2004-03-17 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 /* This file contains support routines for creating, manipulating, and
26 destroying objfile structures. */
27
28 #include "defs.h"
29 #include "bfd.h" /* Binary File Description */
30 #include "symtab.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "target.h"
35 #include "bcache.h"
36
37 #include "gdb_assert.h"
38 #include <sys/types.h>
39 #include "gdb_stat.h"
40 #include <fcntl.h>
41 #include "gdb_obstack.h"
42 #include "gdb_string.h"
43 #include "hashtab.h"
44
45 #include "breakpoint.h"
46 #include "block.h"
47 #include "dictionary.h"
48
49 /* Prototypes for local functions */
50
51 static void objfile_alloc_data (struct objfile *objfile);
52 static void objfile_free_data (struct objfile *objfile);
53
54 /* Externally visible variables that are owned by this module.
55 See declarations in objfile.h for more info. */
56
57 struct objfile *object_files; /* Linked list of all objfiles */
58 struct objfile *current_objfile; /* For symbol file being read in */
59 struct objfile *symfile_objfile; /* Main symbol table loaded from */
60 struct objfile *rt_common_objfile; /* For runtime common symbols */
61
62 /* Locate all mappable sections of a BFD file.
63 objfile_p_char is a char * to get it through
64 bfd_map_over_sections; we cast it back to its proper type. */
65
66 #ifndef TARGET_KEEP_SECTION
67 #define TARGET_KEEP_SECTION(ASECT) 0
68 #endif
69
70 /* Called via bfd_map_over_sections to build up the section table that
71 the objfile references. The objfile contains pointers to the start
72 of the table (objfile->sections) and to the first location after
73 the end of the table (objfile->sections_end). */
74
75 static void
76 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
77 void *objfile_p_char)
78 {
79 struct objfile *objfile = (struct objfile *) objfile_p_char;
80 struct obj_section section;
81 flagword aflag;
82
83 aflag = bfd_get_section_flags (abfd, asect);
84
85 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
86 return;
87
88 if (0 == bfd_section_size (abfd, asect))
89 return;
90 section.offset = 0;
91 section.objfile = objfile;
92 section.the_bfd_section = asect;
93 section.ovly_mapped = 0;
94 section.addr = bfd_section_vma (abfd, asect);
95 section.endaddr = section.addr + bfd_section_size (abfd, asect);
96 obstack_grow (&objfile->objfile_obstack, (char *) &section, sizeof (section));
97 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
98 }
99
100 /* Builds a section table for OBJFILE.
101 Returns 0 if OK, 1 on error (in which case bfd_error contains the
102 error).
103
104 Note that while we are building the table, which goes into the
105 psymbol obstack, we hijack the sections_end pointer to instead hold
106 a count of the number of sections. When bfd_map_over_sections
107 returns, this count is used to compute the pointer to the end of
108 the sections table, which then overwrites the count.
109
110 Also note that the OFFSET and OVLY_MAPPED in each table entry
111 are initialized to zero.
112
113 Also note that if anything else writes to the psymbol obstack while
114 we are building the table, we're pretty much hosed. */
115
116 int
117 build_objfile_section_table (struct objfile *objfile)
118 {
119 /* objfile->sections can be already set when reading a mapped symbol
120 file. I believe that we do need to rebuild the section table in
121 this case (we rebuild other things derived from the bfd), but we
122 can't free the old one (it's in the objfile_obstack). So we just
123 waste some memory. */
124
125 objfile->sections_end = 0;
126 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
127 objfile->sections = (struct obj_section *)
128 obstack_finish (&objfile->objfile_obstack);
129 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
130 return (0);
131 }
132
133 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
134 allocate a new objfile struct, fill it in as best we can, link it
135 into the list of all known objfiles, and return a pointer to the
136 new objfile struct.
