Remove spurious gdb/ ...
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* This file contains support routines for creating, manipulating, and
24 destroying objfile structures. */
25
26 #include "defs.h"
27 #include "bfd.h" /* Binary File Description */
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdb-stabs.h"
32 #include "target.h"
33 #include "bcache.h"
34 #include "mdebugread.h"
35 #include "expression.h"
36 #include "parser-defs.h"
37
38 #include "gdb_assert.h"
39 #include <sys/types.h>
40 #include "gdb_stat.h"
41 #include <fcntl.h>
42 #include "gdb_obstack.h"
43 #include "gdb_string.h"
44 #include "hashtab.h"
45
46 #include "breakpoint.h"
47 #include "block.h"
48 #include "dictionary.h"
49 #include "source.h"
50 #include "addrmap.h"
51 #include "arch-utils.h"
52 #include "exec.h"
53 #include "observer.h"
54 #include "complaints.h"
55
56 /* Prototypes for local functions */
57
58 static void objfile_alloc_data (struct objfile *objfile);
59 static void objfile_free_data (struct objfile *objfile);
60
61 /* Externally visible variables that are owned by this module.
62 See declarations in objfile.h for more info. */
63
64 struct objfile *object_files; /* Linked list of all objfiles */
65 struct objfile *current_objfile; /* For symbol file being read in */
66 struct objfile *symfile_objfile; /* Main symbol table loaded from */
67 struct objfile *rt_common_objfile; /* For runtime common symbols */
68
69 /* Records whether any objfiles appeared or disappeared since we last updated
70 address to obj section map. */
71
72 static int objfiles_changed_p;
73
74 /* Locate all mappable sections of a BFD file.
75 objfile_p_char is a char * to get it through
76 bfd_map_over_sections; we cast it back to its proper type. */
77
78 /* Called via bfd_map_over_sections to build up the section table that
79 the objfile references. The objfile contains pointers to the start
80 of the table (objfile->sections) and to the first location after
81 the end of the table (objfile->sections_end). */
82
83 static void
84 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
85 void *objfile_p_char)
86 {
87 struct objfile *objfile = (struct objfile *) objfile_p_char;
88 struct obj_section section;
89 flagword aflag;
90
91 aflag = bfd_get_section_flags (abfd, asect);
92
93 if (!(aflag & SEC_ALLOC))
94 return;
95
96 if (0 == bfd_section_size (abfd, asect))
97 return;
98 section.objfile = objfile;
99 section.the_bfd_section = asect;
100 section.ovly_mapped = 0;
101 obstack_grow (&objfile->objfile_obstack, (char *) &section, sizeof (section));
102 objfile->sections_end
103 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
104 }
105
106 /* Builds a section table for OBJFILE.
107 Returns 0 if OK, 1 on error (in which case bfd_error contains the
108 error).
109
110 Note that while we are building the table, which goes into the
111 psymbol obstack, we hijack the sections_end pointer to instead hold
112 a count of the number of sections. When bfd_map_over_sections
113 returns, this count is used to compute the pointer to the end of
114 the sections table, which then overwrites the count.
115
116 Also note that the OFFSET and OVLY_MAPPED in each table entry
117 are initialized to zero.
118
119 Also note that if anything else writes to the psymbol obstack while
120 we are building the table, we're pretty much hosed. */
121
122 int
123 build_objfile_section_table (struct objfile *objfile)
124 {
125 /* objfile->sections can be already set when reading a mapped symbol
126 file. I believe that we do need to rebuild the section table in
127 this case (we rebuild other things derived from the bfd), but we
128 can't free the old one (it's in the objfile_obstack). So we just
129 waste some memory. */
130
131 objfile->sections_end = 0;
132 bfd_map_over_sections (objfile->obfd,
133 add_to_objfile_sections, (void *) objfile);
134 objfile->sections = obstack_finish (&objfile->objfile_obstack);
135 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
136 return (0);
137 }
138
139 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
140 allocate a new objfile struct, fill it in as best we can, link it
141 into the list of all known objfiles, and return a pointer to the
142 new objfile struct.
