data;
1422 }
1423
1424 const struct objfile_data *
1425 register_objfile_data (void)
1426 {
1427 return register_objfile_data_with_cleanup (NULL, NULL);
1428 }
1429
1430 static void
1431 objfile_alloc_data (struct objfile *objfile)
1432 {
1433 gdb_assert (objfile->data == NULL);
1434 objfile->num_data = objfile_data_registry.num_registrations;
1435 objfile->data = XCALLOC (objfile->num_data, void *);
1436 }
1437
1438 static void
1439 objfile_free_data (struct objfile *objfile)
1440 {
1441 gdb_assert (objfile->data != NULL);
1442 clear_objfile_data (objfile);
1443 xfree (objfile->data);
1444 objfile->data = NULL;
1445 }
1446
1447 void
1448 clear_objfile_data (struct objfile *objfile)
1449 {
1450 struct objfile_data_registration *registration;
1451 int i;
1452
1453 gdb_assert (objfile->data != NULL);
1454
1455 /* Process all the save handlers. */
1456
1457 for (registration = objfile_data_registry.registrations, i = 0;
1458 i < objfile->num_data;
1459 registration = registration->next, i++)
1460 if (objfile->data[i] != NULL && registration->data->save != NULL)
1461 registration->data->save (objfile, objfile->data[i]);
1462
1463 /* Now process all the free handlers. */
1464
1465 for (registration = objfile_data_registry.registrations, i = 0;
1466 i < objfile->num_data;
1467 registration = registration->next, i++)
1468 if (objfile->data[i] != NULL && registration->data->free != NULL)
1469 registration->data->free (objfile, objfile->data[i]);
1470
1471 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
1472 }
1473
1474 void
1475 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
1476 void *value)
1477 {
1478 gdb_assert (data->index < objfile->num_data);
1479 objfile->data[data->index] = value;
1480 }
1481
1482 void *
1483 objfile_data (struct objfile *objfile, const struct objfile_data *data)
1484 {
1485 gdb_assert (data->index < objfile->num_data);
1486 return objfile->data[data->index];
1487 }
1488
1489 /* Set objfiles_changed_p so section map will be rebuilt next time it
1490 is used. Called by reread_symbols. */
1491
1492 void
1493 objfiles_changed (void)
1494 {
1495 /* Rebuild section map next time we need it. */
1496 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1497 }
1498
1499 /* Close ABFD, and warn if that fails. */
1500
1501 int
1502 gdb_bfd_close_or_warn (struct bfd *abfd)
1503 {
1504 int ret;
1505 char *name = bfd_get_filename (abfd);
1506
1507 ret = bfd_close (abfd);
1508
1509 if (!ret)
1510 warning (_("cannot close \"%s\": %s"),
1511 name, bfd_errmsg (bfd_get_error ()));
1512
1513 return ret;
1514 }
1515
1516 /* Add reference to ABFD. Returns ABFD. */
1517 struct bfd *
1518 gdb_bfd_ref (struct bfd *abfd)
1519 {
1520 int *p_refcount;
1521
1522 if (abfd == NULL)
1523 return NULL;
1524
1525 p_refcount = bfd_usrdata (abfd);
1526
1527 if (p_refcount != NULL)
1528 {
1529 *p_refcount += 1;
1530 return abfd;
1531 }
1532
1533 p_refcount = xmalloc (sizeof (*p_refcount));
1534 *p_refcount = 1;
1535 bfd_usrdata (abfd) = p_refcount;
1536
1537 return abfd;
1538 }
1539
1540 /* Unreference and possibly close ABFD. */
1541 void
1542 gdb_bfd_unref (struct bfd *abfd)
1543 {
1544 int *p_refcount;
1545 char *name;
1546
1547 if (abfd == NULL)
1548 return;
1549
1550 p_refcount = bfd_usrdata (abfd);
1551
1552 /* Valid range for p_refcount: a pointer to int counter, which has a
1553 value of 1 (single owner) or 2 (shared). */
1554 gdb_assert (*p_refcount == 1 || *p_refcount == 2);
1555
1556 *p_refcount -= 1;
1557 if (*p_refcount > 0)
1558 return;
1559
1560 xfree (p_refcount);
1561 bfd_usrdata (abfd) = NULL; /* Paranoia. */
1562
1563 name = bfd_get_filename (abfd);
1564 gdb_bfd_close_or_warn (abfd);
1565 xfree (name);
1566 }
1567
1568 /* Provide a prototype to silence -Wmissing-prototypes. */
1569 extern initialize_file_ftype _initialize_objfiles;
1570
1571 void
1572 _initialize_objfiles (void)
1573 {
1574 objfiles_pspace_data
1575 = register_program_space_data_with_cleanup (objfiles_pspace_data_cleanup);
1576 }
This page took 0.085727 seconds and 4 git commands to generate.