* dwarf2read.c (try_open_dwo_file): Use gdb_bfd_ref and
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2004, 2007-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "mdebugread.h"
34 #include "expression.h"
35 #include "parser-defs.h"
36
37 #include "gdb_assert.h"
38 #include <sys/types.h>
39 #include "gdb_stat.h"
40 #include <fcntl.h>
41 #include "gdb_obstack.h"
42 #include "gdb_string.h"
43 #include "hashtab.h"
44
45 #include "breakpoint.h"
46 #include "block.h"
47 #include "dictionary.h"
48 #include "source.h"
49 #include "addrmap.h"
50 #include "arch-utils.h"
51 #include "exec.h"
52 #include "observer.h"
53 #include "complaints.h"
54 #include "psymtab.h"
55 #include "solist.h"
56 #include "gdb_bfd.h"
57
58 /* Prototypes for local functions */
59
60 static void objfile_alloc_data (struct objfile *objfile);
61 static void objfile_free_data (struct objfile *objfile);
62
63 /* Externally visible variables that are owned by this module.
64 See declarations in objfile.h for more info. */
65
66 struct objfile *rt_common_objfile; /* For runtime common symbols */
67
68 struct objfile_pspace_info
69 {
70 int objfiles_changed_p;
71 struct obj_section **sections;
72 int num_sections;
73 };
74
75 /* Per-program-space data key. */
76 static const struct program_space_data *objfiles_pspace_data;
77
78 static void
79 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
80 {
81 struct objfile_pspace_info *info;
82
83 info = program_space_data (pspace, objfiles_pspace_data);
84 if (info != NULL)
85 {
86 xfree (info->sections);
87 xfree (info);
88 }
89 }
90
91 /* Get the current svr4 data. If none is found yet, add it now. This
92 function always returns a valid object. */
93
94 static struct objfile_pspace_info *
95 get_objfile_pspace_data (struct program_space *pspace)
96 {
97 struct objfile_pspace_info *info;
98
99 info = program_space_data (pspace, objfiles_pspace_data);
100 if (info == NULL)
101 {
102 info = XZALLOC (struct objfile_pspace_info);
103 set_program_space_data (pspace, objfiles_pspace_data, info);
104 }
105
106 return info;
107 }
108
109 /* Called via bfd_map_over_sections to build up the section table that
110 the objfile references. The objfile contains pointers to the start
111 of the table (objfile->sections) and to the first location after
112 the end of the table (objfile->sections_end). */
113
114 static void
115 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
116 void *objfilep)
117 {
118 struct objfile *objfile = (struct objfile *) objfilep;
119 struct obj_section section;
120 flagword aflag;
121
122 aflag = bfd_get_section_flags (abfd, asect);
123 if (!(aflag & SEC_ALLOC))
124 return;
125 if (bfd_section_size (abfd, asect) == 0)
126 return;
127
128 section.objfile = objfile;
129 section.the_bfd_section = asect;
130 section.ovly_mapped = 0;
131 obstack_grow (&objfile->objfile_obstack,
132 (char *) &section, sizeof (section));
133 objfile->sections_end
134 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
135 }
136
137 /* Builds a section table for OBJFILE.
138
139 Note that while we are building the table, which goes into the
140 objfile obstack, we hijack the sections_end pointer to instead hold
141 a count of the number of sections. When bfd_map_over_sections
142 returns, this count is used to compute the pointer to the end of
143 the sections table, which then overwrites the count.
144
145 Also note that the OFFSET and OVLY_MAPPED in each table entry
146 are initialized to zero.
147
148 Also note that if anything else writes to the objfile obstack while
149 we are building the table, we're pretty much hosed. */
150
151 void
152 build_objfile_section_table (struct objfile *objfile)
153 {
154 objfile->sections_end = 0;
155 bfd_map_over_sections (objfile->obfd,
156 add_to_objfile_sections, (void *) objfile);
157 objfile->sections = obstack_finish (&objfile->objfile_obstack);
158 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
159 }
160
161 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
162 allocate a new objfile struct, fill it in as best we can, link it
163 into the list of all known objfiles, and return a pointer to the
164 new objfile struct.
