gdb/gdbserver/
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* This file contains support routines for creating, manipulating, and
24 destroying objfile structures. */
25
26 #include "defs.h"
27 #include "bfd.h" /* Binary File Description */
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdb-stabs.h"
32 #include "target.h"
33 #include "bcache.h"
34 #include "mdebugread.h"
35 #include "expression.h"
36 #include "parser-defs.h"
37
38 #include "gdb_assert.h"
39 #include <sys/types.h>
40 #include "gdb_stat.h"
41 #include <fcntl.h>
42 #include "gdb_obstack.h"
43 #include "gdb_string.h"
44 #include "hashtab.h"
45
46 #include "breakpoint.h"
47 #include "block.h"
48 #include "dictionary.h"
49 #include "source.h"
50 #include "addrmap.h"
51 #include "arch-utils.h"
52 #include "exec.h"
53 #include "observer.h"
54 #include "complaints.h"
55 #include "psymtab.h"
56
57 /* Prototypes for local functions */
58
59 static void objfile_alloc_data (struct objfile *objfile);
60 static void objfile_free_data (struct objfile *objfile);
61
62 /* Externally visible variables that are owned by this module.
63 See declarations in objfile.h for more info. */
64
65 struct objfile *current_objfile; /* For symbol file being read in */
66 struct objfile *rt_common_objfile; /* For runtime common symbols */
67
68 struct objfile_pspace_info
69 {
70 int objfiles_changed_p;
71 struct obj_section **sections;
72 int num_sections;
73 };
74
75 /* Per-program-space data key. */
76 static const struct program_space_data *objfiles_pspace_data;
77
78 static void
79 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
80 {
81 struct objfile_pspace_info *info;
82
83 info = program_space_data (pspace, objfiles_pspace_data);
84 if (info != NULL)
85 {
86 xfree (info->sections);
87 xfree (info);
88 }
89 }
90
91 /* Get the current svr4 data. If none is found yet, add it now. This
92 function always returns a valid object. */
93
94 static struct objfile_pspace_info *
95 get_objfile_pspace_data (struct program_space *pspace)
96 {
97 struct objfile_pspace_info *info;
98
99 info = program_space_data (pspace, objfiles_pspace_data);
100 if (info == NULL)
101 {
102 info = XZALLOC (struct objfile_pspace_info);
103 set_program_space_data (pspace, objfiles_pspace_data, info);
104 }
105
106 return info;
107 }
108
109 /* Records whether any objfiles appeared or disappeared since we last updated
110 address to obj section map. */
111
112 /* Locate all mappable sections of a BFD file.
113 objfile_p_char is a char * to get it through
114 bfd_map_over_sections; we cast it back to its proper type. */
115
116 /* Called via bfd_map_over_sections to build up the section table that
117 the objfile references. The objfile contains pointers to the start
118 of the table (objfile->sections) and to the first location after
119 the end of the table (objfile->sections_end). */
120
121 static void
122 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
123 void *objfile_p_char)
124 {
125 struct objfile *objfile = (struct objfile *) objfile_p_char;
126 struct obj_section section;
127 flagword aflag;
128
129 aflag = bfd_get_section_flags (abfd, asect);
130
131 if (!(aflag & SEC_ALLOC))
132 return;
133
134 if (0 == bfd_section_size (abfd, asect))
135 return;
136 section.objfile = objfile;
137 section.the_bfd_section = asect;
138 section.ovly_mapped = 0;
139 obstack_grow (&objfile->objfile_obstack, (char *) &section, sizeof (section));
140 objfile->sections_end
141 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
142 }
143
144 /* Builds a section table for OBJFILE.
145 Returns 0 if OK, 1 on error (in which case bfd_error contains the
146 error).
147
148 Note that while we are building the table, which goes into the
149 psymbol obstack, we hijack the sections_end pointer to instead hold
150 a count of the number of sections. When bfd_map_over_sections
151 returns, this count is used to compute the pointer to the end of
152 the sections table, which then overwrites the count.
153
154 Also note that the OFFSET and OVLY_MAPPED in each table entry
155 are initialized to zero.
156
157 Also note that if anything else writes to the psymbol obstack while
158 we are building the table, we're pretty much hosed. */
159
160 int
161 build_objfile_section_table (struct objfile *objfile)
162 {
163 /* objfile->sections can be already set when reading a mapped symbol
164 file. I believe that we do need to rebuild the section table in
165 this case (we rebuild other things derived from the bfd), but we
166 can't free the old one (it's in the objfile_obstack). So we just
167 waste some memory. */
168
169 objfile->sections_end = 0;
170 bfd_map_over_sections (objfile->obfd,
171 add_to_objfile_sections, (void *) objfile);
172 objfile->sections = obstack_finish (&objfile->objfile_obstack);
173 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
174 return (0);
175 }
176
177 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
178 allocate a new objfile struct, fill it in as best we can, link it
179 into the list of all known objfiles, and return a pointer to the
180 new objfile struct.
