AArch64: gdbserver: read pauth registers
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observable.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55 #include "common/pathstuff.h"
56
57 #include <vector>
58
59 /* Keep a registry of per-objfile data-pointers required by other GDB
60 modules. */
61
62 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
63
64 /* Externally visible variables that are owned by this module.
65 See declarations in objfile.h for more info. */
66
67 struct objfile_pspace_info
68 {
69 struct obj_section **sections;
70 int num_sections;
71
72 /* Nonzero if object files have been added since the section map
73 was last updated. */
74 int new_objfiles_available;
75
76 /* Nonzero if the section map MUST be updated before use. */
77 int section_map_dirty;
78
79 /* Nonzero if section map updates should be inhibited if possible. */
80 int inhibit_updates;
81 };
82
83 /* Per-program-space data key. */
84 static const struct program_space_data *objfiles_pspace_data;
85
86 static void
87 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
88 {
89 struct objfile_pspace_info *info = (struct objfile_pspace_info *) arg;
90
91 xfree (info->sections);
92 xfree (info);
93 }
94
95 /* Get the current svr4 data. If none is found yet, add it now. This
96 function always returns a valid object. */
97
98 static struct objfile_pspace_info *
99 get_objfile_pspace_data (struct program_space *pspace)
100 {
101 struct objfile_pspace_info *info;
102
103 info = ((struct objfile_pspace_info *)
104 program_space_data (pspace, objfiles_pspace_data));
105 if (info == NULL)
106 {
107 info = XCNEW (struct objfile_pspace_info);
108 set_program_space_data (pspace, objfiles_pspace_data, info);
109 }
110
111 return info;
112 }
113
114 \f
115
116 /* Per-BFD data key. */
117
118 static const struct bfd_data *objfiles_bfd_data;
119
120 objfile_per_bfd_storage::~objfile_per_bfd_storage ()
121 {
122 }
123
124 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
125 NULL, and it already has a per-BFD storage object, use that.
126 Otherwise, allocate a new per-BFD storage object. Note that it is
127 not safe to call this multiple times for a given OBJFILE -- it can
128 only be called when allocating or re-initializing OBJFILE. */
129
130 static struct objfile_per_bfd_storage *
131 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
132 {
133 struct objfile_per_bfd_storage *storage = NULL;
134
135 if (abfd != NULL)
136 storage = ((struct objfile_per_bfd_storage *)
137 bfd_data (abfd, objfiles_bfd_data));
138
139 if (storage == NULL)
140 {
141 storage = new objfile_per_bfd_storage;
142 /* If the object requires gdb to do relocations, we simply fall
143 back to not sharing data across users. These cases are rare
144 enough that this seems reasonable. */
145 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
146 set_bfd_data (abfd, objfiles_bfd_data, storage);
147
148 /* Look up the gdbarch associated with the BFD. */
149 if (abfd != NULL)
150 storage->gdbarch = gdbarch_from_bfd (abfd);
151 }
152
153 return storage;
154 }
155
156 /* A deleter for objfile_per_bfd_storage that can be passed as a
157 cleanup function to the BFD registry. */
158
159 static void
160 objfile_bfd_data_free (struct bfd *unused, void *d)
161 {
162 delete (struct objfile_per_bfd_storage *) d;
163 }
164
165 /* See objfiles.h. */
166
167 void
168 set_objfile_per_bfd (struct objfile *objfile)
169 {
170 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
171 }
172
173 /* Set the objfile's per-BFD notion of the "main" name and
174 language. */
175
176 void
177 set_objfile_main_name (struct objfile *objfile,
178 const char *name, enum language lang)
179 {
180 if (objfile->per_bfd->name_of_main == NULL
181 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
182 objfile->per_bfd->name_of_main
183 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack, name,
184 strlen (name));
185 objfile->per_bfd->language_of_main = lang;
186 }
187
188 /* Helper structure to map blocks to static link properties in hash tables. */
189
190 struct static_link_htab_entry
191 {
192 const struct block *block;
193 const struct dynamic_prop *static_link;
194 };
195
196 /* Return a hash code for struct static_link_htab_entry *P. */
197
198 static hashval_t
199 static_link_htab_entry_hash (const void *p)
200 {
201 const struct static_link_htab_entry *e
202 = (const struct static_link_htab_entry *) p;
203
204 return htab_hash_pointer (e->block);
205 }
206
207 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
208 mappings for the same block. */
209
210 static int
211 static_link_htab_entry_eq (const void *p1, const void *p2)
212 {
213 const struct static_link_htab_entry *e1
214 = (const struct static_link_htab_entry *) p1;
215 const struct static_link_htab_entry *e2
216 = (const struct static_link_htab_entry *) p2;
217
218 return e1->block == e2->block;
219 }
220
221 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
222 Must not be called more than once for each BLOCK. */
223
224 void
225 objfile_register_static_link (struct objfile *objfile,
226 const struct block *block,
227 const struct dynamic_prop *static_link)
228 {
229 void **slot;
230 struct static_link_htab_entry lookup_entry;
231 struct static_link_htab_entry *entry;
232
233 if (objfile->static_links == NULL)
234 objfile->static_links = htab_create_alloc
235 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
236 xcalloc, xfree);
237
238 /* Create a slot for the mapping, make sure it's the first mapping for this
239 block and then create the mapping itself. */
240 lookup_entry.block = block;
241 slot = htab_find_slot (objfile->static_links, &lookup_entry, INSERT);
242 gdb_assert (*slot == NULL);
243
244 entry = XOBNEW (&objfile->objfile_obstack, static_link_htab_entry);
245 entry->block = block;
246 entry->static_link = static_link;