165
166 The FLAGS word contains various bits (OBJF_*) that can be taken as
167 requests for specific operations. Other bits like OBJF_SHARED are
168 simply copied through to the new objfile flags member. */
169
170 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
171 by jv-lang.c, to create an artificial objfile used to hold
172 information about dynamically-loaded Java classes. Unfortunately,
173 that branch of this function doesn't get tested very frequently, so
174 it's prone to breakage. (E.g. at one time the name was set to NULL
175 in that situation, which broke a loop over all names in the dynamic
176 library loader.) If you change this function, please try to leave
177 things in a consistent state even if abfd is NULL. */
178
179 struct objfile *
180 allocate_objfile (bfd *abfd, int flags)
181 {
182 struct objfile *objfile;
183
184 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
185 objfile->psymbol_cache = psymbol_bcache_init ();
186 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
187 objfile->filename_cache = bcache_xmalloc (NULL, NULL);
188 /* We could use obstack_specify_allocation here instead, but
189 gdb_obstack.h specifies the alloc/dealloc functions. */
190 obstack_init (&objfile->objfile_obstack);
191 terminate_minimal_symbol_table (objfile);
192
193 objfile_alloc_data (objfile);
194
195 /* Update the per-objfile information that comes from the bfd, ensuring
196 that any data that is reference is saved in the per-objfile data
197 region. Note that we steal a reference to ABFD. */
198
199 objfile->obfd = abfd;
200 if (abfd != NULL)
201 {
202 /* Look up the gdbarch associated with the BFD. */
203 objfile->gdbarch = gdbarch_from_bfd (abfd);
204
205 objfile->name = xstrdup (bfd_get_filename (abfd));
206 objfile->mtime = bfd_get_mtime (abfd);
207
208 /* Build section table. */
209 build_objfile_section_table (objfile);
210 }
211 else
212 {
213 objfile->name = xstrdup ("<<anonymous objfile>>");
214 }
215
216 objfile->pspace = current_program_space;
217
218 /* Initialize the section indexes for this objfile, so that we can
219 later detect if they are used w/o being properly assigned to. */
220
221 objfile->sect_index_text = -1;
222 objfile->sect_index_data = -1;
223 objfile->sect_index_bss = -1;
224 objfile->sect_index_rodata = -1;
225
226 /* Add this file onto the tail of the linked list of other such files. */
227
228 objfile->next = NULL;
229 if (object_files == NULL)
230 object_files = objfile;
231 else
232 {
233 struct objfile *last_one;
234
235 for (last_one = object_files;
236 last_one->next;
237 last_one = last_one->next);
238 last_one->next = objfile;
239 }
240
241 /* Save passed in flag bits. */
242 objfile->flags |= flags;
243
244 /* Rebuild section map next time we need it. */
245 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
246
247 return objfile;
248 }
249
250 /* Retrieve the gdbarch associated with OBJFILE. */
251 struct gdbarch *
252 get_objfile_arch (struct objfile *objfile)
253 {
254 return objfile->gdbarch;
255 }
256
257 /* Initialize entry point information for this objfile. */
258
259 void
260 init_entry_point_info (struct objfile *objfile)
261 {
262 /* Save startup file's range of PC addresses to help blockframe.c
263 decide where the bottom of the stack is. */
264
265 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
266 {
267 /* Executable file -- record its entry point so we'll recognize
268 the startup file because it contains the entry point. */
269 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
270 objfile->ei.entry_point_p = 1;
271 }
272 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
273 && bfd_get_start_address (objfile->obfd) != 0)
274 {
275 /* Some shared libraries may have entry points set and be
276 runnable. There's no clear way to indicate this, so just check
277 for values other than zero. */
278 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
279 objfile->ei.entry_point_p = 1;
280 }
281 else
282 {
283 /* Examination of non-executable.o files. Short-circuit this stuff. */
284 objfile->ei.entry_point_p = 0;
285 }
286 }
287
288 /* If there is a valid and known entry point, function fills *ENTRY_P with it
289 and returns non-zero; otherwise it returns zero. */
290
291 int
292 entry_point_address_query (CORE_ADDR *entry_p)
293 {
294 struct gdbarch *gdbarch;
295 CORE_ADDR entry_point;
296
297 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
298 return 0;
299
300 gdbarch = get_objfile_arch (symfile_objfile);
301
302 entry_point = symfile_objfile->ei.entry_point;
303
304 /* Make certain that the address points at real code, and not a
305 function descriptor. */
306 entry_point = gdbarch_convert_from_func_ptr_addr (gdbarch, entry_point,
307 &current_target);
308
309 /* Remove any ISA markers, so that this matches entries in the
310 symbol table. */
311 entry_point = gdbarch_addr_bits_remove (gdbarch, entry_point);
312
313 *entry_p = entry_point;
314 return 1;
315 }
316
317 /* Get current entry point address. Call error if it is not known. */
318
319 CORE_ADDR
320 entry_point_address (void)
321 {
322 CORE_ADDR retval;
323
324 if (!entry_point_address_query (&retval))
325 error (_("Entry point address is not known."));
326
327 return retval;
328 }
329
330 /* Iterator on PARENT and every separate debug objfile of PARENT.
331 The usage pattern is:
332 for (objfile = parent;
333 objfile;
334 objfile = objfile_separate_debug_iterate (parent, objfile))
335 ...
336 */
337
338 struct objfile *
339 objfile_separate_debug_iterate (const struct objfile *parent,
340 const struct objfile *objfile)
341 {
342 struct objfile *res;
343
344 /* If any, return the first child. */
345 res = objfile->separate_debug_objfile;
346 if (res)
347 return res;
348
349 /* Common case where there is no separate debug objfile. */
350 if (objfile == parent)
351 return NULL;
352
353 /* Return the brother if any. Note that we don't iterate on brothers of
354 the parents. */
355 res = objfile->separate_debug_objfile_link;
356 if (res)
357 return res;
358
359 for (res = objfile->separate_debug_objfile_backlink;
360 res != parent;
361 res = res->separate_debug_objfile_backlink)
362 {
363 gdb_assert (res != NULL);
364 if (res->separate_debug_objfile_link)
365 return res->separate_debug_objfile_link;
366 }
367 return NULL;
368 }
369
370 /* Put one object file before a specified on in the global list.