143
144 The FLAGS word contains various bits (OBJF_*) that can be taken as
145 requests for specific operations. Other bits like OBJF_SHARED are
146 simply copied through to the new objfile flags member. */
147
148 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
149 by jv-lang.c, to create an artificial objfile used to hold
150 information about dynamically-loaded Java classes. Unfortunately,
151 that branch of this function doesn't get tested very frequently, so
152 it's prone to breakage. (E.g. at one time the name was set to NULL
153 in that situation, which broke a loop over all names in the dynamic
154 library loader.) If you change this function, please try to leave
155 things in a consistent state even if abfd is NULL. */
156
157 struct objfile *
158 allocate_objfile (bfd *abfd, int flags)
159 {
160 struct objfile *objfile = NULL;
161 struct objfile *last_one = NULL;
162
163 /* If we don't support mapped symbol files, didn't ask for the file to be
164 mapped, or failed to open the mapped file for some reason, then revert
165 back to an unmapped objfile. */
166
167 if (objfile == NULL)
168 {
169 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
170 memset (objfile, 0, sizeof (struct objfile));
171 objfile->psymbol_cache = bcache_xmalloc ();
172 objfile->macro_cache = bcache_xmalloc ();
173 /* We could use obstack_specify_allocation here instead, but
174 gdb_obstack.h specifies the alloc/dealloc functions. */
175 obstack_init (&objfile->objfile_obstack);
176 terminate_minimal_symbol_table (objfile);
177 }
178
179 objfile_alloc_data (objfile);
180
181 /* Update the per-objfile information that comes from the bfd, ensuring
182 that any data that is reference is saved in the per-objfile data
183 region. */
184
185 objfile->obfd = gdb_bfd_ref (abfd);
186 if (objfile->name != NULL)
187 {
188 xfree (objfile->name);
189 }
190 if (abfd != NULL)
191 {
192 /* Look up the gdbarch associated with the BFD. */
193 objfile->gdbarch = gdbarch_from_bfd (abfd);
194
195 objfile->name = xstrdup (bfd_get_filename (abfd));
196 objfile->mtime = bfd_get_mtime (abfd);
197
198 /* Build section table. */
199
200 if (build_objfile_section_table (objfile))
201 {
202 error (_("Can't find the file sections in `%s': %s"),
203 objfile->name, bfd_errmsg (bfd_get_error ()));
204 }
205 }
206 else
207 {
208 objfile->name = xstrdup ("<<anonymous objfile>>");
209 }
210
211 /* Initialize the section indexes for this objfile, so that we can
212 later detect if they are used w/o being properly assigned to. */
213
214 objfile->sect_index_text = -1;
215 objfile->sect_index_data = -1;
216 objfile->sect_index_bss = -1;
217 objfile->sect_index_rodata = -1;
218
219 /* We don't yet have a C++-specific namespace symtab. */
220
221 objfile->cp_namespace_symtab = NULL;
222
223 /* Add this file onto the tail of the linked list of other such files. */
224
225 objfile->next = NULL;
226 if (object_files == NULL)
227 object_files = objfile;
228 else
229 {
230 for (last_one = object_files;
231 last_one->next;
232 last_one = last_one->next);
233 last_one->next = objfile;
234 }
235
236 /* Save passed in flag bits. */
237 objfile->flags |= flags;
238
239 objfiles_changed_p = 1; /* Rebuild section map next time we need it. */
240
241 return (objfile);
242 }
243
244 /* Retrieve the gdbarch associated with OBJFILE. */
245 struct gdbarch *
246 get_objfile_arch (struct objfile *objfile)
247 {
248 return objfile->gdbarch;
249 }
250
251 /* Initialize entry point information for this objfile. */
252
253 void
254 init_entry_point_info (struct objfile *objfile)
255 {
256 /* Save startup file's range of PC addresses to help blockframe.c
257 decide where the bottom of the stack is. */
258
259 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
260 {
261 /* Executable file -- record its entry point so we'll recognize
262 the startup file because it contains the entry point. */
263 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
264 }
265 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
266 && bfd_get_start_address (objfile->obfd) != 0)
267 /* Some shared libraries may have entry points set and be
268 runnable. There's no clear way to indicate this, so just check
269 for values other than zero. */
270 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
271 else
272 {
273 /* Examination of non-executable.o files. Short-circuit this stuff. */
274 objfile->ei.entry_point = INVALID_ENTRY_POINT;
275 }
276 }
277
278 /* Get current entry point address. */
279
280 CORE_ADDR
281 entry_point_address (void)
282 {
283 struct gdbarch *gdbarch;
284 CORE_ADDR entry_point;
285
286 if (symfile_objfile == NULL)
287 return 0;
288
289 gdbarch = get_objfile_arch (symfile_objfile);
290
291 entry_point = symfile_objfile->ei.entry_point;
292
293 /* Make certain that the address points at real code, and not a
294 function descriptor. */
295 entry_point = gdbarch_convert_from_func_ptr_addr (gdbarch, entry_point,
296 &current_target);
297
298 /* Remove any ISA markers, so that this matches entries in the
299 symbol table. */
300 entry_point = gdbarch_addr_bits_remove (gdbarch, entry_point);
301
302 return entry_point;
303 }
304
305 /* Create the terminating entry of OBJFILE's minimal symbol table.