247 *slot = (void *) entry;
248 }
249
250 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
251 none was found. */
252
253 const struct dynamic_prop *
254 objfile_lookup_static_link (struct objfile *objfile,
255 const struct block *block)
256 {
257 struct static_link_htab_entry *entry;
258 struct static_link_htab_entry lookup_entry;
259
260 if (objfile->static_links == NULL)
261 return NULL;
262 lookup_entry.block = block;
263 entry
264 = (struct static_link_htab_entry *) htab_find (objfile->static_links,
265 &lookup_entry);
266 if (entry == NULL)
267 return NULL;
268
269 gdb_assert (entry->block == block);
270 return entry->static_link;
271 }
272
273 \f
274
275 /* Called via bfd_map_over_sections to build up the section table that
276 the objfile references. The objfile contains pointers to the start
277 of the table (objfile->sections) and to the first location after
278 the end of the table (objfile->sections_end). */
279
280 static void
281 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
282 struct objfile *objfile, int force)
283 {
284 struct obj_section *section;
285
286 if (!force)
287 {
288 flagword aflag;
289
290 aflag = bfd_get_section_flags (abfd, asect);
291 if (!(aflag & SEC_ALLOC))
292 return;
293 }
294
295 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
296 section->objfile = objfile;
297 section->the_bfd_section = asect;
298 section->ovly_mapped = 0;
299 }
300
301 static void
302 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
303 void *objfilep)
304 {
305 add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0);
306 }
307
308 /* Builds a section table for OBJFILE.
309
310 Note that the OFFSET and OVLY_MAPPED in each table entry are
311 initialized to zero. */
312
313 void
314 build_objfile_section_table (struct objfile *objfile)
315 {
316 int count = gdb_bfd_count_sections (objfile->obfd);
317
318 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
319 count,
320 struct obj_section);
321 objfile->sections_end = (objfile->sections + count);
322 bfd_map_over_sections (objfile->obfd,
323 add_to_objfile_sections, (void *) objfile);
324
325 /* See gdb_bfd_section_index. */
326 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
327 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
328 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
329 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
330 }
331
332 /* Given a pointer to an initialized bfd (ABFD) and some flag bits,
333 initialize the new objfile as best we can and link it into the list
334 of all known objfiles.
335
336 NAME should contain original non-canonicalized filename or other
337 identifier as entered by user. If there is no better source use
338 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
339 NAME content is copied into returned objfile.
340
341 The FLAGS word contains various bits (OBJF_*) that can be taken as
342 requests for specific operations. Other bits like OBJF_SHARED are
343 simply copied through to the new objfile flags member. */
344
345 objfile::objfile (bfd *abfd, const char *name, objfile_flags flags_)
346 : flags (flags_),
347 pspace (current_program_space),
348 partial_symtabs (new psymtab_storage ()),
349 obfd (abfd)
350 {
351 const char *expanded_name;
352
353 /* We could use obstack_specify_allocation here instead, but
354 gdb_obstack.h specifies the alloc/dealloc functions. */
355 obstack_init (&objfile_obstack);
356
357 objfile_alloc_data (this);
358
359 gdb::unique_xmalloc_ptr<char> name_holder;
360 if (name == NULL)
361 {
362 gdb_assert (abfd == NULL);
363 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
364 expanded_name = "<<anonymous objfile>>";
365 }
366 else if ((flags & OBJF_NOT_FILENAME) != 0
367 || is_target_filename (name))
368 expanded_name = name;
369 else
370 {
371 name_holder = gdb_abspath (name);
372 expanded_name = name_holder.get ();
373 }
374 original_name
375 = (char *) obstack_copy0 (&objfile_obstack,
376 expanded_name,
377 strlen (expanded_name));
378
379 /* Update the per-objfile information that comes from the bfd, ensuring
380 that any data that is reference is saved in the per-objfile data
381 region. */
382
383 gdb_bfd_ref (abfd);
384 if (abfd != NULL)
385 {
386 mtime = bfd_get_mtime (abfd);
387
388 /* Build section table. */
389 build_objfile_section_table (this);
390 }
391
392 per_bfd = get_objfile_bfd_data (this, abfd);
393
394 /* Add this file onto the tail of the linked list of other such files. */
395
396 if (object_files == NULL)
397 object_files = this;
398 else
399 {
400 struct objfile *last_one;
401
402 for (last_one = object_files;
403 last_one->next;
404 last_one = last_one->next);
405 last_one->next = this;
406 }
407
408 /* Rebuild section map next time we need it. */
409 get_objfile_pspace_data (pspace)->new_objfiles_available = 1;
410 }
411
412 /* Retrieve the gdbarch associated with OBJFILE. */
413
414 struct gdbarch *
415 get_objfile_arch (const struct objfile *objfile)
416 {
417 return objfile->per_bfd->gdbarch;
418 }
419
420 /* If there is a valid and known entry point, function fills *ENTRY_P with it
421 and returns non-zero; otherwise it returns zero. */
422
423 int
424 entry_point_address_query (CORE_ADDR *entry_p)
425 {
426 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
427 return 0;
428
429 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
430 + ANOFFSET (symfile_objfile->section_offsets,
431 symfile_objfile->per_bfd->ei.the_bfd_section_index));
432
433 return 1;
434 }
435
436 /* Get current entry point address. Call error if it is not known. */
437
438 CORE_ADDR
439 entry_point_address (void)
440 {
441 CORE_ADDR retval;
442
443 if (!entry_point_address_query (&retval))
444 error (_("Entry point address is not known."));
445
446 return retval;
447 }
448
449 /* Iterator on PARENT and every separate debug objfile of PARENT.