371 This can be used to make sure an object file is destroyed before
372 another when using ALL_OBJFILES_SAFE to free all objfiles. */
373 void
374 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
375 {
376 struct objfile **objp;
377
378 unlink_objfile (objfile);
379
380 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
381 {
382 if (*objp == before_this)
383 {
384 objfile->next = *objp;
385 *objp = objfile;
386 return;
387 }
388 }
389
390 internal_error (__FILE__, __LINE__,
391 _("put_objfile_before: before objfile not in list"));
392 }
393
394 /* Put OBJFILE at the front of the list. */
395
396 void
397 objfile_to_front (struct objfile *objfile)
398 {
399 struct objfile **objp;
400 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
401 {
402 if (*objp == objfile)
403 {
404 /* Unhook it from where it is. */
405 *objp = objfile->next;
406 /* Put it in the front. */
407 objfile->next = object_files;
408 object_files = objfile;
409 break;
410 }
411 }
412 }
413
414 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
415 list.
416
417 It is not a bug, or error, to call this function if OBJFILE is not known
418 to be in the current list. This is done in the case of mapped objfiles,
419 for example, just to ensure that the mapped objfile doesn't appear twice
420 in the list. Since the list is threaded, linking in a mapped objfile
421 twice would create a circular list.
422
423 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
424 unlinking it, just to ensure that we have completely severed any linkages
425 between the OBJFILE and the list. */
426
427 void
428 unlink_objfile (struct objfile *objfile)
429 {
430 struct objfile **objpp;
431
432 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
433 {
434 if (*objpp == objfile)
435 {
436 *objpp = (*objpp)->next;
437 objfile->next = NULL;
438 return;
439 }
440 }
441
442 internal_error (__FILE__, __LINE__,
443 _("unlink_objfile: objfile already unlinked"));
444 }
445
446 /* Add OBJFILE as a separate debug objfile of PARENT. */
447
448 void
449 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
450 {
451 gdb_assert (objfile && parent);
452
453 /* Must not be already in a list. */
454 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
455 gdb_assert (objfile->separate_debug_objfile_link == NULL);
456
457 objfile->separate_debug_objfile_backlink = parent;
458 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
459 parent->separate_debug_objfile = objfile;
460
461 /* Put the separate debug object before the normal one, this is so that
462 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
463 put_objfile_before (objfile, parent);
464 }
465
466 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
467 itself. */
468
469 void
470 free_objfile_separate_debug (struct objfile *objfile)
471 {
472 struct objfile *child;
473
474 for (child = objfile->separate_debug_objfile; child;)
475 {
476 struct objfile *next_child = child->separate_debug_objfile_link;
477 free_objfile (child);
478 child = next_child;
479 }
480 }
481
482 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
483 that as much as possible is allocated on the objfile_obstack
484 so that the memory can be efficiently freed.
485
486 Things which we do NOT free because they are not in malloc'd memory
487 or not in memory specific to the objfile include:
488
489 objfile -> sf
490
491 FIXME: If the objfile is using reusable symbol information (via mmalloc),
492 then we need to take into account the fact that more than one process
493 may be using the symbol information at the same time (when mmalloc is
494 extended to support cooperative locking). When more than one process
495 is using the mapped symbol info, we need to be more careful about when
496 we free objects in the reusable area. */
497
498 void
499 free_objfile (struct objfile *objfile)
500 {
501 /* Free all separate debug objfiles. */
502 free_objfile_separate_debug (objfile);
503
504 if (objfile->separate_debug_objfile_backlink)
505 {
506 /* We freed the separate debug file, make sure the base objfile
507 doesn't reference it. */
508 struct objfile *child;
509
510 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
511
512 if (child == objfile)
513 {
514 /* OBJFILE is the first child. */
515 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
516 objfile->separate_debug_objfile_link;
517 }
518 else
519 {
520 /* Find OBJFILE in the list. */
521 while (1)
522 {
523 if (child->separate_debug_objfile_link == objfile)
524 {
525 child->separate_debug_objfile_link =
526 objfile->separate_debug_objfile_link;
527 break;
528 }
529 child = child->separate_debug_objfile_link;
530 gdb_assert (child);
531 }
532 }
533 }
534
535 /* Remove any references to this objfile in the global value
536 lists. */
537 preserve_values (objfile);
538
539 /* It still may reference data modules have associated with the objfile and
540 the symbol file data. */
541 forget_cached_source_info_for_objfile (objfile);
542
543 /* First do any symbol file specific actions required when we are
544 finished with a particular symbol file. Note that if the objfile
545 is using reusable symbol information (via mmalloc) then each of
546 these routines is responsible for doing the correct thing, either
547 freeing things which are valid only during this particular gdb
548 execution, or leaving them to be reused during the next one. */
549
550 if (objfile->sf != NULL)
551 {
552 (*objfile->sf->sym_finish) (objfile);
553 }
554
555 /* Discard any data modules have associated with the objfile. The function
556 still may reference objfile->obfd. */
557 objfile_free_data (objfile);
558
559 gdb_bfd_unref (objfile->obfd);
560
561 /* Remove it from the chain of all objfiles. */
562
563 unlink_objfile (objfile);
564
565 if (objfile == symfile_objfile)
566 symfile_objfile = NULL;
567
568 if (objfile == rt_common_objfile)
569 rt_common_objfile = NULL;
570
571 /* Before the symbol table code was redone to make it easier to
572 selectively load and remove information particular to a specific
573 linkage unit, gdb used to do these things whenever the monolithic
574 symbol table was blown away. How much still needs to be done
575 is unknown, but we play it safe for now and keep each action until
576 it is shown to be no longer needed. */
577
578 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
579 for example), so we need to call this here. */
580 clear_pc_function_cache ();
581
582 /* Clear globals which might have pointed into a removed objfile.