306 If OBJFILE->msymbols is zero, allocate a single entry from
307 OBJFILE->objfile_obstack; otherwise, just initialize
308 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
309 void
310 terminate_minimal_symbol_table (struct objfile *objfile)
311 {
312 if (! objfile->msymbols)
313 objfile->msymbols = ((struct minimal_symbol *)
314 obstack_alloc (&objfile->objfile_obstack,
315 sizeof (objfile->msymbols[0])));
316
317 {
318 struct minimal_symbol *m
319 = &objfile->msymbols[objfile->minimal_symbol_count];
320
321 memset (m, 0, sizeof (*m));
322 /* Don't rely on these enumeration values being 0's. */
323 MSYMBOL_TYPE (m) = mst_unknown;
324 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
325 }
326 }
327
328
329 /* Put one object file before a specified on in the global list.
330 This can be used to make sure an object file is destroyed before
331 another when using ALL_OBJFILES_SAFE to free all objfiles. */
332 void
333 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
334 {
335 struct objfile **objp;
336
337 unlink_objfile (objfile);
338
339 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
340 {
341 if (*objp == before_this)
342 {
343 objfile->next = *objp;
344 *objp = objfile;
345 return;
346 }
347 }
348
349 internal_error (__FILE__, __LINE__,
350 _("put_objfile_before: before objfile not in list"));
351 }
352
353 /* Put OBJFILE at the front of the list. */
354
355 void
356 objfile_to_front (struct objfile *objfile)
357 {
358 struct objfile **objp;
359 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
360 {
361 if (*objp == objfile)
362 {
363 /* Unhook it from where it is. */
364 *objp = objfile->next;
365 /* Put it in the front. */
366 objfile->next = object_files;
367 object_files = objfile;
368 break;
369 }
370 }
371 }
372
373 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
374 list.
375
376 It is not a bug, or error, to call this function if OBJFILE is not known
377 to be in the current list. This is done in the case of mapped objfiles,
378 for example, just to ensure that the mapped objfile doesn't appear twice
379 in the list. Since the list is threaded, linking in a mapped objfile
380 twice would create a circular list.
381
382 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
383 unlinking it, just to ensure that we have completely severed any linkages
384 between the OBJFILE and the list. */
385
386 void
387 unlink_objfile (struct objfile *objfile)
388 {
389 struct objfile **objpp;
390
391 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
392 {
393 if (*objpp == objfile)
394 {
395 *objpp = (*objpp)->next;
396 objfile->next = NULL;
397 return;
398 }
399 }
400
401 internal_error (__FILE__, __LINE__,
402 _("unlink_objfile: objfile already unlinked"));
403 }
404
405
406 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
407 that as much as possible is allocated on the objfile_obstack
408 so that the memory can be efficiently freed.
409
410 Things which we do NOT free because they are not in malloc'd memory
411 or not in memory specific to the objfile include:
412
413 objfile -> sf
414
415 FIXME: If the objfile is using reusable symbol information (via mmalloc),
416 then we need to take into account the fact that more than one process
417 may be using the symbol information at the same time (when mmalloc is
418 extended to support cooperative locking). When more than one process
419 is using the mapped symbol info, we need to be more careful about when
420 we free objects in the reusable area. */
421
422 void
423 free_objfile (struct objfile *objfile)
424 {
425 if (objfile->separate_debug_objfile)
426 {
427 free_objfile (objfile->separate_debug_objfile);
428 }
429
430 if (objfile->separate_debug_objfile_backlink)
431 {
432 /* We freed the separate debug file, make sure the base objfile
433 doesn't reference it. */
434 objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL;
435 }
436
437 /* Remove any references to this objfile in the global value
438 lists. */
439 preserve_values (objfile);
440
441 /* First do any symbol file specific actions required when we are
442 finished with a particular symbol file. Note that if the objfile
443 is using reusable symbol information (via mmalloc) then each of
444 these routines is responsible for doing the correct thing, either
445 freeing things which are valid only during this particular gdb
446 execution, or leaving them to be reused during the next one. */
447
448 if (objfile->sf != NULL)
449 {
450 (*objfile->sf->sym_finish) (objfile);
451 }
452
453 /* Discard any data modules have associated with the objfile. */
454 objfile_free_data (objfile);
455
456 gdb_bfd_unref (objfile->obfd);
457
458 /* Remove it from the chain of all objfiles. */
459
460 unlink_objfile (objfile);
461
462 if (objfile == symfile_objfile)
463 symfile_objfile = NULL;
464
465 if (objfile == rt_common_objfile)
466 rt_common_objfile = NULL;
467
468 /* Before the symbol table code was redone to make it easier to
469 selectively load and remove information particular to a specific
470 linkage unit, gdb used to do these things whenever the monolithic
471 symbol table was blown away. How much still needs to be done
472 is unknown, but we play it safe for now and keep each action until
473 it is shown to be no longer needed. */
474
475 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
476 for example), so we need to call this here. */
477 clear_pc_function_cache ();
478
479 /* Clear globals which might have pointed into a removed objfile.