450 The usage pattern is:
451 for (objfile = parent;
452 objfile;
453 objfile = objfile_separate_debug_iterate (parent, objfile))
454 ...
455 */
456
457 struct objfile *
458 objfile_separate_debug_iterate (const struct objfile *parent,
459 const struct objfile *objfile)
460 {
461 struct objfile *res;
462
463 /* If any, return the first child. */
464 res = objfile->separate_debug_objfile;
465 if (res)
466 return res;
467
468 /* Common case where there is no separate debug objfile. */
469 if (objfile == parent)
470 return NULL;
471
472 /* Return the brother if any. Note that we don't iterate on brothers of
473 the parents. */
474 res = objfile->separate_debug_objfile_link;
475 if (res)
476 return res;
477
478 for (res = objfile->separate_debug_objfile_backlink;
479 res != parent;
480 res = res->separate_debug_objfile_backlink)
481 {
482 gdb_assert (res != NULL);
483 if (res->separate_debug_objfile_link)
484 return res->separate_debug_objfile_link;
485 }
486 return NULL;
487 }
488
489 /* Put one object file before a specified on in the global list.
490 This can be used to make sure an object file is destroyed before
491 another when using objfiles_safe to free all objfiles. */
492 void
493 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
494 {
495 struct objfile **objp;
496
497 unlink_objfile (objfile);
498
499 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
500 {
501 if (*objp == before_this)
502 {
503 objfile->next = *objp;
504 *objp = objfile;
505 return;
506 }
507 }
508
509 internal_error (__FILE__, __LINE__,
510 _("put_objfile_before: before objfile not in list"));
511 }
512
513 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
514 list.
515
516 It is not a bug, or error, to call this function if OBJFILE is not known
517 to be in the current list. This is done in the case of mapped objfiles,
518 for example, just to ensure that the mapped objfile doesn't appear twice
519 in the list. Since the list is threaded, linking in a mapped objfile
520 twice would create a circular list.
521
522 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
523 unlinking it, just to ensure that we have completely severed any linkages
524 between the OBJFILE and the list. */
525
526 void
527 unlink_objfile (struct objfile *objfile)
528 {
529 struct objfile **objpp;
530
531 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
532 {
533 if (*objpp == objfile)
534 {
535 *objpp = (*objpp)->next;
536 objfile->next = NULL;
537 return;
538 }
539 }
540
541 internal_error (__FILE__, __LINE__,
542 _("unlink_objfile: objfile already unlinked"));
543 }
544
545 /* Add OBJFILE as a separate debug objfile of PARENT. */
546
547 void
548 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
549 {
550 gdb_assert (objfile && parent);
551
552 /* Must not be already in a list. */
553 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
554 gdb_assert (objfile->separate_debug_objfile_link == NULL);
555 gdb_assert (objfile->separate_debug_objfile == NULL);
556 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
557 gdb_assert (parent->separate_debug_objfile_link == NULL);
558
559 objfile->separate_debug_objfile_backlink = parent;
560 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
561 parent->separate_debug_objfile = objfile;
562
563 /* Put the separate debug object before the normal one, this is so that
564 usage of objfiles_safe will stay safe. */
565 put_objfile_before (objfile, parent);
566 }
567
568 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
569 itself. */
570
571 void
572 free_objfile_separate_debug (struct objfile *objfile)
573 {
574 struct objfile *child;
575
576 for (child = objfile->separate_debug_objfile; child;)
577 {
578 struct objfile *next_child = child->separate_debug_objfile_link;
579 delete child;
580 child = next_child;
581 }
582 }
583
584 /* Destroy an objfile and all the symtabs and psymtabs under it. */
585
586 objfile::~objfile ()
587 {
588 /* First notify observers that this objfile is about to be freed. */
589 gdb::observers::free_objfile.notify (this);
590
591 /* Free all separate debug objfiles. */
592 free_objfile_separate_debug (this);
593
594 if (separate_debug_objfile_backlink)
595 {
596 /* We freed the separate debug file, make sure the base objfile
597 doesn't reference it. */
598 struct objfile *child;
599
600 child = separate_debug_objfile_backlink->separate_debug_objfile;
601
602 if (child == this)
603 {
604 /* THIS is the first child. */
605 separate_debug_objfile_backlink->separate_debug_objfile =
606 separate_debug_objfile_link;
607 }
608 else
609 {
610 /* Find THIS in the list. */
611 while (1)
612 {
613 if (child->separate_debug_objfile_link == this)
614 {
615 child->separate_debug_objfile_link =
616 separate_debug_objfile_link;
617 break;
618 }
619 child = child->separate_debug_objfile_link;
620 gdb_assert (child);
621 }
622 }
623 }
624
625 /* Remove any references to this objfile in the global value
626 lists. */
627 preserve_values (this);
628
629 /* It still may reference data modules have associated with the objfile and
630 the symbol file data. */
631 forget_cached_source_info_for_objfile (this);
632
633 breakpoint_free_objfile (this);
634 btrace_free_objfile (this);
635
636 /* First do any symbol file specific actions required when we are
637 finished with a particular symbol file. Note that if the objfile
638 is using reusable symbol information (via mmalloc) then each of
639 these routines is responsible for doing the correct thing, either
640 freeing things which are valid only during this particular gdb
641 execution, or leaving them to be reused during the next one. */
642
643 if (sf != NULL)
644 (*sf->sym_finish) (this);
645
646 /* Discard any data modules have associated with the objfile. The function
647 still may reference obfd. */
648 objfile_free_data (this);
649
650 if (obfd)
651 gdb_bfd_unref (obfd);
652 else
653 delete per_bfd;
654
655 /* Remove it from the chain of all objfiles. */
656
657 unlink_objfile (this);
658
659 if (this == symfile_objfile)
660 symfile_objfile = NULL;
661
662 /* Before the symbol table code was redone to make it easier to
663 selectively load and remove information particular to a specific
664 linkage unit, gdb used to do these things whenever the monolithic
665 symbol table was blown away. How much still needs to be done
666 is unknown, but we play it safe for now and keep each action until
667 it is shown to be no longer needed. */
668
669 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
670 for example), so we need to call this here. */
671 clear_pc_function_cache ();
672
673 /* Clear globals which might have pointed into a removed objfile.