583 FIXME: It's not clear which of these are supposed to persist
584 between expressions and which ought to be reset each time. */
585 expression_context_block = NULL;
586 innermost_block = NULL;
587
588 /* Check to see if the current_source_symtab belongs to this objfile,
589 and if so, call clear_current_source_symtab_and_line. */
590
591 {
592 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
593
594 if (cursal.symtab && cursal.symtab->objfile == objfile)
595 clear_current_source_symtab_and_line ();
596 }
597
598 /* The last thing we do is free the objfile struct itself. */
599
600 xfree (objfile->name);
601 if (objfile->global_psymbols.list)
602 xfree (objfile->global_psymbols.list);
603 if (objfile->static_psymbols.list)
604 xfree (objfile->static_psymbols.list);
605 /* Free the obstacks for non-reusable objfiles. */
606 psymbol_bcache_free (objfile->psymbol_cache);
607 bcache_xfree (objfile->macro_cache);
608 bcache_xfree (objfile->filename_cache);
609 if (objfile->demangled_names_hash)
610 htab_delete (objfile->demangled_names_hash);
611 obstack_free (&objfile->objfile_obstack, 0);
612
613 /* Rebuild section map next time we need it. */
614 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
615
616 xfree (objfile);
617 }
618
619 static void
620 do_free_objfile_cleanup (void *obj)
621 {
622 free_objfile (obj);
623 }
624
625 struct cleanup *
626 make_cleanup_free_objfile (struct objfile *obj)
627 {
628 return make_cleanup (do_free_objfile_cleanup, obj);
629 }
630
631 /* Free all the object files at once and clean up their users. */
632
633 void
634 free_all_objfiles (void)
635 {
636 struct objfile *objfile, *temp;
637 struct so_list *so;
638
639 /* Any objfile referencewould become stale. */
640 for (so = master_so_list (); so; so = so->next)
641 gdb_assert (so->objfile == NULL);
642
643 ALL_OBJFILES_SAFE (objfile, temp)
644 {
645 free_objfile (objfile);
646 }
647 clear_symtab_users (0);
648 }
649 \f
650 /* A helper function for objfile_relocate1 that relocates a single
651 symbol. */
652
653 static void
654 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
655 struct section_offsets *delta)
656 {
657 fixup_symbol_section (sym, objfile);
658
659 /* The RS6000 code from which this was taken skipped
660 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
661 But I'm leaving out that test, on the theory that
662 they can't possibly pass the tests below. */
663 if ((SYMBOL_CLASS (sym) == LOC_LABEL
664 || SYMBOL_CLASS (sym) == LOC_STATIC)
665 && SYMBOL_SECTION (sym) >= 0)
666 {
667 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
668 }
669 }
670
671 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
672 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
673 Return non-zero iff any change happened. */
674
675 static int
676 objfile_relocate1 (struct objfile *objfile,
677 struct section_offsets *new_offsets)
678 {
679 struct obj_section *s;
680 struct section_offsets *delta =
681 ((struct section_offsets *)
682 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
683
684 int i;
685 int something_changed = 0;
686
687 for (i = 0; i < objfile->num_sections; ++i)
688 {
689 delta->offsets[i] =
690 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
691 if (ANOFFSET (delta, i) != 0)
692 something_changed = 1;
693 }
694 if (!something_changed)
695 return 0;
696
697 /* OK, get all the symtabs. */
698 {
699 struct symtab *s;
700
701 ALL_OBJFILE_SYMTABS (objfile, s)
702 {
703 struct linetable *l;
704 struct blockvector *bv;
705 int i;
706
707 /* First the line table. */
708 l = LINETABLE (s);
709 if (l)
710 {
711 for (i = 0; i < l->nitems; ++i)
712 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
713 }
714
715 /* Don't relocate a shared blockvector more than once. */
716 if (!s->primary)
717 continue;
718
719 bv = BLOCKVECTOR (s);
720 if (BLOCKVECTOR_MAP (bv))
721 addrmap_relocate (BLOCKVECTOR_MAP (bv),
722 ANOFFSET (delta, s->block_line_section));
723
724 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
725 {
726 struct block *b;
727 struct symbol *sym;
728 struct dict_iterator iter;
729
730 b = BLOCKVECTOR_BLOCK (bv, i);
731 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
732 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
733
734 /* We only want to iterate over the local symbols, not any
735 symbols in included symtabs. */
736 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
737 {
738 relocate_one_symbol (sym, objfile, delta);
739 }
740 }
741 }
742 }
743
744 /* Relocate isolated symbols. */
745 {
746 struct symbol *iter;
747
748 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
749 relocate_one_symbol (iter, objfile, delta);
750 }
751
752 if (objfile->psymtabs_addrmap)
753 addrmap_relocate (objfile->psymtabs_addrmap,
754 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
755
756 if (objfile->sf)
757 objfile->sf->qf->relocate (objfile, new_offsets, delta);
758
759 {
760 struct minimal_symbol *msym;
761
762 ALL_OBJFILE_MSYMBOLS (objfile, msym)
763 if (SYMBOL_SECTION (msym) >= 0)
764 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
765 }
766 /* Relocating different sections by different amounts may cause the symbols
767 to be out of order. */
768 msymbols_sort (objfile);
769
770 if (objfile->ei.entry_point_p)
771 {
772 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
773 only as a fallback. */
774 struct obj_section *s;
775 s = find_pc_section (objfile->ei.entry_point);
776 if (s)
777 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
778 else
779 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
780 }
781
782 {
783 int i;
784
785 for (i = 0; i < objfile->num_sections; ++i)
786 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
787 }
788
789 /* Rebuild section map next time we need it. */
790 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
791
792 /* Update the table in exec_ops, used to read memory. */
793 ALL_OBJFILE_OSECTIONS (objfile, s)
794 {
795 int idx = s->the_bfd_section->index;
796
797 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
798 obj_section_addr (s));
799 }
800
801 /* Relocating probes. */
802 if (objfile->sf && objfile->sf->sym_probe_fns)
803 objfile->sf->sym_probe_fns->sym_relocate_probe (objfile,
804 new_offsets, delta);
805
806 /* Data changed. */
807 return 1;