480 FIXME: It's not clear which of these are supposed to persist
481 between expressions and which ought to be reset each time. */
482 expression_context_block = NULL;
483 innermost_block = NULL;
484
485 /* Check to see if the current_source_symtab belongs to this objfile,
486 and if so, call clear_current_source_symtab_and_line. */
487
488 {
489 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
490 struct symtab *s;
491
492 ALL_OBJFILE_SYMTABS (objfile, s)
493 {
494 if (s == cursal.symtab)
495 clear_current_source_symtab_and_line ();
496 }
497 }
498
499 /* The last thing we do is free the objfile struct itself. */
500
501 if (objfile->name != NULL)
502 {
503 xfree (objfile->name);
504 }
505 if (objfile->global_psymbols.list)
506 xfree (objfile->global_psymbols.list);
507 if (objfile->static_psymbols.list)
508 xfree (objfile->static_psymbols.list);
509 /* Free the obstacks for non-reusable objfiles */
510 bcache_xfree (objfile->psymbol_cache);
511 bcache_xfree (objfile->macro_cache);
512 if (objfile->demangled_names_hash)
513 htab_delete (objfile->demangled_names_hash);
514 obstack_free (&objfile->objfile_obstack, 0);
515 xfree (objfile);
516 objfile = NULL;
517 objfiles_changed_p = 1; /* Rebuild section map next time we need it. */
518 }
519
520 static void
521 do_free_objfile_cleanup (void *obj)
522 {
523 free_objfile (obj);
524 }
525
526 struct cleanup *
527 make_cleanup_free_objfile (struct objfile *obj)
528 {
529 return make_cleanup (do_free_objfile_cleanup, obj);
530 }
531
532 /* Free all the object files at once and clean up their users. */
533
534 void
535 free_all_objfiles (void)
536 {
537 struct objfile *objfile, *temp;
538
539 ALL_OBJFILES_SAFE (objfile, temp)
540 {
541 free_objfile (objfile);
542 }
543 clear_symtab_users ();
544 }
545 \f
546 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
547 entries in new_offsets. */
548 void
549 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
550 {
551 struct obj_section *s;
552 struct section_offsets *delta =
553 ((struct section_offsets *)
554 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
555
556 {
557 int i;
558 int something_changed = 0;
559 for (i = 0; i < objfile->num_sections; ++i)
560 {
561 delta->offsets[i] =
562 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
563 if (ANOFFSET (delta, i) != 0)
564 something_changed = 1;
565 }
566 if (!something_changed)
567 return;
568 }
569
570 /* OK, get all the symtabs. */
571 {
572 struct symtab *s;
573
574 ALL_OBJFILE_SYMTABS (objfile, s)
575 {
576 struct linetable *l;
577 struct blockvector *bv;
578 int i;
579
580 /* First the line table. */
581 l = LINETABLE (s);
582 if (l)
583 {
584 for (i = 0; i < l->nitems; ++i)
585 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
586 }
587
588 /* Don't relocate a shared blockvector more than once. */
589 if (!s->primary)
590 continue;
591
592 bv = BLOCKVECTOR (s);
593 if (BLOCKVECTOR_MAP (bv))
594 addrmap_relocate (BLOCKVECTOR_MAP (bv),
595 ANOFFSET (delta, s->block_line_section));
596
597 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
598 {
599 struct block *b;
600 struct symbol *sym;
601 struct dict_iterator iter;
602
603 b = BLOCKVECTOR_BLOCK (bv, i);
604 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
605 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
606
607 ALL_BLOCK_SYMBOLS (b, iter, sym)
608 {
609 fixup_symbol_section (sym, objfile);
610
611 /* The RS6000 code from which this was taken skipped
612 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
613 But I'm leaving out that test, on the theory that
614 they can't possibly pass the tests below. */
615 if ((SYMBOL_CLASS (sym) == LOC_LABEL
616 || SYMBOL_CLASS (sym) == LOC_STATIC)
617 && SYMBOL_SECTION (sym) >= 0)
618 {
619 SYMBOL_VALUE_ADDRESS (sym) +=
620 ANOFFSET (delta, SYMBOL_SECTION (sym));
621 }
622 }
623 }
624 }
625 }
626
627 {
628 struct partial_symtab *p;
629
630 ALL_OBJFILE_PSYMTABS (objfile, p)
631 {
632 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
633 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
634 }
635 }
636
637 {
638 struct partial_symbol **psym;
639
640 for (psym = objfile->global_psymbols.list;
641 psym < objfile->global_psymbols.next;
642 psym++)
643 {
644 fixup_psymbol_section (*psym, objfile);
645 if (SYMBOL_SECTION (*psym) >= 0)
646 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
647 SYMBOL_SECTION (*psym));
648 }
649 for (psym = objfile->static_psymbols.list;
650 psym < objfile->static_psymbols.next;
651 psym++)
652 {
653 fixup_psymbol_section (*psym, objfile);
654 if (SYMBOL_SECTION (*psym) >= 0)
655 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
656 SYMBOL_SECTION (*psym));
657 }
658 }
659
660 {
661 struct minimal_symbol *msym;
662 ALL_OBJFILE_MSYMBOLS (objfile, msym)
663 if (SYMBOL_SECTION (msym) >= 0)
664 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
665 }
666 /* Relocating different sections by different amounts may cause the symbols
667 to be out of order. */
668 msymbols_sort (objfile);
669
670 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
671 {