137
138 The FLAGS word contains various bits (OBJF_*) that can be taken as
139 requests for specific operations. Other bits like OBJF_SHARED are
140 simply copied through to the new objfile flags member. */
141
142 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
143 by jv-lang.c, to create an artificial objfile used to hold
144 information about dynamically-loaded Java classes. Unfortunately,
145 that branch of this function doesn't get tested very frequently, so
146 it's prone to breakage. (E.g. at one time the name was set to NULL
147 in that situation, which broke a loop over all names in the dynamic
148 library loader.) If you change this function, please try to leave
149 things in a consistent state even if abfd is NULL. */
150
151 struct objfile *
152 allocate_objfile (bfd *abfd, int flags)
153 {
154 struct objfile *objfile = NULL;
155 struct objfile *last_one = NULL;
156
157 /* If we don't support mapped symbol files, didn't ask for the file to be
158 mapped, or failed to open the mapped file for some reason, then revert
159 back to an unmapped objfile. */
160
161 if (objfile == NULL)
162 {
163 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
164 memset (objfile, 0, sizeof (struct objfile));
165 objfile->md = NULL;
166 objfile->psymbol_cache = bcache_xmalloc ();
167 objfile->macro_cache = bcache_xmalloc ();
168 /* We could use obstack_specify_allocation here instead, but
169 gdb_obstack.h specifies the alloc/dealloc functions. */
170 obstack_init (&objfile->objfile_obstack);
171 terminate_minimal_symbol_table (objfile);
172 }
173
174 objfile_alloc_data (objfile);
175
176 /* Update the per-objfile information that comes from the bfd, ensuring
177 that any data that is reference is saved in the per-objfile data
178 region. */
179
180 objfile->obfd = abfd;
181 if (objfile->name != NULL)
182 {
183 xmfree (objfile->md, objfile->name);
184 }
185 if (abfd != NULL)
186 {
187 objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd));
188 objfile->mtime = bfd_get_mtime (abfd);
189
190 /* Build section table. */
191
192 if (build_objfile_section_table (objfile))
193 {
194 error ("Can't find the file sections in `%s': %s",
195 objfile->name, bfd_errmsg (bfd_get_error ()));
196 }
197 }
198 else
199 {
200 objfile->name = mstrsave (objfile->md, "<<anonymous objfile>>");
201 }
202
203 /* Initialize the section indexes for this objfile, so that we can
204 later detect if they are used w/o being properly assigned to. */
205
206 objfile->sect_index_text = -1;
207 objfile->sect_index_data = -1;
208 objfile->sect_index_bss = -1;
209 objfile->sect_index_rodata = -1;
210
211 /* We don't yet have a C++-specific namespace symtab. */
212
213 objfile->cp_namespace_symtab = NULL;
214
215 /* Add this file onto the tail of the linked list of other such files. */
216
217 objfile->next = NULL;
218 if (object_files == NULL)
219 object_files = objfile;
220 else
221 {
222 for (last_one = object_files;
223 last_one->next;
224 last_one = last_one->next);
225 last_one->next = objfile;
226 }
227
228 /* Save passed in flag bits. */
229 objfile->flags |= flags;
230
231 return (objfile);
232 }
233
234 /* Initialize entry point information for this objfile. */
235
236 void
237 init_entry_point_info (struct objfile *objfile)
238 {
239 /* Save startup file's range of PC addresses to help blockframe.c
240 decide where the bottom of the stack is. */
241
242 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
243 {
244 /* Executable file -- record its entry point so we'll recognize
245 the startup file because it contains the entry point. */
246 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
247 }
248 else
249 {
250 /* Examination of non-executable.o files. Short-circuit this stuff. */
251 objfile->ei.entry_point = INVALID_ENTRY_POINT;
252 }
253 objfile->ei.deprecated_entry_file_lowpc = INVALID_ENTRY_LOWPC;
254 objfile->ei.deprecated_entry_file_highpc = INVALID_ENTRY_HIGHPC;
255 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
256 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
257 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
258 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
259 }
260
261 /* Get current entry point address. */
262
263 CORE_ADDR
264 entry_point_address (void)
265 {
266 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
267 }
268
269 /* Create the terminating entry of OBJFILE's minimal symbol table.
270 If OBJFILE->msymbols is zero, allocate a single entry from
271 OBJFILE->objfile_obstack; otherwise, just initialize
272 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
273 void
274 terminate_minimal_symbol_table (struct objfile *objfile)
275 {
276 if (! objfile->msymbols)
277 objfile->msymbols = ((struct minimal_symbol *)
278 obstack_alloc (&objfile->objfile_obstack,
279 sizeof (objfile->msymbols[0])));
280
281 {
282 struct minimal_symbol *m
283 = &objfile->msymbols[objfile->minimal_symbol_count];
284
285 memset (m, 0, sizeof (*m));
286 /* Don't rely on these enumeration values being 0's. */
287 MSYMBOL_TYPE (m) = mst_unknown;
288 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
289 }
290 }
291
292
293 /* Put one object file before a specified on in the global list.