808 }
809
810 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
811 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
812
813 The number and ordering of sections does differ between the two objfiles.
814 Only their names match. Also the file offsets will differ (objfile being
815 possibly prelinked but separate_debug_objfile is probably not prelinked) but
816 the in-memory absolute address as specified by NEW_OFFSETS must match both
817 files. */
818
819 void
820 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
821 {
822 struct objfile *debug_objfile;
823 int changed = 0;
824
825 changed |= objfile_relocate1 (objfile, new_offsets);
826
827 for (debug_objfile = objfile->separate_debug_objfile;
828 debug_objfile;
829 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
830 {
831 struct section_addr_info *objfile_addrs;
832 struct section_offsets *new_debug_offsets;
833 struct cleanup *my_cleanups;
834
835 objfile_addrs = build_section_addr_info_from_objfile (objfile);
836 my_cleanups = make_cleanup (xfree, objfile_addrs);
837
838 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
839 relative ones must be already created according to debug_objfile. */
840
841 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
842
843 gdb_assert (debug_objfile->num_sections
844 == bfd_count_sections (debug_objfile->obfd));
845 new_debug_offsets =
846 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
847 make_cleanup (xfree, new_debug_offsets);
848 relative_addr_info_to_section_offsets (new_debug_offsets,
849 debug_objfile->num_sections,
850 objfile_addrs);
851
852 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
853
854 do_cleanups (my_cleanups);
855 }
856
857 /* Relocate breakpoints as necessary, after things are relocated. */
858 if (changed)
859 breakpoint_re_set ();
860 }
861 \f
862 /* Return non-zero if OBJFILE has partial symbols. */
863
864 int
865 objfile_has_partial_symbols (struct objfile *objfile)
866 {
867 if (!objfile->sf)
868 return 0;
869
870 /* If we have not read psymbols, but we have a function capable of reading
871 them, then that is an indication that they are in fact available. Without
872 this function the symbols may have been already read in but they also may
873 not be present in this objfile. */
874 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
875 && objfile->sf->sym_read_psymbols != NULL)
876 return 1;
877
878 return objfile->sf->qf->has_symbols (objfile);
879 }
880
881 /* Return non-zero if OBJFILE has full symbols. */
882
883 int
884 objfile_has_full_symbols (struct objfile *objfile)
885 {
886 return objfile->symtabs != NULL;
887 }
888
889 /* Return non-zero if OBJFILE has full or partial symbols, either directly
890 or through a separate debug file. */
891
892 int
893 objfile_has_symbols (struct objfile *objfile)
894 {
895 struct objfile *o;
896
897 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
898 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
899 return 1;
900 return 0;
901 }
902
903
904 /* Many places in gdb want to test just to see if we have any partial
905 symbols available. This function returns zero if none are currently
906 available, nonzero otherwise. */
907
908 int
909 have_partial_symbols (void)
910 {
911 struct objfile *ofp;
912
913 ALL_OBJFILES (ofp)
914 {
915 if (objfile_has_partial_symbols (ofp))
916 return 1;
917 }
918 return 0;
919 }
920
921 /* Many places in gdb want to test just to see if we have any full
922 symbols available. This function returns zero if none are currently
923 available, nonzero otherwise. */
924
925 int
926 have_full_symbols (void)
927 {
928 struct objfile *ofp;
929
930 ALL_OBJFILES (ofp)
931 {
932 if (objfile_has_full_symbols (ofp))
933 return 1;
934 }
935 return 0;
936 }
937
938
939 /* This operations deletes all objfile entries that represent solibs that
940 weren't explicitly loaded by the user, via e.g., the add-symbol-file
941 command. */
942
943 void
944 objfile_purge_solibs (void)
945 {
946 struct objfile *objf;
947 struct objfile *temp;
948
949 ALL_OBJFILES_SAFE (objf, temp)
950 {
951 /* We assume that the solib package has been purged already, or will
952 be soon. */
953
954 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
955 free_objfile (objf);
956 }
957 }
958
959
960 /* Many places in gdb want to test just to see if we have any minimal
961 symbols available. This function returns zero if none are currently
962 available, nonzero otherwise. */
963
964 int
965 have_minimal_symbols (void)
966 {
967 struct objfile *ofp;
968
969 ALL_OBJFILES (ofp)
970 {
971 if (ofp->minimal_symbol_count > 0)
972 {
973 return 1;
974 }
975 }
976 return 0;
977 }
978
979 /* Qsort comparison function. */
980
981 static int
982 qsort_cmp (const void *a, const void *b)
983 {
984 const struct obj_section *sect1 = *(const struct obj_section **) a;
985 const struct obj_section *sect2 = *(const struct obj_section **) b;
986 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
987 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
988
989 if (sect1_addr < sect2_addr)
990 return -1;
991 else if (sect1_addr > sect2_addr)
992 return 1;