672 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
673 only as a fallback. */
674 struct obj_section *s;
675 s = find_pc_section (objfile->ei.entry_point);
676 if (s)
677 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
678 else
679 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
680 }
681
682 {
683 int i;
684 for (i = 0; i < objfile->num_sections; ++i)
685 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
686 }
687
688 /* Rebuild section map next time we need it. */
689 objfiles_changed_p = 1;
690
691 /* Update the table in exec_ops, used to read memory. */
692 ALL_OBJFILE_OSECTIONS (objfile, s)
693 {
694 int idx = s->the_bfd_section->index;
695
696 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
697 obj_section_addr (s));
698 }
699
700 /* Relocate breakpoints as necessary, after things are relocated. */
701 breakpoint_re_set ();
702 }
703 \f
704 /* Return non-zero if OBJFILE has partial symbols. */
705
706 int
707 objfile_has_partial_symbols (struct objfile *objfile)
708 {
709 return objfile->psymtabs != NULL;
710 }
711
712 /* Return non-zero if OBJFILE has full symbols. */
713
714 int
715 objfile_has_full_symbols (struct objfile *objfile)
716 {
717 return objfile->symtabs != NULL;
718 }
719
720 /* Return non-zero if OBJFILE has full or partial symbols, either directly
721 or throught its separate debug file. */
722
723 int
724 objfile_has_symbols (struct objfile *objfile)
725 {
726 struct objfile *separate_objfile;
727
728 if (objfile_has_partial_symbols (objfile)
729 || objfile_has_full_symbols (objfile))
730 return 1;
731
732 separate_objfile = objfile->separate_debug_objfile;
733 if (separate_objfile == NULL)
734 return 0;
735
736 if (objfile_has_partial_symbols (separate_objfile)
737 || objfile_has_full_symbols (separate_objfile))
738 return 1;
739
740 return 0;
741 }
742
743
744 /* Many places in gdb want to test just to see if we have any partial
745 symbols available. This function returns zero if none are currently
746 available, nonzero otherwise. */
747
748 int
749 have_partial_symbols (void)
750 {
751 struct objfile *ofp;
752
753 ALL_OBJFILES (ofp)
754 {
755 if (objfile_has_partial_symbols (ofp))
756 return 1;
757 }
758 return 0;
759 }
760
761 /* Many places in gdb want to test just to see if we have any full
762 symbols available. This function returns zero if none are currently
763 available, nonzero otherwise. */
764
765 int
766 have_full_symbols (void)
767 {
768 struct objfile *ofp;
769
770 ALL_OBJFILES (ofp)
771 {
772 if (objfile_has_full_symbols (ofp))
773 return 1;
774 }
775 return 0;
776 }
777
778
779 /* This operations deletes all objfile entries that represent solibs that
780 weren't explicitly loaded by the user, via e.g., the add-symbol-file
781 command.
782 */
783 void
784 objfile_purge_solibs (void)
785 {
786 struct objfile *objf;
787 struct objfile *temp;
788
789 ALL_OBJFILES_SAFE (objf, temp)
790 {
791 /* We assume that the solib package has been purged already, or will
792 be soon.
793 */
794 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
795 free_objfile (objf);
796 }
797 }
798
799
800 /* Many places in gdb want to test just to see if we have any minimal
801 symbols available. This function returns zero if none are currently
802 available, nonzero otherwise. */
803
804 int
805 have_minimal_symbols (void)
806 {
807 struct objfile *ofp;
808
809 ALL_OBJFILES (ofp)
810 {
811 if (ofp->minimal_symbol_count > 0)
812 {
813 return 1;
814 }
815 }
816 return 0;
817 }
818
819 /* Qsort comparison function. */
820
821 static int
822 qsort_cmp (const void *a, const void *b)
823 {
824 const struct obj_section *sect1 = *(const struct obj_section **) a;
825 const struct obj_section *sect2 = *(const struct obj_section **) b;
826 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
827 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
828
829 if (sect1_addr < sect2_addr)
830 return -1;
831 else if (sect1_addr > sect2_addr)
832 return 1;
833 else
834 {
835 /* Sections are at the same address. This could happen if
836 A) we have an objfile and a separate debuginfo.
837 B) we are confused, and have added sections without proper relocation,
838 or something like that. */
839
840 const struct objfile *const objfile1 = sect1->objfile;
841 const struct objfile *const objfile2 = sect2->objfile;
842
843 if (objfile1->separate_debug_objfile == objfile2
844 || objfile2->separate_debug_objfile == objfile1)
845 {
846 /* Case A. The ordering doesn't matter: separate debuginfo files
847 will be filtered out later. */
848
849 return 0;
850 }
851
852 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
853 triage. This section could be slow (since we iterate over all
854 objfiles in each call to qsort_cmp), but this shouldn't happen
855 very often (GDB is already in a confused state; one hopes this
856 doesn't happen at all). If you discover that significant time is
857 spent in the loops below, do 'set complaints 100' and examine the
858 resulting complaints. */
859
860 if (objfile1 == objfile2)
861 {
862 /* Both sections came from the same objfile. We are really confused.