674 FIXME: It's not clear which of these are supposed to persist
675 between expressions and which ought to be reset each time. */
676 expression_context_block = NULL;
677 innermost_block.reset ();
678
679 /* Check to see if the current_source_symtab belongs to this objfile,
680 and if so, call clear_current_source_symtab_and_line. */
681
682 {
683 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
684
685 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == this)
686 clear_current_source_symtab_and_line ();
687 }
688
689 /* Free the obstacks for non-reusable objfiles. */
690 obstack_free (&objfile_obstack, 0);
691
692 /* Rebuild section map next time we need it. */
693 get_objfile_pspace_data (pspace)->section_map_dirty = 1;
694
695 /* Free the map for static links. There's no need to free static link
696 themselves since they were allocated on the objstack. */
697 if (static_links != NULL)
698 htab_delete (static_links);
699 }
700
701 /* Free all the object files at once and clean up their users. */
702
703 void
704 free_all_objfiles (void)
705 {
706 struct so_list *so;
707
708 /* Any objfile referencewould become stale. */
709 for (so = master_so_list (); so; so = so->next)
710 gdb_assert (so->objfile == NULL);
711
712 for (objfile *objfile : current_program_space->objfiles_safe ())
713 delete objfile;
714 clear_symtab_users (0);
715 }
716 \f
717 /* A helper function for objfile_relocate1 that relocates a single
718 symbol. */
719
720 static void
721 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
722 struct section_offsets *delta)
723 {
724 fixup_symbol_section (sym, objfile);
725
726 /* The RS6000 code from which this was taken skipped
727 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
728 But I'm leaving out that test, on the theory that
729 they can't possibly pass the tests below. */
730 if ((SYMBOL_CLASS (sym) == LOC_LABEL
731 || SYMBOL_CLASS (sym) == LOC_STATIC)
732 && SYMBOL_SECTION (sym) >= 0)
733 {
734 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
735 }
736 }
737
738 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
739 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
740 Return non-zero iff any change happened. */
741
742 static int
743 objfile_relocate1 (struct objfile *objfile,
744 const struct section_offsets *new_offsets)
745 {
746 struct section_offsets *delta =
747 ((struct section_offsets *)
748 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
749
750 int something_changed = 0;
751
752 for (int i = 0; i < objfile->num_sections; ++i)
753 {
754 delta->offsets[i] =
755 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
756 if (ANOFFSET (delta, i) != 0)
757 something_changed = 1;
758 }
759 if (!something_changed)
760 return 0;
761
762 /* OK, get all the symtabs. */
763 {
764 for (compunit_symtab *cust : objfile->compunits ())
765 {
766 for (symtab *s : compunit_filetabs (cust))
767 {
768 struct linetable *l;
769
770 /* First the line table. */
771 l = SYMTAB_LINETABLE (s);
772 if (l)
773 {
774 for (int i = 0; i < l->nitems; ++i)
775 l->item[i].pc += ANOFFSET (delta,
776 COMPUNIT_BLOCK_LINE_SECTION
777 (cust));
778 }
779 }
780 }
781
782 for (compunit_symtab *cust : objfile->compunits ())
783 {
784 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
785 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
786
787 if (BLOCKVECTOR_MAP (bv))
788 addrmap_relocate (BLOCKVECTOR_MAP (bv),
789 ANOFFSET (delta, block_line_section));
790
791 for (int i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
792 {
793 struct block *b;
794 struct symbol *sym;
795 struct mdict_iterator miter;
796
797 b = BLOCKVECTOR_BLOCK (bv, i);
798 BLOCK_START (b) += ANOFFSET (delta, block_line_section);
799 BLOCK_END (b) += ANOFFSET (delta, block_line_section);
800
801 if (BLOCK_RANGES (b) != nullptr)
802 for (int j = 0; j < BLOCK_NRANGES (b); j++)
803 {
804 BLOCK_RANGE_START (b, j)
805 += ANOFFSET (delta, block_line_section);
806 BLOCK_RANGE_END (b, j) += ANOFFSET (delta,
807 block_line_section);
808 }
809
810 /* We only want to iterate over the local symbols, not any
811 symbols in included symtabs. */
812 ALL_DICT_SYMBOLS (BLOCK_MULTIDICT (b), miter, sym)
813 {
814 relocate_one_symbol (sym, objfile, delta);
815 }
816 }
817 }
818 }
819
820 /* This stores relocated addresses and so must be cleared. This
821 will cause it to be recreated on demand. */
822 objfile->psymbol_map.clear ();
823
824 /* Relocate isolated symbols. */
825 {
826 struct symbol *iter;
827
828 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
829 relocate_one_symbol (iter, objfile, delta);
830 }
831
832 {
833 int i;
834
835 for (i = 0; i < objfile->num_sections; ++i)
836 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
837 }
838
839 /* Rebuild section map next time we need it. */
840 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
841
842 /* Update the table in exec_ops, used to read memory. */
843 struct obj_section *s;
844 ALL_OBJFILE_OSECTIONS (objfile, s)
845 {
846 int idx = s - objfile->sections;
847
848 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
849 obj_section_addr (s));
850 }
851
852 /* Data changed. */
853 return 1;