181
182 The FLAGS word contains various bits (OBJF_*) that can be taken as
183 requests for specific operations. Other bits like OBJF_SHARED are
184 simply copied through to the new objfile flags member. */
185
186 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
187 by jv-lang.c, to create an artificial objfile used to hold
188 information about dynamically-loaded Java classes. Unfortunately,
189 that branch of this function doesn't get tested very frequently, so
190 it's prone to breakage. (E.g. at one time the name was set to NULL
191 in that situation, which broke a loop over all names in the dynamic
192 library loader.) If you change this function, please try to leave
193 things in a consistent state even if abfd is NULL. */
194
195 struct objfile *
196 allocate_objfile (bfd *abfd, int flags)
197 {
198 struct objfile *objfile;
199
200 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
201 objfile->psymbol_cache = bcache_xmalloc ();
202 objfile->macro_cache = bcache_xmalloc ();
203 objfile->filename_cache = bcache_xmalloc ();
204 /* We could use obstack_specify_allocation here instead, but
205 gdb_obstack.h specifies the alloc/dealloc functions. */
206 obstack_init (&objfile->objfile_obstack);
207 terminate_minimal_symbol_table (objfile);
208
209 objfile_alloc_data (objfile);
210
211 /* Update the per-objfile information that comes from the bfd, ensuring
212 that any data that is reference is saved in the per-objfile data
213 region. */
214
215 objfile->obfd = gdb_bfd_ref (abfd);
216 if (objfile->name != NULL)
217 {
218 xfree (objfile->name);
219 }
220 if (abfd != NULL)
221 {
222 /* Look up the gdbarch associated with the BFD. */
223 objfile->gdbarch = gdbarch_from_bfd (abfd);
224
225 objfile->name = xstrdup (bfd_get_filename (abfd));
226 objfile->mtime = bfd_get_mtime (abfd);
227
228 /* Build section table. */
229
230 if (build_objfile_section_table (objfile))
231 {
232 error (_("Can't find the file sections in `%s': %s"),
233 objfile->name, bfd_errmsg (bfd_get_error ()));
234 }
235 }
236 else
237 {
238 objfile->name = xstrdup ("<<anonymous objfile>>");
239 }
240
241 objfile->pspace = current_program_space;
242
243 /* Initialize the section indexes for this objfile, so that we can
244 later detect if they are used w/o being properly assigned to. */
245
246 objfile->sect_index_text = -1;
247 objfile->sect_index_data = -1;
248 objfile->sect_index_bss = -1;
249 objfile->sect_index_rodata = -1;
250
251 /* We don't yet have a C++-specific namespace symtab. */
252
253 objfile->cp_namespace_symtab = NULL;
254
255 /* Add this file onto the tail of the linked list of other such files. */
256
257 objfile->next = NULL;
258 if (object_files == NULL)
259 object_files = objfile;
260 else
261 {
262 struct objfile *last_one;
263
264 for (last_one = object_files;
265 last_one->next;
266 last_one = last_one->next);
267 last_one->next = objfile;
268 }
269
270 /* Save passed in flag bits. */
271 objfile->flags |= flags;
272
273 /* Rebuild section map next time we need it. */
274 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
275
276 return objfile;
277 }
278
279 /* Retrieve the gdbarch associated with OBJFILE. */
280 struct gdbarch *
281 get_objfile_arch (struct objfile *objfile)
282 {
283 return objfile->gdbarch;
284 }
285
286 /* Initialize entry point information for this objfile. */
287
288 void
289 init_entry_point_info (struct objfile *objfile)
290 {
291 /* Save startup file's range of PC addresses to help blockframe.c
292 decide where the bottom of the stack is. */
293
294 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
295 {
296 /* Executable file -- record its entry point so we'll recognize
297 the startup file because it contains the entry point. */
298 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
299 objfile->ei.entry_point_p = 1;
300 }
301 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
302 && bfd_get_start_address (objfile->obfd) != 0)
303 {
304 /* Some shared libraries may have entry points set and be
305 runnable. There's no clear way to indicate this, so just check
306 for values other than zero. */
307 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
308 objfile->ei.entry_point_p = 1;
309 }
310 else
311 {
312 /* Examination of non-executable.o files. Short-circuit this stuff. */
313 objfile->ei.entry_point_p = 0;
314 }
315 }
316
317 /* If there is a valid and known entry point, function fills *ENTRY_P with it
318 and returns non-zero; otherwise it returns zero. */
319
320 int
321 entry_point_address_query (CORE_ADDR *entry_p)
322 {
323 struct gdbarch *gdbarch;
324 CORE_ADDR entry_point;
325
326 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
327 return 0;
328
329 gdbarch = get_objfile_arch (symfile_objfile);
330
331 entry_point = symfile_objfile->ei.entry_point;
332
333 /* Make certain that the address points at real code, and not a
334 function descriptor. */
335 entry_point = gdbarch_convert_from_func_ptr_addr (gdbarch, entry_point,
336 &current_target);
337
338 /* Remove any ISA markers, so that this matches entries in the
339 symbol table. */
340 entry_point = gdbarch_addr_bits_remove (gdbarch, entry_point);
341
342 *entry_p = entry_point;
343 return 1;
344 }
345
346 /* Get current entry point address. Call error if it is not known. */
347
348 CORE_ADDR
349 entry_point_address (void)
350 {
351 CORE_ADDR retval;
352
353 if (!entry_point_address_query (&retval))
354 error (_("Entry point address is not known."));
355
356 return retval;
357 }
358
359 /* Create the terminating entry of OBJFILE's minimal symbol table.
360 If OBJFILE->msymbols is zero, allocate a single entry from
361 OBJFILE->objfile_obstack; otherwise, just initialize
362 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
363 void
364 terminate_minimal_symbol_table (struct objfile *objfile)
365 {
366 if (! objfile->msymbols)
367 objfile->msymbols = ((struct minimal_symbol *)
368 obstack_alloc (&objfile->objfile_obstack,
369 sizeof (objfile->msymbols[0])));
370
371 {
372 struct minimal_symbol *m
373 = &objfile->msymbols[objfile->minimal_symbol_count];
374
375 memset (m, 0, sizeof (*m));
376 /* Don't rely on these enumeration values being 0's. */
377 MSYMBOL_TYPE (m) = mst_unknown;
378 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
379 }
380 }
381
382 /* Iterator on PARENT and every separate debug objfile of PARENT.