863 Sort on sequence order of sections within the objfile. */
864
865 const struct obj_section *osect;
866
867 ALL_OBJFILE_OSECTIONS (objfile1, osect)
868 if (osect == sect1)
869 return -1;
870 else if (osect == sect2)
871 return 1;
872
873 /* We should have found one of the sections before getting here. */
874 gdb_assert (0);
875 }
876 else
877 {
878 /* Sort on sequence number of the objfile in the chain. */
879
880 const struct objfile *objfile;
881
882 ALL_OBJFILES (objfile)
883 if (objfile == objfile1)
884 return -1;
885 else if (objfile == objfile2)
886 return 1;
887
888 /* We should have found one of the objfiles before getting here. */
889 gdb_assert (0);
890 }
891
892 }
893
894 /* Unreachable. */
895 gdb_assert (0);
896 return 0;
897 }
898
899 /* Select "better" obj_section to keep. We prefer the one that came from
900 the real object, rather than the one from separate debuginfo.
901 Most of the time the two sections are exactly identical, but with
902 prelinking the .rel.dyn section in the real object may have different
903 size. */
904
905 static struct obj_section *
906 preferred_obj_section (struct obj_section *a, struct obj_section *b)
907 {
908 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
909 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
910 || (b->objfile->separate_debug_objfile == a->objfile));
911 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
912 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
913
914 if (a->objfile->separate_debug_objfile != NULL)
915 return a;
916 return b;
917 }
918
919 /* Return 1 if SECTION should be inserted into the section map.
920 We want to insert only non-overlay and non-TLS section. */
921
922 static int
923 insert_section_p (const struct bfd *abfd,
924 const struct bfd_section *section)
925 {
926 const bfd_vma lma = bfd_section_lma (abfd, section);
927
928 if (lma != 0 && lma != bfd_section_vma (abfd, section)
929 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
930 /* This is an overlay section. IN_MEMORY check is needed to avoid
931 discarding sections from the "system supplied DSO" (aka vdso)
932 on some Linux systems (e.g. Fedora 11). */
933 return 0;
934 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
935 /* This is a TLS section. */
936 return 0;
937
938 return 1;
939 }
940
941 /* Filter out overlapping sections where one section came from the real
942 objfile, and the other from a separate debuginfo file.
943 Return the size of table after redundant sections have been eliminated. */
944
945 static int
946 filter_debuginfo_sections (struct obj_section **map, int map_size)
947 {
948 int i, j;
949
950 for (i = 0, j = 0; i < map_size - 1; i++)
951 {
952 struct obj_section *const sect1 = map[i];
953 struct obj_section *const sect2 = map[i + 1];
954 const struct objfile *const objfile1 = sect1->objfile;
955 const struct objfile *const objfile2 = sect2->objfile;
956 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
957 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
958
959 if (sect1_addr == sect2_addr
960 && (objfile1->separate_debug_objfile == objfile2
961 || objfile2->separate_debug_objfile == objfile1))
962 {
963 map[j++] = preferred_obj_section (sect1, sect2);
964 ++i;
965 }
966 else
967 map[j++] = sect1;
968 }
969
970 if (i < map_size)
971 {
972 gdb_assert (i == map_size - 1);
973 map[j++] = map[i];
974 }
975
976 /* The map should not have shrunk to less than half the original size. */
977 gdb_assert (map_size / 2 <= j);
978
979 return j;
980 }
981
982 /* Filter out overlapping sections, issuing a warning if any are found.