993 else
994 {
995 /* Sections are at the same address. This could happen if
996 A) we have an objfile and a separate debuginfo.
997 B) we are confused, and have added sections without proper relocation,
998 or something like that. */
999
1000 const struct objfile *const objfile1 = sect1->objfile;
1001 const struct objfile *const objfile2 = sect2->objfile;
1002
1003 if (objfile1->separate_debug_objfile == objfile2
1004 || objfile2->separate_debug_objfile == objfile1)
1005 {
1006 /* Case A. The ordering doesn't matter: separate debuginfo files
1007 will be filtered out later. */
1008
1009 return 0;
1010 }
1011
1012 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1013 triage. This section could be slow (since we iterate over all
1014 objfiles in each call to qsort_cmp), but this shouldn't happen
1015 very often (GDB is already in a confused state; one hopes this
1016 doesn't happen at all). If you discover that significant time is
1017 spent in the loops below, do 'set complaints 100' and examine the
1018 resulting complaints. */
1019
1020 if (objfile1 == objfile2)
1021 {
1022 /* Both sections came from the same objfile. We are really confused.
1023 Sort on sequence order of sections within the objfile. */
1024
1025 const struct obj_section *osect;
1026
1027 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1028 if (osect == sect1)
1029 return -1;
1030 else if (osect == sect2)
1031 return 1;
1032
1033 /* We should have found one of the sections before getting here. */
1034 gdb_assert_not_reached ("section not found");
1035 }
1036 else
1037 {
1038 /* Sort on sequence number of the objfile in the chain. */
1039
1040 const struct objfile *objfile;
1041
1042 ALL_OBJFILES (objfile)
1043 if (objfile == objfile1)
1044 return -1;
1045 else if (objfile == objfile2)
1046 return 1;
1047
1048 /* We should have found one of the objfiles before getting here. */
1049 gdb_assert_not_reached ("objfile not found");
1050 }
1051 }
1052
1053 /* Unreachable. */
1054 gdb_assert_not_reached ("unexpected code path");
1055 return 0;
1056 }
1057
1058 /* Select "better" obj_section to keep. We prefer the one that came from
1059 the real object, rather than the one from separate debuginfo.
1060 Most of the time the two sections are exactly identical, but with
1061 prelinking the .rel.dyn section in the real object may have different
1062 size. */
1063
1064 static struct obj_section *
1065 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1066 {
1067 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1068 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1069 || (b->objfile->separate_debug_objfile == a->objfile));
1070 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1071 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1072
1073 if (a->objfile->separate_debug_objfile != NULL)
1074 return a;
1075 return b;
1076 }
1077
1078 /* Return 1 if SECTION should be inserted into the section map.
1079 We want to insert only non-overlay and non-TLS section. */
1080
1081 static int
1082 insert_section_p (const struct bfd *abfd,
1083 const struct bfd_section *section)
1084 {
1085 const bfd_vma lma = bfd_section_lma (abfd, section);
1086
1087 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1088 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1089 /* This is an overlay section. IN_MEMORY check is needed to avoid
1090 discarding sections from the "system supplied DSO" (aka vdso)
1091 on some Linux systems (e.g. Fedora 11). */
1092 return 0;
1093 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1094 /* This is a TLS section. */
1095 return 0;
1096
1097 return 1;
1098 }
1099
1100 /* Filter out overlapping sections where one section came from the real
1101 objfile, and the other from a separate debuginfo file.
1102 Return the size of table after redundant sections have been eliminated. */
1103
1104 static int
1105 filter_debuginfo_sections (struct obj_section **map, int map_size)
1106 {
1107 int i, j;
1108
1109 for (i = 0, j = 0; i < map_size - 1; i++)
1110 {
1111 struct obj_section *const sect1 = map[i];
1112 struct obj_section *const sect2 = map[i + 1];
1113 const struct objfile *const objfile1 = sect1->objfile;
1114 const struct objfile *const objfile2 = sect2->objfile;
1115 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1116 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1117
1118 if (sect1_addr == sect2_addr
1119 && (objfile1->separate_debug_objfile == objfile2
1120 || objfile2->separate_debug_objfile == objfile1))
1121 {
1122 map[j++] = preferred_obj_section (sect1, sect2);
1123 ++i;
1124 }
1125 else
1126 map[j++] = sect1;
1127 }
1128
1129 if (i < map_size)
1130 {
1131 gdb_assert (i == map_size - 1);
1132 map[j++] = map[i];
1133 }
1134
1135 /* The map should not have shrunk to less than half the original size. */
1136 gdb_assert (map_size / 2 <= j);
1137
1138 return j;
1139 }
1140
1141 /* Filter out overlapping sections, issuing a warning if any are found.