383 The usage pattern is:
384 for (objfile = parent;
385 objfile;
386 objfile = objfile_separate_debug_iterate (parent, objfile))
387 ...
388 */
389
390 struct objfile *
391 objfile_separate_debug_iterate (const struct objfile *parent,
392 const struct objfile *objfile)
393 {
394 struct objfile *res;
395
396 /* If any, return the first child. */
397 res = objfile->separate_debug_objfile;
398 if (res)
399 return res;
400
401 /* Common case where there is no separate debug objfile. */
402 if (objfile == parent)
403 return NULL;
404
405 /* Return the brother if any. Note that we don't iterate on brothers of
406 the parents. */
407 res = objfile->separate_debug_objfile_link;
408 if (res)
409 return res;
410
411 for (res = objfile->separate_debug_objfile_backlink;
412 res != parent;
413 res = res->separate_debug_objfile_backlink)
414 {
415 gdb_assert (res != NULL);
416 if (res->separate_debug_objfile_link)
417 return res->separate_debug_objfile_link;
418 }
419 return NULL;
420 }
421
422 /* Put one object file before a specified on in the global list.
423 This can be used to make sure an object file is destroyed before
424 another when using ALL_OBJFILES_SAFE to free all objfiles. */
425 void
426 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
427 {
428 struct objfile **objp;
429
430 unlink_objfile (objfile);
431
432 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
433 {
434 if (*objp == before_this)
435 {
436 objfile->next = *objp;
437 *objp = objfile;
438 return;
439 }
440 }
441
442 internal_error (__FILE__, __LINE__,
443 _("put_objfile_before: before objfile not in list"));
444 }
445
446 /* Put OBJFILE at the front of the list. */
447
448 void
449 objfile_to_front (struct objfile *objfile)
450 {
451 struct objfile **objp;
452 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
453 {
454 if (*objp == objfile)
455 {
456 /* Unhook it from where it is. */
457 *objp = objfile->next;
458 /* Put it in the front. */
459 objfile->next = object_files;
460 object_files = objfile;
461 break;
462 }
463 }
464 }
465
466 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
467 list.
468
469 It is not a bug, or error, to call this function if OBJFILE is not known
470 to be in the current list. This is done in the case of mapped objfiles,
471 for example, just to ensure that the mapped objfile doesn't appear twice
472 in the list. Since the list is threaded, linking in a mapped objfile
473 twice would create a circular list.
474
475 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
476 unlinking it, just to ensure that we have completely severed any linkages
477 between the OBJFILE and the list. */
478
479 void
480 unlink_objfile (struct objfile *objfile)
481 {
482 struct objfile **objpp;
483
484 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
485 {
486 if (*objpp == objfile)
487 {
488 *objpp = (*objpp)->next;
489 objfile->next = NULL;
490 return;
491 }
492 }
493
494 internal_error (__FILE__, __LINE__,
495 _("unlink_objfile: objfile already unlinked"));
496 }
497
498 /* Add OBJFILE as a separate debug objfile of PARENT. */
499
500 void
501 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
502 {
503 gdb_assert (objfile && parent);
504
505 /* Must not be already in a list. */
506 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
507 gdb_assert (objfile->separate_debug_objfile_link == NULL);
508
509 objfile->separate_debug_objfile_backlink = parent;
510 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
511 parent->separate_debug_objfile = objfile;
512
513 /* Put the separate debug object before the normal one, this is so that
514 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
515 put_objfile_before (objfile, parent);
516 }
517
518 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
519 itself. */
520
521 void
522 free_objfile_separate_debug (struct objfile *objfile)
523 {
524 struct objfile *child;
525
526 for (child = objfile->separate_debug_objfile; child;)
527 {
528 struct objfile *next_child = child->separate_debug_objfile_link;
529 free_objfile (child);
530 child = next_child;
531 }
532 }
533
534 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
535 that as much as possible is allocated on the objfile_obstack
536 so that the memory can be efficiently freed.
537
538 Things which we do NOT free because they are not in malloc'd memory
539 or not in memory specific to the objfile include:
540
541 objfile -> sf
542
543 FIXME: If the objfile is using reusable symbol information (via mmalloc),
544 then we need to take into account the fact that more than one process
545 may be using the symbol information at the same time (when mmalloc is
546 extended to support cooperative locking). When more than one process
547 is using the mapped symbol info, we need to be more careful about when
548 we free objects in the reusable area. */
549
550 void
551 free_objfile (struct objfile *objfile)
552 {
553 /* Free all separate debug objfiles. */
554 free_objfile_separate_debug (objfile);
555
556 if (objfile->separate_debug_objfile_backlink)
557 {
558 /* We freed the separate debug file, make sure the base objfile
559 doesn't reference it. */
560 struct objfile *child;
561
562 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
563
564 if (child == objfile)
565 {
566 /* OBJFILE is the first child. */
567 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
568 objfile->separate_debug_objfile_link;
569 }
570 else
571 {
572 /* Find OBJFILE in the list. */
573 while (1)
574 {
575 if (child->separate_debug_objfile_link == objfile)
576 {
577 child->separate_debug_objfile_link =
578 objfile->separate_debug_objfile_link;
579 break;
580 }
581 child = child->separate_debug_objfile_link;
582 gdb_assert (child);
583 }
584 }
585 }
586
587 /* Remove any references to this objfile in the global value
588 lists. */
589 preserve_values (objfile);
590
591 /* First do any symbol file specific actions required when we are
592 finished with a particular symbol file. Note that if the objfile
593 is using reusable symbol information (via mmalloc) then each of
594 these routines is responsible for doing the correct thing, either
595 freeing things which are valid only during this particular gdb
596 execution, or leaving them to be reused during the next one. */
597
598 if (objfile->sf != NULL)
599 {
600 (*objfile->sf->sym_finish) (objfile);
601 }
602
603 /* Discard any data modules have associated with the objfile. */
604 objfile_free_data (objfile);
605
606 gdb_bfd_unref (objfile->obfd);
607
608 /* Remove it from the chain of all objfiles. */
609
610 unlink_objfile (objfile);
611
612 if (objfile == symfile_objfile)
613 symfile_objfile = NULL;
614
615 if (objfile == rt_common_objfile)
616 rt_common_objfile = NULL;
617
618 /* Before the symbol table code was redone to make it easier to
619 selectively load and remove information particular to a specific
620 linkage unit, gdb used to do these things whenever the monolithic
621 symbol table was blown away. How much still needs to be done
622 is unknown, but we play it safe for now and keep each action until
623 it is shown to be no longer needed. */
624
625 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
626 for example), so we need to call this here. */
627 clear_pc_function_cache ();
628
629 /* Clear globals which might have pointed into a removed objfile.