294 This can be used to make sure an object file is destroyed before
295 another when using ALL_OBJFILES_SAFE to free all objfiles. */
296 void
297 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
298 {
299 struct objfile **objp;
300
301 unlink_objfile (objfile);
302
303 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
304 {
305 if (*objp == before_this)
306 {
307 objfile->next = *objp;
308 *objp = objfile;
309 return;
310 }
311 }
312
313 internal_error (__FILE__, __LINE__,
314 "put_objfile_before: before objfile not in list");
315 }
316
317 /* Put OBJFILE at the front of the list. */
318
319 void
320 objfile_to_front (struct objfile *objfile)
321 {
322 struct objfile **objp;
323 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
324 {
325 if (*objp == objfile)
326 {
327 /* Unhook it from where it is. */
328 *objp = objfile->next;
329 /* Put it in the front. */
330 objfile->next = object_files;
331 object_files = objfile;
332 break;
333 }
334 }
335 }
336
337 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
338 list.
339
340 It is not a bug, or error, to call this function if OBJFILE is not known
341 to be in the current list. This is done in the case of mapped objfiles,
342 for example, just to ensure that the mapped objfile doesn't appear twice
343 in the list. Since the list is threaded, linking in a mapped objfile
344 twice would create a circular list.
345
346 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
347 unlinking it, just to ensure that we have completely severed any linkages
348 between the OBJFILE and the list. */
349
350 void
351 unlink_objfile (struct objfile *objfile)
352 {
353 struct objfile **objpp;
354
355 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
356 {
357 if (*objpp == objfile)
358 {
359 *objpp = (*objpp)->next;
360 objfile->next = NULL;
361 return;
362 }
363 }
364
365 internal_error (__FILE__, __LINE__,
366 "unlink_objfile: objfile already unlinked");
367 }
368
369
370 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
371 that as much as possible is allocated on the objfile_obstack
372 so that the memory can be efficiently freed.
373
374 Things which we do NOT free because they are not in malloc'd memory
375 or not in memory specific to the objfile include:
376
377 objfile -> sf
378
379 FIXME: If the objfile is using reusable symbol information (via mmalloc),
380 then we need to take into account the fact that more than one process
381 may be using the symbol information at the same time (when mmalloc is
382 extended to support cooperative locking). When more than one process
383 is using the mapped symbol info, we need to be more careful about when
384 we free objects in the reusable area. */
385
386 void
387 free_objfile (struct objfile *objfile)
388 {
389 if (objfile->separate_debug_objfile)
390 {
391 free_objfile (objfile->separate_debug_objfile);
392 }
393
394 if (objfile->separate_debug_objfile_backlink)
395 {
396 /* We freed the separate debug file, make sure the base objfile
397 doesn't reference it. */
398 objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL;
399 }
400
401 /* First do any symbol file specific actions required when we are
402 finished with a particular symbol file. Note that if the objfile
403 is using reusable symbol information (via mmalloc) then each of
404 these routines is responsible for doing the correct thing, either
405 freeing things which are valid only during this particular gdb
406 execution, or leaving them to be reused during the next one. */
407
408 if (objfile->sf != NULL)
409 {
410 (*objfile->sf->sym_finish) (objfile);
411 }
412
413 /* We always close the bfd. */
414
415 if (objfile->obfd != NULL)
416 {
417 char *name = bfd_get_filename (objfile->obfd);
418 if (!bfd_close (objfile->obfd))
419 warning ("cannot close \"%s\": %s",
420 name, bfd_errmsg (bfd_get_error ()));
421 xfree (name);
422 }
423
424 /* Remove it from the chain of all objfiles. */
425
426 unlink_objfile (objfile);
427
428 /* If we are going to free the runtime common objfile, mark it