854 }
855
856 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
857 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
858
859 The number and ordering of sections does differ between the two objfiles.
860 Only their names match. Also the file offsets will differ (objfile being
861 possibly prelinked but separate_debug_objfile is probably not prelinked) but
862 the in-memory absolute address as specified by NEW_OFFSETS must match both
863 files. */
864
865 void
866 objfile_relocate (struct objfile *objfile,
867 const struct section_offsets *new_offsets)
868 {
869 struct objfile *debug_objfile;
870 int changed = 0;
871
872 changed |= objfile_relocate1 (objfile, new_offsets);
873
874 for (debug_objfile = objfile->separate_debug_objfile;
875 debug_objfile;
876 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
877 {
878 section_addr_info objfile_addrs
879 = build_section_addr_info_from_objfile (objfile);
880
881 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
882 relative ones must be already created according to debug_objfile. */
883
884 addr_info_make_relative (&objfile_addrs, debug_objfile->obfd);
885
886 gdb_assert (debug_objfile->num_sections
887 == gdb_bfd_count_sections (debug_objfile->obfd));
888 std::vector<struct section_offsets>
889 new_debug_offsets (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
890 relative_addr_info_to_section_offsets (new_debug_offsets.data (),
891 debug_objfile->num_sections,
892 objfile_addrs);
893
894 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets.data ());
895 }
896
897 /* Relocate breakpoints as necessary, after things are relocated. */
898 if (changed)
899 breakpoint_re_set ();
900 }
901
902 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
903 not touched here.
904 Return non-zero iff any change happened. */
905
906 static int
907 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
908 {
909 struct section_offsets *new_offsets =
910 ((struct section_offsets *)
911 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
912 int i;
913
914 for (i = 0; i < objfile->num_sections; ++i)
915 new_offsets->offsets[i] = slide;
916
917 return objfile_relocate1 (objfile, new_offsets);
918 }
919
920 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
921 SEPARATE_DEBUG_OBJFILEs. */
922
923 void
924 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
925 {
926 struct objfile *debug_objfile;
927 int changed = 0;
928
929 changed |= objfile_rebase1 (objfile, slide);
930
931 for (debug_objfile = objfile->separate_debug_objfile;
932 debug_objfile;
933 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
934 changed |= objfile_rebase1 (debug_objfile, slide);
935
936 /* Relocate breakpoints as necessary, after things are relocated. */
937 if (changed)
938 breakpoint_re_set ();
939 }
940 \f
941 /* Return non-zero if OBJFILE has partial symbols. */
942
943 int
944 objfile_has_partial_symbols (struct objfile *objfile)
945 {
946 if (!objfile->sf)
947 return 0;
948
949 /* If we have not read psymbols, but we have a function capable of reading
950 them, then that is an indication that they are in fact available. Without
951 this function the symbols may have been already read in but they also may
952 not be present in this objfile. */
953 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
954 && objfile->sf->sym_read_psymbols != NULL)
955 return 1;
956
957 return objfile->sf->qf->has_symbols (objfile);
958 }
959
960 /* Return non-zero if OBJFILE has full symbols. */
961
962 int
963 objfile_has_full_symbols (struct objfile *objfile)
964 {
965 return objfile->compunit_symtabs != NULL;
966 }
967
968 /* Return non-zero if OBJFILE has full or partial symbols, either directly
969 or through a separate debug file. */
970
971 int
972 objfile_has_symbols (struct objfile *objfile)
973 {
974 struct objfile *o;
975
976 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
977 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
978 return 1;
979 return 0;
980 }
981
982
983 /* Many places in gdb want to test just to see if we have any partial
984 symbols available. This function returns zero if none are currently
985 available, nonzero otherwise. */
986
987 int
988 have_partial_symbols (void)
989 {
990 for (objfile *ofp : current_program_space->objfiles ())
991 {
992 if (objfile_has_partial_symbols (ofp))
993 return 1;
994 }
995 return 0;
996 }
997
998 /* Many places in gdb want to test just to see if we have any full
999 symbols available. This function returns zero if none are currently
1000 available, nonzero otherwise. */
1001
1002 int
1003 have_full_symbols (void)
1004 {
1005 for (objfile *ofp : current_program_space->objfiles ())
1006 {
1007 if (objfile_has_full_symbols (ofp))
1008 return 1;
1009 }
1010 return 0;
1011 }
1012
1013
1014 /* This operations deletes all objfile entries that represent solibs that
1015 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1016 command. */
1017
1018 void
1019 objfile_purge_solibs (void)