630 FIXME: It's not clear which of these are supposed to persist
631 between expressions and which ought to be reset each time. */
632 expression_context_block = NULL;
633 innermost_block = NULL;
634
635 /* Check to see if the current_source_symtab belongs to this objfile,
636 and if so, call clear_current_source_symtab_and_line. */
637
638 {
639 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
640 struct symtab *s;
641
642 ALL_OBJFILE_SYMTABS (objfile, s)
643 {
644 if (s == cursal.symtab)
645 clear_current_source_symtab_and_line ();
646 }
647 }
648
649 /* The last thing we do is free the objfile struct itself. */
650
651 if (objfile->name != NULL)
652 {
653 xfree (objfile->name);
654 }
655 if (objfile->global_psymbols.list)
656 xfree (objfile->global_psymbols.list);
657 if (objfile->static_psymbols.list)
658 xfree (objfile->static_psymbols.list);
659 /* Free the obstacks for non-reusable objfiles */
660 bcache_xfree (objfile->psymbol_cache);
661 bcache_xfree (objfile->macro_cache);
662 bcache_xfree (objfile->filename_cache);
663 if (objfile->demangled_names_hash)
664 htab_delete (objfile->demangled_names_hash);
665 obstack_free (&objfile->objfile_obstack, 0);
666
667 /* Rebuild section map next time we need it. */
668 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
669
670 xfree (objfile);
671 }
672
673 static void
674 do_free_objfile_cleanup (void *obj)
675 {
676 free_objfile (obj);
677 }
678
679 struct cleanup *
680 make_cleanup_free_objfile (struct objfile *obj)
681 {
682 return make_cleanup (do_free_objfile_cleanup, obj);
683 }
684
685 /* Free all the object files at once and clean up their users. */
686
687 void
688 free_all_objfiles (void)
689 {
690 struct objfile *objfile, *temp;
691
692 ALL_OBJFILES_SAFE (objfile, temp)
693 {
694 free_objfile (objfile);
695 }
696 clear_symtab_users ();
697 }
698 \f
699 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
700 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
701 Return non-zero iff any change happened. */
702
703 static int
704 objfile_relocate1 (struct objfile *objfile, struct section_offsets *new_offsets)
705 {
706 struct obj_section *s;
707 struct section_offsets *delta =
708 ((struct section_offsets *)
709 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
710
711 {
712 int i;
713 int something_changed = 0;
714 for (i = 0; i < objfile->num_sections; ++i)
715 {
716 delta->offsets[i] =
717 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
718 if (ANOFFSET (delta, i) != 0)
719 something_changed = 1;
720 }
721 if (!something_changed)
722 return 0;
723 }
724
725 /* OK, get all the symtabs. */
726 {
727 struct symtab *s;
728
729 ALL_OBJFILE_SYMTABS (objfile, s)
730 {
731 struct linetable *l;
732 struct blockvector *bv;
733 int i;
734
735 /* First the line table. */
736 l = LINETABLE (s);
737 if (l)
738 {
739 for (i = 0; i < l->nitems; ++i)
740 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
741 }
742
743 /* Don't relocate a shared blockvector more than once. */
744 if (!s->primary)
745 continue;
746
747 bv = BLOCKVECTOR (s);
748 if (BLOCKVECTOR_MAP (bv))
749 addrmap_relocate (BLOCKVECTOR_MAP (bv),
750 ANOFFSET (delta, s->block_line_section));
751
752 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
753 {
754 struct block *b;
755 struct symbol *sym;
756 struct dict_iterator iter;
757
758 b = BLOCKVECTOR_BLOCK (bv, i);
759 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
760 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
761
762 ALL_BLOCK_SYMBOLS (b, iter, sym)
763 {
764 fixup_symbol_section (sym, objfile);
765
766 /* The RS6000 code from which this was taken skipped
767 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
768 But I'm leaving out that test, on the theory that
769 they can't possibly pass the tests below. */
770 if ((SYMBOL_CLASS (sym) == LOC_LABEL
771 || SYMBOL_CLASS (sym) == LOC_STATIC)
772 && SYMBOL_SECTION (sym) >= 0)
773 {
774 SYMBOL_VALUE_ADDRESS (sym) +=
775 ANOFFSET (delta, SYMBOL_SECTION (sym));
776 }
777 }
778 }
779 }
780 }
781
782 if (objfile->psymtabs_addrmap)
783 addrmap_relocate (objfile->psymtabs_addrmap,
784 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
785
786 if (objfile->sf)
787 objfile->sf->qf->relocate (objfile, new_offsets, delta);
788
789 {
790 struct minimal_symbol *msym;
791 ALL_OBJFILE_MSYMBOLS (objfile, msym)
792 if (SYMBOL_SECTION (msym) >= 0)
793 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
794 }
795 /* Relocating different sections by different amounts may cause the symbols
796 to be out of order. */
797 msymbols_sort (objfile);
798
799 if (objfile->ei.entry_point_p)
800 {
801 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
802 only as a fallback. */
803 struct obj_section *s;
804 s = find_pc_section (objfile->ei.entry_point);
805 if (s)
806 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
807 else
808 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
809 }
810
811 {
812 int i;
813 for (i = 0; i < objfile->num_sections; ++i)
814 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
815 }
816
817 /* Rebuild section map next time we need it. */
818 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
819
820 /* Update the table in exec_ops, used to read memory. */
821 ALL_OBJFILE_OSECTIONS (objfile, s)
822 {
823 int idx = s->the_bfd_section->index;
824
825 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
826 obj_section_addr (s));
827 }
828
829 /* Data changed. */
830 return 1;