429 as unallocated. */
430
431 if (objfile == rt_common_objfile)
432 rt_common_objfile = NULL;
433
434 /* Before the symbol table code was redone to make it easier to
435 selectively load and remove information particular to a specific
436 linkage unit, gdb used to do these things whenever the monolithic
437 symbol table was blown away. How much still needs to be done
438 is unknown, but we play it safe for now and keep each action until
439 it is shown to be no longer needed. */
440
441 /* I *think* all our callers call clear_symtab_users. If so, no need
442 to call this here. */
443 clear_pc_function_cache ();
444
445 /* The last thing we do is free the objfile struct itself. */
446
447 objfile_free_data (objfile);
448 if (objfile->name != NULL)
449 {
450 xmfree (objfile->md, objfile->name);
451 }
452 if (objfile->global_psymbols.list)
453 xmfree (objfile->md, objfile->global_psymbols.list);
454 if (objfile->static_psymbols.list)
455 xmfree (objfile->md, objfile->static_psymbols.list);
456 /* Free the obstacks for non-reusable objfiles */
457 bcache_xfree (objfile->psymbol_cache);
458 bcache_xfree (objfile->macro_cache);
459 if (objfile->demangled_names_hash)
460 htab_delete (objfile->demangled_names_hash);
461 obstack_free (&objfile->objfile_obstack, 0);
462 xmfree (objfile->md, objfile);
463 objfile = NULL;
464 }
465
466 static void
467 do_free_objfile_cleanup (void *obj)
468 {
469 free_objfile (obj);
470 }
471
472 struct cleanup *
473 make_cleanup_free_objfile (struct objfile *obj)
474 {
475 return make_cleanup (do_free_objfile_cleanup, obj);
476 }
477
478 /* Free all the object files at once and clean up their users. */
479
480 void
481 free_all_objfiles (void)
482 {
483 struct objfile *objfile, *temp;
484
485 ALL_OBJFILES_SAFE (objfile, temp)
486 {
487 free_objfile (objfile);
488 }
489 clear_symtab_users ();
490 }
491 \f
492 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
493 entries in new_offsets. */
494 void
495 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
496 {
497 struct section_offsets *delta =
498 ((struct section_offsets *)
499 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
500
501 {
502 int i;
503 int something_changed = 0;
504 for (i = 0; i < objfile->num_sections; ++i)
505 {
506 delta->offsets[i] =
507 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
508 if (ANOFFSET (delta, i) != 0)
509 something_changed = 1;
510 }
511 if (!something_changed)
512 return;
513 }
514
515 /* OK, get all the symtabs. */
516 {
517 struct symtab *s;
518
519 ALL_OBJFILE_SYMTABS (objfile, s)
520 {
521 struct linetable *l;
522 struct blockvector *bv;
523 int i;
524
525 /* First the line table. */
526 l = LINETABLE (s);
527 if (l)
528 {
529 for (i = 0; i < l->nitems; ++i)
530 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
531 }
532
533 /* Don't relocate a shared blockvector more than once. */
534 if (!s->primary)
535 continue;
536
537 bv = BLOCKVECTOR (s);
538 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
539 {
540 struct block *b;
541 struct symbol *sym;
542 struct dict_iterator iter;
543
544 b = BLOCKVECTOR_BLOCK (bv, i);
545 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
546 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
547
548 ALL_BLOCK_SYMBOLS (b, iter, sym)
549 {
550 fixup_symbol_section (sym, objfile);
551
552 /* The RS6000 code from which this was taken skipped
553 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
554 But I'm leaving out that test, on the theory that
555 they can't possibly pass the tests below. */
556 if ((SYMBOL_CLASS (sym) == LOC_LABEL
557 || SYMBOL_CLASS (sym) == LOC_STATIC
558 || SYMBOL_CLASS (sym) == LOC_INDIRECT)
559 && SYMBOL_SECTION (sym) >= 0)
560 {
561 SYMBOL_VALUE_ADDRESS (sym) +=
562 ANOFFSET (delta, SYMBOL_SECTION (sym));
563 }
564 #ifdef MIPS_EFI_SYMBOL_NAME
565 /* Relocate Extra Function Info for ecoff. */
566
567 else if (SYMBOL_CLASS (sym) == LOC_CONST
568 && SYMBOL_DOMAIN (sym) == LABEL_DOMAIN