1020 {
1021 for (objfile *objf : current_program_space->objfiles_safe ())
1022 {
1023 /* We assume that the solib package has been purged already, or will
1024 be soon. */
1025
1026 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1027 delete objf;
1028 }
1029 }
1030
1031
1032 /* Many places in gdb want to test just to see if we have any minimal
1033 symbols available. This function returns zero if none are currently
1034 available, nonzero otherwise. */
1035
1036 int
1037 have_minimal_symbols (void)
1038 {
1039 for (objfile *ofp : current_program_space->objfiles ())
1040 {
1041 if (ofp->per_bfd->minimal_symbol_count > 0)
1042 {
1043 return 1;
1044 }
1045 }
1046 return 0;
1047 }
1048
1049 /* Qsort comparison function. */
1050
1051 static int
1052 qsort_cmp (const void *a, const void *b)
1053 {
1054 const struct obj_section *sect1 = *(const struct obj_section **) a;
1055 const struct obj_section *sect2 = *(const struct obj_section **) b;
1056 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1057 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1058
1059 if (sect1_addr < sect2_addr)
1060 return -1;
1061 else if (sect1_addr > sect2_addr)
1062 return 1;
1063 else
1064 {
1065 /* Sections are at the same address. This could happen if
1066 A) we have an objfile and a separate debuginfo.
1067 B) we are confused, and have added sections without proper relocation,
1068 or something like that. */
1069
1070 const struct objfile *const objfile1 = sect1->objfile;
1071 const struct objfile *const objfile2 = sect2->objfile;
1072
1073 if (objfile1->separate_debug_objfile == objfile2
1074 || objfile2->separate_debug_objfile == objfile1)
1075 {
1076 /* Case A. The ordering doesn't matter: separate debuginfo files
1077 will be filtered out later. */
1078
1079 return 0;
1080 }
1081
1082 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1083 triage. This section could be slow (since we iterate over all
1084 objfiles in each call to qsort_cmp), but this shouldn't happen
1085 very often (GDB is already in a confused state; one hopes this
1086 doesn't happen at all). If you discover that significant time is
1087 spent in the loops below, do 'set complaints 100' and examine the
1088 resulting complaints. */
1089
1090 if (objfile1 == objfile2)
1091 {
1092 /* Both sections came from the same objfile. We are really confused.
1093 Sort on sequence order of sections within the objfile. */
1094
1095 const struct obj_section *osect;
1096
1097 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1098 if (osect == sect1)
1099 return -1;
1100 else if (osect == sect2)
1101 return 1;
1102
1103 /* We should have found one of the sections before getting here. */
1104 gdb_assert_not_reached ("section not found");
1105 }
1106 else
1107 {
1108 /* Sort on sequence number of the objfile in the chain. */
1109
1110 for (objfile *objfile : current_program_space->objfiles ())
1111 if (objfile == objfile1)
1112 return -1;
1113 else if (objfile == objfile2)
1114 return 1;
1115
1116 /* We should have found one of the objfiles before getting here. */
1117 gdb_assert_not_reached ("objfile not found");
1118 }
1119 }
1120
1121 /* Unreachable. */
1122 gdb_assert_not_reached ("unexpected code path");
1123 return 0;
1124 }
1125
1126 /* Select "better" obj_section to keep. We prefer the one that came from
1127 the real object, rather than the one from separate debuginfo.
1128 Most of the time the two sections are exactly identical, but with
1129 prelinking the .rel.dyn section in the real object may have different
1130 size. */
1131
1132 static struct obj_section *
1133 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1134 {
1135 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1136 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1137 || (b->objfile->separate_debug_objfile == a->objfile));
1138 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1139 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1140
1141 if (a->objfile->separate_debug_objfile != NULL)
1142 return a;
1143 return b;
1144 }
1145
1146 /* Return 1 if SECTION should be inserted into the section map.
1147 We want to insert only non-overlay and non-TLS section. */
1148
1149 static int
1150 insert_section_p (const struct bfd *abfd,
1151 const struct bfd_section *section)
1152 {
1153 const bfd_vma lma = bfd_section_lma (abfd, section);
1154
1155 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1156 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1157 /* This is an overlay section. IN_MEMORY check is needed to avoid
1158 discarding sections from the "system supplied DSO" (aka vdso)
1159 on some Linux systems (e.g. Fedora 11). */
1160 return 0;
1161 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1162 /* This is a TLS section. */
1163 return 0;
1164
1165 return 1;
1166 }
1167
1168 /* Filter out overlapping sections where one section came from the real
1169 objfile, and the other from a separate debuginfo file.