831 }
832
833 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
834 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
835
836 The number and ordering of sections does differ between the two objfiles.
837 Only their names match. Also the file offsets will differ (objfile being
838 possibly prelinked but separate_debug_objfile is probably not prelinked) but
839 the in-memory absolute address as specified by NEW_OFFSETS must match both
840 files. */
841
842 void
843 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
844 {
845 struct objfile *debug_objfile;
846 int changed = 0;
847
848 changed |= objfile_relocate1 (objfile, new_offsets);
849
850 for (debug_objfile = objfile->separate_debug_objfile;
851 debug_objfile;
852 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
853 {
854 struct section_addr_info *objfile_addrs;
855 struct section_offsets *new_debug_offsets;
856 int new_debug_num_sections;
857 struct cleanup *my_cleanups;
858
859 objfile_addrs = build_section_addr_info_from_objfile (objfile);
860 my_cleanups = make_cleanup (xfree, objfile_addrs);
861
862 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
863 relative ones must be already created according to debug_objfile. */
864
865 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
866
867 gdb_assert (debug_objfile->num_sections
868 == bfd_count_sections (debug_objfile->obfd));
869 new_debug_offsets = xmalloc (SIZEOF_N_SECTION_OFFSETS
870 (debug_objfile->num_sections));
871 make_cleanup (xfree, new_debug_offsets);
872 relative_addr_info_to_section_offsets (new_debug_offsets,
873 debug_objfile->num_sections,
874 objfile_addrs);
875
876 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
877
878 do_cleanups (my_cleanups);
879 }
880
881 /* Relocate breakpoints as necessary, after things are relocated. */
882 if (changed)
883 breakpoint_re_set ();
884 }
885 \f
886 /* Return non-zero if OBJFILE has partial symbols. */
887
888 int
889 objfile_has_partial_symbols (struct objfile *objfile)
890 {
891 return objfile->sf ? objfile->sf->qf->has_symbols (objfile) : 0;
892 }
893
894 /* Return non-zero if OBJFILE has full symbols. */
895
896 int
897 objfile_has_full_symbols (struct objfile *objfile)
898 {
899 return objfile->symtabs != NULL;
900 }
901
902 /* Return non-zero if OBJFILE has full or partial symbols, either directly
903 or through a separate debug file. */
904
905 int
906 objfile_has_symbols (struct objfile *objfile)
907 {
908 struct objfile *o;
909
910 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
911 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
912 return 1;
913 return 0;
914 }
915
916
917 /* Many places in gdb want to test just to see if we have any partial
918 symbols available. This function returns zero if none are currently
919 available, nonzero otherwise. */
920
921 int
922 have_partial_symbols (void)
923 {
924 struct objfile *ofp;
925
926 ALL_OBJFILES (ofp)
927 {
928 if (objfile_has_partial_symbols (ofp))
929 return 1;
930 }
931 return 0;
932 }
933
934 /* Many places in gdb want to test just to see if we have any full
935 symbols available. This function returns zero if none are currently
936 available, nonzero otherwise. */
937
938 int
939 have_full_symbols (void)
940 {
941 struct objfile *ofp;
942
943 ALL_OBJFILES (ofp)
944 {
945 if (objfile_has_full_symbols (ofp))
946 return 1;
947 }
948 return 0;
949 }
950
951
952 /* This operations deletes all objfile entries that represent solibs that
953 weren't explicitly loaded by the user, via e.g., the add-symbol-file
954 command.
955 */
956 void
957 objfile_purge_solibs (void)
958 {
959 struct objfile *objf;
960 struct objfile *temp;
961
962 ALL_OBJFILES_SAFE (objf, temp)
963 {
964 /* We assume that the solib package has been purged already, or will
965 be soon.