569 && strcmp (DEPRECATED_SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
570 ecoff_relocate_efi (sym, ANOFFSET (delta,
571 s->block_line_section));
572 #endif
573 }
574 }
575 }
576 }
577
578 {
579 struct partial_symtab *p;
580
581 ALL_OBJFILE_PSYMTABS (objfile, p)
582 {
583 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
584 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
585 }
586 }
587
588 {
589 struct partial_symbol **psym;
590
591 for (psym = objfile->global_psymbols.list;
592 psym < objfile->global_psymbols.next;
593 psym++)
594 {
595 fixup_psymbol_section (*psym, objfile);
596 if (SYMBOL_SECTION (*psym) >= 0)
597 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
598 SYMBOL_SECTION (*psym));
599 }
600 for (psym = objfile->static_psymbols.list;
601 psym < objfile->static_psymbols.next;
602 psym++)
603 {
604 fixup_psymbol_section (*psym, objfile);
605 if (SYMBOL_SECTION (*psym) >= 0)
606 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
607 SYMBOL_SECTION (*psym));
608 }
609 }
610
611 {
612 struct minimal_symbol *msym;
613 ALL_OBJFILE_MSYMBOLS (objfile, msym)
614 if (SYMBOL_SECTION (msym) >= 0)
615 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
616 }
617 /* Relocating different sections by different amounts may cause the symbols
618 to be out of order. */
619 msymbols_sort (objfile);
620
621 {
622 int i;
623 for (i = 0; i < objfile->num_sections; ++i)
624 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
625 }
626
627 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
628 {
629 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
630 only as a fallback. */
631 struct obj_section *s;
632 s = find_pc_section (objfile->ei.entry_point);
633 if (s)
634 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
635 else
636 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
637 }
638
639 {
640 struct obj_section *s;
641 bfd *abfd;
642
643 abfd = objfile->obfd;
644
645 ALL_OBJFILE_OSECTIONS (objfile, s)
646 {
647 int idx = s->the_bfd_section->index;
648
649 s->addr += ANOFFSET (delta, idx);
650 s->endaddr += ANOFFSET (delta, idx);
651 }
652 }
653
654 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
655 {
656 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
657 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
658 }
659
660 if (objfile->ei.deprecated_entry_file_lowpc != INVALID_ENTRY_LOWPC)
661 {
662 objfile->ei.deprecated_entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
663 objfile->ei.deprecated_entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
664 }
665
666 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
667 {
668 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
669 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
670 }
671
672 /* Relocate breakpoints as necessary, after things are relocated. */
673 breakpoint_re_set ();
674 }
675 \f
676 /* Many places in gdb want to test just to see if we have any partial
677 symbols available. This function returns zero if none are currently
678 available, nonzero otherwise. */
679
680 int
681 have_partial_symbols (void)
682 {
683 struct objfile *ofp;
684
685 ALL_OBJFILES (ofp)
686 {
687 if (ofp->psymtabs != NULL)
688 {
689 return 1;
690 }
691 }
692 return 0;
693 }
694
695 /* Many places in gdb want to test just to see if we have any full
696 symbols available. This function returns zero if none are currently
697 available, nonzero otherwise. */
698
699 int
700 have_full_symbols (void)
701 {
702 struct objfile *ofp;
703
704 ALL_OBJFILES (ofp)
705 {
706 if (ofp->symtabs != NULL)
707 {
708 return 1;
709 }
710 }
711 return 0;
712 }
713
714
715 /* This operations deletes all objfile entries that represent solibs that
716 weren't explicitly loaded by the user, via e.g., the add-symbol-file
717 command.
718 */
719 void
720 objfile_purge_solibs (void)
721 {
722 struct objfile *objf;
723 struct objfile *temp;
724
725 ALL_OBJFILES_SAFE (objf, temp)
726 {
727 /* We assume that the solib package has been purged already, or will
728 be soon.