1170 Return the size of table after redundant sections have been eliminated. */
1171
1172 static int
1173 filter_debuginfo_sections (struct obj_section **map, int map_size)
1174 {
1175 int i, j;
1176
1177 for (i = 0, j = 0; i < map_size - 1; i++)
1178 {
1179 struct obj_section *const sect1 = map[i];
1180 struct obj_section *const sect2 = map[i + 1];
1181 const struct objfile *const objfile1 = sect1->objfile;
1182 const struct objfile *const objfile2 = sect2->objfile;
1183 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1184 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1185
1186 if (sect1_addr == sect2_addr
1187 && (objfile1->separate_debug_objfile == objfile2
1188 || objfile2->separate_debug_objfile == objfile1))
1189 {
1190 map[j++] = preferred_obj_section (sect1, sect2);
1191 ++i;
1192 }
1193 else
1194 map[j++] = sect1;
1195 }
1196
1197 if (i < map_size)
1198 {
1199 gdb_assert (i == map_size - 1);
1200 map[j++] = map[i];
1201 }
1202
1203 /* The map should not have shrunk to less than half the original size. */
1204 gdb_assert (map_size / 2 <= j);
1205
1206 return j;
1207 }
1208
1209 /* Filter out overlapping sections, issuing a warning if any are found.
1210 Overlapping sections could really be overlay sections which we didn't
1211 classify as such in insert_section_p, or we could be dealing with a
1212 corrupt binary. */
1213
1214 static int
1215 filter_overlapping_sections (struct obj_section **map, int map_size)
1216 {
1217 int i, j;
1218
1219 for (i = 0, j = 0; i < map_size - 1; )
1220 {
1221 int k;
1222
1223 map[j++] = map[i];
1224 for (k = i + 1; k < map_size; k++)
1225 {
1226 struct obj_section *const sect1 = map[i];
1227 struct obj_section *const sect2 = map[k];
1228 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1229 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1230 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1231
1232 gdb_assert (sect1_addr <= sect2_addr);
1233
1234 if (sect1_endaddr <= sect2_addr)
1235 break;
1236 else
1237 {
1238 /* We have an overlap. Report it. */
1239
1240 struct objfile *const objf1 = sect1->objfile;
1241 struct objfile *const objf2 = sect2->objfile;
1242
1243 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1244 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1245
1246 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1247
1248 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1249
1250 complaint (_("unexpected overlap between:\n"
1251 " (A) section `%s' from `%s' [%s, %s)\n"
1252 " (B) section `%s' from `%s' [%s, %s).\n"
1253 "Will ignore section B"),
1254 bfd_section_name (abfd1, bfds1), objfile_name (objf1),
1255 paddress (gdbarch, sect1_addr),
1256 paddress (gdbarch, sect1_endaddr),
1257 bfd_section_name (abfd2, bfds2), objfile_name (objf2),
1258 paddress (gdbarch, sect2_addr),
1259 paddress (gdbarch, sect2_endaddr));
1260 }
1261 }
1262 i = k;
1263 }
1264
1265 if (i < map_size)
1266 {
1267 gdb_assert (i == map_size - 1);
1268 map[j++] = map[i];
1269 }
1270
1271 return j;
1272 }
1273
1274
1275 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1276 TLS, overlay and overlapping sections. */
1277
1278 static void
1279 update_section_map (struct program_space *pspace,
1280 struct obj_section ***pmap, int *pmap_size)
1281 {
1282 struct objfile_pspace_info *pspace_info;
1283 int alloc_size, map_size, i;
1284 struct obj_section *s, **map;
1285
1286 pspace_info = get_objfile_pspace_data (pspace);
1287 gdb_assert (pspace_info->section_map_dirty != 0
1288 || pspace_info->new_objfiles_available != 0);
1289
1290 map = *pmap;
1291 xfree (map);
1292
1293 alloc_size = 0;
1294 for (objfile *objfile : pspace->objfiles ())
1295 ALL_OBJFILE_OSECTIONS (objfile, s)
1296 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1297 alloc_size += 1;
1298
1299 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1300 if (alloc_size == 0)
1301 {
1302 *pmap = NULL;
1303 *pmap_size = 0;
1304 return;
1305 }
1306
1307 map = XNEWVEC (struct obj_section *, alloc_size);
1308
1309 i = 0;
1310 for (objfile *objfile : pspace->objfiles ())
1311 ALL_OBJFILE_OSECTIONS (objfile, s)
1312 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1313 map[i++] = s;
1314
1315 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1316 map_size = filter_debuginfo_sections(map, alloc_size);
1317 map_size = filter_overlapping_sections(map, map_size);
1318
1319 if (map_size < alloc_size)
1320 /* Some sections were eliminated. Trim excess space. */
1321 map = XRESIZEVEC (struct obj_section *, map, map_size);
1322 else
1323 gdb_assert (alloc_size == map_size);
1324
1325 *pmap = map;
1326 *pmap_size = map_size;
1327 }
1328
1329 /* Bsearch comparison function. */
1330
1331 static int
1332 bsearch_cmp (const void *key, const void *elt)
1333 {
1334 const CORE_ADDR pc = *(CORE_ADDR *) key;
1335 const struct obj_section *section = *(const struct obj_section **) elt;
1336
1337 if (pc < obj_section_addr (section))
1338 return -1;
1339 if (pc < obj_section_endaddr (section))
1340 return 0;
1341 return 1;
1342 }
1343