966 */
967 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
968 free_objfile (objf);
969 }
970 }
971
972
973 /* Many places in gdb want to test just to see if we have any minimal
974 symbols available. This function returns zero if none are currently
975 available, nonzero otherwise. */
976
977 int
978 have_minimal_symbols (void)
979 {
980 struct objfile *ofp;
981
982 ALL_OBJFILES (ofp)
983 {
984 if (ofp->minimal_symbol_count > 0)
985 {
986 return 1;
987 }
988 }
989 return 0;
990 }
991
992 /* Qsort comparison function. */
993
994 static int
995 qsort_cmp (const void *a, const void *b)
996 {
997 const struct obj_section *sect1 = *(const struct obj_section **) a;
998 const struct obj_section *sect2 = *(const struct obj_section **) b;
999 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1000 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1001
1002 if (sect1_addr < sect2_addr)
1003 return -1;
1004 else if (sect1_addr > sect2_addr)
1005 return 1;
1006 else
1007 {
1008 /* Sections are at the same address. This could happen if
1009 A) we have an objfile and a separate debuginfo.
1010 B) we are confused, and have added sections without proper relocation,
1011 or something like that. */
1012
1013 const struct objfile *const objfile1 = sect1->objfile;
1014 const struct objfile *const objfile2 = sect2->objfile;
1015
1016 if (objfile1->separate_debug_objfile == objfile2
1017 || objfile2->separate_debug_objfile == objfile1)
1018 {
1019 /* Case A. The ordering doesn't matter: separate debuginfo files
1020 will be filtered out later. */
1021
1022 return 0;
1023 }
1024
1025 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1026 triage. This section could be slow (since we iterate over all
1027 objfiles in each call to qsort_cmp), but this shouldn't happen
1028 very often (GDB is already in a confused state; one hopes this
1029 doesn't happen at all). If you discover that significant time is
1030 spent in the loops below, do 'set complaints 100' and examine the
1031 resulting complaints. */
1032
1033 if (objfile1 == objfile2)
1034 {
1035 /* Both sections came from the same objfile. We are really confused.
1036 Sort on sequence order of sections within the objfile. */
1037
1038 const struct obj_section *osect;
1039
1040 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1041 if (osect == sect1)
1042 return -1;
1043 else if (osect == sect2)
1044 return 1;
1045
1046 /* We should have found one of the sections before getting here. */
1047 gdb_assert (0);
1048 }
1049 else
1050 {
1051 /* Sort on sequence number of the objfile in the chain. */
1052
1053 const struct objfile *objfile;
1054
1055 ALL_OBJFILES (objfile)
1056 if (objfile == objfile1)
1057 return -1;
1058 else if (objfile == objfile2)
1059 return 1;
1060
1061 /* We should have found one of the objfiles before getting here. */
1062 gdb_assert (0);
1063 }
1064
1065 }
1066
1067 /* Unreachable. */
1068 gdb_assert (0);
1069 return 0;
1070 }
1071
1072 /* Select "better" obj_section to keep. We prefer the one that came from
1073 the real object, rather than the one from separate debuginfo.
1074 Most of the time the two sections are exactly identical, but with
1075 prelinking the .rel.dyn section in the real object may have different
1076 size. */
1077
1078 static struct obj_section *
1079 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1080 {
1081 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1082 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1083 || (b->objfile->separate_debug_objfile == a->objfile));
1084 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1085 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1086
1087 if (a->objfile->separate_debug_objfile != NULL)
1088 return a;
1089 return b;
1090 }
1091
1092 /* Return 1 if SECTION should be inserted into the section map.
1093 We want to insert only non-overlay and non-TLS section. */
1094
1095 static int
1096 insert_section_p (const struct bfd *abfd,
1097 const struct bfd_section *section)
1098 {
1099 const bfd_vma lma = bfd_section_lma (abfd, section);
1100
1101 if (lma != 0 && lma != bfd_section_vma (abfd, section)
1102 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1103 /* This is an overlay section. IN_MEMORY check is needed to avoid
1104 discarding sections from the "system supplied DSO" (aka vdso)
1105 on some Linux systems (e.g. Fedora 11). */
1106 return 0;
1107 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1108 /* This is a TLS section. */
1109 return 0;
1110
1111 return 1;
1112 }
1113
1114 /* Filter out overlapping sections where one section came from the real
1115 objfile, and the other from a separate debuginfo file.
1116 Return the size of table after redundant sections have been eliminated. */
1117
1118 static int
1119 filter_debuginfo_sections (struct obj_section **map, int map_size)
1120 {
1121 int i, j;
1122
1123 for (i = 0, j = 0; i < map_size - 1; i++)
1124 {
1125 struct obj_section *const sect1 = map[i];
1126 struct obj_section *const sect2 = map[i + 1];
1127 const struct objfile *const objfile1 = sect1->objfile;
1128 const struct objfile *const objfile2 = sect2->objfile;
1129 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1130 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1131
1132 if (sect1_addr == sect2_addr
1133 && (objfile1->separate_debug_objfile == objfile2
1134 || objfile2->separate_debug_objfile == objfile1))
1135 {
1136 map[j++] = preferred_obj_section (sect1, sect2);
1137 ++i;
1138 }
1139 else
1140 map[j++] = sect1;
1141 }
1142
1143 if (i < map_size)
1144 {
1145 gdb_assert (i == map_size - 1);
1146 map[j++] = map[i];
1147 }
1148
1149 /* The map should not have shrunk to less than half the original size. */
1150 gdb_assert (map_size / 2 <= j);
1151
1152 return j;
1153 }
1154
1155 /* Filter out overlapping sections, issuing a warning if any are found.