729 */
730 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
731 free_objfile (objf);
732 }
733 }
734
735
736 /* Many places in gdb want to test just to see if we have any minimal
737 symbols available. This function returns zero if none are currently
738 available, nonzero otherwise. */
739
740 int
741 have_minimal_symbols (void)
742 {
743 struct objfile *ofp;
744
745 ALL_OBJFILES (ofp)
746 {
747 if (ofp->minimal_symbol_count > 0)
748 {
749 return 1;
750 }
751 }
752 return 0;
753 }
754
755 /* Returns a section whose range includes PC and SECTION, or NULL if
756 none found. Note the distinction between the return type, struct
757 obj_section (which is defined in gdb), and the input type "struct
758 bfd_section" (which is a bfd-defined data type). The obj_section
759 contains a pointer to the "struct bfd_section". */
760
761 struct obj_section *
762 find_pc_sect_section (CORE_ADDR pc, struct bfd_section *section)
763 {
764 struct obj_section *s;
765 struct objfile *objfile;
766
767 ALL_OBJSECTIONS (objfile, s)
768 if ((section == 0 || section == s->the_bfd_section) &&
769 s->addr <= pc && pc < s->endaddr)
770 return (s);
771
772 return (NULL);
773 }
774
775 /* Returns a section whose range includes PC or NULL if none found.
776 Backward compatibility, no section. */
777
778 struct obj_section *
779 find_pc_section (CORE_ADDR pc)
780 {
781 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
782 }
783
784
785 /* In SVR4, we recognize a trampoline by it's section name.
786 That is, if the pc is in a section named ".plt" then we are in
787 a trampoline. */
788
789 int
790 in_plt_section (CORE_ADDR pc, char *name)
791 {
792 struct obj_section *s;
793 int retval = 0;
794
795 s = find_pc_section (pc);
796
797 retval = (s != NULL
798 && s->the_bfd_section->name != NULL
799 && strcmp (s->the_bfd_section->name, ".plt") == 0);
800 return (retval);
801 }
802
803 /* Return nonzero if NAME is in the import list of OBJFILE. Else
804 return zero. */
805
806 int
807 is_in_import_list (char *name, struct objfile *objfile)
808 {
809 int i;
810
811 if (!objfile || !name || !*name)
812 return 0;
813
814 for (i = 0; i < objfile->import_list_size; i++)
815 if (objfile->import_list[i] && DEPRECATED_STREQ (name, objfile->import_list[i]))
816 return 1;
817 return 0;
818 }
819 \f
820
821 /* Keep a registry of per-objfile data-pointers required by other GDB
822 modules. */
823
824 struct objfile_data
825 {
826 unsigned index;
827 };
828
829 struct objfile_data_registration
830 {
831 struct objfile_data *data;
832 struct objfile_data_registration *next;
833 };
834
835 struct objfile_data_registry
836 {
837 struct objfile_data_registration *registrations;
838 unsigned num_registrations;
839 };
840
841 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
842
843 const struct objfile_data *
844 register_objfile_data (void)
845 {
846 struct objfile_data_registration **curr;
847
848 /* Append new registration. */
849 for (curr = &objfile_data_registry.registrations;
850 *curr != NULL; curr = &(*curr)->next);
851
852 *curr = XMALLOC (struct objfile_data_registration);
853 (*curr)->next = NULL;
854 (*curr)->data = XMALLOC (struct objfile_data);
855 (*curr)->data->index = objfile_data_registry.num_registrations++;
856
857 return (*curr)->data;
858 }
859
860 static void
861 objfile_alloc_data (struct objfile *objfile)
862 {
863 gdb_assert (objfile->data == NULL);
864 objfile->num_data = objfile_data_registry.num_registrations;
865 objfile->data = XCALLOC (objfile->num_data, void *);
866 }
867
868 static void
869 objfile_free_data (struct objfile *objfile)
870 {
871 gdb_assert (objfile->data != NULL);
872 xfree (objfile->data);
873 objfile->data = NULL;
874 }
875
876 void
877 clear_objfile_data (struct objfile *objfile)
878 {
879 gdb_assert (objfile->data != NULL);
880 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
881 }
882
883 void
884 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
885 void *value)
886 {
887 gdb_assert (data->index < objfile->num_data);
888 objfile->data[data->index] = value;
889 }
890
891 void *
892 objfile_data (struct objfile *objfile, const struct objfile_data *data)
893 {
894 gdb_assert (data->index < objfile->num_data);
895 return objfile->data[data->index];
896 }
This page took 0.047135 seconds and 4 git commands to generate.