983 Overlapping sections could really be overlay sections which we didn't
984 classify as such in insert_section_p, or we could be dealing with a
985 corrupt binary. */
986
987 static int
988 filter_overlapping_sections (struct obj_section **map, int map_size)
989 {
990 int i, j;
991
992 for (i = 0, j = 0; i < map_size - 1; )
993 {
994 int k;
995
996 map[j++] = map[i];
997 for (k = i + 1; k < map_size; k++)
998 {
999 struct obj_section *const sect1 = map[i];
1000 struct obj_section *const sect2 = map[k];
1001 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1002 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1003 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1004
1005 gdb_assert (sect1_addr <= sect2_addr);
1006
1007 if (sect1_endaddr <= sect2_addr)
1008 break;
1009 else
1010 {
1011 /* We have an overlap. Report it. */
1012
1013 struct objfile *const objf1 = sect1->objfile;
1014 struct objfile *const objf2 = sect2->objfile;
1015
1016 const struct bfd *const abfd1 = objf1->obfd;
1017 const struct bfd *const abfd2 = objf2->obfd;
1018
1019 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1020 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1021
1022 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1023
1024 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1025
1026 complaint (&symfile_complaints,
1027 _("unexpected overlap between:\n"
1028 " (A) section `%s' from `%s' [%s, %s)\n"
1029 " (B) section `%s' from `%s' [%s, %s).\n"
1030 "Will ignore section B"),
1031 bfd_section_name (abfd1, bfds1), objf1->name,
1032 paddress (gdbarch, sect1_addr),
1033 paddress (gdbarch, sect1_endaddr),
1034 bfd_section_name (abfd2, bfds2), objf2->name,
1035 paddress (gdbarch, sect2_addr),
1036 paddress (gdbarch, sect2_endaddr));
1037 }
1038 }
1039 i = k;
1040 }
1041
1042 if (i < map_size)
1043 {
1044 gdb_assert (i == map_size - 1);
1045 map[j++] = map[i];
1046 }
1047
1048 return j;
1049 }
1050
1051
1052 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1053 TLS, overlay and overlapping sections. */
1054
1055 static void
1056 update_section_map (struct obj_section ***pmap, int *pmap_size)
1057 {
1058 int alloc_size, map_size, i;
1059 struct obj_section *s, **map;
1060 struct objfile *objfile;
1061
1062 gdb_assert (objfiles_changed_p != 0);
1063
1064 map = *pmap;
1065 xfree (map);
1066
1067 alloc_size = 0;
1068 ALL_OBJSECTIONS (objfile, s)
1069 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1070 alloc_size += 1;
1071
1072 map = xmalloc (alloc_size * sizeof (*map));
1073
1074 i = 0;
1075 ALL_OBJSECTIONS (objfile, s)
1076 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1077 map[i++] = s;
1078
1079 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1080 map_size = filter_debuginfo_sections(map, alloc_size);
1081 map_size = filter_overlapping_sections(map, map_size);
1082
1083 if (map_size < alloc_size)
1084 /* Some sections were eliminated. Trim excess space. */
1085 map = xrealloc (map, map_size * sizeof (*map));
1086 else
1087 gdb_assert (alloc_size == map_size);
1088
1089 *pmap = map;
1090 *pmap_size = map_size;
1091 }
1092
1093 /* Bsearch comparison function. */
1094
1095 static int
1096 bsearch_cmp (const void *key, const void *elt)
1097 {
1098 const CORE_ADDR pc = *(CORE_ADDR *) key;
1099 const struct obj_section *section = *(const struct obj_section **) elt;
1100
1101 if (pc < obj_section_addr (section))
1102 return -1;
1103 if (pc < obj_section_endaddr (section))
1104 return 0;
1105 return 1;
1106 }
1107
1108 /* Returns a section whose range includes PC or NULL if none found. */
1109
1110 struct obj_section *
1111 find_pc_section (CORE_ADDR pc)
1112 {
1113 static struct obj_section **sections;
1114 static int num_sections;
1115
1116 struct obj_section *s, **sp;
1117
1118 /* Check for mapped overlay section first. */
1119 s = find_pc_mapped_section (pc);
1120 if (s)
1121 return s;
1122
1123 if (objfiles_changed_p != 0)
1124 {
1125 update_section_map (&sections, &num_sections);
1126
1127 /* Don't need updates to section map until objfiles are added
1128 or removed. */
1129 objfiles_changed_p = 0;
1130 }
1131
1132 sp = (struct obj_section **) bsearch (&pc, sections, num_sections,
1133 sizeof (*sections), bsearch_cmp);
1134 if (sp != NULL)
1135 return *sp;
1136 return NULL;
1137 }
1138
1139
1140 /* In SVR4, we recognize a trampoline by it's section name.