1142 Overlapping sections could really be overlay sections which we didn't
1143 classify as such in insert_section_p, or we could be dealing with a
1144 corrupt binary. */
1145
1146 static int
1147 filter_overlapping_sections (struct obj_section **map, int map_size)
1148 {
1149 int i, j;
1150
1151 for (i = 0, j = 0; i < map_size - 1; )
1152 {
1153 int k;
1154
1155 map[j++] = map[i];
1156 for (k = i + 1; k < map_size; k++)
1157 {
1158 struct obj_section *const sect1 = map[i];
1159 struct obj_section *const sect2 = map[k];
1160 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1161 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1162 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1163
1164 gdb_assert (sect1_addr <= sect2_addr);
1165
1166 if (sect1_endaddr <= sect2_addr)
1167 break;
1168 else
1169 {
1170 /* We have an overlap. Report it. */
1171
1172 struct objfile *const objf1 = sect1->objfile;
1173 struct objfile *const objf2 = sect2->objfile;
1174
1175 const struct bfd *const abfd1 = objf1->obfd;
1176 const struct bfd *const abfd2 = objf2->obfd;
1177
1178 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1179 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1180
1181 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1182
1183 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1184
1185 complaint (&symfile_complaints,
1186 _("unexpected overlap between:\n"
1187 " (A) section `%s' from `%s' [%s, %s)\n"
1188 " (B) section `%s' from `%s' [%s, %s).\n"
1189 "Will ignore section B"),
1190 bfd_section_name (abfd1, bfds1), objf1->name,
1191 paddress (gdbarch, sect1_addr),
1192 paddress (gdbarch, sect1_endaddr),
1193 bfd_section_name (abfd2, bfds2), objf2->name,
1194 paddress (gdbarch, sect2_addr),
1195 paddress (gdbarch, sect2_endaddr));
1196 }
1197 }
1198 i = k;
1199 }
1200
1201 if (i < map_size)
1202 {
1203 gdb_assert (i == map_size - 1);
1204 map[j++] = map[i];
1205 }
1206
1207 return j;
1208 }
1209
1210
1211 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1212 TLS, overlay and overlapping sections. */
1213
1214 static void
1215 update_section_map (struct program_space *pspace,
1216 struct obj_section ***pmap, int *pmap_size)
1217 {
1218 int alloc_size, map_size, i;
1219 struct obj_section *s, **map;
1220 struct objfile *objfile;
1221
1222 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1223
1224 map = *pmap;
1225 xfree (map);
1226
1227 alloc_size = 0;
1228 ALL_PSPACE_OBJFILES (pspace, objfile)
1229 ALL_OBJFILE_OSECTIONS (objfile, s)
1230 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1231 alloc_size += 1;
1232
1233 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1234 if (alloc_size == 0)
1235 {
1236 *pmap = NULL;
1237 *pmap_size = 0;
1238 return;
1239 }
1240
1241 map = xmalloc (alloc_size * sizeof (*map));
1242
1243 i = 0;
1244 ALL_PSPACE_OBJFILES (pspace, objfile)
1245 ALL_OBJFILE_OSECTIONS (objfile, s)
1246 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1247 map[i++] = s;
1248
1249 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1250 map_size = filter_debuginfo_sections(map, alloc_size);
1251 map_size = filter_overlapping_sections(map, map_size);
1252
1253 if (map_size < alloc_size)
1254 /* Some sections were eliminated. Trim excess space. */
1255 map = xrealloc (map, map_size * sizeof (*map));
1256 else
1257 gdb_assert (alloc_size == map_size);
1258
1259 *pmap = map;
1260 *pmap_size = map_size;
1261 }
1262
1263 /* Bsearch comparison function. */
1264
1265 static int
1266 bsearch_cmp (const void *key, const void *elt)
1267 {
1268 const CORE_ADDR pc = *(CORE_ADDR *) key;
1269 const struct obj_section *section = *(const struct obj_section **) elt;
1270
1271 if (pc < obj_section_addr (section))
1272 return -1;
1273 if (pc < obj_section_endaddr (section))
1274 return 0;
1275 return 1;
1276 }
1277
1278 /* Returns a section whose range includes PC or NULL if none found. */
1279
1280 struct obj_section *
1281 find_pc_section (CORE_ADDR pc)
1282 {
1283 struct objfile_pspace_info *pspace_info;
1284 struct obj_section *s, **sp;
1285
1286 /* Check for mapped overlay section first. */
1287 s = find_pc_mapped_section (pc);
1288 if (s)
1289 return s;
1290
1291 pspace_info = get_objfile_pspace_data (current_program_space);
1292 if (pspace_info->objfiles_changed_p != 0)
1293 {
1294 update_section_map (current_program_space,
1295 &pspace_info->sections,
1296 &pspace_info->num_sections);
1297
1298 /* Don't need updates to section map until objfiles are added,
1299 removed or relocated. */
1300 pspace_info->objfiles_changed_p = 0;
1301 }
1302
1303 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1304 bsearch be non-NULL. */
1305 if (pspace_info->sections == NULL)
1306 {
1307 gdb_assert (pspace_info->num_sections == 0);
1308 return NULL;
1309 }
1310
1311 sp = (struct obj_section **) bsearch (&pc,
1312 pspace_info->sections,
1313 pspace_info->num_sections,
1314 sizeof (*pspace_info->sections),
1315 bsearch_cmp);
1316 if (sp != NULL)
1317 return *sp;
1318 return NULL;
1319 }
1320
1321
1322 /* In SVR4, we recognize a trampoline by it's section name.