1156 Overlapping sections could really be overlay sections which we didn't
1157 classify as such in insert_section_p, or we could be dealing with a
1158 corrupt binary. */
1159
1160 static int
1161 filter_overlapping_sections (struct obj_section **map, int map_size)
1162 {
1163 int i, j;
1164
1165 for (i = 0, j = 0; i < map_size - 1; )
1166 {
1167 int k;
1168
1169 map[j++] = map[i];
1170 for (k = i + 1; k < map_size; k++)
1171 {
1172 struct obj_section *const sect1 = map[i];
1173 struct obj_section *const sect2 = map[k];
1174 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1175 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1176 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1177
1178 gdb_assert (sect1_addr <= sect2_addr);
1179
1180 if (sect1_endaddr <= sect2_addr)
1181 break;
1182 else
1183 {
1184 /* We have an overlap. Report it. */
1185
1186 struct objfile *const objf1 = sect1->objfile;
1187 struct objfile *const objf2 = sect2->objfile;
1188
1189 const struct bfd *const abfd1 = objf1->obfd;
1190 const struct bfd *const abfd2 = objf2->obfd;
1191
1192 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1193 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1194
1195 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1196
1197 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1198
1199 complaint (&symfile_complaints,
1200 _("unexpected overlap between:\n"
1201 " (A) section `%s' from `%s' [%s, %s)\n"
1202 " (B) section `%s' from `%s' [%s, %s).\n"
1203 "Will ignore section B"),
1204 bfd_section_name (abfd1, bfds1), objf1->name,
1205 paddress (gdbarch, sect1_addr),
1206 paddress (gdbarch, sect1_endaddr),
1207 bfd_section_name (abfd2, bfds2), objf2->name,
1208 paddress (gdbarch, sect2_addr),
1209 paddress (gdbarch, sect2_endaddr));
1210 }
1211 }
1212 i = k;
1213 }
1214
1215 if (i < map_size)
1216 {
1217 gdb_assert (i == map_size - 1);
1218 map[j++] = map[i];
1219 }
1220
1221 return j;
1222 }
1223
1224
1225 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1226 TLS, overlay and overlapping sections. */
1227
1228 static void
1229 update_section_map (struct program_space *pspace,
1230 struct obj_section ***pmap, int *pmap_size)
1231 {
1232 int alloc_size, map_size, i;
1233 struct obj_section *s, **map;
1234 struct objfile *objfile;
1235
1236 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1237
1238 map = *pmap;
1239 xfree (map);
1240
1241 alloc_size = 0;
1242 ALL_PSPACE_OBJFILES (pspace, objfile)
1243 ALL_OBJFILE_OSECTIONS (objfile, s)
1244 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1245 alloc_size += 1;
1246
1247 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1248 if (alloc_size == 0)
1249 {
1250 *pmap = NULL;
1251 *pmap_size = 0;
1252 return;
1253 }
1254
1255 map = xmalloc (alloc_size * sizeof (*map));
1256
1257 i = 0;
1258 ALL_PSPACE_OBJFILES (pspace, objfile)
1259 ALL_OBJFILE_OSECTIONS (objfile, s)
1260 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1261 map[i++] = s;
1262
1263 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1264 map_size = filter_debuginfo_sections(map, alloc_size);
1265 map_size = filter_overlapping_sections(map, map_size);
1266
1267 if (map_size < alloc_size)
1268 /* Some sections were eliminated. Trim excess space. */
1269 map = xrealloc (map, map_size * sizeof (*map));
1270 else
1271 gdb_assert (alloc_size == map_size);
1272
1273 *pmap = map;
1274 *pmap_size = map_size;
1275 }
1276
1277 /* Bsearch comparison function. */
1278
1279 static int
1280 bsearch_cmp (const void *key, const void *elt)
1281 {
1282 const CORE_ADDR pc = *(CORE_ADDR *) key;
1283 const struct obj_section *section = *(const struct obj_section **) elt;
1284
1285 if (pc < obj_section_addr (section))
1286 return -1;
1287 if (pc < obj_section_endaddr (section))
1288 return 0;
1289 return 1;
1290 }
1291
1292 /* Returns a section whose range includes PC or NULL if none found. */
1293
1294 struct obj_section *
1295 find_pc_section (CORE_ADDR pc)
1296 {
1297 struct objfile_pspace_info *pspace_info;
1298 struct obj_section *s, **sp;
1299
1300 /* Check for mapped overlay section first. */
1301 s = find_pc_mapped_section (pc);
1302 if (s)
1303 return s;
1304
1305 pspace_info = get_objfile_pspace_data (current_program_space);
1306 if (pspace_info->objfiles_changed_p != 0)
1307 {
1308 update_section_map (current_program_space,
1309 &pspace_info->sections,
1310 &pspace_info->num_sections);
1311
1312 /* Don't need updates to section map until objfiles are added,
1313 removed or relocated. */
1314 pspace_info->objfiles_changed_p = 0;
1315 }
1316
1317 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1318 bsearch be non-NULL. */
1319 if (pspace_info->sections == NULL)
1320 {
1321 gdb_assert (pspace_info->num_sections == 0);
1322 return NULL;
1323 }
1324
1325 sp = (struct obj_section **) bsearch (&pc,
1326 pspace_info->sections,
1327 pspace_info->num_sections,
1328 sizeof (*pspace_info->sections),
1329 bsearch_cmp);
1330 if (sp != NULL)
1331 return *sp;
1332 return NULL;
1333 }
1334
1335
1336 /* In SVR4, we recognize a trampoline by it's section name.