1141 That is, if the pc is in a section named ".plt" then we are in
1142 a trampoline. */
1143
1144 int
1145 in_plt_section (CORE_ADDR pc, char *name)
1146 {
1147 struct obj_section *s;
1148 int retval = 0;
1149
1150 s = find_pc_section (pc);
1151
1152 retval = (s != NULL
1153 && s->the_bfd_section->name != NULL
1154 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1155 return (retval);
1156 }
1157 \f
1158
1159 /* Keep a registry of per-objfile data-pointers required by other GDB
1160 modules. */
1161
1162 struct objfile_data
1163 {
1164 unsigned index;
1165 void (*save) (struct objfile *, void *);
1166 void (*free) (struct objfile *, void *);
1167 };
1168
1169 struct objfile_data_registration
1170 {
1171 struct objfile_data *data;
1172 struct objfile_data_registration *next;
1173 };
1174
1175 struct objfile_data_registry
1176 {
1177 struct objfile_data_registration *registrations;
1178 unsigned num_registrations;
1179 };
1180
1181 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
1182
1183 const struct objfile_data *
1184 register_objfile_data_with_cleanup (void (*save) (struct objfile *, void *),
1185 void (*free) (struct objfile *, void *))
1186 {
1187 struct objfile_data_registration **curr;
1188
1189 /* Append new registration. */
1190 for (curr = &objfile_data_registry.registrations;
1191 *curr != NULL; curr = &(*curr)->next);
1192
1193 *curr = XMALLOC (struct objfile_data_registration);
1194 (*curr)->next = NULL;
1195 (*curr)->data = XMALLOC (struct objfile_data);
1196 (*curr)->data->index = objfile_data_registry.num_registrations++;
1197 (*curr)->data->save = save;
1198 (*curr)->data->free = free;
1199
1200 return (*curr)->data;
1201 }
1202
1203 const struct objfile_data *
1204 register_objfile_data (void)
1205 {
1206 return register_objfile_data_with_cleanup (NULL, NULL);
1207 }
1208
1209 static void
1210 objfile_alloc_data (struct objfile *objfile)
1211 {
1212 gdb_assert (objfile->data == NULL);
1213 objfile->num_data = objfile_data_registry.num_registrations;
1214 objfile->data = XCALLOC (objfile->num_data, void *);
1215 }
1216
1217 static void
1218 objfile_free_data (struct objfile *objfile)
1219 {
1220 gdb_assert (objfile->data != NULL);
1221 clear_objfile_data (objfile);
1222 xfree (objfile->data);
1223 objfile->data = NULL;
1224 }
1225
1226 void
1227 clear_objfile_data (struct objfile *objfile)
1228 {
1229 struct objfile_data_registration *registration;
1230 int i;
1231
1232 gdb_assert (objfile->data != NULL);
1233
1234 /* Process all the save handlers. */
1235
1236 for (registration = objfile_data_registry.registrations, i = 0;
1237 i < objfile->num_data;
1238 registration = registration->next, i++)
1239 if (objfile->data[i] != NULL && registration->data->save != NULL)
1240 registration->data->save (objfile, objfile->data[i]);
1241
1242 /* Now process all the free handlers. */
1243
1244 for (registration = objfile_data_registry.registrations, i = 0;
1245 i < objfile->num_data;
1246 registration = registration->next, i++)
1247 if (objfile->data[i] != NULL && registration->data->free != NULL)
1248 registration->data->free (objfile, objfile->data[i]);
1249
1250 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
1251 }
1252
1253 void
1254 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
1255 void *value)
1256 {
1257 gdb_assert (data->index < objfile->num_data);
1258 objfile->data[data->index] = value;
1259 }
1260
1261 void *
1262 objfile_data (struct objfile *objfile, const struct objfile_data *data)
1263 {
1264 gdb_assert (data->index < objfile->num_data);
1265 return objfile->data[data->index];
1266 }
1267
1268 /* Set objfiles_changed_p so section map will be rebuilt next time it
1269 is used. Called by reread_symbols. */
1270
1271 void
1272 objfiles_changed (void)
1273 {
1274 objfiles_changed_p = 1; /* Rebuild section map next time we need it. */
1275 }
1276
1277 /* Add reference to ABFD. Returns ABFD. */
1278 struct bfd *
1279 gdb_bfd_ref (struct bfd *abfd)
1280 {
1281 int *p_refcount = bfd_usrdata (abfd);
1282
1283 if (p_refcount != NULL)
1284 {
1285 *p_refcount += 1;
1286 return abfd;
1287 }
1288
1289 p_refcount = xmalloc (sizeof (*p_refcount));
1290 *p_refcount = 1;
1291 bfd_usrdata (abfd) = p_refcount;
1292
1293 return abfd;
1294 }
1295
1296 /* Unreference and possibly close ABFD. */
1297 void
1298 gdb_bfd_unref (struct bfd *abfd)
1299 {
1300 int *p_refcount;
1301 char *name;
1302
1303 if (abfd == NULL)
1304 return;
1305
1306 p_refcount = bfd_usrdata (abfd);
1307
1308 /* Valid range for p_refcount: a pointer to int counter, which has a
1309 value of 1 (single owner) or 2 (shared). */
1310 gdb_assert (*p_refcount == 1 || *p_refcount == 2);
1311
1312 *p_refcount -= 1;
1313 if (*p_refcount > 0)
1314 return;
1315
1316 xfree (p_refcount);
1317 bfd_usrdata (abfd) = NULL; /* Paranoia. */
1318
1319 name = bfd_get_filename (abfd);
1320 if (!bfd_close (abfd))
1321 warning (_("cannot close \"%s\": %s"),
1322 name, bfd_errmsg (bfd_get_error ()));
1323 xfree (name);
1324 }
This page took 0.059368 seconds and 4 git commands to generate.