1323 That is, if the pc is in a section named ".plt" then we are in
1324 a trampoline. */
1325
1326 int
1327 in_plt_section (CORE_ADDR pc, char *name)
1328 {
1329 struct obj_section *s;
1330 int retval = 0;
1331
1332 s = find_pc_section (pc);
1333
1334 retval = (s != NULL
1335 && s->the_bfd_section->name != NULL
1336 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1337 return (retval);
1338 }
1339 \f
1340
1341 /* Keep a registry of per-objfile data-pointers required by other GDB
1342 modules. */
1343
1344 struct objfile_data
1345 {
1346 unsigned index;
1347 void (*save) (struct objfile *, void *);
1348 void (*free) (struct objfile *, void *);
1349 };
1350
1351 struct objfile_data_registration
1352 {
1353 struct objfile_data *data;
1354 struct objfile_data_registration *next;
1355 };
1356
1357 struct objfile_data_registry
1358 {
1359 struct objfile_data_registration *registrations;
1360 unsigned num_registrations;
1361 };
1362
1363 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
1364
1365 const struct objfile_data *
1366 register_objfile_data_with_cleanup (void (*save) (struct objfile *, void *),
1367 void (*free) (struct objfile *, void *))
1368 {
1369 struct objfile_data_registration **curr;
1370
1371 /* Append new registration. */
1372 for (curr = &objfile_data_registry.registrations;
1373 *curr != NULL; curr = &(*curr)->next);
1374
1375 *curr = XMALLOC (struct objfile_data_registration);
1376 (*curr)->next = NULL;
1377 (*curr)->data = XMALLOC (struct objfile_data);
1378 (*curr)->data->index = objfile_data_registry.num_registrations++;
1379 (*curr)->data->save = save;
1380 (*curr)->data->free = free;
1381
1382 return (*curr)->data;
1383 }
1384
1385 const struct objfile_data *
1386 register_objfile_data (void)
1387 {
1388 return register_objfile_data_with_cleanup (NULL, NULL);
1389 }
1390
1391 static void
1392 objfile_alloc_data (struct objfile *objfile)
1393 {
1394 gdb_assert (objfile->data == NULL);
1395 objfile->num_data = objfile_data_registry.num_registrations;
1396 objfile->data = XCALLOC (objfile->num_data, void *);
1397 }
1398
1399 static void
1400 objfile_free_data (struct objfile *objfile)
1401 {
1402 gdb_assert (objfile->data != NULL);
1403 clear_objfile_data (objfile);
1404 xfree (objfile->data);
1405 objfile->data = NULL;
1406 }
1407
1408 void
1409 clear_objfile_data (struct objfile *objfile)
1410 {
1411 struct objfile_data_registration *registration;
1412 int i;
1413
1414 gdb_assert (objfile->data != NULL);
1415
1416 /* Process all the save handlers. */
1417
1418 for (registration = objfile_data_registry.registrations, i = 0;
1419 i < objfile->num_data;
1420 registration = registration->next, i++)
1421 if (objfile->data[i] != NULL && registration->data->save != NULL)
1422 registration->data->save (objfile, objfile->data[i]);
1423
1424 /* Now process all the free handlers. */
1425
1426 for (registration = objfile_data_registry.registrations, i = 0;
1427 i < objfile->num_data;
1428 registration = registration->next, i++)
1429 if (objfile->data[i] != NULL && registration->data->free != NULL)
1430 registration->data->free (objfile, objfile->data[i]);
1431
1432 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
1433 }
1434
1435 void
1436 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
1437 void *value)
1438 {
1439 gdb_assert (data->index < objfile->num_data);
1440 objfile->data[data->index] = value;
1441 }
1442
1443 void *
1444 objfile_data (struct objfile *objfile, const struct objfile_data *data)
1445 {
1446 gdb_assert (data->index < objfile->num_data);
1447 return objfile->data[data->index];
1448 }
1449
1450 /* Set objfiles_changed_p so section map will be rebuilt next time it
1451 is used. Called by reread_symbols. */
1452
1453 void
1454 objfiles_changed (void)
1455 {
1456 /* Rebuild section map next time we need it. */
1457 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1458 }
1459
1460 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1461 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1462 searching the objfiles in the order they are stored internally,
1463 ignoring CURRENT_OBJFILE.
1464
1465 On most platorms, it should be close enough to doing the best
1466 we can without some knowledge specific to the architecture. */
1467
1468 void
1469 default_iterate_over_objfiles_in_search_order
1470 (struct gdbarch *gdbarch,
1471 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1472 void *cb_data, struct objfile *current_objfile)
1473 {
1474 int stop = 0;
1475 struct objfile *objfile;
1476
1477 ALL_OBJFILES (objfile)
1478 {
1479 stop = cb (objfile, cb_data);
1480 if (stop)
1481 return;
1482 }
1483 }
1484
1485 /* Provide a prototype to silence -Wmissing-prototypes. */
1486 extern initialize_file_ftype _initialize_objfiles;
1487
1488 void
1489 _initialize_objfiles (void)
1490 {
1491 objfiles_pspace_data
1492 = register_program_space_data_with_cleanup (objfiles_pspace_data_cleanup);
1493 }
This page took 0.062735 seconds and 4 git commands to generate.