1337 That is, if the pc is in a section named ".plt" then we are in
1338 a trampoline. */
1339
1340 int
1341 in_plt_section (CORE_ADDR pc, char *name)
1342 {
1343 struct obj_section *s;
1344 int retval = 0;
1345
1346 s = find_pc_section (pc);
1347
1348 retval = (s != NULL
1349 && s->the_bfd_section->name != NULL
1350 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1351 return (retval);
1352 }
1353 \f
1354
1355 /* Keep a registry of per-objfile data-pointers required by other GDB
1356 modules. */
1357
1358 struct objfile_data
1359 {
1360 unsigned index;
1361 void (*save) (struct objfile *, void *);
1362 void (*free) (struct objfile *, void *);
1363 };
1364
1365 struct objfile_data_registration
1366 {
1367 struct objfile_data *data;
1368 struct objfile_data_registration *next;
1369 };
1370
1371 struct objfile_data_registry
1372 {
1373 struct objfile_data_registration *registrations;
1374 unsigned num_registrations;
1375 };
1376
1377 static struct objfile_data_registry objfile_data_registry = { NULL, 0 };
1378
1379 const struct objfile_data *
1380 register_objfile_data_with_cleanup (void (*save) (struct objfile *, void *),
1381 void (*free) (struct objfile *, void *))
1382 {
1383 struct objfile_data_registration **curr;
1384
1385 /* Append new registration. */
1386 for (curr = &objfile_data_registry.registrations;
1387 *curr != NULL; curr = &(*curr)->next);
1388
1389 *curr = XMALLOC (struct objfile_data_registration);
1390 (*curr)->next = NULL;
1391 (*curr)->data = XMALLOC (struct objfile_data);
1392 (*curr)->data->index = objfile_data_registry.num_registrations++;
1393 (*curr)->data->save = save;
1394 (*curr)->data->free = free;
1395
1396 return (*curr)->data;
1397 }
1398
1399 const struct objfile_data *
1400 register_objfile_data (void)
1401 {
1402 return register_objfile_data_with_cleanup (NULL, NULL);
1403 }
1404
1405 static void
1406 objfile_alloc_data (struct objfile *objfile)
1407 {
1408 gdb_assert (objfile->data == NULL);
1409 objfile->num_data = objfile_data_registry.num_registrations;
1410 objfile->data = XCALLOC (objfile->num_data, void *);
1411 }
1412
1413 static void
1414 objfile_free_data (struct objfile *objfile)
1415 {
1416 gdb_assert (objfile->data != NULL);
1417 clear_objfile_data (objfile);
1418 xfree (objfile->data);
1419 objfile->data = NULL;
1420 }
1421
1422 void
1423 clear_objfile_data (struct objfile *objfile)
1424 {
1425 struct objfile_data_registration *registration;
1426 int i;
1427
1428 gdb_assert (objfile->data != NULL);
1429
1430 /* Process all the save handlers. */
1431
1432 for (registration = objfile_data_registry.registrations, i = 0;
1433 i < objfile->num_data;
1434 registration = registration->next, i++)
1435 if (objfile->data[i] != NULL && registration->data->save != NULL)
1436 registration->data->save (objfile, objfile->data[i]);
1437
1438 /* Now process all the free handlers. */
1439
1440 for (registration = objfile_data_registry.registrations, i = 0;
1441 i < objfile->num_data;
1442 registration = registration->next, i++)
1443 if (objfile->data[i] != NULL && registration->data->free != NULL)
1444 registration->data->free (objfile, objfile->data[i]);
1445
1446 memset (objfile->data, 0, objfile->num_data * sizeof (void *));
1447 }
1448
1449 void
1450 set_objfile_data (struct objfile *objfile, const struct objfile_data *data,
1451 void *value)
1452 {
1453 gdb_assert (data->index < objfile->num_data);
1454 objfile->data[data->index] = value;
1455 }
1456
1457 void *
1458 objfile_data (struct objfile *objfile, const struct objfile_data *data)
1459 {
1460 gdb_assert (data->index < objfile->num_data);
1461 return objfile->data[data->index];
1462 }
1463
1464 /* Set objfiles_changed_p so section map will be rebuilt next time it
1465 is used. Called by reread_symbols. */
1466
1467 void
1468 objfiles_changed (void)
1469 {
1470 /* Rebuild section map next time we need it. */
1471 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1472 }
1473
1474 /* Add reference to ABFD. Returns ABFD. */
1475 struct bfd *
1476 gdb_bfd_ref (struct bfd *abfd)
1477 {
1478 int *p_refcount;
1479
1480 if (abfd == NULL)
1481 return NULL;
1482
1483 p_refcount = bfd_usrdata (abfd);
1484
1485 if (p_refcount != NULL)
1486 {
1487 *p_refcount += 1;
1488 return abfd;
1489 }
1490
1491 p_refcount = xmalloc (sizeof (*p_refcount));
1492 *p_refcount = 1;
1493 bfd_usrdata (abfd) = p_refcount;
1494
1495 return abfd;
1496 }
1497
1498 /* Unreference and possibly close ABFD. */
1499 void
1500 gdb_bfd_unref (struct bfd *abfd)
1501 {
1502 int *p_refcount;
1503 char *name;
1504
1505 if (abfd == NULL)
1506 return;
1507
1508 p_refcount = bfd_usrdata (abfd);
1509
1510 /* Valid range for p_refcount: a pointer to int counter, which has a
1511 value of 1 (single owner) or 2 (shared). */
1512 gdb_assert (*p_refcount == 1 || *p_refcount == 2);
1513
1514 *p_refcount -= 1;
1515 if (*p_refcount > 0)
1516 return;
1517
1518 xfree (p_refcount);
1519 bfd_usrdata (abfd) = NULL; /* Paranoia. */
1520
1521 name = bfd_get_filename (abfd);
1522 if (!bfd_close (abfd))
1523 warning (_("cannot close \"%s\": %s"),
1524 name, bfd_errmsg (bfd_get_error ()));
1525 xfree (name);
1526 }
1527
1528 /* Provide a prototype to silence -Wmissing-prototypes. */
1529 extern initialize_file_ftype _initialize_objfiles;
1530
1531 void
1532 _initialize_objfiles (void)
1533 {
1534 objfiles_pspace_data
1535 = register_program_space_data_with_cleanup (objfiles_pspace_data_cleanup);
1536 }
This page took 0.071356 seconds and 4 git commands to generate.