1344 /* Returns a section whose range includes PC or NULL if none found. */
1345
1346 struct obj_section *
1347 find_pc_section (CORE_ADDR pc)
1348 {
1349 struct objfile_pspace_info *pspace_info;
1350 struct obj_section *s, **sp;
1351
1352 /* Check for mapped overlay section first. */
1353 s = find_pc_mapped_section (pc);
1354 if (s)
1355 return s;
1356
1357 pspace_info = get_objfile_pspace_data (current_program_space);
1358 if (pspace_info->section_map_dirty
1359 || (pspace_info->new_objfiles_available
1360 && !pspace_info->inhibit_updates))
1361 {
1362 update_section_map (current_program_space,
1363 &pspace_info->sections,
1364 &pspace_info->num_sections);
1365
1366 /* Don't need updates to section map until objfiles are added,
1367 removed or relocated. */
1368 pspace_info->new_objfiles_available = 0;
1369 pspace_info->section_map_dirty = 0;
1370 }
1371
1372 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1373 bsearch be non-NULL. */
1374 if (pspace_info->sections == NULL)
1375 {
1376 gdb_assert (pspace_info->num_sections == 0);
1377 return NULL;
1378 }
1379
1380 sp = (struct obj_section **) bsearch (&pc,
1381 pspace_info->sections,
1382 pspace_info->num_sections,
1383 sizeof (*pspace_info->sections),
1384 bsearch_cmp);
1385 if (sp != NULL)
1386 return *sp;
1387 return NULL;
1388 }
1389
1390
1391 /* Return non-zero if PC is in a section called NAME. */
1392
1393 int
1394 pc_in_section (CORE_ADDR pc, const char *name)
1395 {
1396 struct obj_section *s;
1397 int retval = 0;
1398
1399 s = find_pc_section (pc);
1400
1401 retval = (s != NULL
1402 && s->the_bfd_section->name != NULL
1403 && strcmp (s->the_bfd_section->name, name) == 0);
1404 return (retval);
1405 }
1406 \f
1407
1408 /* Set section_map_dirty so section map will be rebuilt next time it
1409 is used. Called by reread_symbols. */
1410
1411 void
1412 objfiles_changed (void)
1413 {
1414 /* Rebuild section map next time we need it. */
1415 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1416 }
1417
1418 /* See comments in objfiles.h. */
1419
1420 scoped_restore_tmpl<int>
1421 inhibit_section_map_updates (struct program_space *pspace)
1422 {
1423 return scoped_restore_tmpl<int>
1424 (&get_objfile_pspace_data (pspace)->inhibit_updates, 1);
1425 }
1426
1427 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1428 otherwise. */
1429
1430 int
1431 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1432 {
1433 struct obj_section *osect;
1434
1435 if (objfile == NULL)
1436 return 0;
1437
1438 ALL_OBJFILE_OSECTIONS (objfile, osect)
1439 {
1440 if (section_is_overlay (osect) && !section_is_mapped (osect))
1441 continue;
1442
1443 if (obj_section_addr (osect) <= addr
1444 && addr < obj_section_endaddr (osect))
1445 return 1;
1446 }
1447 return 0;
1448 }
1449
1450 int
1451 shared_objfile_contains_address_p (struct program_space *pspace,
1452 CORE_ADDR address)
1453 {
1454 for (objfile *objfile : pspace->objfiles ())
1455 {
1456 if ((objfile->flags & OBJF_SHARED) != 0
1457 && is_addr_in_objfile (address, objfile))
1458 return 1;
1459 }
1460
1461 return 0;
1462 }
1463
1464 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1465 gdbarch method. It is equivalent to use the objfiles iterable,
1466 searching the objfiles in the order they are stored internally,
1467 ignoring CURRENT_OBJFILE.
1468
1469 On most platorms, it should be close enough to doing the best
1470 we can without some knowledge specific to the architecture. */
1471
1472 void
1473 default_iterate_over_objfiles_in_search_order
1474 (struct gdbarch *gdbarch,
1475 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1476 void *cb_data, struct objfile *current_objfile)
1477 {
1478 int stop = 0;
1479
1480 for (objfile *objfile : current_program_space->objfiles ())
1481 {
1482 stop = cb (objfile, cb_data);
1483 if (stop)
1484 return;
1485 }
1486 }
1487
1488 /* See objfiles.h. */
1489
1490 const char *
1491 objfile_name (const struct objfile *objfile)
1492 {
1493 if (objfile->obfd != NULL)
1494 return bfd_get_filename (objfile->obfd);
1495
1496 return objfile->original_name;
1497 }
1498
1499 /* See objfiles.h. */
1500
1501 const char *
1502 objfile_filename (const struct objfile *objfile)
1503 {
1504 if (objfile->obfd != NULL)
1505 return bfd_get_filename (objfile->obfd);
1506
1507 return NULL;
1508 }
1509
1510 /* See objfiles.h. */
1511
1512 const char *
1513 objfile_debug_name (const struct objfile *objfile)
1514 {
1515 return lbasename (objfile->original_name);
1516 }
1517
1518 /* See objfiles.h. */
1519
1520 const char *
1521 objfile_flavour_name (struct objfile *objfile)
1522 {
1523 if (objfile->obfd != NULL)
1524 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1525 return NULL;
1526 }
1527
1528 void
1529 _initialize_objfiles (void)
1530 {
1531 objfiles_pspace_data
1532 = register_program_space_data_with_cleanup (NULL,
1533 objfiles_pspace_data_cleanup);
1534
1535 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1536 objfile_bfd_data_free);
1537 }
This page took 0.062793 seconds and 4 git commands to generate.